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1 Introduction

We study the salient features of water management in the context of a

prototypical water economy, consisting of the main sectors of water users and

water sources. The user sectors are domestic, agriculture, industry and en-

vironment; the water sources are natural, recycling and desalination. The

sectors and sources are elaborately entwined via physical (equipment, infras-

tructure) and social (institutions, norms, laws) capital, and the term water

economy refers to the whole setup.

Water economies vary with respect to their hydrology and climate (water

sources, precipitation, evapotranspiration) as well as social situation (demog-

raphy, water rights and laws, institutions), and these features affect the range

of feasible policies (see the diversed examples in Saleth and Dinar 2004, Tsur

et al. 2004). Without committing to a particular setting, we characterize the

optimal water policy in terms of the water allocation from the different sources

to the different suer sectors and the investments in the capital stocks needed

to carry out these allocations over time. We then discuss possible regulation

schemes to implement desirable policies.

The primary source of water is nature (rainfall, lakes, stream flows, aquifers).

In regions where the (sustainable) supply of natural water suffices to meet hu-

man and environmental needs, water is not a scarce resource and its manage-

ment may not be high on the priority list. Such regions become fewer over time

due to demographic and climatic trends. In many populated regions, water

scarcity has become critical (see Dinar and Tsur 2015), stressing the need for

proper management. There are two basic approaches for water management:

demand management and supply management. The former seeks to do more
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with a given supply of water; the latter seeks to increase the water supply.

Two sources of produced water can be added to natural sources: recycling

and desalination. Recycled water is the outcome of collecting and treating

domestic and industrial sewage. As such, its supply is determined by the al-

location of water to these sectors. Sewage treatment is required primarily due

to health and environmental considerations, disregarding whether the treated

water is reused later on. The level of treatment (secondary, tertiary) deter-

mines the range of feasible uses of the recycled water. These considerations

bear important implications for the allocation of water in general as well as

for the level of treatment and who should pay for the different stages of the

recycling process. The model developed herein addresses these considerations.

Desalinization is, for all practical purposes, an unlimited source of water,

hence can be considered as a backstop technology. However, at the current

state of technology, it is an expensive source. This raises the issues of when

to begin desalination (if at all) and the extent of desalination over time. The

framework developed herein addresses these concerns.

We build on the framework of Tsur (2009) and extend it in a number of

ways. While Tsur (2009) simplified the dynamic policy aspects by considering

steady states, the water policy characterized herein is fully intertemporal, cov-

ering both the water allocation from each source to each user sector at each

point of time and the investment in capital stocks (equipments, infrastruc-

ture) needed to carry out these allocations. We show that the optimal water

policy possesses a turnpike property, in that each of the water capital stocks

is brought as rapidly as possible to its respective turnpike and is kept along

this path thereafter. The turnpikes (also called singularly trajectories) depend

on the natural water stock and are shown to converge to a steady state. The
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optimal water policy, thus, is shown to evolve along three stages: a transition

stage, where the water infrastructure is built as rapidly as possible; a turnpike

stage, where the water infrastructure evolves along well-specified turnpikes;

and a steady-state stage.

We extend the canonical (stationary) model to account for growing (non-

stationary) water demands and allow for (exogenous) technical change in de-

salination technology. We also show (in the appendix) how the model can be

extended to accommodate arbitrary number of user sectors and water sources,

thereby allowing to refine the the water economy as needed.

The next section specifies the stylized water economy and defines water

policies. The optimal policy is derived in Section 3. Section 4 discusses regu-

lation policies that implement the optimal policy. Extensions to non-stationary

situations are presented in Section 5 and section 6 concludes. The appendix

presents extensions to more general cost structures and to arbitrary number

of sources and sectors.

2 A stylized water economy

The stationary water economy specified in Tsur (2009) provides a conve-

nient starting point. On the whole, water can be derived from three main

sources and is allocated to four main user sectors. The sources are nature

(rainfall, aquifers, lakes, reservoirs, stream flows), indexed n, recycling facili-

ties, indexed r, and desalination plants, indexed d. The user sectors include

domestic, indexed D, agriculture (irrigation), indexed A, industry, indexed I,

and environment (instream, river restoration), indexed E (the case of many

water sources and user sectors is outlined in appendix B).
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Let qij(t) denote the supply of water from source i = n, r, d, to sector

j = A,D, I, E, in year t. The annual water supply from source i is

qi◦(t) =
∑

j=A,D,I,E

qij(t), i = n, d, r, (2.1a)

and the annual allocation to sector j is

q◦j(t) =
∑

i=n,r,d

qij(t), j = D,A, I, E. (2.1b)

2.1 Water sources

We discuss each of the water sources in turn.

Natural sources: Natural water is derived from limited (finite) water stocks,

such as aquifers, lakes and stream flows. Accordingly, let Q(t) represent the

stock of natural water at time (year) t, which evolves in time according to

Q̇(t) = R(Q(t))− qn◦(t), (2.2)

where R(·) is a recharge function. The recharge function is defined over [0, Q̄]

and assumed decreasing and concave. The upper bound Q̄ satisfies R(Q̄) = R,

where R ≥ 0 can be interpreted as average precipitation. The zero lower

bound,

Q(t) ≥ 0, (2.3)

is a normalization.1 The allocation of natural water requires equipment and

infrastructure capital (pumps, pipelines, filters), denoted Kn(t).

1If irrigation and environmental water contribute to the recharge of underlying aquifers,
the recharge function takes the form R(Q, q◦A, q◦E), where R decreases in Q and increases
in both q◦A and q◦E . In the interest of simplicity, the latter effects are ignored.
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Recycling: Recycled water is the outcome of collecting and treating resi-

dential and industrial sewage. The annual flow of treated sewage equals

qs◦(t) = β(q◦D(t) + q◦I(t)), (2.4)

where β ≤ 1 accounts for water loss during sewage collection and treatment.2

The capital needed to collect and treat residential and industrial sewage is

denoted Ks(t).

The treated sewage, qs◦(t), can be disposed of or reused, where the latter

constitutes the supply of recycled water qr◦(t). Thus,

qr◦(t) ≤ qs◦(t). (2.5)

Dumping the treated sewage is assumed costless, but reusing it requires capital

(pipelines, pumps) to convey the treated water from the recycling plants to

potential users. This recycled capital is denoted Kr(t).

The distinction between qs◦(t) and qr◦(t), and the associated capital stocks

Ks(t) and Kr(t), is needed because sewage collection and treatment, on the

one hand, and allocating the treated water to potential users, on the other

hand, are two separate activities. The former is (often) required by health

and environmental regulation, disregarding whether the treated water is reused

later on. Reusing the treated water, on the other hand, is a policy decision

that depends on the cost of conveying the recycled water from the treatment

facilities to potential users and on the demand for the recycled water. The

treatment level (secondary, tertiary) entails restrictions on potential uses of

the recycled water. For example, secondary-treated water may not be allowed

to irrigate certain crops and health regulations may prohibit the allocation of

2Under current technology and practice, β ≈ 0.65 (see Tsur 2015).
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any recycled water to households, i.e.,

qrD(t) = 0. (2.6)

Desalination: The supply of desalinated water at time t is restricted only by

the capacity of existing desalination plants, i.e., by the available desalination

capital, denoted Kd(t).

2.2 Supply cost

The cost of water supply includes variable and fixed costs. The former

entails costs of variable inputs, such as labor, energy and material; the latter

includes mainly the cost of capital. Both of these components vary spatially

and temporally (see examples in Renzetti 1999, Harou et al. 2009, Allen et al.

2014). We discuss below the role of these cost components in the present

framework.

Capital (fixed) cost: Source i’s annual supply at time t, qi◦(t), is restricted

by source i’s capital stock, Ki(t), according to

qi◦(t) ≤ γiKi(t), i = n, s, r, d, (2.7)

where γi is capital utilization parameter (the Ki’s are defined above). The

capital stocks evolve in time according to

K̇i(t) = xi(t)− δiKi(t), i = n, s, r, d, (2.8)

where xi(t) represents investment and δi is a depreciation rate. We assume

that 0 ≤ xi(t) ≤ x̄i, where x̄i is a finite upper bound on investment in Ki.

The capital cost of water supply from source i comes from the investments

xi(t) and the (shadow cost of the) supply restrictions (2.7).
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Variable costs: The variable costs associated with the supply of qi◦(t) is

represented by the function Ci(qi◦), i = n, s, r, d, assumed increasing and con-

vex.3 These variable cost functions account for the costs of variable inputs

such as temporary labor, energy and material.

2.3 Annual allocation

An annual water allocation is represented by

q(t) = {qij(t), i = n, d, r, j = D,A, I, E}.

An allocation is feasible if it satisfies (2.5), (2.7), q(t) ≥ 0 and possibly other

restrictions such as (2.6). The sectoral allocations and supplies from each

source associated with q(t) are specified in (2.1).

2.4 Sectoral demands and surpluses

The annual (inverse) demand for water of sector j is denoted Dj(·), j =

D,A, I, E. This curve measures the quantity of water demanded at any water

price and can be interpreted as the price sector j’s users are willing to pay for

the last unit of water.4

The annual gross surplus of sector j generated by q◦j (not including the

cost of water supply) is the area underneath the demand curve to the left of

3Cn(·) may also depend on the natural water stock Q, in which case it is non-increasing
in Q as pumping and extraction costs usually decrease with Q.

4There is a large literature on sectoral water demands. Examples of agricultural water
demand include Just et al. (1983), Moore et al. (1994), Howitt (1995), Mundlak (2001),
Tsur et al. (2004), Schoengold et al. (2006), Scheierling et al. (2006); examples of urban and
industrial demands include Baumann et al. (1997), Renzetti (2002, 2015), Worthington and
Hoffmann (2006), Olmstead et al. (2007), House-Peters and Chang (2011), Baerenklau et al.
(2014), Smith and Zhao (2015); examples of environmental water demand include Dudley
and Scott (1997), Loomis et al. (2000), Pimentel et al. (2004), Thiene and Tsur (2013),
Koundouri and Davila (2015).
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q◦j :

Bj(q◦j) =

∫ q◦j

0

Dj(v)dv, j = D,A, I, E. (2.9)

2.5 Annual Benefit

The annual benefit generated by an allocation q(t), not including the cost

of capital, is the total surplus minus the cost of supply:

B(Q(t), q(t)) =
∑

j=A,D,I,E

Bj(q◦j(t))−Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t)). (2.10)

2.6 Water policy and welfare

A water policy consists of q(t) = {qij(t), i = n, r, d, j = A,D, I, E} and

x(t) = {xi(t), i = n, s, r, d}, t ≥ 0, where x(t) determines K(t) = {Ki(t), i =

n, s, r, d} via (2.8) and qn◦(t) =
∑

j qnj(t) determines Q(t) via (2.2). A water

policy generates the payoff (welfare)

∫
∞

0

(

B(Q(t), q(t))−
∑

i=n,s,r,d

xi(t)

)

e−ρtdt, (2.11)

where ρ is the time rate of discount.

2.7 Summary

The figure below provides a graphical overview of the water economy de-

scribed above. Note in particular the links leading to the supply of recycled

water: from domestic and industrial allocation to sewage treatment plants

and from there to recycled water users or to natural outlets (assuming cost-

less dumping of treated sewage). The first link is mandatory and requires the

capital Ks to provide the treated sewage qs◦. The second link – supplying

the recycled water qr◦ to potential users – is subject to policy decisions and
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requires the capital Kr. The unused (residual) treated sewage is dumped to

outlets such as rivers, aquifers or directly to a nearby sea.

Figure 1: A graphical view of the water economy.

The quality of the treated sewage (secondary, tertiary), hence also the

sewage capital Ks, is determined exogenously by health and environmental

standards. The capital cost associated with any improvement beyond this

required quality level, requested by potential users, is attributed to the recycled

capital Kr, which includes also the equipment and infrastructure needed to

convey the treated water to potential users.

Notice also that the links between natural sources and agricultural and

environmental sectors have arrows on both ends. The backward arrows rep-

resent return flow of irrigated water and the recharge role of environmental

water (see footnote 1).
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3 Optimal policy

The optimal policy is the feasible policy that maximizes (2.11) subject

to (2.2) and (2.8) given K(0) and Q(0), where feasibility entails conditions

(2.3), (2.5), (2.7), q(t) ≥ 0, xi(t) ∈ [0, x̄i], i = n, s, r, d and other feasibility

restrictions, e.g., (2.6), when imposed.

The current-value Hamiltonian corresponding to this problem is

H(t) = B(Q(t), q(t))−
∑

i=n,s,r,d

xi(t) +
∑

i=n,s,r,d

λi(t)[xi(t)− δiKi(t)]+

θ(t)[R(Q(t))− qn◦(t)], (3.1)

where λi(t), i = n, s, r, d, and θ(t) are the costates of Ki(t), i = n, s, r, d,

and Q(t), respectively. The corresponding Lagrangian, which accounts for the

feasibility constraints (2.3), (2.5) and (2.7), is

L(t) = H(t) +
∑

i=n,s,r,d

µi(t)[γiKi(t)− qi◦(t)]+

ξ(t)[β(q◦D(t) + q◦I(t))− qr◦(t)] + ϑ(t)Q(t), (3.2)

where ϑ(t), ξ(t) and µi(t), i = n, s, r, d, are the lagrange multipliers of (2.3),

(2.5) and (2.7), respectively.

Necessary conditions for an optimal allocation include (see, e.g., Leonard

and Long 1992):

(a) Natural water allocation to domestic and industrial sectors (qnD, qnI):

Dj(q◦j(t)) ≤ C ′

n(Q(t), qn◦(t))+µn(t)+C ′

s(qs◦)β+µs(t)β+θ(t)−ξ(t)β, (3.3a)

equality holding if qnj > 0, j = D, I, where C ′

i ≡ ∂Ci/∂qi◦.

(b) Natural water allocation to agriculture and environmental sectors (qnA, qnE):

Dj(q◦j(t)) ≤ C ′

n(Q(t), qn◦(t)) + µn(t) + θ(t), (3.3b)
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equality holding if qnj > 0, j = A,E.

(c) Recycled water allocation to households and industrial sectors (qrD, qrI):

DI(q◦I(t)) ≤ C ′

r(qr◦(t)) + µr(t) + C ′

s(qs◦)β + µs(t)β + ξ(t)(1− β), (3.4a)

equality holding if qrj(t) > 0, j = D, I. If (2.6) is imposed, then (3.4a) applies

only for j = I.

(d) Recycled water allocation to agriculture and environmental sectors (qrA, qrE):

Dj(q◦j(t)) ≤ C ′

r(qr◦(t)) + µr(t) + ξ(t), (3.4b)

equality holding if qrj(t) > 0, j = A,E.

(e) Desalinated water allocation to domestic and industrial sectors (qdD, qdI):

Dj(q◦j(t)) ≤ C ′

d(qd◦(t)) + µd(t) + C ′

s(qs◦(t))β + µs(t)β − ξ(t)β, (3.5a)

equality holding if qdj(t) > 0, j = D, I.

(f) Desalinated water allocation to agriculture and environmental uses (qdA, qdE):

Dj(q◦j(t)) ≤ C ′

d(qd◦(t)) + µd(t), (3.5b)

equality holding if qdj(t) > 0, j = A,E.

(g) Investment in water capital stocks:

xi(t) =







0 if λi(t) < 1

x̄i if λi(t) > 1

xa
i (t) if λi(t) = 1

, i = n, s, r, d. (3.6)

(h) Costate dynamics:

λ̇i(t)− ρλi(t) = −∂L/∂Ki = λi(t)δi − µi(t)γi, i = n, s, r, d, (3.7a)

θ̇(t)− ρθ(t) = −∂L/∂Q = CnQ(Q(t), qn◦(t))− θ(t)R ′(Q(t))− ϑ(t), (3.7b)
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where CnQ ≡ ∂Cn/∂Q and R′(Q) ≡ ∂R/∂Q.

(i) Complementary slackness:

µi(t)[γiKi(t)− qi◦(t)] = 0, i = n, s, r, d, (3.8a)

ξ(t)[qs◦(t)− qr◦(t)] = 0, (3.8b)

ϑ(t)Q(t) = 0. (3.8c)

(j) Transversality:

lim
t→∞

H(t)e−ρt = 0. (3.9)

Conditions (3.3)-(3.5) are essentially demand-equals-supply, with demand

and supply on the left and right sides, respectively. Note that the C ′

i represent

marginal costs, the µi(t) represent capital costs, and θ(t) and ξ(t) are natural

and recycled water scarcity costs, all expressed water price units (e.g., $/m3).

The optimal investment rule (3.6) implies a most-rapid-approach to a sin-

gular policy, explained next.

3.1 Singular policy

In condition (3.6), xa
i (t) is the singular investment policy and we use the

superscript “ a ” to signify processes under the singular policy. In particular,

Ka
i (t) is the Ki trajectory that solves (2.8) under the singular investment

policy and is referred to as the singular trajectory (or turnpike). Along the

singular policy, λi(t) = 1 and (3.7a) gives

µa
i (t) = (ρ+ δi)/γi, i = n, s, r, d. (3.10)

The complementary slackness conditions (3.8a), then, imply

qai◦(t) = γiK
a
i (t), i = n, s, r, d. (3.11)
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Conditions (3.10) and (3.11) give

µa
i (t) = (ρ+ δi)K

a
i (t)/q

a
i◦(t), i = n, s, r, d.

As (ρ+ δi)Ki represents the annual cost of Ki,
5 the µa

i ’s are the cost of capital

per unit water or the capital component of the water price.

It turns out that the singular trajectories Ka
i (t), i = n, s, r, d, serve as

turnpikes to which the optimal Ki(t) processes approach as rapidly as possible,

as stated in:

Property 1. The optimal Ki(t) trajectory approaches as rapidly as possible

the singular path Ka
i (t) and proceeds along it thereafter, i = n, s, r, d.

Proof. Consider first i = n (natural water) and suppose that qn◦(t) > 0 under

the optimal policy. To show that xn(t) = 0 when Kn(t) > Ka
n(t), suppose

otherwise – that λn(t) > 1 and xn(t) = x̄n. In view of (3.8a) and (3.10), the

optimal qan◦(t) = γnK
a
n(t) < γnKn(t) is feasible, hence (using (3.8a) again)

µn(t) = 0. Condition (3.7a), then, implies that λn(t) grows at the rate ρ+ δn,

so λn(t) > 1 for all t > 0, which in turn implies that λn(t) continuous to grow

at the rate ρ+ δn indefinitely, violating the transversality condition (3.9). To

see this, note that when xn(t) = x̄n, (2.8) implies that x̄n−δnKn(t) behaves like

e−δnt. Thus, λn(t)(x̄n − δnKn(t)) behaves like eρt, so e−ρtλn(t)(x̄n − δnKn(t))

does not vanish asymptotically, violating (3.9). We conclude that Kn(t) >

Ka
n(t) implies λn(t) < 1 and, by virtue of (3.6), xn(t) = 0.

To show that Kn(t) < Ka
n(t) implies λn(t) > 1 and xn(t) = x̄n, suppose

otherwise – that λn(t) < 1 and xn(t) = 0. Then, condition (3.7a) gives

λ̇n(t) = [λn(t)− 1](ρ+ δn)− [µn(t)− µa
n(t)]γn.

5The capital Ki could have yielded the interest ρKi if deposited in the bank and in
addition inflicts the cost δiKi due to depreciation. The annual cost of Ki is therefore
(ρ+ δi)Ki.
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Now, Kn(t) < Ka
n(t) implies qn◦(t) ≤ γnKn(t) < γnK

a
n(t) = qan◦(t). Thus,

conditions (3.3) imply (noting thatDj decreases in q◦j and C ′

n is non-decreasing

in qn◦) that µn(t) > µa
n(t). It follows from the above equation that if λn(t) ≤ 1

then λn(t) always decreases and remains below one forever, which in turn

implies that xn(t) = 0 for all t ≥ 0 and thatKn(t) → 0, violating the qn◦(t) > 0

condition. We conclude that xn(t) = x̄n whenever Kn(t) < Ka
n(t). The same

arguments can be used to verify the property for i = s, r, d.

Property 1 is useful because it allows focusing attention on the singular

policy, along which µa
i (t) = (ρ+ δi)/γi and the corresponding water allocation

processes qaij(t) depend solely on the natural water stock process Q(t) (or its

scarcity price θ(t)) via conditions (3.3)-(3.5). Now, rewriting (3.11) as

Ka
i (t) = qai◦(t)/γi, i = n, s, r, d, (3.12)

reveals that the turnpikes Ka
i (t) also depend on the Q(t) process. More-

over, noting (2.8), the singular investment processes satisfy xa
i (t) = K̇a

i (t) +

δiK
a
i (t), i = n, s, r, d, hence are also determined by the Q(t) process. We

conclude that:

Property 2. Along the singular trajectories, the water allocation processes

{qaij(t), i = n, r, d, j = A,D, I, E}, the capital processes Ka
i (t) and the corre-

sponding investment processes xa
i (t), i = n, s, r, d, depend solely on the natural

water stock process Q(t).

The property states that, along the singular trajectories, qa(t), Ka(t) and

xa(t) are not independent states and controls, but rather depend on the natural

water stock process Q(t). It thus follows that, after the transition to the

singular trajectory, the optimal policy is driven by a single state, namely the
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natural water stock Q(t). We can thus apply results of Tsur and Zemel (2014)

to conclude that:

Property 3. Under the optimal policy, the Q(t) and Ki(t), i = n, s, r, d, pro-

cesses approach a steady state.

We denote steady states by a “hat” over a variable and assume that the

steady state is feasible, i.e., Q̂ ∈ (0, Q̄) and K̂i ∈ (0, x̄i/δi), i = n, s, r, d.

3.2 Steady state

In a steady state, K(t) and Q(t), hence also q(t) and x(t), remain constant.

Noting (2.2) and (2.8),

q̂n◦ = R(Q̂) (3.13)

and

x̂i = δiK̂i, i = n, s, r, d. (3.14)

From (3.7b) and (3.13) we obtain

θ̂ =
ϑ̂− CnQ(Q̂, R(Q̂))

ρ−R′(Q̂)
, (3.15)

where CnQ ≡ ∂Cn/∂Q and ϑ is the shadow price of the Q(t) ≥ 0 constraint.

From ϑ̂ ≥ 0, CnQ ≤ 0 and R′(Q) ≤ 0, it follows that θ̂ ≥ 0, equality holding

when CnQ = 0 and Q̂ > 0 (the latter condition implies, noting (3.8c), ϑ̂ = 0).

As the steady state is attained under the singular policy, all the singular-

policy properties discussed above remain valid. In particular

µ̂i = (ρ+ δi)/γi, i = n, s, r, d, (3.16)

and

K̂i = q̂i◦/γi, i = n, s, r, d. (3.17)
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The optimal steady state policy (q̂, x̂) and the associated natural water

and capital stocks Q̂ and K̂ are characterized in:

Property 4. The steady state water allocations q̂ij , i = n, r, d, j = A,D, I, E,

are solved from equations (3.3)-(3.5) with µ̂i = (ρ + δi)/γi, i = n, s, r, d, and

Q̂, θ̂, ϑ̂ and ξ̂ are solved using (3.13), (3.15), (3.8c) and (3.8b). The q̂i◦, i =

n, s, r, d, are then calculated from (2.1) and (2.4), and K̂i, x̂i, i = n, s, r, d, are

obtained from (3.17) and (3.14).

3.3 Summary of the optimal policy

The optimal policy proceeds along three stages: most-rapid-approach tran-

sition to the singular trajectories (turnpikes); evolution along the singular

trajectories; and steady state. During the transition period, investment in

water capital is maximal or minimal as Ki(t) lies below or above its turnpike,

respectively, and the length of this period is inversely related to the invest-

ments upper bounds x̄i, i = n, s, r, d. The transition period ends when all

capital stocks reach their singular trajectories. The singular trajectories (or

turnpikes) depend solely on the natural water stock and the latter eventually

enters a steady state, at which time the entire system enters a steady state

(the third and final stage).

4 Regulation

Regulation entails implementing a policy and optimal regulation is con-

cerned with implementing the optimal policy. In the present context a policy

consists of water allocation q(t) and investment in water infrastructure x(t),

and both components need to be regulated. We refer to the former as q-

regulation and to the latter as x-regulation.
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The above analysis provides straightforward rules for regulating investment

in water infrastructure (x-regulation), namely, a most-rapid-approach to the

singular capital trajectories Ka
i (t), i = n, s, r, d. This requires solving for the

singular capital trajectories, which, noting (3.12) and (3.17), depend on the

singular water allocations. Due to their high capital intensity and because

they serve many suppliers and users, ownership of water supply systems is

often centralized (locally, regionally or state-wide) and this feature facilitates

the regulation task. The remainder of this section considers the regulation of

water allocation (q-regulation).

Regulation tools vary from case to case based on social, cultural, institu-

tional, legal, political as well as (in the case of water) climatic and hydrological

conditions, but rely in one way or another on quotas (quantities) and prices. In

the present context quota regulation entails setting the water allocation qij(t),

or bounds thereof, directly while price regulation consists of setting water

prices and letting suppliers and users choose the water allocation. In between

lies a range of regulation schemes that combine quotas and pricing (see Dinar

2000, Tsur et al. 2004, Tsur 2009, Booker et al. 2012, and works they cite).

The above framework lends itself directly to such regulation schemes.

To simplify the exposition, it is convenient to consider the following linear

water economy:

Dj(q◦j) = dj0 − djq◦j , dj0, dj > 0, j = D,A, I, E; (4.1a)

Ci(qi◦) = ci0 + ciqi◦, ci0, ci > 0, i = s, r, d; (4.1b)

Cn(Q, qn◦) = [cn0 − cnQ] qn◦, cn0 > 0, cn ≥ 0; (4.1c)

R(Q) = rn0 − rnQ, rn0, rn > 0. (4.1d)
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Under these specifications (3.15) specializes to

θ̂ =
[

ϑ̂+ cn(rn0 − rnQ̂)
]

/(ρ+ rn), (4.2)

where ϑ̂ ≥ 0, equality holding if Q̂ > 0 (cf. (3.8c)).

It is convenient to consider the case where the natural water stock is at

its steady state Q̂. In this case, Properties 1 and 3 imply that the optimal

policy is to bring the capital stock Ki to its steady state value K̂i as rapidly as

possible and maintain the steady state thereafter. Except for a short transition

period, the optimal policy is the steady state policy characterized in Property

4. We discuss regulation schemes that use prices and quotas.

4.1 Optimal pricing

A pricing policy involves setting p = {pij , i = n, r, d, j = A,D, I, E},

where pij represents the price users in sector j pay for water supplied from

source i. Under prices p, users consume water up to the point where their

demand (i.e., their willingness to pay for the last water unit) just equals the

water price. Let qij(p) denote sector j’s demand for source i’s water at prices

p. Then, qij(p) satisfies

Dj(q◦j(p)) ≤ pij , i = n, r, d, j = A,D, I, E, (4.3)

equality holding if qij(p) > 0, where q◦j(p) =
∑

i=n,r,d qij(p), j = A,D, I, E,

qi◦(p) =
∑

j=n,r,d qij(p), i = n, r, d and qs◦(p) = β(q◦D(p)+q◦I(p)) are as defined

in (2.1) and (2.4). A feasible p satisfies qn◦(p) ≤ R(Q̂) and qr◦(p) ≤ qs◦(p).

Following (3.12), let

Ki(p) = qi◦(p)/γi, i = n, s, r, d, (4.4)

and define the following policy:
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Definition 1 (p-policy). Water is priced according to p and investments follow

a most-rapid-approach to Ki(p), i = n, s, r, d.

Define the following water prices:

p̂nj = cn
︸︷︷︸

marg cost n

+ (ρ+ δn)/γn
︸ ︷︷ ︸

cap cost Kn

+ βcs
︸︷︷︸

mar cost s

+ β(ρ+ δs)/γs
︸ ︷︷ ︸

cap cost Ks

+

θ̂
︸︷︷︸

nat scarcity

+ (−ξ̂β)
︸ ︷︷ ︸

rec scarcity

, j = D, I; (4.5a)

p̂nj = cn
︸︷︷︸

mar cost

+ (ρ+ δn)/γn
︸ ︷︷ ︸

cap cost Kn

+ θ̂
︸︷︷︸

nat scarcity

, j = A,E; (4.5b)

p̂rI = cr
︸︷︷︸

mar cost r

+ (ρ+ δr)/γr
︸ ︷︷ ︸

cap cost Kr

+ βcs
︸︷︷︸

mar cost s

+ β(ρ+ δs)/γs
︸ ︷︷ ︸

cap cost Ks

+ ξ̂(1− β)
︸ ︷︷ ︸

rec scarcity

; (4.5c)

p̂rI = cr
︸︷︷︸

mar cost r

+ (ρ+ δr)/γr
︸ ︷︷ ︸

cap cost Kr

+ βcs
︸︷︷︸

mar cost s

+ β(ρ+ δs)/γs
︸ ︷︷ ︸

cap cost Ks

+ ξ̂(1− β)
︸ ︷︷ ︸

rec scarcity

; (4.5d)

p̂rj = cr
︸︷︷︸

mar cost r

+ (ρ+ δr)/γr
︸ ︷︷ ︸

cap cost Kr

+ ξ̂
︸︷︷︸

rec scarcity

, j = A,E; (4.5e)

p̂dj = cd
︸︷︷︸

mar cost d

+ (ρ+ δd)/γd
︸ ︷︷ ︸

cap cost Kd

+ βcs
︸︷︷︸

mar cost s

+ β(ρ+ δs)/γs]
︸ ︷︷ ︸

cap cost Ks

+ (−ξ̂β)
︸ ︷︷ ︸

rec scarcity

, j = D, I;

(4.5f)

and

p̂dj = cd
︸︷︷︸

mar cost

+ (ρ+ δd)/γd
︸ ︷︷ ︸

cap cost Kd

, j = A,E. (4.5g)

Under (4.1), the p̂ij defined in (4.5) are the right-hand sides of the corre-

sponding optimality conditions (3.3)-(3.5), evaluated at a steady state. Calcu-

lating these prices requires the scarcity prices θ̂ and ξ̂ of natural and recycled

water, respectively. The former, θ̂, is specified in (4.2), where ϑ̂ = 0 if Q̂ > 0

and ϑ̂ ≥ 0 otherwise (cf. (3.8c)). When Q̂ = 0, ϑ̂ is set in order to satisfy

(3.13).
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The scarcity price of recycled water satisfies, noting (3.8b),

ξ̂[q̂s◦ − q̂r◦] = 0. (4.6)

Thus, ξ̂ = 0 if the demand for recycled water (q̂r◦) does not exceed the supply

(q̂s◦) and ξ̂ ≥ 0 otherwise. In the latter case, ξ̂ is set so as to equate demand

and supply of recycled water. Notice that ξ̂ acts as a subsidy on natural water

allocated to households and industrial users and as a tax on recycled water

allocated to agricultural and environmental purposes. Thus, for example, it

encourages reallocation of natural water from agricultural and environmental

users to domestic and industrial users. The reason is that the water allocated

to domestic and industria users can be reused, thereby increasing the overall

supply of water.

We now verify that, given Q = Q̂ and (4.1),

Property 5. The p̂-policy (i.e., the p-policy with p = p̂) is optimal.

Proof. Under (4.1), the p̂ij defined in (4.5) are the right-hand sides of the

corresponding optimality conditions (3.3)-(3.5). When the price of qij is p̂ij ,

sector j users will demand water from source i such that Dj(q◦j) = p̂ij (if

Dj(0) ≤ p̂ij they will demand zero). Clearly, the optimal steady state alloca-

tions q̂ij , i = n, r, d, j = A,D, I, E, satisfy these conditions. Moreover, under

decreasing water demands, the q̂ij’s are the only allocations that satisfy these

conditions. It follows that qij(p̂) = q̂ij , i = n, r, d, j = A,D, I, E, and (4.4)

implies Ki(p̂) = K̂i, i = n, s, r, d. Thus, the investment policy associated with

the p̂-policy is a most rapid approach to K̂i.

The p̂ij prices bear important properties regarding cost allocation and cost

recovery. The marginal cost components, cn, cs, cr and cd, are obvious. Con-

sider the capital cost component associated with Kn, (ρ+δn)/γn, that appears
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in the prices of natural water allocations p̂nj, j = A,D, I, E. The water pro-

ceeds associated with this component are

(q̂nD + q̂nI + q̂nA + q̂nE)(ρ+ δn)/γn = q̂n◦(ρ+ δn)/γn = K̂n(ρ+ δn),

where the right-most equality follows from (3.17). These proceeds exactly

cover the annual cost of Kn (see footnote 5).

Consider now the price component β(ρ+ δs)/γs associated with the cost of

Ks (sewage collection and treatment capital), which appears in the prices of

the water allocations to domestic and industrial sectors. The water proceeds

associated with this component are

(q̂◦D + q̂◦I)β(ρ+ δs)/γs = q̂s◦(ρ+ δs)/γs = K̂s(ρ+ δs),

where the first equality uses (2.4) and the second uses (3.17). These proceeds

exactly cover the (annual) cost of sewage capital (ρ+ δs)K̂s. Because only the

domestic and industrial sectors generate sewage, which must be collected and

treated, these sectors are required to pay for these activities.

In a similar manner it can be shown that the water proceeds associated

with (ρ + δd)/γd and (ρ + δr)/γr cover the annual cost of the desalination

capital (ρ + δd)K̂d and recycling conveyance capital (ρ + δr)K̂r, respectively.

Note that desalination is often more capital intensive than recycling or natural

water supply, in which case γd ≪ γi, i = n, r.6 When the depreciation rates

are the same (or similar), this implies (ρ + δd)/γd ≪ (ρ + δi)γi, i = n, r, so

the capital cost component of Kd exceeds that of Kn and Kr. This implies

that prices of desalinated water allocated to the various sectors, which include

6Recall that γiKi is source i’s supply constraint. If desalination is more capital intensive
than the other two sources, it requires more capital to supply the same annual flow, hence
γd is smaller than both γn and γr.
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the (ρ + δd)/γd component, are higher than prices of water allocated from

natural or recycled sources. As a result, it is likely that DA(0) ≤ p̂dA and

DE(0) ≤ p̂dE , in which case (4.3) implies q̂dA = q̂dE = 0, i.e., desalinated water

is too expensive for agricultural and environmental uses. If the same holds also

for the domestic and industrial sectors, i.e., DD(0) ≤ p̂dD and DI(0) ≤ p̂dI ,

then desalination is not desirable.

The water proceeds generated by the marginal cost components cover, up

to a fixed amount, the variable costs of water supply, and we saw above that

the water proceeds generated by the capital cost components cover the capital

costs. The (net) water proceeds generated by the scarcity components θ̂ and ξ̂

have no counterpart costs to cover. These proceeds can be returned to water

users in an undistorted (e.g., lump sum) fashion. Alternatively, optimality

can be maintained without these scarcity components by introducing water

quotas.

4.2 Optimal quotas

Quota regulation entails imposing bounds on water supply from various

sources to various sectors. In an elaborate scheme, the quotas are the q̂ij , i =

n, r, d, j = A,D, I, E, i.e., the water allocation from each source to each sector.

In a less elaborate scenario, the regulator imposes the quota q̂i◦ on source i

suppliers, where the q̂i◦ are calculated from the q̂ij (i.e., q̂i◦ =
∑

j q̂ij). To

prevent undersupply the regulator can use lower bound quotas or impose fines

on supplies below the quota. The option to oversupply is usually avoided by

the available infrastructure, which does not allow supplying above the stated

quota.

A pure quota regulation raises the problem of how to pay for the cost (vari-
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able and capital) of water supply. Without water proceeds that are directly

related to water use, the cost of water supply must be covered from other

sources, such as tax revenues (local, state or national).

4.3 Combining prices and quotas

Quotas and prices can be combined in many ways; we discuss two examples.

In the first, the stock of natural water is required not to decline below Q̂ (or

any other exogenously set stock). This can be accomplished in a pure pricing

scheme by adding the scarcity rent θ̂, defined in (4.2), to the price of natural

water allocated to any sector. Alternatively, the restriction can be imposed as

a quota, i.e., qn◦ =
∑

j qij ≤ R(Q̂). In the latter case, the quota restriction

entails a shadow price which replaces the scarcity rent θ̂ and the latter should

not be included in the price of natural water.

The second example is concerned with the allocation of water for envi-

ronmental purposes. Unlike the domestic, agricultural and industrial sectors,

where individual users can be identified and required to pay for the water they

use, environmental water serves all (or many) households, i.e., is essentially

a public good. It is thus complicated to charge individual users for environ-

mental water. In such cases, the optimal allocation of environmental water

can be imposed as a (lower bound) quota:
∑

i qiE ≥ q̂◦E . To motivate sup-

pliers to allocate the right amount of environmental water, source i suppliers

can be required to supply q̂iE, for which they will be reimbursed according to

the cost of supply. The amount needed to reimburse suppliers can be raised

by appropriate taxes (the public good natura of environmental water justifies

such funding).
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5 Extensions

The above stylized water economy can be extended in a number of ways to

better resemble ubiquitous real-world situations. Extensions to situations with

more general cost structure and arbitrary number of sources and sectors are

presented in the appendix. Below we present two non-stationary extensions:

the first incorporates technical change in desalination technology; the second

accounts for growing water demands.

5.1 Technical change in desalination technology

Recall that a desalination capital worth (in monetary terms) Kd can pro-

duce at most γdKd cubic meter per year of desalinated water. Advances in de-

salination technologies can be represented by letting γd(t) increase over time,

reaching (perhaps only asymptotically) the upper bound γ̄d. Thus, as time

goes by, the same (monetary value of) desalination capital can produce larger

flows of desalinated water.7 Initially γd(0) is small and the ensuing capital

cost component of desalination (ρ + δd)/γd(0) is large. If under the steady

state policy, conditions (3.5) hold as strict inequality, then no desalination is

initially desirable.

As time goes by, γd(t) increases and the capital cost component (ρ +

δd)/γd(t) decreases, eventually reaching the lowest cost of desalination cap-

ital (ρ + δd)/γ̄d. If under the steady state policy with the most advanced

desalination technology γ̄d, conditions (3.5) still hold as strict inequalities,

then desalination will never be desirable. If some desalination is desirable un-

der γ̄d (i.e., in the steady state with γ̄d one or more of conditions (3.5) hold

7The declining cost of desalination in the last decade (see Tsur 2015) attests to such
technical change process. Tsur and Zemel (2000) analyzed technical change in desalination
technology induced by intentional R&D activities. This case is beyond the current scope.
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as equality), then there must exist some finite time td ≥ 0 following which

desalination becomes desirable. In the latter case, for t > td, the scale of

desalination increases over time, eventually approaching

K̂d(γ̄d) = q̂d◦(γ̄d)/γ̄d,

where q̂d◦(γ̄d) is the steady state allocation of desalinated water under the most

advanced technology γ̄d.

The optimal desalination trajectory is obtained by solving the optimal

policy with the time-dependent γd(t) replacing the constant γd. The necessary

conditions (3.3)-(3.8) hold as specified above with γd(t) instead of γd. Thus, in

view of (3.6), the optimal capital stocks evolve along their most-rapid-approach

pathes with the singular trajectories Ka
i corresponding to xa

i (t), i = n, s, r, d.

Noting (3.6), λi(t) = 1 along the singular policy and (3.7a) implies

µa
i = (ρ+ δi)/γi, i = n, s, r, (5.1a)

and

µa
d(t) = (ρ+ δd)/γd(t). (5.1b)

The µa
i , i = n, s, r, d, are the capital cost components in conditions (3.3)-

(3.5), according to which the allocations along the singular policy, qaij(t), are

determine and give rise to qai◦(t) =
∑

j q
a
ij(t), i = n, s, r, d. The complementary

slackness conditions (3.8), then, imply

Ka
i (t) = qai◦(t)/γi(t), i = n, s, r, d. (5.2)

Notice that the allocation of desalinated water (along the singular policy)

increases as time goes by because the capital cost component of desalinated

water, µa
d(t), decreases as the desalination technology is improved, i.e., γd(t)

increases.
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To summarize, if K̂d = 0 when γd = γ̄d, then it is not desirable to desalinate

even under the most advanced technology γ̄d and desalination should never be

performed. If, on the other hand, K̂d > 0 for some γd ∈ [γd(0), γ̄d], then

there exists some finite time td ≥ 0 following which desalination is desirable

and the optimal desalination policy is characterized by td and the singular

trajectory Ka
d (t), t ≥ td. The steady state is attained only after the technical

change process γd(t) has reached its upper bound γ̄d (which may happens

asymptotically), but the singular policy is easily characterized and includes

the optimal desalination policy Ka
d (t).

5.2 Growing water demand

We consider an economy that grows at the rate g < ρ. Suppose that

initially all water demands are satisfied from natural sources. However, the

supply of natural water cannot grow indefinitely as it is limited by the natural

recharge (derived from precipitation) and the finite natural water stock Q. As

time goes by, the economy grows and the supply of water must increase to

meet the growing demand. Improved water management, including recycling,

may suffice to meet the growing water needs for a while, but eventually these

possibilities are exhausted or become more expensive than desalination and

the latter is the only source that, for all practical purposes, can be considered

unlimited. We extend the above model to accommodate this situation.

To focus on growth effects, we consider the situation where natural water

sources have been fully exploited, i.e., the natural water stock has reached its
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lower bound Q = 0,8 the supply of natural water is

qn◦(t) = R(0) (5.3)

and the associated capital stock is

K̂n = R(0)/γn. (5.4)

The planning challenge, then, is to set the time profile of desalination and

recycling and allocate water to the different sectors.

Each sector grows at the same rate g, such that at time t it consists of

of N(t) = egt identical sub-sectors. Thus, allocating q◦j to each sub-sector

generates the surplus

egtBj(q◦j) = egt
∫ q◦j

0

Dj(s)ds, j = A,D, I, E, (5.5)

for sector j during year t, where Dj(·) is the (inverse) demand for water of

each sub-sector (or the inverse demand of sector j at t = 0).

With q◦j(t) representing the water allocated to each of its egt sub-sectors,

the total water allocation to sector j during year t is egtq◦j(t). This must equal

the water supply to sector j from all sources. Let q̃ij(t) represent the water

supply from source i to sector j during year t, so that

qij(t) = e−gtq̃ij(t) (5.6)

is the water allocated to each of the egt sub-sectors of sector j during year t.

In view of (5.6), the identity egtq◦j ≡ q̃◦j(t) =
∑

i=n,r,d q̃ij(t) implies

q◦j =
∑

i=n,r,d

qij(t), j = A,D, I, E. (5.7)

8The zero lower bound is a normalization that represents the water stock below which
natural water cannot or should not (e.g., the stock at which the pumping cost exceeds the
cost of desalination) be exploited. Notice that, because R(Q) is non-increasing, R(0) is the
maximal sustainable supply of natural water.
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In addition, total water allocated from source i = r, d, satisfies

q̃i◦(t) =
∑

j=A,D,I,E

q̃ij(t), i = r, d,

or, using (5.6),

qi◦(t) =
∑

j=A,D,I,E

qij(t), i = r, d, (5.8)

and total natural water supply in year t is

qn◦(t) =
∑

j=A,D,I,E

qnj(t) = R(0). (5.9)

The supply of recycled water is restricted according to

q̃r◦(t) ≤ β
(
egtq◦D(t) + egtq◦I(t)

)
,

which, invoking (5.6) again, reproduces (2.5).

qr◦(t) ≤ β (q◦D(t) + q◦I(t)) . (5.10)

Let K̃i(t) and x̃i(t) denote, respectively, source i’s capital stock and invest-

ment rate, satisfying (as in (2.8))

˙̃Ki(t) = x̃i(t)− δiK̃i(t), i = s, r, d. (5.11)

Let

Ki(t) = e−gtK̃i(t) and xi(t) = e−gtK̃i(t), (5.12)

so, in view of (5.11),

K̇i(t) = xi(t)− (δi + g)Ki(t), i = s, r, d, (5.13)

and the capacity constraints (2.7) remain intact.
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The optimal policy maximizes

∫
∞

0

[
∑

j=A,D,I,E

egtBj(q◦j(t))−
∑

i=s,r,d

Ci(e
gtqi◦(t))−

∑

i=s,r,d

egtxi(t)

]

e−ρtdt =

∫
∞

0

[
∑

j=A,D,I,E

Bj(q◦j(t))−
∑

i=s,r,d

e−gtCi(e
gtqi◦(t))−

∑

i=s,r,d

xi(t)

]

e−(ρ−g)tdt

(5.14)

subject to (5.13) and feasibility constraints, given Ks(0), Kr(0) and Kd(0),

where the costs of natural water supply, Cn(qn◦(t)) = Cn(R(0)), and the in-

vestment in natural capital, xn(t) = K̂n/δn = (R(0)/γn)/δn, are given, hence

ignored.

The current-value Hamiltonian is

H(t) =
∑

j=A,D,I,E

Bj(q◦j(t))−
∑

i=s,r,d

e−gtCi(e
gtqi◦(t))−

∑

i=s,r,d

xi(t)+

∑

i=s,r,d

λi(t)[xi(t)− (δi + g)Ki(t)] (5.15)

and the Lagrangian, which accounts for the feasibility constraints (2.7), (5.9)

and (5.10), is

L(t) = H(t) +
∑

i=s,r,d

µi(t)[γiKi(t)− qi◦(t)]+

ξ(t)[β(q◦D(t) + q◦I(t))− qr◦(t)] + θ(t)(R(0)− qn◦(t)). (5.16)

The necessary conditions for optimal allocation of desalinated and recycled

water are identical to conditions (3.5) and (3.4) of the stationary economy; the

necessary conditions for optimal investments are identical to conditions (3.6)

of the stationary economy; condition (3.7a) remain the same (noting that

g cancel out) and so are the complementary slackness conditions (3.8a) and

(3.8b).
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We thus conclude that the optimal investment policy is to bring Ki(t) =

e−gtK̃i(t) to its (above determined) stationary-economy steady state K̂i, i =

s, r, d, as rapidly as possible and maintain the steady state thereafter. The

water economy, thus, approaches as rapidly as possible the steady-state growth

path ˆ̃Ki(t) = egtK̂i, i = s, r, d, with desalination driving the growth in water

supply.

6 Concluding comments

Water economies are complex constructs, each with its own physical and

social environments. Yet, they all share common features and their manage-

ment therefore is based on common principles. This work elucidates these

common principles in the context of a prototypical water economy containing

the features common to most water economies. A water policy consists of

water allocation from each source to each user sector at each point of time and

the investment in capital infrastructure needed to carry out these allocations.

We find that the optimal policy evolves along three stages: a transition stage,

where the water capital stocks are brought to their respective turnpikes as

rapidly as possible; a turnpike (singular) stage, where the water capital stocks

are kept along their turnpikes and move in tandem with the natural water

stock; and a steady-state stage. The turnpike (singular) trajectories depend

solely on the natural water stock. Depending on the functional forms underly-

ing the water economy, the steady state stage may be entered at a finite time

or asymptotically.

Implementing the optimal policy by means of pricing and quotas is dis-

cussed. The optimal water prices (the prices that implements the optimal
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policy) consist of three components: marginal cost, capital cost and scarcity

cost – all expressed in water price (e.g., dollar per cubic meter) units. As these

components vary across users and sources, so do the optimal water prices. The

scarcity prices are associate with natural water and recycled water. The for-

mer is obvious in regions where natural water sources are insufficient to meet

water demand. The latter follows from the constraint imposed on the supply of

recycled water due to its dependence on the water allocation to the residential

and industrial sectors.

Desalination is an unlimited but expensive source. Its use, therefore, is

justified only under severe water shortage. However, demographic and climatic

trends imply that the number of regions undergoing severe water shortage

increases with time. The model presented herein can be used to determine

when to begin desalinization activities and the extent of desalination over

time.

The model is extended to situations involving arbitrary number of sources

and user sectors, as well as to non-stationary economies with growing water

demands and improved desalination technology. It is found that the turnpike

property of the optimal policy persists in all cases. For growing economy,

the optimal policy is a most-rapid-approach to a balance growth path driven

by investment in desalination and recycling capital. The model can be used

to detect the time at which desalination should be initiated and the scale of

desalination activities thereafter.

The broad view undertaken in this work facilitates the presentation and

allows a sharp characterization of optimal policy rules, but inevitably leads

to simplifications and abstractions. A notable abstraction is the assumption

of deterministic water supplies and demands. In actual practice, natural wa-
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ter supplies often fluctuate randomly with precipitation and the latter affects

some (e.g., agricultural) water demands as well (see, e.g., Tsur 1990, Tsur

and Graham-Tomasi 1991, Provencher and Burt 1994, Knapp and Olson 1995,

Leizarowitz and Tsur 2012). This aspect can have profound effects on optimal

policies and should, when relevant, be incorporated in empirical applications.

Appendix

The appendix shows how to account for source-and-sector specific costs

and to include arbitrary number of sources and sectors.

A Source-and-sector specific cost

So far the supply costs (variable and fixed) are assumed to be specific to

the water source but not to the user sectors. Some costs may apply only

to water allocated from a specific source to a specific sector. A common

example is when natural water allocated to households must be treated to a

drinking quality, whereas natural water allocated to industrial users, irrigators

or environmental restoration can remain at its raw state. In this case, qnD

entails further treatment activities that require capital and variable costs.

Considering this example, let CnD(·) represent the variable cost associated

with the drinking-quality treatment of natural water and KnD represent the

(cost of) capital (infrastructure, equipment) needed to perform the treatment.

The capital constraint

qnD(t) ≤ γnDKnD(t) (A.1)

is added to constraints (2.7) and the investment rate xnD(t), driving the dy-

32



namics of KnD(t) according to

K̇nD(t) = xnD(t)− δnDKnD(t), (A.2)

is added to the investment decisions.

The term λnD(t)[xnD(t) − δnDKnD(t)] − xnD(t) is added to the Hamilto-

nian, defined in (3.1), where λnD(t) is the costate of KnD(t), and the term

µnD(t)[γnDKnD(t) − qnD(t)] is added to the Lagrangian, specified in (3.2),

where µnD(t) is the Lagrange multiplier of (A.1). Condition (3.3a) holds only

for j = I (natural water allocated to industrial use), and for j = D (natural

water allocated to households) the condition changes to

DD(q◦D(t)) ≤ C ′

n(Q(t), qn◦(t)) + µn(t) +C ′

s(qs◦)βs + µs(t)βs + θ(t)− ξ(t)β+

C ′

nD(qnD(t)) + µnD(t), (A.3)

equality holding if qnD(t) > 0, where C ′

nD(·) is the marginal cost of the treat-

ment activity. In addition,

xnD(t) =







0 if λnD(t) < 1

x̄nD if λnD(t) > 1

xa
nD(t) if λnD(t) = 1

. (A.4)

is added to (3.6) and

λ̇nD(t)− ρλnD(t) = λnD(t)δnD − µnD(t)γnD (A.5)

is added to (3.7a).

The analysis of subsection 3.1 can be repeated to show that all the singular

policy properties apply also to xa
nD(t), K

a
nD(t), q

a
nD(t) and µnD(t).

B Many sources and sectors

In actual practice there may be a number (say Nn) sources of natural water

(aquifers, lakes and stream flows in different locations with varying water qual-
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ity), a few (say Nr) recycling facilities (in different locations and producing

recycled water of different quality) and multiple (say Nd) desalination plants

(geographically dispersed). Likewise, there are MD > 1 domestic sectors (mu-

nicipalities), MI industrial users (that vary geographically and with respect to

the water quality they require), MA agricultural users and ME environmental

sites.

Let M =
∑

j=D,A,I,E Mj represent the total number of user sectors. The

natural water allocation is represented by qn(t) = {qnmj(t), m = 1, 2, . . . , Nn, j =

1, 2, . . . ,M}, where qnmj is the water allocated from natural source m to sector

j in year t. Similarly, qr(t) = {qrmj(t), m = 1, 2, . . . , Nr, j = 1, 2, . . . ,M} rep-

resents the recycled water allocation and qd(t) = {qdmj(t), m = 1, 2, . . .Nd, j =

1, 2, . . . ,M} represents the allocation of desalinated water. The annual allo-

cation from source type i to sector j is

qi
◦j(t) =

Ni∑

m=1

qimj(t), j = 1, 2, . . . ,M, i = n, r, d, (B.1)

and the annual water allocation to sector j is

q◦
◦j(t) =

∑

i=n,r,d

qi
◦j(t), j = 1, 2, . . . ,M. (B.2)

The supply of recycled water from any of the Nr facilities is restricted

by the sewage collected and treated in this facility. We assume that each

domestic user (a municipality, say) is served by only one recycling facility and

the same holds for industrial users.9 Consequently, let JD
m and JI

m be the

(index) sets of, respectively, domestic and industrial users served by recycling

facility m = 1, 2, . . . , Nr. Then, extending (2.4), the (annual) flow of recycled

9Economies of scale in recycling support the design of regional recycling plants, such that
each user is served by only one facility while each facility can serve multiple users.
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water produced by facility m is

qsm◦
(t) = β




∑

j∈JD
m

q◦
◦j(t) +

∑

j∈JI
m

q◦
◦j(t)



 , m = 1, 2, . . . , Nr. (B.3)

The supply of recycled water from facility m is thus restricted by

qrm◦
(t) ≤ qsm◦

(t), m = 1, 2, . . . , Nr. (B.4)

The Nn natural water stocks Qm(t), m = 1, 2, . . . , Nn, evolve in time ac-

cording to

Q̇m(t) = Rm(Qm(t))− qnm◦
(t), m = 1, 2, . . . , Nn, (B.5)

where Rm(·) is the recharge and

qnm◦
(t) =

M∑

j=1

qnmj(t), m = 1, 2, . . . , Nn (B.6)

is the (annual) water withdrawal associated with natural stock m.

The capital stocks Ki = (Ki
1, K

i
2, . . . , K

n
Ni
), i = n, s, r, d restrict water

allocation according to

qim◦
(t) ≤ γi

mK
i
m(t), i = n, s, r, d, m = 1, 2, . . . , Ni, (B.7)

and evolve in time according to

K̇i
m(t) = xi

m(t)− δimK
i
m(t), i = n, s, r, d, m = 1, 2, . . . , Ni. (B.8)

The annual benefit function (2.10) extends to

B(Q(t), q(t)) =
M∑

j=1

Bj(q
◦

◦j(t))−
Nn∑

m=1

Cn
m(Qm(t), q

n
m◦

(t))−
∑

i=s,r,d

Ni∑

m=1

C i
m(q

i
m◦

(t))

(B.9)

and the payoff (2.11) becomes

∫
∞

0

(

B(Q(t), q(t))−
∑

i=n,s,r,d

Ni∑

m=1

xi
m(t)

)

e−ρtdt. (B.10)
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The optimal policy consists of the feasible q(t) and x(t), t ≥ 0, that max-

imize (B.10) subject to (B.5) and (B.8), given the initial water and cap-

ital stocks, where feasibility entails (B.4), (B.7), q(t) ≥ 0, x(t) ∈ [0, x̄],

Qm(t) ≥ 0, m = 1, 2, . . . , Nn, and possibly other restrictions (e.g., no allo-

cation of recycled water to domestic sectors).

The Hamiltonian corresponding to this problem extends (3.1) to

H(t) = B(Q(t), q(t))−
∑

i=n,s,r,d

Ni∑

m=1

xi
m(t)+

∑

i=n,s,r,d

Ni∑

m=1

λi
m(t)[x

i
m(t)−δimK

i
m(t)]+

Nn∑

m=1

θm(t)[Rm(Qm(t))− qnm◦
(t)], (B.11)

where λi
m(t) is the costate of Ki

m(t), i = n, s, r, d, m = 1, 2, . . . , Ni, and θm(t)

is the costate of Qm(t), m = 1, 2, . . . , Nn. The Lagrangian extends (3.2) to

L(t) = H(t) +
∑

i=n,s,r,d

Ni∑

m=1

µi
m(t)[γ

i
mK

i
m(t)− qim◦

(t)]+

Nr∑

m=1

ξm(t) [q
s
m◦

(t)− qrm◦
(t)] +

Nn∑

m=1

ϑm(t)Qm(t) (B.12)

where µi
m, i = n, s, r, d, m = 1, 2, . . . , Ni, are the Lagrange multipliers of (B.7),

ξm(t), m = 1, 2, . . . , Nr, are the Lagrange multipliers of (B.4) and ϑm(t) are

the Lagrange multipliers of Qm(t) ≥ 0, m = 1, 2, . . . , Nn.

The optimality conditions extend (3.3)-(3.8) in a straightforward manner.

For example, the condition regarding water allocation from natural source m

to domestic sector j extends (3.3a) to

Dj(q
◦

◦j(t)) ≤ Cn ′

m (Qm(t), q
n
m◦

(t))+µn
m(t)+Cs ′

js (q
m
js◦)β+µs

js(t)β+θm(t)−ξjs(t)β,

(B.13)

equality holding if qnmj > 0, where js is the index of the sewage treatment

facility serving domestic sector j. The most-rapid-approach investment rule is
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now

xi
m(t) =







0 if λi
m(t) < 1

x̄i
m if λi

m(t) > 1

xia
m(t) if λi

m(t) = 1

, i = n, s, r, d, m = 1, 2, . . . , Ni, (B.14)

the costates dynamics extend to

λ̇i
m(t)−ρλi

m(t) = λi
m(t)δ

i
m−µi

m(t)γ
i
m, i = n, s, r, d, m = 1, 2, . . . , Ni, (B.15a)

θ̇m(t)−ρθm(t) = Cn
mQm

(Qm(t), q
n
m◦

(t))−θm(t)R
′

m(Qm(t))−ϑm(t), m = 1, 2, . . . , Nn

(B.15b)

and the complementary slackness conditions are

µi
m(t)[γ

i
mK

i
m(t)− qim◦

(t)] = 0, i = n, s, r, d, m = 1, 2, . . . , Ni, (B.16a)

ξm(t)[q
s
m◦

(t)− qrm◦
(t)] = 0, m = 1, 2, . . . , Nr, (B.16b)

ϑm(t)Qm(t) = 0, m = 1, 2, . . . , Nn. (B.16c)

Although more elaborate, the optimal policy is similar in structure to the

above simpler situation. In particular, the most-rapid-approach property is

retained and optimal Ki
m(t) processes approach as rapidly as possible their re-

spective singular pathes and proceed along them thereafter. Along the singular

trajectories, µia
m(t) = (ρ+ δim)/γ

i
m and Kia

m(t) = qaim◦
(t)/γi

m, i = n, s, r, d, m =

1, 2, . . . , Ni. Provided a steady state is eventually approached under the opti-

mal policy, the following conditions hold at a steady state:

q̂nm◦
= Rm(Q̂m), m = 1, 2, . . . , Nn, (B.17a)

θ̂m =
ϑ̂m − CmQ(Q̂m, Rm(Q̂m))

ρ− R′

m(Q̂m)
, m = 1, 2, . . . , Nn, (B.17b)

µ̂i
m = (ρ+ δim)/γ

i
m, i = n, s, r, d, m = 1, 2, . . . , Ni, (B.17c)
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K̂i
m(t) = q̂im◦

(t)/γi
m, i = n, s, r, d, m = 1, 2, . . . , Ni, (B.17d)

x̂i
m = δimK̂

i
m, i = n, s, r, d, m = 1, 2, . . . , Ni. (B.17e)

and (B.16b). As in the previous case, these conditions, together with the op-

timality conditions determining q̂imj , solve for the optimal steady state policy.
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