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The Impacts of Climate Change on Cropland Allocation, Crop Production, Output 

Prices and Social Welfare in Israel: A Structural Econometric Framework 

Abstract 

This paper combines a structural estimation of vegetative-agriculture supply, based on a 

farmland-allocation model, with a market-level partial equilibrium demand model, to simulate 

the effects of climate change on agricultural production and food prices. The supply 

estimation accounts for corner solutions associated with disaggregate land-use data, enabling 

the treatment of prices as exogenous. The explicit formulation of production and output prices 

enables linkage to the demand, as well as the exploitation of market-level data so as to assign 

production interpretation to the estimated coefficients of the land-use model. We use the 

model to assess climate-change impacts in Israel, where agriculture is protected by import 

tariffs. We find that the projected climate changes are beneficial to farmers, particularly due to 

the positive impact of the forecasted large temperature rise on field-crop production. Fruit 

outputs are projected to decline, and reduce consumer surplus, but to a lower extent than the 

increase in total agricultural profits. Nearly 20% of the profit rise is attributed to farmers’ 

adaptation through land reallocation. Adaptation to the projected reduction in precipitation by 

increasing irrigation is found to be warranted from the farmers’ perspective; however, it is not 

beneficial to society as a whole. Abolishing import tariffs effectively transfers surpluses from 

producers to consumers, but the impact of this policy on social welfare becomes positive only 

under scenarios of large climate change.  

  

Key words: climate change; adaptation; agricultural land use; structural analysis; agricultural 

support policy 

JEL Codes: Q15, Q18, Q11 
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Owing to their ability to capture economic interactions among quantities and prices of 

multiple products and regions, general and partial equilibrium models have become powerful 

tools for assessing climate-change effects on agriculture. Such market-level models are 

frequently linked with micro-level agricultural production models to represent farmers' 

optimal responses to changes in exogenous variables, including climate, prices and policy 

instruments. These micro-level models are often based on the mathematical programming 

approach, in which agricultural production is represented explicitly, enabling integration with 

the market-level equilibrium models to reflect price-feedback effects on supply changes (e.g., 

Howitt, Tauber, and Pienaar 2003; Parry et al. 2004; Nelson et al. 2010; Arndt et al. 2011, 

2012; Palatnik et al. 2011; Robinson, Willenbockel, and Strzepek 2012; Shrestha et al. 2013). 

The agricultural production functions in such micro-level models are usually calibrated or 

derived from estimates external to the model (Michetti 2012). That is, there is no direct 

linkage between the market-level equilibrium model and the dataset used to derive the 

agricultural production functions in the micro-level model. Consequently, the analysis may 

not capture the sample heterogeneity present in the data with regard to farmers’ productivity 

and their decisions on cropland allocation, adoption of new production technologies and 

protocols, R&D investments, etc. (Costinot, Donaldson and Smith, 2016; McCarl, Thayer, and 

Jones 2016). This paper addresses this gap by developing a structural econometric framework 

for estimating a micro-level crop-supply model which is consistently linkable to a partial 

equilibrium model of an agricultural produce market. Specifically, our suggested approach 

allows simulation of the impacts of changes in output prices and climate variables on crop 

productivity and profitability, and consequently on adaptation through cropland allocation 

decisions.   

The econometric models usually applied in economic analyses of climate change rely on 

the notion that observed farm-management practices and profits reflect farmers’ optimal 
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responses to external factors, including climate. One group of models can be referred to as 

land-use models, utilizing spatial variability in climate conditions to explore climate-change-

adaptation measures (e.g., Mendelsohn and Dinar 2003; Kurukulasuriya and Mendelsohn 

2008; Seo and Mendelsohn 2008; Fleischer, Mendelsohn, and Dinar 2011; Etwire, Fielding 

and Kahui, 2018). A second group of econometric models employs the Ricardian or Hedonic 

approach (Mendelsohn, Nordhaus, and Shaw 1994; Schlenker, Hanemann, and Fischer 2005; 

Deschênes and Greenstone 2007), in which spatial variation in farm profits or land values are 

explained by economic and environmental variables. Other approaches include the estimation 

of yield responses to spatial or temporal variability in climate (McCarl, Villavicencio, and Wu 

2008; Schlenker and Roberts 2009; Attavanich and McCarl 2014), as well as models 

estimating climate effects on other farm-management practices (Chen and McCarl 2001; 

Koleva, Schneider, and Tol 2010; McCarl, Thayer, and Jones 2016).  Nevertheless, these 

types of models are based on a reduced-form approach; that is, they do not explicitly estimate 

production functions, and therefore can only be linked to market-level models implicitly (e.g., 

Mendelsohn and Nordhaus 1996).  

The structural model developed in this paper builds on the approach suggested by 

Kaminski, Kan and Fleischer (2013). This approach relies on a recursive decision-making 

process (McGuirk and Mundlak 1992), in which farmers allocate land across crop bundles 

(i.e., fruit, vegetables and field crops) at the beginning of the growing season based on their 

anticipated end-of-season optimal per-hectare profits. The latter are based on farmers’ long-

term experience with weather during the growing season; that is, based on climate. Hence, 

spatial variation in climate conditions leads to spatial variation in the anticipated relative 

optimal profitability of bundles, which in turn dictates the observed spatial variation in land 

allocation across crop bundles. The structure of the profit function enables us to use 

disaggregated crop-acreage data in combination with aggregate production quantities to 
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estimate per-hectare production and cost functions, as well as test whether the estimated profit 

functions comply with economic theory. Utilizing land-use data as opposed to land values 

allows us to avoid making assumptions regarding the presence of perfect markets for land and 

other inputs, which are common in applications of the Ricardian/Hedonic approach. More 

importantly, for the purpose of this study, agricultural production and output prices are 

expressed explicitly in the estimated model; this key property is exploited to consistently link 

this structural econometric micro-level supply model with a market-level demand model. 

Consistency between the models is achieved by constraining the estimated coefficients of the 

micro-level model, such that the aggregate output-value shares of the various crops derived 

from the model will be equal to the observed output-value shares. Then, in simulations of 

exogenous changes, the supply and demand models feed into each other to determine the 

equilibrium quantities and prices of agricultural products, while capturing the heterogeneous 

supply responses in the entire sample used to estimate the supply model. 

Our analysis deviates from the modeling strategy suggested by Kaminski, Kan and 

Fleischer (2013) in two important aspects. First, we use disaggregated land-allocation data at 

the community level, whereas Kaminski, Kan and Fleischer (2013) used regional data. This 

allows us to treat output prices as exogenous in the estimation of the supply model. However, 

it also requires an estimation strategy that controls for the presence of a non-negligible 

number of observations with corner solutions (land shares of 0 or 1). Second, we account for 

responses of output prices to changes in supply by linking the micro-level supply model to a 

market-level demand model and simulating partial equilibria. Thus, prices are exogenous in 

the estimation of micro-level production decisions, but become endogenous in the simulations 

under partial equilibrium conditions. These price-feedback effects were ignored in Kaminski, 

Kan and Fleischer (2013). The importance of allowing prices to be endogenous in the 

assessment of climate-change impacts has been highlighted by Fernández and Blanco (2015). 
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Miao, Khanna and Huang (2016) showed that ignoring the price effects of climate change 

may lead to an overestimation of the yield effects. 

The suggested methodology can be applied to various spatial scales, employing partial or 

general equilibrium frameworks, wherein the prices of different crop bundles can be 

considered either exogenous or endogenous in the simulations. This feature enables using the 

model to analyze the impacts of agricultural support policies, particularly those affecting 

international trade, that are the topic of continuous debate (see Matthews 2014): in countries 

employing trade barriers such as import tariffs, the price of some crop bundles may be 

determined by equilibrium conditions in the local market, whereas in small open economies, 

prices are set in the global markets and hence are exogenous to the local market. In addition, 

our methodology can be used to derive local impacts of climate change, which could be useful 

for spatially targeted policy responses (De Pinto, Wiebe, and Rosengrant 2016). 

We illustrate our approach using Israeli data, assessing the impact of protective tariffs on 

the Israeli vegetative-agriculture markets under climate change. Israel is particularly suitable 

for studying the impact of climate change on agriculture because of its diversified climate 

conditions within a relatively small area, from subtropical in the north to arid in the south. In 

addition, while contributing only 1.2% of Israel’s NDP (Israel Central Bureau of Statistics 

2017), Israeli agriculture is technologically advanced, and has enjoyed decades of experience 

in adapting to unfavorable climate conditions. Not surprisingly, previous studies of the impact 

of climate change on Israeli agriculture cover the entire range of methodologies described 

above. For example, Kan, Rapaport-Rom and Shechter (2007) applied the mathematical 

programming technique to regional data from Israel, whereas Fleischer, Lichtman and 

Mendelsohn (2008) applied the Ricardian approach to micro-level data. The impact of climate 

change on agricultural decisions in Israel was further analyzed by Fleischer, Mendelsohn and 

Dinar (2011), using a discrete-choice model in which farmers choose among a set of crop-
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technology bundles, and by Kaminski, Kan and Fleischer (2013) based on their 

aforementioned structural model. In all of these studies, agricultural output prices were 

assumed constant and exogenous in the simulations of climate change. This assumption is 

particularly problematic in the case of Israel, and might lead to considerable biases, even if 

global food prices are stable. This is because the Israeli government limits imports of many 

agricultural products through import tariffs, quantity limitations, and other institutional means 

(OECD 2010); hence, many crop prices are determined within local markets. Therefore, a 

partial equilibrium model, in which prices are determined endogenously, is more suitable for 

assessing the ramifications of climate-change effects in the case of Israel. Furthermore, this 

also reveals a public economic perspective of the distribution of climate-change effects 

between producers and consumers (since the latter are affected by climate-driven price 

changes) with both efficiency and equity concerns as to which public policies could better 

mitigate potentially harmful climate-related impacts on economic activities. 

We use changes in precipitation and temperature as projected under the various climate-

change scenarios adopted by the Intergovernmental Panel on Climate Change (IPCC) (IPCC 

2014) to simulate changes in farmland allocations, agricultural production, output prices and 

producer and consumer surpluses. Our results indicate positive impacts of the projected 

climate changes on the Israeli farming sector, attributed to increased production of vegetables 

and field crops. On the other hand, fruit production is expected to shrink, entailing price 

increases to a level that will render protection by import tariffs ineffective. Consequently, 

local consumers of agricultural products face losses of surplus. However, the overall benefits 

to farmers exceed the losses to consumers, implying social welfare gain. We find that the 

forecasted sharp temperature rise drives these results, with moderate counterbalance by the 

projected slight decline in precipitation. 
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We compare the above results to the case where import tariffs are abolished. This policy 

transfers surpluses from producers to consumers, and we find that social welfare increases 

only under sufficiently large climate changes. We further show how the model can 

incorporate farmers’ adaptation through changes in input application, as well as account for 

changes in prices and availability of inputs. Specifically, we find that offsetting the effect of 

reduced precipitation by increasing irrigation is an optimal strategy from the farmers’ 

perspective, but not from that of society as a whole. 

In the next two sections, we describe the micro-level supply model and the link to the 

market-level partial equilibrium model. We then present the data and the empirical results, 

including the estimation of the land-use supply model and the simulations of climate-change 

impacts on profits and consumer surplus. The final section discusses policy implications and 

potential extensions. 

Supply Model 

We model a vegetative agricultural sector that operates in a small economy where all goods 

are freely traded, except for a subgroup of agricultural products that are subject to import 

tariffs. Consider a sample of I farms where each farm i, 1,...,i I , can grow J potential 

bundles of crops (i.e., groups of field crops, vegetables, etc.). Let jis  be the land share of crop 

bundle j, 1,..., ,j J in farm i. The objective of some farmer i is to choose the vector of land 

shares si
,  1 ,...,si i Jis s at the onset of the growing season so as to maximize the farm’s 

anticipated end-of-season profit: 

    
1

max =
s

s
i

J

i ji j ji ji i

j

s y c c


    (1)

 

s.t. 
1

= 1 
J

ji

j

s


  and 0 1,...,   jis j J    
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where 
i  is farm i's economic profit (normalized to per-one-hectare profit), j  is the bundle's 

expected output price, jiy  is the farm-specific expected end-of-season per-hectare optimal 

yield of bundle j, and jic  stands for the expected end-of-season bundle-specific per-hectare 

optimal economic costs. Both jiy  and jic  are anticipated by the farmer while accounting for 

bundle-specific per-hectare profit-maximization measures that he/she expects to apply during 

the growing season (i.e., irrigation, fertilization, pesticides, herbicides, etc.) in response to 

foreseen exogenous events, the likelihood of which depends on various conditions, including 

climate. The function  sic  is the implicit production and management-cost function, 

representing costs that are neither bundle-specific nor independent across bundles; for 

example,  sic  incorporates risks, the costs associated with non-feasible production of certain 

crop bundles in rotating systems, and the allocation of quasi-fixed inputs such as labor and 

machinery across crop bundles with different patterns and cultivation timing. The function 

 sic  captures the constraints on farmers' acreage decisions as motives for bundle 

diversification, and represents the non-linear effects of the allocative land-use variables s on 

farm profits—a pivotal feature in positive mathematical programming (Howitt 1995). 

We further specify the expected optimal per-hectare output of each bundle j by the linear 

function b xji j iy  , where b j  is a vector of coefficients, and x i  is a set of farm-specific yield-

related exogenous variables, including climate variables and farm characteristics.1 The 

expected optimal bundle-specific economic costs are specified by γ wji j ic  , where w i  is a 

vector of cost-attributable exogenous variables and γ j  is the corresponding vector of 

coefficients. Thus, the expected maximum per-hectare economic profit of bundle j is: 

 b x γ w v zji j ji j i j j i j jiy c      (2)
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where  ,v b γj j j   and  ,z x wji i j i . Note that since γ wj i  incorporates the shadow 

values of constrained factors, it expresses the per-hectare economic costs rather than the 

explicit costs reported in bookkeeping records; hence, v zj ji  represents the per-hectare 

economic profit rather than the accounting profit. Also note that the vector of exogenous 

variables z ji , being bundle-specific due to the multiplication of the variables in x i  by the 

respective output price j , is crucial for the identification of the production-function 

coefficients, which in turn allows linking the micro- and market-level models. 

The function  sic  plays a key role in the econometric analysis, as its functional 

specification determines the attributes of the structural equations to be estimated, and 

therefore the required estimation procedure. Carpentier and Letort (2014) and Kaminski, Kan 

and Fleischer (2013) assumed the opposite-entropy function: 

    
1

1
lns

J

i ji ji

j

c s s
a 

   (3)

 

where the a parameter, measured in land-per-money units (and therefore assumed positive), 

reflects the “weight” of the implicit costs in the economic-profit function. This is a negative, 

non-monotonic convex function with respect to jis . The non-monotonicity implies that, 

ceteris paribus, the implicit costs decline with jis  for  exp 1 0jis   , and increase with 

jis  when  1 exp 1jis   . Since land shares are negatively correlated among themselves 

through the land constraint,  sic  reaches its minimum value when 1jis J  for all 

1,...,j J .  

Deriving the optimal solution to problem (1) above, given the per-hectare optimal 

expected profit specification (Eq. (2)) and the opposite-entropy specification (Eq. (3)) for 
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 sic , yields the following multinomial logit functional form for the optimal land shares (see 

Appendix A): 

  
 

 

*

1

exp

exp

v z
z

v z

j ji

j i J

j ji

j

a
s

a





 (4)

 

where  *
zj is  is the profit-maximizing land share of bundle j, and  1 ,...,z z zi i Ji . 

The land constraint implies that the parameters of only 1J   bundles can be identified; we 

specify bundle J as the reference bundle. As will be shown later, to simulate partial 

equilibrium, one must identify the parameters of the linear yield function b j  for all J bundles. 

We take advantage of the fact that farmers typically devote non-cultivated agricultural land to 

roads, storage lots and other uses that support production in the cultivated areas, and treat 

these supportive lands as the reference bundle. As in crop cost-and-return studies (e.g., see 

studies by the University of California, Davis (2013)), the revenue contribution of the 

supportive lands is reflected only through the cultivated areas; that is, 0bJ  . We divide and 

multiply 
*

jis  in Eq. (4) by  exp vJ Jia z  to obtain 

      
1

*

1

exp expz V z V z
J

ji i j ji j ji

j

s





 
  

 
  (5)

 

where     , ,V b γ γ B Gj j j J j ja a    ; this implies that we cannot identify a  or v j , but 

only the coefficients B j  and G j  in V j . 

One could use Eq. (5) to obtain a system of 1J   linear land-share regression equations.2 

Indeed, being conveniently estimable due to linearity, flexible, and ensuring that for each 

observation the predicted land shares are between 0 and 1, and add up to 1, the multinomial 

logit functional form was favored over alternative specifications in land-use analyses in 

general (e.g., Wu and Segerson 1995; Hardie and Parks 1997; Miller and Plantinga 1999; 
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Marcos-Martinez et al., 2017), and with respect to climate change in particular (Seo, McCarl, 

and Mendelsohn 2010; Mu, McCarl, and Wein 2013; Cho and McCarl 2017). However, the 

set of linear regression equations derived by the multinomial logit specification cannot treat 

corner solutions (i.e., land shares of 0 or 1). This limitation may not emerge when estimation 

is based on aggregated data at the regional level, where zero land-share observations are rare; 

however, at this level of aggregation, prices may be endogenous. Our community-level land-

use dataset discards the endogeneity of prices,3 but on the other hand, may involve a non-

negligible number of observations with corner solutions. Hence, we estimate Eq. (5) by 

employing the quasi-maximum-likelihood approach to the fractional multinomial logit 

likelihood function (Papke and Wooldridge 1996; Buis 2010): 

     *

1 1

ln ln z
I J

ji ji i

i j

L s s
 

  (6)

 

where jis  is the observed land share, and  *
zji is  is as specified in Eq. (5).4 

The land-use model developed thus far can be transformed into a supply model using the 

per-hectare profit-maximizing yield function b xji j iy  , such that the predicted total 

production of bundle j by farm i is  *
z b xi ji i j il s , where il  is the total land area of farm i. Two 

obstacles emerge: first, output data are frequently available only at the macro-level (e.g., for 

the entire country); second, the coefficients b j  cannot be separated from the a parameter.5 We 

handle these limitations by referring to production outputs in relative terms and by utilizing 

aggregate information as a constraint in the estimation of the land-use model. Let the sample’s 

total production value of bundle j be 

    *

1

=z z b x
I

j j i j i j i

i

A a l s


  (7) 
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where  1,...,z z zI . Let bundle 1 be the reference, and let us denote by jr  the observed ratio 

of the aggregate countrywide production values of bundles j and 1. We estimate Eq. (6) 

subject to the set of constraints 

 
 

 1

= 2,..., 1
z

  
z

j

j

A
r j J

A
    (8) 

The parameter a in Eq. (7) is canceled out in Eq. (8). The additional benefit is that we can 

now use the aggregate information embedded in the ratios jr , 2,..., 1j J  , to assign a 

meaningful production interpretation to the coefficients b j . 

Linking Micro- and Market-Level Models 

The aggregate production value of bundle j,  zjA , also serves as the link between the micro-

level supply model and the market-level demand model. Let 1

p

jt jt j    denote the 

simulated output-price index of crop bundle j in some year t relative to year 1 (the base year), 

so that 1

p

j  is normalized to 1. We define a vector of price indices  1 1,..., 

p p p

t t J t   , and the 

corresponding set of explanatory variables  1 ,z x wp

ijt jt j it it   for every farm 1,...,i I , 

bundle 1,..., 1j J  , and year t, where x it  and w it  incorporate the values (observed for 1t  , 

forecasted for 1t  ) of farm i’s variables in year t. Accordingly,  *ˆ zj its  is the predicted land 

share calculated by Eq. (5) given year t’s set of variables  1,...,z z zit ijt iJ t  and the estimated 

coefficients B̂ j
 and Ĝ j

. Then, the aggregate optimal output value for each bundle j is 

predicted by    *

1

ˆ ˆˆ=z z B x
I

p

j t jt j i j it j it

i

A l s 


 , where  1 ,...,z z zt t It . We use the Laspeyres 

quantity index to derive the change in the output of crop bundle j supplied by local producers 

in response to changes in the prices and exogenous variables between base-year 1 and some 

year t. The local-supply quantity index is: 
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  
 

 1

ˆ

ˆ

z
z

z

j ty

j t

j

A

A
   (9) 

The quantity index  z
y

j t  depends on the output-price index 
p

jt  directly through the impact 

on the output value  ˆ zj tA , as well as indirectly through the effect on zt , which entails land-

use adaptation responses. Note that the parameter a vanishes in Eq. (9) as well, thereby 

enabling the simulation of changes in the supply index based on ˆ
jB  without the need to 

identify a (i.e., b j
).   

 We now turn to the demand side. Similar to the supply side, we formulate a bundle-

quantity index as a function of price indices, which is based on aggregate countrywide data on 

individual crops within each bundle. To simplify the notation, and without loss of generality, 

assume that the number of different crops in each bundle j, 1,..., 1j J  , is identical and 

equal to K. Denote the price of crop k, 1,..., ,k K of bundle j in year t as 
kj

tp , and the 

aggregate quantity of this crop demanded by local consumers as 
kj

tQ . Also assume that the 

countrywide aggregate demand function is of the constant-elasticity form: 

  
kj

kj kj kj

t tQ h p


   (10) 

where kj  is a known demand elasticity and kjh  is a calibrated parameter. Assume further that 

all crops in each bundle j satisfy the criteria of a composite commodity; that is, their prices 

change proportionately.6 Define the Laspeyres demanded-quantity index, 
q

jt , which based on 

Eq. (10) becomes a function of the simulated price index 
p

jt , as: 

  
1 1

1

1 1

1

( )
kj

K
kj kj p kj

jt
q p k
j jt K

kj kj

k

p h p

p Q



  







 (11) 
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If the markets for bundle-j products are in equilibrium in the base period ( 1t  ), then 

   1 1 1zq p y

j j j    . In future years, x t  incorporates the modified values of all climate 

variables in relation to the base year, such that plugging x t  into the supply-quantity index in 

Eq. (9) breaches the equilibrium. Without trade restrictions, prices change only if world prices 

change,7 and the gap between the demand-quantity index  q p

j jt   and the supply-quantity 

index  z
y

j t  represents the change in import or export of bundle j's products. If trade is 

restricted by import tariffs, the set of local price indices  

p

t  will change to meet equilibrium 

conditions in the local markets, unless price changes are large enough to render import-tariff 

restrictions ineffective. Let   1 1,...,p p p

J    be the set of import prices, each equals the 

world price plus the respective country’s import tariff. We simulate partial equilibrium by 

solving 

 
    

1 2

1

min

. .

 

 

z

 

p
t

J
q p y

j jt j t

j

p p

ts t

  











 

 (12) 

Eq. (12) links the supply-quantity index, which incorporates all of the sample data points, to 

the demand-quantity index, which is based on aggregate data, while taking into account trade 

restrictions through the implementation of import tariffs. 

The model provides the information required to calculate changes in welfare elements. 

The change in consumer surplus from the base period to some year t, jtCS , is computable for 

every bundle j, 1,..., 1j J  , based on Eq. (10): 
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Aggregate local farming revenues and imports at time t are given by   1 1
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  , respectively. To compute local aggregate accounting profits, one 
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needs to subtract the explicit costs from the production value. However, as already noted, the 

estimated economic-cost function G wj i  differs from farm i’s explicit costs by the presence of 

constrained factors multiplied by their respective shadow values. We distinguish between 

these two types of costs by defining  1 ,...,we e Ne

i i iw w  as a subset of w i  that incorporates 

those variables associated with explicit costs (e.g., purchased production factors). 

Accordingly, farm i’s predicted total explicit cost at time t is 

      
1

*

1

z z w
J

e

it it i ji it j it

j

C l s C




  (13) 

where  w
e

j itC  is a bundle-specific total per-hectare explicit-cost function, which is derivable 

from state-level information and cost-and-return studies. We specify 

   1

1 1 1

w
neK N

e kj kj kj it
j it j n ne

k n i

w
C L L C

w


 

    (14) 

where kjL  is the countrywide aggregate land allocated to crop k in bundle j; jL  is the 

aggregate land allocated to bundle j such that 
1

K
kj

j

k

L L


 ; kjC  is the per-hectare production 

costs of crop k in bundle j; 
kj

n  is the share of explicit-cost item n , 1,...,n N , in kjC , and 
ne

itw  

is the level of farm i’s explicit-cost variable n at time t. Note that the explicit costs can serve 

as an additional link between the micro-level supply model and market-level input-demand 

model so that input prices can be treated endogenously. 

Data and Variables 

Our dataset for estimating the micro-level land-allocation model is a panel of 7,569 

observations, encompassing 743 agricultural communities (about 85% of all agricultural 

communities in Israel) over the years 1992–2002, provided by the Israeli Ministry of 

Agriculture and Rural Development (IMARD).8 Altogether, the sample covers 264,000 
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hectares per year—more than 60% of the agricultural land in Israel. The land allocated to each 

crop bundle is reported for the community as a whole, so we must treat each community as if 

it was a single decision-making unit. This is in fact true for about 40% of the sample 

communities, which are Kibbutzim, in which all economic activities, including agriculture, 

are managed collectively. Another 51% of the sample communities are Moshavim 

(cooperative villages with individual farms). While each Moshav member can make his/her 

own land-allocation decisions, being a member of a cooperative imposes some constraints on 

those decisions (Kimhi 1998). In only 9% of the sample (private communities), agricultural 

decisions of the different farmers are completely independent of each other. 

Our data comprise aggregate land shares of four crop bundles: vegetables, field crops, 

fruit, and the reference bundle of non-cultivated land. In table 1, we present the number of 

observations and average land shares (weighted by total community agricultural land) of the 

eight different crop-bundle portfolios. Land is allocated to all three crop bundles in only 62% 

of the observations; this highlights the need to account for corner solutions in the estimation 

procedure. As expected, the land share of field crops is the largest with 54.7%, ahead of fruit 

(26.0%), then vegetables (15.0%), and non-cultivated areas (4.3%); the latter varies across 

portfolios between 20% in the communities that produce vegetables only, and 2% when 

production of vegetables is combined with field crops.     

Table 1 about here 

Table 2 reports sample means and standard deviations of the explanatory variables used in 

the estimation of the production value (x and j for the three bundles) and cost (w) functions. 

As noted, the interaction of x with j enables identifying the production and cost impacts of 

variables that appear in both x and w; however, prices vary only with time, and due to the 

small number of periods, multicollinearity emerges.9 Herein we assign variables to either x or 

w based on our preliminary expectations of their dominant impact, where climate variables 
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are assumed to affect end-of-season expected profit-maximizing outputs. Thus, the output 

coefficients incorporate both the climate variables’ direct impact on yields and their indirect 

effects on damage-prevention activities by profit-maximizing farmers.10   

Table 2 about here 

Precipitation and temperature data are from reports by the Israeli Meteorological Service 

(IMS) for 594 and 70 meteorological stations, respectively, covering the entire state of Israel 

during the years 1981–2002. We assign the data from station locations to the coordinates of 

each agricultural community in our sample using the inverse distance weighting (IDW) 

method. We choose the power 1 IDW specification due to its superior robustness (Kurtzman 

and Kadmon 1999). The climate variables are annual average temperature and cumulative 

annual precipitation. For each year in the sample, we consider the average temperature and 

precipitation for the previous 10-year period as those that have been considered by farmers in 

their agricultural land-use decisions. 

In the simulations of climate conditions in future periods, we use forecasts provided by 

three global circulation models (GCMs): CCSM4 (Gent et al. 2011), MIROC5 (Watanabe et 

al. 2010) and NorESM1-M (Bentsen et al. 2013); each GCM provides projections for a 

representative year in two future periods (2040–2060 and 2060–2080) under each of the four 

representative concentration pathways (RCP2.6, RPC4.5, RPC6 and RPC8.5) adopted by the 

IPCC for its fifth assessment report (IPCC 2014). Table 3 presents the statewide average of 

the forecasted climate variables. The three models generally predict a considerable increase in 

average temperature throughout Israel for both future periods, from 19oC up to 25oC. Annual 

precipitation is expected to slightly decline during 2040–2060, and then decline more sharply 

during 2060–2080 (by about 14% relative to the base-period level). 

Table 3 about here 
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In addition to the climate variables, we explain production by dummy variables for the 

type of community (Moshav and private communities; Kibbutz is the reference category), 

representing the production impacts of the decision-making process and level of cooperation 

within each community (Kimhi 1998). A dummy variable indicating whether agricultural land 

is dominated by light soils stands for the suitability of farmland to the different crop bundles. 

We also include dummy variables for Israel’s 19 ecological regions (as defined by the Israel 

Central Bureau of Statistics (ICBS)) to capture spatial differences that may affect outputs 

(e.g., topographic and additional climate variables). 

Output prices (j) are almost homogeneous across Israel, as evidenced by official data 

(IMARD, 2013). Hence, we use countrywide annual output-price indices reported by the 

ICBS for each bundle over the sample years. To reflect price differences between bundle 

outputs, we multiply each bundle’s price index by the average price of its main crops, 

1 1 1 1

1 1

K K
j kj kj kj

k k

p p Q Q
 

   (recall 1

kjp  and 1

kjQ  in Eq. (11)), where 1

kjp  is taken from cost-and-

return studies (IMARD) and 1

kjQ  is the ICBS data on the crop’s countrywide annual output in 

2002 (see Appendix B; all monetary values are in US dollars in 2000). Following Kaminski, 

Kan and Fleischer (2013), we use lagged moving averages to reflect price expectations that 

farmers use when making land-use decisions. Since land shares of field crops and vegetables 

can be adjusted from year to year, their price indices were constructed based on the two 

previous years, whereas the previous four years were used for fruit.11 

The production-value ratios jr  used in Eq. (8) are computed by 
1 1

1 1 1 1

1 1

K K
kj kj k k

j

k k

r p Q p Q
 

  , 

where field crops is used as the reference bundle ( 1j  ). 

For the per-hectare cost functions, we use the distance to Tel Aviv to represent peripheral 

effects, such as transportation costs and availability of purchased inputs and services, as well 
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as alternative non-farm employment opportunities (Kimhi and Menahem 2017). Water 

resources are officially controlled by the state in Israel, and per-village total irrigation-water 

quotas are set administratively by the authorities; these quotas are introduced to capture the 

impact of water availability on production costs. Land assignment to farming is also centrally 

managed in Israel. The total agricultural land owned by the community represents potential 

diseconomies of land fragmentation and economies of scale. Finally, we include the previous-

year annual price index of purchased agricultural inputs that are relevant for the vegetative 

sector (Kislev and Vaksin 2003); this variable represents the explicit costs  w
e

jC  (recall 

Eq. (13)). To reflect explicit cost differences across bundles, we multiply this price-input 

index by a bundle-specific factor, which is computed by 
1 1

K K
kj kj kj

k k

L C L
 

   (recall Eq. (14)), 

where kjL  is countrywide agricultural lands (IMARD) and kjC  is the per-hectare costs12 taken 

from cost-and-return studies (IMARD) (Appendix B). 

In addition to the already mentioned data on kjL , kjC , 1

kjQ  and 1

kjp , the market-level 

model requires the demand elasticities 
kj  (Eq. (10)). Israel is a net exporter of vegetables 

and fruit, whose imports are constrained by import tariffs, and a net importer of field-crop 

products, which are traded freely. Hence, the output prices faced by growers of vegetables and 

fruit are affected by both the local and international markets. As our micro-level 

disaggregated land-use data do not enable distinguishing between production for the local and 

international markets, we assume constant export shares of 29% and 22% of the total 

production value of vegetables and fruit, respectively (Finkelshtain, Kachel, and Rubin 

2011).13 For the local markets of vegetables and fruit, we adopt demand-elasticity parameters 

from Hadas (2001) (Appendix B). Both growers and consumers of field crops face the world 

prices of field crops; hence, the demand elasticity equals the sum of import-demand and local-

supply elasticities, weighted by the relative import and local-production quantities. Import-
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demand elasticities were taken from the World Bank (2012), where they were estimated based 

on the methodology developed by Kee, Nicita and Olarreaga (2008), and import quantities of 

field-crop products were obtained from the ICBS (Appendix B). We substitute these 

elasticities and import values into Eq. (11), and then employ Eq. (12) to simulate import 

response to price changes. This exercise yields an import-demand elasticity of -1.60 for field 

crops. To calculate the local-supply elasticity, we use our estimated micro-level supply model 

to simulate field-crop production response to a price change, obtaining a supply elasticity of 

0.55. As local production of field crops constitutes 24% of the total consumption, the demand 

elasticity equals -1.08. Figure 1 presents the resultant demand curves based on the calibrated 

 q p

j j   functions. 

Figure 1 about here 

As already noted, our analysis is based on the assumption that markets were in 

equilibrium in the base period (represented by the year 2000). According to Finkelshtain, 

Kachel and Rubin (2011), the local prices of vegetables and fruit are generally similar to their 

corresponding world prices. Therefore, imports of vegetables and fruit to Israel are negligible 

due to the presence of high import tariffs (reported in Appendix B). We calculate the average 

import price for the bundles of vegetables and fruit, weighted by crop-production quantities, 

and use these averages as the upper limit of prices (  

p

t ) in the simulation of the restricted-

trade scenario (Eq. (12)). The calculated average import prices (world prices + import tariffs) 

are higher by 36% and 23% than the average local prices for vegetables and fruit, 

respectively. As to forecasts of world prices, we take the trends projected by Eboli, Parrado 

and Roson (2010) using a global CGE model.14 

Estimation Results 
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We use the Stata fractional multinomial logit command (fmlogit) to estimate the coefficients 

V j  for the three crop bundles, through maximization of the quasi-likelihood function in Eq. 

(6) subject to the constraints in Eq. (8). We control for potential spatiotemporal 

autocorrelations in the residuals by clustering observations according to years and 60 natural 

regions.15 We include quadratic levels of the precipitation, temperature, agricultural land and 

water-quota variables to capture non-linear responses. The estimated coefficients are reported 

in table 4.16, 17 

Table 4 about here 

Interpretation of the estimation results is facilitated by table 5, where we present the 

marginal effects of the explanatory variables on optimal land shares and economic profits. 

These marginal effects are defined as 
 *



z

z

j i

i

s
 for the land-share marginal effects (left four 

columns in table 5), and as 
  * 



z z

z

j i j i

i

s V
 for the economic-profit marginal effects (right 

four columns in table 5). Standard errors were estimated using the bootstrap procedure. 

Table 5 about here 

On the production side, both precipitation and temperature have positive and significant 

marginal effects on the overall cultivated land, implying that farmers in wetter and warmer 

regions benefit from devoting more arable land to agricultural production. These climate 

variables also positively affect the total economic profit, but with different impacts across 

bundles. Farmers in higher-precipitation areas benefit from growing field crops and fruit more 

than vegetables; this result is congruent with the relative advantage of the southern arid part of 

Israel for vegetable production, as mentioned by Fleischer, Lichtman and Mendelsohn (2008). 

Recall that the per-hectare expected outputs in our model are associated with anticipated 

optimal responses of farmers to various events during the growing season. A possible 

explanation for the relative disadvantage of vegetables in the wetter areas is the enhancement 
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of plant disease by rainfall (see Agrios 2005; Burdman and Walcott 2012). Farmers may 

apply costly protective inputs so as to obtain profit-maximizing per-hectare yield levels that 

are lower than those obtainable in the drier regions. Higher temperatures increase field-crop 

profitability, but reduce profits in fruit cultivation, which may be explained by the deciduous 

trees’ chilling requirements to bloom. 

Moshavim tend to allocate less land to field crops than Kibbutzim and private 

communities, and their total economic profits in field crops are lower. Light soils are 

associated with more farmland allocated to fruit and less to vegetables and field crops, and 

this is also reflected in the profit differentials associated with soil type. Regarding output 

prices, as expected theoretically, all bundles exhibit statistically significant positive own-price 

impacts and negative cross-bundle impacts on economic profits. 

The marginal effects of the cost variables on total economic profits also exhibit expected 

signs. Peripheral communities face lower profits, which can be explained by the higher 

transportation costs and lower availability of production factors. Larger irrigation-water 

quotas increase profitability. However, the effect is statistically insignificant, indicating that 

water quotas do not constitute effective constraints; this matches the conclusion of Feinerman, 

Gadish and Mishaeli (2003) that since the early 1990s, agricultural water consumption in 

Israel has been dictated by water prices rather than water quotas. By examining the water-

quota effects in relation to those of precipitation, we find that irrigation water is a substitute 

for precipitation in the production of fruit and vegetables, and is a complement to precipitation 

in field-crop production; this finding coincides with the fact that, while vegetables and fruit 

are usually irrigated, the field-crop bundle includes both rain-fed and irrigated crops. The 

positive sign of the community’s total agricultural land indicates the presence of economies of 

scale. Finally, the marginal effects of production-input prices vary across crop bundles, where 

the overall impact on economic profits is negative (although not statistically significant). 
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Thus, the effect of both input and output prices on economic profits complies with economic 

theory. 

Simulations 

Using the estimated model, we simulate production of the three crop bundles where, ceteris 

paribus, climate variables change as reported in table 3,18 and world prices vary according to 

Eboli, Parrado and Roson (2010). That is, we assess the impact of changes in climate 

conditions and the associated world prices as if they had occurred in the base period, where all 

other factors (e.g., population and technological level) are fixed. We study the consequences 

of these changes under six scenarios with respect to policies and farming-adaptation 

strategies. Specifically, we solve Eq. (12) for each scenario, where   z
y

j t  and   q p

j jt  are as 

defined in Eq. (9) and Eq. (11), respectively, thus capturing the supply-and-demand responses 

to changes in the relevant variables, as depicted by each scenario.  

Scenario 1 simulates shifts in the climate variables under the prevailing policy of 

constraining trade by use of import tariffs. Tables 6 and 7 report the results in terms of 

changes relative to the base-period climate, averaged across the three GCMs. Changes in 

output prices (
p

jt ), quantities demanded (
q

jt ) and supplied (
y

jt ), and land shares ( 1jt js s ) 

(table 6) exhibit similar trends under all four RCPs, for the two future climate periods. The 

supplies of vegetables and field crops increase, whereas that of fruit declines. Local output 

prices of vegetables decline, while those of fruit rise to their respective upper bound, 
p

jt ; 

consequently, the demanded quantity of fruit exceeds the local supply and import emerges. 

The prices of field crops change marginally with world prices; hence, the demanded quantity 

remains stable, and the increased supply of field-crop outputs may reduce the import of field-

crop products. 

Table 6 about here 
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By comparing the local supply indices (
y

jt ) to the land-share indices ( 1jt js s ), one can 

assess the role played by the changes in per-hectare production versus changes in land 

allocation. The simulations indicate that field-crop productivity is predicted to increase more 

than twofold, which in turn leads to expanding the land allocated to field crops by about 10% 

at the expense of vegetables and fruit. Per-hectare production of vegetables also increases, but 

to a lower extent than that of field crops; therefore, the land allocated to vegetables declines. 

Fruit production declines sharply by about 40–60%, leading to a land-share reduction of about 

25%. 

Table 7 about here 

Table 7 reports changes in aggregate agricultural accounting profits, consumer surplus and 

their sum (i.e., social welfare) under Scenario 1. Apparently, climate change is generally 

beneficial to Israeli farmers, particularly to field-crop growers. Vegetable farms also benefit 

from climate change, but to a much lower extent, whereas fruit farms suffer losses. Taken 

together, the Israeli vegetative agricultural sector is expected to enjoy an increase of about 7% 

in its accounting profits. Surpluses of local consumers are projected to decline moderately, 

particularly due to the increase in fruit prices. Thus, the overall expected welfare change is 

positive. This result prevails under both future climate periods and the four RCPs, with the 

largest (lowest) change under RPC8.5 (RCP2.6).  

We turn to a study of the trade-policy implications. According to OECD (2014), the 

producer support estimate measure for Israel indicates that the overall support to farmers is 

lower than in the average OECD country, but the fraction of trade-distorting support policies, 

particularly the market price support measure, is considerably larger; hence, compliance with 

World Trade Organization rules requires removing import tariffs. This policy is examined in 

Scenario 2, where we simulate abolishment of tariffs such that import prices of all vegetative 

agricultural products equal their world-price counterparts, as forecasted based on Eboli, 
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Parrado and Roson (2010). Table 8 reports the results of Scenario 2; that is, the simulated 

climate-change effects on the welfare measures under the free-trade scenario. 

Table 8 about here 

To comprehend the impact of the free-trade policy, compare tables 8 and 7. The 

accounting profits of vegetable and field-crop growers increase slightly under the free-trade 

scenario, whereas fruit growers face a considerable drop in profits, particularly because fruit 

imports climb to more than 50% of local consumption compared to a mere 20% under the 

prevailing constrained-trade regime (Scenario 1). Consumer surpluses associated with 

vegetables rise more than under the current trade barriers, whereas the surplus associated with 

fruit drops much more moderately. Figure 2 summarizes the effect of removing import tariffs 

by depicting the difference it makes to the accounting profit, consumer surplus and social 

welfare (i.e., the values in table 8 minus their counterparts in table 7). In general, under the 

relatively large climate-change scenarios, which are driven by large CO2 concentrations (i.e., 

RCP 8.5 in 2040–2060 and RCPs 4.5, 6 and 8.5 in 2060–2080), the benefits to consumers 

from removing the import tariffs exceed the losses to producers, and therefore social welfare 

increases.19 

Figure 2 about here 

In Scenarios 3 and 4, we isolate the effects of changes in precipitation and temperature, 

respectively. To this end, we rerun Scenario 1 while changing only one of the two climate 

variables. This exercise (table 9) reveals that the aforementioned climate-change-driven 

welfare benefits stem from the considerable rise in temperature, as forecasted by all GCMs 

(table 3). The changes in precipitation lead, in most cases, to welfare losses that are much 

smaller in magnitude than the welfare benefits of the temperature changes.20 

Table 9 about here 
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Under each of the latter four scenarios, farmers adapt to the changes in climate conditions 

by reallocating their land across the three crop bundles. In Scenario 5, we assume that farmers 

also adapt by offsetting the change in precipitation by applying additional irrigation water. 

This scenario is equivalent to Scenario 4, except that the input-price index varies according to 

the costs associated with changing the irrigation so as to compensate for the change in 

precipitation. The share of irrigation costs in the total explicit costs of each crop in each 

bundle (
kj

n  in Eq. (14)) is computed using cost-and-return studies (IMARD).21 Note that 

increasing irrigation implies higher agricultural water consumption, which is possible if water 

quotas are not binding, or otherwise they should be extended; as already noted, we find water 

quotas ineffective, and assume that this is also the case under the simulated change. 

Comparing Scenario 5 (table 9) to Scenario 1 (table 7) shows that offsetting the precipitation 

changes by increasing irrigation is socially non-beneficial. Nevertheless, from the farmers’ 

point of view, this adaptation strategy is warranted. 

Our last issue is the role played by land reallocation in the adaptation to the projected 

climate changes. In this case, rather than the accounting profit, the economic profit  

(  *

1 1

z V z
I J

jit it j jit

i j

s
 

 ) is the appropriate measure, as it dictates land-use adaptation. Scenario 

6 imitates Scenario 1, but without allowing for land adaptation (i.e., retaining the base-period 

land shares). Based on comparison to the economic profits without land responses (

1
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ji j jit
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s
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 ), we attribute about 18% of the overall profit increase stemming from 

climate change  
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  ), to land adaptation.22 

Conclusion 

Summary and Policy Implications 
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This paper develops a structural econometric model to assess climate-change impacts on 

vegetative agricultural production under equilibrium in the food markets. The suggested 

methodology can be applied to various spatial scales, employing partial or general equilibrium 

frameworks, wherein the prices of different crop bundles can be considered either exogenous 

or endogenous in the simulations. The linkage between micro-level agricultural production 

and market-level demand is particularly important as governments and international 

organizations alike are being called upon to revise current policies in order to provide 

adaptation options to climate change, and to integrate agricultural policies within a broader set 

of policies targeting sustainable development and natural resource management (Howden et 

al. 2007). Taking food prices into consideration is extremely important given their relevance 

to the critical issues of poverty, food security and malnutrition worldwide. 

Indeed, our empirical analysis of the Israeli case study yields different simulation results 

when import tariffs are abolished compared with the more realistic case of restricted trade. 

Our results suggest that, under restricted trade, Israeli farmers will generally benefit from the 

predicted climate changes, especially from the rise in temperatures. Abolishing import tariffs 

effectively transfers surpluses from producers to consumers, but the overall welfare effect of 

this policy change varies across climate scenarios. We also find that adaptation through land 

reallocation contributes nearly 20% of the simulated rise in agricultural profits, and that 

adaptation through increased irrigation in response to the predicted decline in precipitation is 

beneficial to farmers, but not to consumers.  

The empirical finding that climate change will be beneficial to Israel should be interpreted 

with caution, for several reasons. First, our climate variables are limited to temperature and 

precipitation, and do not include other climatic conditions such as, for example, CO2 levels in 

the atmosphere (Baldos and Hertel, 2014). Second, we do not account for the fact that future 

climatic conditions will include higher within-year variability and more extreme weather 
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events such as droughts and flooding (Baldos and Hertel, 2015). Third, our analysis focuses 

on climate changes only, and does not take into account possible future changes in important 

factors such as crop technology (Delzeit et al., 2018). Had we been able to account for these 

factors, our results could change in either direction. Hence, we do not assign much importance 

to the finding that Israel will benefit from climate change. Rather, we emphasize the findings 

that cropland reallocation is an important component of adaptation strategies, that ignoring 

output price changes may lead to different conclusions, and that trade policy changes may also 

affect farmers' adaptation strategies. 

Agricultural adaptation to climate change calls for government intervention because of 

equity concerns and prioritization (e.g., Lobell et al. 2008); however, such interventions 

obviously need to focus on adaptation strategies with a public-good nature (McCarl, Thayer, 

and Jones 2016). The results of this paper identify several policy interventions that are 

important for agricultural adaptation.  

First, heterogeneous impacts of climate change on both producer and consumer welfare 

may call for specific policy attention; e.g., under our specifications and given the base-year 

conditions, consumers are adversely affected whereas producers benefit from the projected 

future climate changes. Under removal of import tariffs, climate change becomes beneficial to 

both producers and consumers with minor effect on total welfare, implying that this policy 

could be politically acceptable.  

Second, as improved adaptation technologies require R&D investments with a public-

good component (Pardey, Alston, and Chan-Kang 2012), identification of the technological 

channels through which projected consumer and producer surpluses change is useful for 

promoting a “directed technological change” with a higher benefit–cost ratio and more 

effective public and private spending. For example, our simulations predict that the surpluses 

of both producers and consumers of fruit in Israel will decline, whereas the surpluses 



29 
 

associated with vegetables are projected to increase for both producers and consumers. Hence, 

within this context, proactive adaptation efforts would ideally be directed toward fruits. 

Similarly, specific technology attributes of the agricultural systems (e.g., inputs use and 

maximum potential outputs) could also be targeted, as done by Kaminski, Kan and Fleischer 

(2013). 

Further Research and Extensions 

The results also indicate several directions for further research and extensions. First, our 

empirical framework can be generalized to derive a broader and integrated assessment of 

agricultural-related impacts of climate change on social welfare by considering agricultural 

amenities and environmental externalities in the simulations. Upon availability of sufficient 

valuation studies and applicability of benefit-transfer methods, the impact of climate change 

on ecosystem services and landscape values through agricultural productivity adjustments and 

land-use adaptation (e.g., Kan et al. 2009) could also be assessed (e.g., Bateman et al. 2013). 

This would also require a refinement of the econometric model to enable estimation of intra-

growing season input applications and environmental effects, such as polluting effluents. In 

turn, this could alter the conclusions about the efficiency and equity of agricultural policies 

and public investments targeted at climate-change adaptation, since total climate-driven 

effects on overall social welfare may significantly differ from the effects on private consumers 

and producer surpluses. For instance, the projected conversion of land planted with fruit 

orchards and vegetables into land used for field-crop production presumably comes with 

benefits in agricultural amenities such as landscape and recreational services (open fields 

versus greenhouses and protected crops), as well as changes in the use of polluting inputs and 

irrigation water. 

As mentioned above, our analysis is restricted by the data available for the sample period. 

Thus, an extension of the paper might account for (i) a wider range of climate variables, such 
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as the Palmer Drought Severity Index (Palmer 1965), maximum and minimum temperatures, 

incidence of extreme events and CO2 levels, all of which have been found to affect 

productivity (McCarl, Thayer and Jones 2016); and (ii) a more detailed level of crop-mix 

adaptations (i.e., disaggregating the crop bundles to smaller bundles or specific crops).  

Finally, as noted, the model can be linked to input-supply models through the cost 

variables. For example, integrating the agricultural supply model into a hydro-economic 

model (e.g., Reznik et al. 2017) would enable considering water prices endogenously. 

Moreover, applying the model in conjunction with more sophisticated macro-models such as 

CGE can be used to assess a range of additional issues associated with agricultural production 

and policies; for example, the development of production-supportive infrastructures and 

changing other agricultural protection policies, such as subsidies. 
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Table 1. Observations and Land Shares in Crop-Production Portfolios 

 

Number of Land sharesa 

Portfolio  observations Vegetables Field crops Fruit Not cultivated 

Fruits 608 0.000 0.000 0.830 0.170 

Field crops 44 0.000 0.963 0.000 0.037 

Field crops & Fruit 1,173 0.000 0.606 0.343 0.050 

Vegetables 53 0.800 0.000 0.000 0.200 

Vegetables & Fruit 817 0.319 0.000 0.543 0.138 

Vegetables & Field crops 158 0.182 0.794 0.000 0.024 

Vegetables & Field crops & Fruit 4,716 0.181 0.532 0.241 0.046 

Total 7,569 0.150 0.547 0.260 0.043 

a. Weighted by communities’ total agricultural land.
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Table 2. Descriptive Statistics of the Explanatory Variables 

Variable Units Mean Std. 

Production (x)    

Precipitation mm/year 449.8 87.83 

Temperature Co 19.29 0.546 

Moshav dummy 0.544 0.498 

Private community dummy 0.094 0.292 

Light soil dummy 0.566 0.496 

Output price indices (j)    

Vegetable price index index 0.526 0.068 

Field-crop price index index 0.663 0.081 

Fruit price index index 0.654 0.127 

Costs (w)    

Distance to Tel Aviv km 71.79 41.45 

Water quota 106×m3/year 1.393 0.949 

Agricultural land 103×m2 6,217 5,963 

Vegetable input price index index 0.522 0.107 

Field-crop input price index index 0.489 0.100 

Fruit input price index index 1.654 0.338 
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Table 3. Future Forecasts of State-Wide Average Climate Variables 

Climate period RCP 

Climate 

model 

Precipitation 

(mm/year) 

Temperature 

(Co) 

Base 
  

450 19 

2040–2060 

2.6 

CCSM4 463 22 

MIROC5 424 23 

NorESM1 464 23 

Average 450 23 

4.5 

CCSM4 443 23 

MIROC5 439 24 

NorESM1 387 23 

Average 423 23 

6 

CCSM4 428 23 

MIROC5 433 23 

NorESM1 500 23 

Average 454 23 

8.5 

CCSM4 381 24 

MIROC5 406 24 

NorESM1 395 24 

Average 394 24 

Average 
 

430 23 

2060–2080 

2.6 

CCSM4 423 23 

MIROC5 426 23 

NorESM1 397 23 

Average 415 23 

4.5 

CCSM4 421 23 

MIROC5 398 25 

NorESM1 336 23 

Average 385 24 

6 

CCSM4 401 24 

MIROC5 399 24 

NorESM1 381 23 

Average 393 24 

8.5 

CCSM4 367 25 

MIROC5 360 25 

NorESM1 334 25 

Average 353 25 

Average 
 

387 24 
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Table 4. Estimated Coefficients of Land-Share Equations (Eq. (6))a 

Log likelihood -7657.6 
  

Wald 2(91) 29144.1 
  

Variable Vegetables Field crops Fruit 

Production 
   

j × Precipitation 0.008** 0.002 0.008*** 

j × Precipitation2 -1.53×10-5*** 1.17×10-6 -4.96×10-6* 

j × Temperature -4.615** -0.622 -0.557 

j × Temperature2 0.125** 0.027 0.015 

j × Moshav -2.019*** -2.917*** -1.032*** 

j × Light soil -0.661*** -0.511*** 0.171*** 

j 47.683** 3.310 5.831 

Costs 
   

Distance to Tel Aviv -0.006*** -0.011*** 0.005*** 

Water quota 0.546*** 0.441*** 0.105 

Water quota2 -0.147*** -0.113*** -0.103*** 

Agricultural land 0.096*** 0.132*** 0.090*** 

Agricultural land2 -0.002*** -0.002*** -0.002*** 

Input price index -1.750*** 0.780*** -1.547*** 

Constant -0.293 1.370*** 0.604*** 

Note: *** indicates significance at 1%, ** indicates significance at 5%, * indicates significance at 10% 

a. Coefficients for Ecological Regions are not reported. The dummy variable for private communities was 

omitted due to collinearity. 
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Table 5. Marginal Effects 

 
Land share Economic profit 

Variable Vegetables Field crops Fruit 

Total 

cultivated Vegetables Field crops Fruit Total 

Production 
       

 

Precipitation -0.001*** 3.23×10-4*** 4.35×10-4*** 6.46×10-5** -0.001*** 0.002*** 0.002*** 0.002*** 

Temperature -0.007 0.062*** -0.047*** 0.008** 0.009 0.260*** -0.084** 0.185*** 

Moshav 0.033*** -0.294*** 0.192*** -0.069*** -0.131*** -1.499*** 0.118*** -1.512*** 

Light Soil -0.027*** -0.076*** 0.093*** -0.010*** -0.082*** -0.314*** 0.204*** -0.191*** 

Vegetable price index (v) 0.455*** -0.245*** -0.179*** 0.03*** 1.005*** -0.515*** -0.321*** 0.168*** 

Field-crop price index (f) -0.020*** 0.068*** -0.042*** 0.007*** -0.020*** 0.269*** -0.075*** 0.174*** 

Fruit price index (p) -0.102*** -0.300*** 0.439*** 0.037*** -0.105*** -0.631*** 1.445*** 0.709*** 

Costs         

Distance to Tel Aviv -3.3×10-4 -0.003*** 0.003*** -2.3×10-4*** -0.001*** -0.011*** 0.007*** -0.005*** 

Water quota 0.002*** 0.005*** -0.007*** -1.06×10-4 0.004*** 0.016*** -0.018*** 0.002 

Agricultural land -0.001 0.011*** -0.005*** 0.004*** 0.010*** 0.069*** 0.013*** 0.093*** 

Input price index -0.205*** 0.552*** -0.372*** -0.024* -0.482*** 1.517*** -1.181*** -0.147 

Note: *** indicates significance at 1%, ** indicates significance at 5%, * indicates significance at 10% 
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Table 6. Climate-Change Impact on Partial Equilibrium Indices under Constrained-Trade Policy (Scenario 1)  

 
 Price index (

p

jt ) Demand quantity index (
q

jt ) Supply quantity index (
y

jt ) Land share index ( 1jt js s ) 

Climate 

period RCP Vegetables 

Field 

crops Fruit Vegetables 

Field 

crops Fruit Vegetables 

Field 

crops Fruit Vegetables 

Field 

crops Fruit 

2040–

2060 

2.6 0.877 1.033 1.259 1.164 0.997 0.755 1.163 2.258 0.682 0.946 1.079 0.846 

4.5 0.822 1.033 1.259 1.254 0.997 0.755 1.253 2.387 0.603 0.941 1.088 0.826 

6.0 0.868 1.033 1.259 1.178 0.997 0.755 1.177 2.368 0.659 0.943 1.084 0.836 

8.5 0.733 1.033 1.259 1.435 0.997 0.755 1.433 2.750 0.489 0.931 1.106 0.790 

Average 0.825 1.033 1.259 1.258 0.997 0.755 1.257 2.441 0.608 0.940 1.089 0.824 

2060–

2080 

2.6 0.837 1.057 1.281 1.226 0.995 0.742 1.225 2.258 0.609 0.944 1.084 0.835 

4.5 0.740 1.057 1.281 1.429 0.995 0.742 1.427 2.708 0.480 0.932 1.105 0.792 

6.0 0.755 1.057 1.281 1.386 0.995 0.742 1.385 2.632 0.502 0.933 1.102 0.798 

8.5 0.634 1.057 1.281 1.728 0.995 0.742 1.726 3.313 0.353 0.918 1.127 0.747 

Average 0.741 1.057 1.281 1.442 0.995 0.742 1.441 2.728 0.486 0.932 1.104 0.793 
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Table 7. Climate-Change Impact on Aggregate Welfare Measures under Restricted-Trade Policy (Scenario 1), (106 $/year) 

 
 Accounting profita Consumer surplus Social welfare 

Climate 

period RCP Vegetables 

Field 

crops Fruit Total Vegetables 

Field 

crops Fruit Total Vegetables 

Field 

crops Fruit Total 

2040-

2060 

2.6 36 253 -61 228 70 -26 -145 -101 107 228 -207 128 

4.5 44 279 -121 201 105 -26 -145 -66 150 253 -267 135 

6.0 39 275 -78 236 76 -26 -145 -95 115 249 -224 141 

8.5 62 350 -208 204 167 -26 -145 -3 230 325 -354 200 

Average 45 289 -117 217 105 -26 -145 -66 150 264 -263 151 

2060-

2080 

2.6 41 263 -110 194 95 -44 -156 -105 136 219 -266 89 

4.5 61 354 -209 206 164 -44 -156 -36 225 310 -365 170 

6.0 57 339 -192 204 152 -44 -156 -48 209 295 -349 155 

8.5 90 477 -306 261 251 -44 -156 50 341 433 -463 312 

Average 62 359 -204 217 166 -44 -156 -34 228 314 -361 182 

a. Accounting profits in the base period amount to $119, $656, $2,146 and $2,921 million/year for vegetables, field crops, fruit and overall, respectively.  
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Table 8. Climate-Change Impact on Aggregate Welfare Measures under Abolishment of Import Tariffs (Scenario 2), (106 $/year) 

 
 Accounting profit Consumer surplus Social welfare 

Climate 

period RCP Vegetables 

Field 

crops Fruit Total Vegetables 

Field 

crops Fruit Total Vegetables 

Field 

crops Fruit Total 

2040–

2060 

2.6 40 266 -250 57 77 -26 -15 36 117 240 -265 93 

4.5 48 291 -289 49 112 -26 -15 71 160 265 -304 120 

6.0 43 288 -263 68 82 -26 -15 41 125 262 -277 110 

8.5 66 361 -346 82 174 -26 -15 133 239 336 -361 214 

Average 49 302 -287 64 111 -26 -15 70 160 276 -302 134 

2060–

2080 

2.6 45 275 -281 39 102 -44 -26 32 147 231 -307 71 

4.5 65 365 -346 85 170 -44 -26 99 235 321 -372 184 

6.0 61 350 -335 77 158 -44 -26 87 219 306 -361 164 

8.5 94 487 -409 172 256 -44 -26 186 350 443 -435 358 

Average 66 370 -343 93 171 -44 -26 101 238 325 -369 194 
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Table 9. Impacts on Welfare Measures of Changes in Precipitation Only (Scenario 3), Temperature Only (Scenario 4), and 

Offsetting Precipitation Change by Irrigation (Scenario 5) (106 $/year) 

 

 

Scenario 3 

Change in precipitation only  

Scenario 4 

Change in temperature only 

Scenario 5 

Offsetting precipitation change by 

irrigation 

Climate 

period RCP 

Accounting 

profit 

Consumer 

surplus 

Social 

welfare 

Accounting 

profit 

Consumer 

surplus 

Social 

welfare 

Accounting 

profit 

Consumer 

surplus 

Social 

welfare 

2040–

2060 

2.6 10 -11 -1 218 -106 112 222 -104 118 

4.5 -5 -13 -17 229 -88 141 212 -96 115 

6.0 12 -11 1 223 -96 127 230 -92 138 

8.5 -21 -19 -40 266 -43 223 227 -63 164 

Average -1 -13 -14 234 -83 151 223 -89 134 

2060–

2080 

2.6 -4 -35 -39 238 -134 104 214 -146 68 

4.5 -20 -48 -68 284 -81 204 239 -104 135 

6.0 -16 -40 -56 271 -90 181 232 -110 122 

8.5 -37 -60 -97 358 -11 347 292 -46 246 

Average -19 -45 -65 288 -79 209 244 -102 143 
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Figure 1. Demand curves of the three crop bundles 
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Figure 2. Difference in welfare elements between the free- and restricted-trade scenarios (free-

trade (table 8) minus restricted trade (table7)) 
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Appendix A – Derivation of the optimal land share in Eq. (4) 

The farmer's problem is (we omit the farm index for notation brevity): 

  
1 1 1

1
max = ln . . 1

s
v z      

J J J

j j j j j j

j j j

s s s s t s
a  

      (A1) 

Using the first-order condition 

   
1

ln 1 0v zj j j

j

s
s a




    


 (A2) 

we get the land share: 

 
  

 

exp

exp 1

v zj j

j

a
s

a



 (A3) 

Substituting Eq. (A3) into the land constraint in (A1), 

     
1 1

exp 1 exp 1v z
J J

j j j

j j

s a a
 

      (A4) 

we get the shadow value 

 

  
1

ln exp 1v z
J

j j

j

a

a




 
 

 


 (A5) 

which we substitute back into the land share in Eq. (A3) to get Eq. (4). 
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Appendix B. Nationwide Data in the Base Year for the Crops in the Three Crop Bundles  

 

Crop 

Land 

(
kjL , 

hectares) 

Quantity 

(  1

kjQ , 

ton/year) 

Price 

(  1

kjp , 

$/ton) 

Demand 

elasticity 

( kj 

Explicit 

cost 

( kjC , 
$/hectare) 

Import 

tariff 

(% of world 

price) 

Vegetables 
     

 

Watermelon 15,461 184,596 216 -0.7 8,917 29 

Melon 2,888 48,993 654 -0.7 2,004 47 

Tomato 4,291 288,621 1,178 -0.7 23,320 42 

Strawberry 454 9,614 2,493 -0.7 66,511 35 

Potato 12,742 196,680 461 -2.2 10,060 78 

Cucumber 1,827 67,870 536 -0.3 35,211 12 

Eggplant 798 28,517 423 -0.3 6,994 20 

Pepper 2,475 50,946 818 -1.3 21,586 32 

Zucchini 971 17,968 560 -1.1 2,059 17 

Onion 3,210 53,860 313 -1.1 8,811 61 

Carrot 1,265 50,938 332 -1.5 24,443 58 

Lettuce 1,262 22,441 540 -1.1 26,771 10 

Cabbage 1,980 37,082 292 -1.1 15,029 39 

Cauliflower 1,579 18,177 413 -1.1 12,813 29 

Celery 521 10,606 551 -1.3 5,357 19 

Radish 415 7,243 421 -1.1 5,384 111 

Field crops – local 
    

 

Cotton, raw 11,646 92,668 991 - 2,663 0 

Chickpea 7,558 9,328 998 - 296 0 

Corn 5,233 98,766 358 - 3,215 0 

Pea 2,162 8,945 626 - 597 0 

Peanuts 3,744 24,169 1,592 - 1,196 0 

Sunflowers 7,680 19,447 1,340 - 994 0 

Wheat 83,646 160,260 260 - 74 0 

Barley 8,364 5,342 257 - 60 0 

Hay 64,294 86,188 146 - 73 0 

Field crops – import 
    

 

Cotton, lint - 12,381 16,213 -0.06 - - 

Chickpea - 8,000 998 -0.7 - - 

Corn - 796,836 358 -1.6 - - 

Pea - 2,400 626 -1.5 - - 

Peanuts - 2,901 1,592 -0.3 - - 
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Wheat - 1,582,069 260 -2.0 - - 

Barley - 233,808 257 -0.85 - - 

Fruit 
    

 

Apple 5,506 119,316 987 -1.9 6,186 39 

Pear 1,676 25,055 1,190 -1.3 4,274 39 

Peach 5,630 51,298 1,177 -0.7 7,839 21 

Grapes 11,740 95,295 923 -1.0 5,959 31 

Banana 2,382 94,590 762 -1.5 6,456 37 

Avocado 5,709 69,157 1,180 -3.8 2,082 40 

Dates 3,441 12,276 3,297 -5.3 6,640 48 

Orange 3,303 376,476 377 -0.4 1,277 5 

Grapefruit 7,763 520,864 343 -0.2 2,332 24 

Lemon 1,726 45,122 432 -1.4 2,696 27 

Olive 20,034 34,450 1,262 -1.7 1,664 49 

Almond 2,979 4,086 2,110 -1.7 1,074 9 
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Notes 

                                                           
1   While the linear function is adopted to facilitate the analysis, the model can be easily 

extended; for example, Kaminski, Kan and Fleischer (2013) specified 
jy  as a quadratic 

function of per-hectare bundle-specific endogenous inputs with structural parameters, and 

thereby accounted for the impact of climate change through optimal input applications and 

identified the effect of climate variables on attributes of agricultural production 

technologies. 

2   The resultant linear equations are of the form  * *ln V zji Ji j ji jis s u  , where jiu  is an 

error term. 

3   Where only regional data are available, one may overcome endogeneity by employing 

simultaneous estimation of both prices and land shares; however, this poses two 

challenges: (i) an identification strategy and the availability of instrumental variables for 

regional prices in the micro-level estimations of the econometric model, (ii) a tractable 

partial or general equilibrium model with simultaneous and endogenous price 

determination adjusting with the outputs of the micro-level estimations. 

4   The disadvantage of not using the linearized version of the multinomial logit model is the 

inability to account for spatial correlations and random effects as in Marcos-Martinez et al. 

(2017). 

5    Kaminski, Kan and Fleischer (2013) showed that, to enable identification of the parameters 

jv  for 1,..., 1j J  , a can be calibrated using panel data and additional information on crop 

profitability. 

6   We employ this assumption to derive bundle-level quantity indices, since disaggregated 

land-use data are usually available only for bundles of crops, whereas aggregated quantities 

and prices may be available for the various crops in each bundle.  
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7   According to Finkelshtain and Kachel (2009), Israel's agriculture is small enough not to 

affect world food prices. While the methodology used herein can be employed in a world-

level CGE model for simulating climate-change impacts on world prices under equilibrium, 

our analysis is limited to the case of Israel’s local market under partial equilibrium.   

8   Data were not available for later years due to changes in the data-collection procedure.  

9   We test for multicollinearity using an OLS regression; when both price-interacted and non-

interacted climate variables are incorporated in the regression, all the variance inflation 

factors of the climate variables exceed 10.   

10   For example, larger precipitation levels can directly augment yields through increased 

transpiration, but may also aggravate pest damage (Koleva et al. 2010), which the farmer 

may alleviate by applying pesticides up to the level at which the associated marginal 

expenses equal the marginal avoided output-value loss. 

11   The number of lags was determined after ARIMA estimations using R² and Akaike–

Schwarz information criteria.  

12   For consistency with the estimated coefficients   ,V b γ γj j j Ja a   , we computed 

kjc  while subtracting the overhead assigned in the cost-and-return studies to the non-

cultivated agricultural lands, i.e., the reference bundle. 

13  The allocation of products between the local and international markets frequently occurs in 

the wholesale markets, that is, beyond the control of farmers (Kachel, Y., personal 

communication, May 2014).  

14  These projections represent the effect of climate change in comparison to a baseline 

scenario without the climate-change impact. In our case, we simulate changes in climate 

variables and prices where all other elements of the economy are assumed to remain at 

their base-year levels.  
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15  These regions were determined by the ICBS (2010) based on criteria such as topography, 

climate, demography and history. Thus, the clusters capture those spatial autocorrelations 

of measurement errors in the dependent and independent variables between communities of 

the same region that are not necessarily diminishing with Euclidean distance (e.g., as 

assumed by the Moran’s I statistic). For example, due to the presence of topographic (and 

therefore climatic) boundaries (e.g., between valleys and highlands) and intra-regional 

processing and marketing cooperatives, the correlation in measurement errors between two 

adjacent communities from different regions may be considerably lower than the 

correlation of each one of them with remote communities within the region. 

16  We omit a time-trend variable from the estimation due to multicollinearity considerations, 

as reported earlier in footnote 8.  

17   Marginal productivity effects are zeroed at an annual precipitation of 261.5 mm and 

temperature of 18.5oC for vegetable production, and at an annual precipitation of 806.5 mm 

for fruit production. 

18  The predicted responses to temporal changes in climate variables are based on the spatial 

variations of these variables across communities in the sample period. Hence, the larger the 

spatial variability in comparison to the temporal variation, the larger the validity of the 

simulation predictions for changed climate conditions; in our case, the spatial variance 

among communities captures 96% and 69% of the total spatiotemporal variance of 

precipitation and temperature, respectively. 

19   This result is consistent across the three GCM models used to predict climate change.  

20  Kawasaki and Uchida (2016) also found that a rise in temperature benefits farmers by 

increasing crop yields. However, they also found that at the same time, crop quality may 

decline. We cannot account for this effect with our data. A number of recent articles (e.g., 
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Salazar-Espinoza, Jones, and Tarp 2015; Khanal and Mishra 2017) have focused on climate 

uncertainty rather than climate trends. However, Yang and Shumway (2016) found that 

farmers' adjustment to climate change is not affected much by ignoring climate uncertainty. 

21  Irrigation constitutes 9%, 38% and 17% of the total explicit costs of vegetables, field crops 

and fruit, respectively. 

22  While this seems to be a small number, farmers can adapt in other ways, in addition to land 

reallocation. Burke and Emerick (2016) found that the adaptation capacity of US farmers is 

quite limited. However, Miao at al. (2016) found that the price responsiveness of land 

allocation is larger than that of yield. Moreover, Trapp (2014) found that farm-level 

adaptation, especially cropland expansion and crop-portfolio adjustments, can largely 

mitigate the negative impacts of climate change on regional crop production in the EU. 

 


