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Invited Presentation

Recent Applications of Nonparametric
Programming Methods

Hyunok Lee

Nonparametric techniques have recently come into
vogue in agricultural economics: Applications
abound in both consumer and producer models of
the agricultural economy. Moreover, several dis-
tinct approaches to nonparametric analysis exist.
There are nonparametric statistical techniques,
semiparametric estimation techniques, nonpara-
metric revealed-preference analysis of consump-
tion data, and nonparametric analysis of produc-
tion data. Both revealed-preference analysis and
nonparametric analysis of production data rely on
the basic fact, which provides the foundation for
much of modern duality theory, that convex sets
can be completely characterized by their support-
ing hyperplanes. This observation allows one to
apply simple mathematical programming (in par-
ticular, linear programming) methods to analyze
production and consumption data. My task today is
to provide an overview of nonparametric program-
ming approaches to production data. Thus, I will
not address any of the other topics cited above.
However, I would be remiss if [ did not mention
the close connection between these subject areas
and what I intend to survey today. Moreover, one
should also recognize that very closely related to
the literature on nonparametric programming anal-
ysis of production data are the fields of estimation
of efficiency frontier via statistical methods. (A
useful survey here is Lovell and Schmidt).
Nonparametric programming methods are most
widely used to evaluate productive efficiency at
the firm level. The basic approach (due originally
to Farrell, and later to Farrell and Fieldhouse, Ha-
noch and Rothschild, and Afriat) is to compare
observations on individual firm practices to a best-
practice technology constructed from the convex
hull of the observations on all firms’ production
practices. Fidre and Lovell showed that Farrell’s
approach is equivalent to the calculation of Shep-
hard’s input-distance function. These original con-
tributions have been greatly extended by Fire et
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al. (1985), and Charnes, Cooper, and Rhodes.
Charnes et al. refer to the techniques discussed
below as ‘‘data envelopment analysis.”’ Although
cast in a somewhat different context, their ap-
proach is virtually equivalent mathematically to
what is discussed below.

While much of the focus has been on relative
productivity efficiency measurement, a new series
of applications has emerged: the use of nonpara-
metric programming methods to analyze the con-
sequences of economic, regulatory, and contrac-
tual constraints on firm practices. I intend to use
this paper to present an overview of some of the
applications and further to suggest and formulate
several novel applications of nonparametric pro-
gramming methods.

The plan of the paper is as follows. The next
section provides a brief overview of applications of
the nonparametric programming approach to pro-
duction problems: the Farrell method and its ex-
tension to nonconstant returns to scale are first dis-
cussed. Then a brief discussion of the general max-
imization problem associated with nonparametric
programming methods is presented, with an em-
phasis on the dual interpretation of this general
problem. A number of studies using these methods
are briefly reviewed. The paper then turns to a
consideration of alternative applications of non-
parametric programming methods to firm-level
problems. These include the use of nonparametric
programming methods to investigate the effects of
different economic environments, market regula-
tions, market structures, and absence of markets
upon individual firms.

Overview

Nonparametric programming techniques have pre-
viously been used mostly within a frontier frame-
work to calculate the relative efficiency of indi-
vidual firms. The fact that one even attempts to
measure relative efficiency reflects a basic pre-
sumption that firms may operate at different effi-
ciencies; that is, using the same input mix, two
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firms can produce different output levels. This
raises an interesting conceptual point not usually
addressed in neoclassical models of the firm. If
firms operate at different efficiency levels, one
must explain why they do so. Obvious explana-
tions are (1) different firms in the same industry
have different technologies or (2) different firms
have the same technology but some firms use in-
puts inefficiently. The potential problem with the
first explanation is that it seemingly violates one of
the postulates of neoclassical theory, that of per-
fect information. In a world where information is
perfect and symmetric, no one firm should have
access to a technology that is not available to all
firms. A similar problem arises with the second
explanation: It violates the assumption of rational-
ity. Why should a rational firm or individual throw
away productive resources? These observations
underscore an important point. OQutcomes of non-
parametric programming production studies al-
ways offer several possible alternative explana-
tions. Thus, their robustness is always open to
question. Of course, they are not unique in this
aspect. Similar comments can be applied to virtu-
ally any empirical study in economics, even those
usually thought to be ‘‘robust.”

In his seminal paper, Farrell addressed these is-
sues by decomposing efficiency into two compo-
nents, technical and allocative efficiency, for a sin-
gle-product constant-returns-to-scale technology.
Farrell’s approach is nonparametric in the sense
that he uses a series of linear inequalities to con-
struct the free-disposal, convex hull of the ob-
served input-output ratios. Linear programming
techniques are then used to construct efficiency
measures. The properties that are imposed on the
technology are convexity (perfect divisibility), in-
put-free disposability, and free disposability of
outputs. A nonparametric piecewise linear technol-
ogy having these properties can be constructed
from any data set on inputs and outputs. To illus-
trate the construction of such a technology, sup-
pose there are k = 1, . .., K producers using
inputs x*€R" to produce outputs y*ER™. The
piecewise linear technology consistent with these
data is given by

K K
(M) T={0ey):x= D, Mk, y = D Nk,
k=1 k=1

K
D Ne= 1, M > 0 for all &},
k=1

where \ is an intensity vector. Formally, T is the

convex hull of the observed data and input-output
pairs that can be inferred from free disposability of
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inputs and outputs. The construction of T is illus-
trated pictorially in Figure 1. Suppose K = 4, with
the observations labelled (a, b, c, d). The intensity
vector A ensures that all convex combinations of
the observed inputs and outputs belong to T. Thus,
any ‘‘average’’ of two observed production plans
must belong to 7. Hence, the presumption of di-
visibility of the technology is inherent to the Far-
rell approach. Moreover, the facets connecting the
*‘extreme’’ points (a, b, ¢) also must belong to T.
The inequality, x = S\**, allows for inclusion of
all horizontal extensions of the data, reflecting free
disposability of the input. Pictorially this is re-
flected by the inclusion of all points directly to the
right of ¢ in the technology set. Likewise, the in-
equality y = I\ allows for vertical extensions,
reflecting free disposability of the output. Pictori-
ally, this is reflected by the inclusion of all points
directly below a in the technology set. The fact
that the interior points like d in Figure 1 do not
contribute to the construction of T indicates that
the resulting technology is best interpreted as a
‘‘best-practice’’ or frontier technology. For any in-
put bundle, it gives the best output combination
possible that is consistent with real-world observa-
tions and perfect divisibility.

Two useful scalar-valued representations of the
technology described by T have been defined by
Shephard. These are the input- and output-distance
functions. These functions generalize the notion of
a production function to encompass multi-output
technologies. The output-distance function is de-
fined by

(2) T(x,y) = Min {A:(x, y/A)ET},
and the input-distance function is defined by
3) Qx,y) = Max {A:(x/A, y)ET}.

y
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Figure 1. Production Possibility Set
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The output-distance function is positively linearly
homogeneous, convex, and nondecreasing in y,
and quasi-convex and nonincreasing in x. The in-
put-distance function is positively linearly homo-
geneous, concave and nonincreasing in x, and
quasi-concave in y. To illustrate the calculation of
the distance functions, consider point 4 in Figure
1. The output-distance function associated with
that input-output combination is given by the ver-
tical distance ed/ee’. The input-distance function is
given by the horizontal distance fd/f'd. Notice that
for points (a, b, c), both the input- and the output-
distance functions equal one. However, for points
on the horizontal extension emanating from ¢, the
output-distance function is always one, while the
input-distance function is always greater than one.
Similarly, for points on the frontier of T below a,
the input-distance function is always one, while the
output-distance function is always less than one.

Obviously, therefore, the input- and output-
distance functions offer natural measures of the
relative efficiency of the input combination for a
given level of output and the relative efficiency of
the output combination for a given bundle of in-
puts. Farrell’s measure of technical efficiency cor-
responds exactly to the input-distance function.

Both the input- and output-distance functions for
a given observation relative to the frontier technol-
ogy T can be calculated as the solution to a simple
linear program. The input-distance function is cal-
culated as

K
4) T(,y) =MaxT st {xT = 2 Nk,

k=1

K
y= 0, Ngk N E Ry

k=1

K
k=1,...,K, 2 MN=1}
k=1

while the output-distance function is calculated by

K

5) Q) = Min Qs.t. {x = D, Nk,
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This representation of the calculation of the in-
put- and output-distance functions relies solely on
the primal representation of the technology. Cham-
bers, however, has shown that the above has an
interesting dual formulation. To see this, consider
the dual linear program associated with the calcu-
lation of the input-distance function:

6) Max {py + o} s.t. was 1,
p—wxk+ b =0,
foralk = 1,...,K.

Here & is an unrestricted dual scalar, and wER"
and pER™ are non-negative dual vectors that can
be thought of as shadow input prices and shadow
output prices. With some slight manipulation, it
can be shown that this dual problem is equivalent
to finding the input and output price vectors that
make input-output combinations located on the
boundary of T profit maximizing relative to the
given technology. A similar interpretation is avail-
able for the calculation of the output-distance func-
tion.

The recognition that the dual linear program to
the calculation of the input- and output-distance
functions is itself a shadow profit-maximization
problem suggests that the frontier technology can
be usefully applied when more than just observa-
tions on inputs and outputs are available. For ex-
ample, if one has data on input prices, input levels,
and outputs, the presumption of cost minimization
(profit maximization for a fixed output vector) can
be used to construct a representation of the cost
function dual to the frontier technology 7. Ineffi-
ciency measures can then be based upon monetary
units. For example, continuing with the cost-
minimization example, a measure of a given input-
output bundle’s inefficiency can be obtained by
comparing the observed cost of producing that out-
put bundle with the minimum cost of the output
bundle relative to the frontier technology 7. The
cost difference then offers a cost-based measure of
relative inefficiency. Similar calculations could be
made when output prices, output levels, and input
levels are available (revenue function for T), and
when both input and output prices, and input and
output levels are available (profit function for 7).
Again, however, the robustness of the approach
depends upon the presumption of profit-
maximizing behavior. In what follows, we shall
see that this general philosophy proves useful in
the construction of various tests based on the non-
parametric programming approach to production
data.



116 October 1992

Economic and Regulatory Constraints

To motivate the general topic of how the effects of
economic constraints on individual decision-
makers can be evaluated using nonparametric pro-
gramming techniques, one might consider the
topic of expenditure constraints on agricultural
producers. The notion that agricultural producers
face constraints on the amount that they can use to
finance input expenditures is not new. (Ferguson
provided a treatment of neoclassical theory of ex-
penditure-contrained production for a single out-
put, and Schultz explicitly recognized the impor-
tance of credit rationing in agriculture.) However,
the analysis of such constraints was rigorously for-
malized by Lee and Chambers, who introduced the
notion of an expenditure-constrained profit func-
tion and derived its properties. Fire, Grosskopf,
and Lee later used this theoretical framework to
examine the existence of expenditure constraints
using nonparametric programming techniques. Re-
call the piecewise linear representation of the pro-
duction technology T, described above. The pos-
sible existence of expenditure constraints can be
introduced into the model by including yet a fur-
ther constraint—that input expenditures not exceed
a given level of cost:

@) wx < E,

where E is the predetermined level of expenditure
and w is a vector of input prices.

A nonparametric representation of the expendi-
ture-constrained profit function can be expressed
given data on (x, y, w, p, E), where p is the output
price:

(8) P(w, p, E) = Max {py — wx: wx < E,
(x, )ET}.

The traditional profit-maximization problem can
be calculated from the above problem (8), ignoring
the expenditure constraint. If the expenditure con-
straint in (8) were nonbinding, the solution to (8) is
identical to the solution of the traditional profit-
maximization problem. This situation is illustrated
in Figure 2. The expenditure constraint is depicted
as a vertical line, EE’'. The effect of the vertical
expenditure constraint is to reduce the feasible pro-
duction set to the shaded area in Figure 2. If the
expenditure constraint is binding, the profit-
maximizing input/output choice will be at point
E°. Thus, one can examine whether the expendi-
ture constraint binds by comparing the solution of
the two problems. The shadow price of the expen-
diture constraint, that is, the loss in profit due to
the expenditure constraint, can be calculated as the
difference between constrained and unconstrained
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Figure 2. Expenditure-Constrained Profit
Maximization

profit. Suppose relative input price normalized by
the output price is given by the slope of the ray,
OR, in Figure 2, and the shadow price of the ex-
penditure constraint in output-numeraire units is
given by the vertical distance AB. The data are
taken to be consistent with the maintained hypoth-
esis if observed profit equals the optimal value of
the unconstrained objective function at every ob-
servation.

The expenditure-constrained profit-maximi-
zation example again illustrates a point raised in
the previous section. One can always construct a
convex technology that is consistent with a given
set of production data by constructing the free-
disposal convex hull of the input and output com-
binations. Taking this technology as given, one
can then test various behavioral hypotheses (such
as constraints on input expenditures) by comparing
the solution to the constrained-optimization prob-
lem, subject to the technological restrictions im-
posed by this representation of the technology.
However, this procedure is not very powerful in
detecting departures from the maintained hypoth-
esis (e.g., profit maximization) that emerge from
considerations other than whether the constraints
imposed are effective or not. For example, in the
expenditure-constrained profit-maximization prob-
lem, a failure for the data to exhibit behavior con-
sistent with the traditional profit-maximization
model could be due either to allocative inefficiency
by the firm or to the existence of expenditure con-
straints. Thus, different explanations for the data
must always be confounded with one another.

The fact that expenditure-constrained profit
maximization has been analyzed using nonpara-
metric programming methods implies that the
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same basic approach can be used to analyze other
constraints to simple profit maximization: These
might include rate-of-return regulation, quantita-
tive restrictions to international trade, and their do-
mestic implications.

For example, if firm profits are restricted to be
no more than o percent of variable costs, the rate-
of-return problem can be formulated as

(9 Pw,p,a) = Max {py — wx:py =
(a + Dwx, (x, Y)ET}.

Formally, therefore, the rate-of-return problem is
virtually identical to the expenditure-constrained
profit-maximization problem in that it involves the
addition of a single linear inequality constraint to
the original profit-maximization problem. To de-
termine whether the rate-of-return regulation actu-
ally impinges upon firm behavior, one can pursue
an approach similar to that described for the ex-
penditure-constrained maximization problem:
maximize profit subject to the linear inequalities
that describe the free-disposal convex hull of the
data points (i.e., the frontier technology), and
compare this solution with what is obtained from
maximization in the presence of the constraint.
Pictorially, this is represented in Figure 3 by not-
ing that the presence of rate-of-return regulation
reduces the feasible set from the free-disposal con-
vex hull of the points (a, b, c) to the shaded area
that represents the intersection of the free-disposal
convex hull of (a, b, ¢), with the halfspace defined
by y = {o + 1)w/p}x. The shadow value of the
rate-of-return regulation is now given by the ver-
tical distance AB. Alternatively, the dual shadow
value to the inequality py = (o + 1)wx in the

Yy
slope=(1+dw/p
slope=w/p
A
B
(o} X

Figure 3. Profit Maximization under the Rate
of Return Regulation
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linear program can be checked to see whether the
rate-of-return constraint is actually binding. As
with the expenditure-constrained problem, how-
ever, such tests are not very robust because a fail-
ure for the data to exhibit behavior consistent with
the maintained hypothesis could be due to other
than the rate-of-return regulation.

Contract Structure

Contracts are important elements of both devel-
oped and developing economies. Why a certain
contractual form emerges from a certain type of
economy or whether some contracts are inherently
inefficient has been the subject of much discus-
sion. For example, the Marshallian efficiency of
share contracts has been the focus of economic
controversy since the days of Adam Smith. It is
often argued that share contracts provide tenants
with inappropriate incentives. Any inefficiency
arising from share contracts is related to price in-
efficiency, often called ‘‘allocative inefficiency.”’
Marshall (and many others who followed) argued
that because output sharing does not provide the
share tenant with the full marginal return from his
or her input utilization, the tenant will have a ten-
dency to underutilize inputs (presuming inputs are
normal). Johnson, and later Cheung, countered
that share relations need not be inefficient if other
contract provisions correct for this perceived inef-
ficiency. (One obvious way is to have full variable
cost sharing as well as output sharing). Since the
late 1960s, the Johnson-Cheung hypothesis has
been the subject of a number of empirical tests. At
best, the results are mixed. Virtually all of these
tests have been econometric in nature. However, a
nonparametric approach is apparent.

Consider a simple output-sharing contract where
a tenant receives o percent of his or her crop. As
before, one again can construct a convex technol-
ogy, specify a linear objective function consistent
with output sharing, and identify if there is any
observation for which the resulting optimal solu-
tion value is greater than observed profit. If there
is, then the hypothesis that the data were generated
by a competitive profit-maximizing entity is not
supported by the nonparametric test. Lee and Som-
waru used precisely this approach to examine the
alleged Marshallian inefficiency of share relations.
To understand their approach, consider the follow-
ing modification of the optimization programs con-
sidered above.

Consider a tenant farmer operating on share-
rented land, L, using a production-possibility set T
= {(y, L, x): (L, x) can produce y}, where y is a



118 October 1992

vector of outputs and x€R", is a vector of purchased
inputs. Assuming y is a scalar, the landlord spec-
ifies the tenant’s output share a, 0 < a < 1, and,
to recognize the possibility of cost sharing, the
tenant’s cost shares for each input, B = (B, . . .,
Bi - .., Ba), 0 < B; =1, Vi. Under the Mar-
shallian hypothesis, the tenant chooses x and y to
maximize his or her own share of profit:

N
(10) Max {opy = 2 Bwixi ¢ x.L) € T,

i=1

The *‘effective’” output and input prices faced by
the tenant are op and Bw, rather than p and w. If
relative input prices are given by the ray OR in
Figure 4, these new ‘‘effective’’ prices are re-
flected by the slope of OR' in Figure 4. So long as
a < B, one expects there to be an insufficient
incentive for input use because the tenant equates
the marginal value product of the ith input to B,w/
o, instead of w;. In other words, price-related al-
locative inefficiency may exist. Pictorially, this
can be illustrated by Figure 4 where the profit-
maximizing solution for the original prices is at
point A, while the profit-maximizing solution for
the effective prices is at B. As drawn, the tenant
underutilizes inputs at point B.

According to the Johnson-Cheung monitoring
hypothesis, efficient input use, which maximizes
{py — wx}, can be stipulated contractually for
share contracts and enforced through appropriate
landlord monitoring. If the Johnson-Cheung hy-
pothesis is true, share tenancy can then be as price-
efficient as cash renting or owner farming. To ex-
amine which hypothesis describes reality, one can

y
Rl
R
/
A
o B
o

X

Figure 4. Profit Maximization under a Share
Contract
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look for the presence of allocative inefficiency in
share-tenant farms relative to that of the cash-
tenant or owner farmers. If share-rented farms are
found to be allocatively inefficient relative to the
other tenancy forms, we may conjecture that share
tenancy does indeed create allocative inefficiency.
Using data for California rice farmers, Lee and
Somwaru identified, using the nonparametric pro-
gramming technology detailed above, inefficien-
cies in input use for farmers producing under out-
put sharing. Thus, their results support the Mar-
shallian view of share relations rather than the
Johnson-Cheung view (at least for this data set).

Shadow-Value Calculation

Another novel application of nonparametric pro-
gramming models of production relations involves
measurement of goods and bads not exchanged
through organized markets. For example, Fire et
al. (1989) recently measured the productivity of
firms producing multiple outputs, some of which
were undesirable pollution, using a modification of
the nonparametric approach to efficiency measure-
ment. Formally, they relaxed the assumption of
strong output free disposability to allow for the fact
that undesirable outputs may not be freely dispos-
able. In other words, disposing of undesirable out-
puts, such as controlling pollution, may incur a
positive marginal cost to the producer.

Although their study focuses on productivity
measurement rather than the calculation of the
shadow values of bads, they provide a nonpara-
metric framework that incorporates pollution as a
joint output into conventional production analysis.
Writing the output vector y = (v, w), where the
subvector v denotes the goods and the subvector
w denotes the bads, they used weak disposability
of y while maintaining strong disposability of
goods, v.!

The weak disposal production possibility set T
satisfying the above properties is

K K
(D T = {(xy,w): x = X, Nk, v < D) Ak,

k= k=
X 1 1

w= 2 Mwk N\ > 0 for all k}.
k=1

! Outputs are weakly disposable if y€ P(x) implies oty € P(x) for all 0
= a = 1, and strongly disposable if y’ < y€P(x) implies y' € P(x), where
P(x) is the set of all output vectors producible by the input vector x.
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Figure 5 illustrates the construction of the above T
in output space. P(x) in Figure 5 denotes the set of
feasible outputs, given x. The equality w = S\ w*
creates a region of the backward-bending curve,

implying that undesirable outputs are not freely
disposable. (Note that the conventional treatment
of free disposal output is described by P“(x).) In
fact, in their subsequent study, Fére et al. (forth-
coming) derived the shadow value of pollution
based on the notion of output weak disposability
using a parametric programming technique. How-
ever, the nonparametric approach of shadow-value
calculation should be apparent. As alluded to ear-
lier, once the primal technology is constructed, we
can derive the shadow value of pollution from the
dual formulation of the primal technology.

The same basic approach can be used to calcu-
late the shadow value of other nonmarket goods. A
prime example from agriculture is the shadow
value of grazing rights on federally owned land.

Some Novel Applications

Over the last decade, one of the fastest-growing
areas in the theoretical literature on international
trade has been on effects of external economies of
scale on trade patterns and international compara-
tive advantage. As summarized by Helpman, and
later Markusen and Schweinberger, the basic idea
is that at the firm level, there exist single product
production functions of the form (each firm has the
same function)

(12) y = fix, ),

where y' denotes the ith firm’s output and x' de-
notes the ith firm’s input vector. Hence, a firm’s

AN
AR

Figure 5. Production of Pollution as a Joint
Output

lﬁl'
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output depends not only upon its inputs, but also
upon industry output because of the presence of
what are referred to as ‘‘external economies of
scale.”” Firms are assumed to maximize myopi-
cally, taking one industry output as given,; that is,
they perceive themselves as so small relative to the
overall market that they cannot affect total output.
Thus, the firm-level cost-minimization problem
becomes

(13) c(w, y', Zy) = Min {wx’: y' = fx, SyH}.

Markusen and Schweinberger have developed the
properties of a general version of this type of cost
function with the presence of external economies
of scale. However, the basic presumption of ex-
ternal economies has not yet been checked by non-
parametric means, but an obvious procedure for
doing so exists; that is, simply define a scalar fixed
input, ¥ = Zy', common to all firms and construct
the free-disposal convex hull of the technology set
characterized by this production function using
cross-sectional data on firms from a given indus-
try. Then, the marginal product of the industry
output on firm costs and production can be evalu-
ated by using sensitivity analysis.
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