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Abstract

We study water management in the context of a prototypical water
economy. The optimal water policy is specified in terms of water allo-
cations from each source to each user sector at each point of time and
the investment in capital infrastructure needed to carry out these allo-
cations. We find that the optimal policy evolves along three stages: a
transition stage, where the water capital stocks are brought as rapidly
as possible to their respective turnpikes (singular paths); a singular
stage, where the water capital stocks evolve along their turnpikes while
the natural water stock advances toward a steady state; and a steady-
state stage. Optimal regulation by means of water pricing and quotas
are discussed. Extensions to non-stationary situations involving grow-
ing water scarcity (due to population and climate change trends) and
improved desalination technology are considered.
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1 Introduction

We study the salient features of water management in the context of a
prototypical water economy, consisting of the main sectors of water users and
water sources. The user sectors are domestic, agriculture, industry and en-
vironment; the water sources are natural, recycling and desalination. The
sectors and sources are elaborately entwined via physical (equipment, infras-
tructure) and social (institutions, norms, laws) capital, and the term water
economy refers to the whole setup.

Water economies vary with respect to their hydrology and climate (water
sources, precipitation, evapotranspiration) as well as social situation (demog-
raphy, water rights and laws, institutions), and these features affect the range
of feasible policies (see the diversed examples in Saleth and Dinar 2004, Tsur
et al. 2004). Without committing to a particular setting, we characterize the
optimal water policy in terms of the water allocation from the different sources
to the different suer sectors and the investments in the capital stocks needed
to carry out these allocations over time. We then discuss possible regulation
schemes to implement desirable policies.

The primary source of water is nature (rainfall, lakes, stream flows, aquifers).
In regions where the (sustainable) supply of natural water suffices to meet hu-
man and environmental needs, water is not a scarce resource and its manage-
ment may not be high on the priority list. Such regions become fewer over time
due to demographic and climatic trends. In many populated regions, water
scarcity has become critical (see Dinar and Tsur 2015), stressing the need for
proper management. There are two basic approaches for water management:

demand management and supply management. The former seeks to do more



with a given supply of water; the latter seeks to increase the water supply.

Two sources of produced water can be added to natural sources: recycling
and desalination. Recycled water is the outcome of collecting and treating
domestic and industrial sewage. As such, its supply is determined by the al-
location of water to these sectors. Sewage treatment is required primarily due
to health and environmental considerations, disregarding whether the treated
water is reused later on. The level of treatment (secondary, tertiary) deter-
mines the range of feasible uses of the recycled water. These considerations
bear important implications for the allocation of water in general as well as
for the level of treatment and who should pay for the different stages of the
recycling process. The model developed herein addresses these considerations.

Desalinization is, for all practical purposes, an unlimited source of water,
hence can be considered as a backstop technology. However, at the current
state of technology, it is an expensive source. This raises the issues of when
to begin desalination (if at all) and the extent of desalination over time. The
framework developed herein addresses these concerns.

We build on the framework of Tsur (2009) and extend it in a number of
ways. While Tsur (2009) simplified the dynamic policy aspects by considering
steady states, the water policy characterized herein is fully intertemporal, cov-
ering both the water allocation from each source to each user sector at each
point of time and the investment in capital stocks (equipments, infrastruc-
ture) needed to carry out these allocations. We show that the optimal water
policy possesses a turnpike property, in that each of the water capital stocks
is brought as rapidly as possible to its respective turnpike and is kept along
this path thereafter. The turnpikes (also called singularly trajectories) depend

on the natural water stock and are shown to converge to a steady state. The



optimal water policy, thus, is shown to evolve along three stages: a transition
stage, where the water infrastructure is built as rapidly as possible; a turnpike
stage, where the water infrastructure evolves along well-specified turnpikes;
and a steady-state stage.

We extend the canonical (stationary) model to account for growing (non-
stationary) water demands and allow for (exogenous) technical change in de-
salination technology. We also show (in the appendix) how the model can be
extended to accommodate arbitrary number of user sectors and water sources,
thereby allowing to refine the the water economy as needed.

The next section specifies the stylized water economy and defines water
policies. The optimal policy is derived in Section 3. Section 4 discusses regu-
lation policies that implement the optimal policy. Extensions to non-stationary
situations are presented in Section 5 and section 6 concludes. The appendix
presents extensions to more general cost structures and to arbitrary number

of sources and sectors.

2 A stylized water economy

The stationary water economy specified in Tsur (2009) provides a conve-
nient starting point. On the whole, water can be derived from three main
sources and is allocated to four main user sectors. The sources are nature
(rainfall, aquifers, lakes, reservoirs, stream flows), indexed n, recycling facili-
ties, indexed r, and desalination plants, indexed d. The user sectors include
domestic, indexed D, agriculture (irrigation), indexed A, industry, indexed I,
and environment (instream, river restoration), indexed E (the case of many

water sources and user sectors is outlined in appendix B).



Let ¢;;(t) denote the supply of water from source i = n,r,d, to sector
j=A,D,I FE, in year t. The annual water supply from source 7 is
Qio(t) = Z qu(t), Z =N, d, T, (21&)
j=A,D,I.E
and the annual allocation to sector j is

Goi(t) = > a;(t), j =D, A LE. (2.1b)

i=n,r,d
2.1 Water sources

We discuss each of the water sources in turn.

Natural sources: Natural water is derived from limited (finite) water stocks,
such as aquifers, lakes and stream flows. Accordingly, let Q(t) represent the

stock of natural water at time (year) t, which evolves in time according to

Q(t> = R(Q(t>> - Qno(t)v (22>

where R(-) is a recharge function. The recharge function is defined over [0, Q]
and assumed decreasing and concave. The upper bound Q satisfies R(Q) = R,

where R > 0 can be interpreted as average precipitation. The zero lower

bound,
Qt) >0, (2.3)

1

is a normalization.” The allocation of natural water requires equipment and

infrastructure capital (pumps, pipelines, filters), denoted K, (t).

f irrigation and environmental water contribute to the recharge of underlying aquifers,
the recharge function takes the form R(Q, ¢oa,gor), where R decreases in @ and increases
in both ¢,4 and ¢og. In the interest of simplicity, the latter effects are ignored.



Recycling: Recycled water is the outcome of collecting and treating resi-

dential and industrial sewage. The annual flow of treated sewage equals

Gso(t) = B(qon(t) + qor (1)), (2.4)

where 3 < 1 accounts for water loss during sewage collection and treatment.?
The capital needed to collect and treat residential and industrial sewage is
denoted K,(t).

The treated sewage, ¢so(t), can be disposed of or reused, where the latter

constitutes the supply of recycled water ¢,.(t). Thus,

QTo(t) < QSO(t)- (25)

Dumping the treated sewage is assumed costless, but reusing it requires capital
(pipelines, pumps) to convey the treated water from the recycling plants to
potential users. This recycled capital is denoted K,.(t).

The distinction between ¢, (t) and ¢,.(t), and the associated capital stocks
K,(t) and K,.(t), is needed because sewage collection and treatment, on the
one hand, and allocating the treated water to potential users, on the other
hand, are two separate activities. The former is (often) required by health
and environmental regulation, disregarding whether the treated water is reused
later on. Reusing the treated water, on the other hand, is a policy decision
that depends on the cost of conveying the recycled water from the treatment
facilities to potential users and on the demand for the recycled water. The
treatment level (secondary, tertiary) entails restrictions on potential uses of
the recycled water. For example, secondary-treated water may not be allowed

to irrigate certain crops and health regulations may prohibit the allocation of

2Under current technology and practice, 8 ~ 0.65 (see Tsur 2015).



any recycled water to households, i.e.,
QTD(t) =0. (26)

Desalination: The supply of desalinated water at time ¢ is restricted only by
the capacity of existing desalination plants, i.e., by the available desalination

capital, denoted Ky(t).

2.2 Supply cost

The cost of water supply includes variable and fixed costs. The former
entails costs of variable inputs, such as labor, energy and material; the latter
includes mainly the cost of capital. Both of these components vary spatially
and temporally (see examples in Renzetti 1999, Harou et al. 2009, Allen et al.
2014). We discuss below the role of these cost components in the present

framework.

Capital (fixed) cost: Source i’s annual supply at time ¢, g;o(t), is restricted

by source i’s capital stock, K;(t), according to
qio(t) S WZKZ(t% 1= n,s,r, d7 (27)

where ~; is capital utilization parameter (the K;’s are defined above). The

capital stocks evolve in time according to
Kz(t) = l’z(t) — (SZKZ(t), 1= n,s,n, d, (28)

where x;(t) represents investment and J; is a depreciation rate. We assume
that 0 < z;(t) < Z;, where Z; is a finite upper bound on investment in K.
The capital cost of water supply from source 7 comes from the investments

x;(t) and the (shadow cost of the) supply restrictions (2.7).
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Variable costs: The variable costs associated with the supply of ¢ (t) is
represented by the function Cy(g;), ¢ = n, s, r,d, assumed increasing and con-
vex.> These variable cost functions account for the costs of variable inputs

such as temporary labor, energy and material.

2.3 Annual allocation

An annual water allocation is represented by
q(t) ={q;t), i=n,d,r, j=D,A I E}.

An allocation is feasible if it satisfies (2.5), (2.7), ¢(¢) > 0 and possibly other
restrictions such as (2.6). The sectoral allocations and supplies from each

source associated with ¢(t) are specified in (2.1).

2.4 Sectoral demands and surpluses

The annual (inverse) demand for water of sector j is denoted D;(-), j =
D, A, I, E. This curve measures the quantity of water demanded at any water
price and can be interpreted as the price sector j’s users are willing to pay for
the last unit of water.?

The annual gross surplus of sector j generated by ¢,; (not including the

cost of water supply) is the area underneath the demand curve to the left of

3C,(+) may also depend on the natural water stock @, in which case it is non-increasing
in () as pumping and extraction costs usually decrease with Q.

4There is a large literature on sectoral water demands. Examples of agricultural water
demand include Just et al. (1983), Moore et al. (1994), Howitt (1995), Mundlak (2001),
Tsur et al. (2004), Schoengold et al. (2006), Scheierling et al. (2006); examples of urban and
industrial demands include Baumann et al. (1997), Renzetti (2002, 2015), Worthington and
Hoffmann (2006), Olmstead et al. (2007), House-Peters and Chang (2011), Baerenklau et al.
(2014), Smith and Zhao (2015); examples of environmental water demand include Dudley
and Scott (1997), Loomis et al. (2000), Pimentel et al. (2004), Thiene and Tsur (2013),
Koundouri and Davila (2015).



Qoj-
qoj
Bj(qoj) = / Dj(U)dU, j = D, A, ], E (29)
0

2.5 Annual Benefit
The annual benefit generated by an allocation ¢(t), not including the cost
of capital, is the total surplus minus the cost of supply:

BQ1),q(t) = Y B4 (1) =Cul Q) gno(t)) = Y Cilaw(t)). (2.10)

j=A,D,I.E i=s,r,d
2.6 Water policy and welfare

A water policy consists of ¢(t) = {¢;;(t), i = n,r,d, j = A, D,I,E} and
x(t) = {xi(t), i = n,s,r,d}, t > 0, where x(t) determines K(t) = {K;(t), i =
n,s,r,d} via (2.8) and guo(t) = >, qn;(t) determines Q(f) via (2.2). A water
policy generates the payoff (welfare)

/ <B(Q(t),Q(t)) - > xﬁ)) e *dt, (2.11)
0 i=n,s,r,d

where p is the time rate of discount.

2.7 Summary

The figure below provides a graphical overview of the water economy de-
scribed above. Note in particular the links leading to the supply of recycled
water: from domestic and industrial allocation to sewage treatment plants
and from there to recycled water users or to natural outlets (assuming cost-
less dumping of treated sewage). The first link is mandatory and requires the
capital K to provide the treated sewage ¢s,. The second link — supplying

the recycled water ¢,, to potential users — is subject to policy decisions and



requires the capital K,.. The unused (residual) treated sewage is dumped to

outlets such as rivers, aquifers or directly to a nearby sea.
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Figure 1: A graphical view of the water economy.

The quality of the treated sewage (secondary, tertiary), hence also the
sewage capital K, is determined exogenously by health and environmental

The capital cost associated with any improvement beyond this

standards.
required quality level, requested by potential users, is attributed to the recycled

capital K, which includes also the equipment and infrastructure needed to

convey the treated water to potential users.
Notice also that the links between natural sources and agricultural and

environmental sectors have arrows on both ends. The backward arrows rep-

resent return flow of irrigated water and the recharge role of environmental

water (see footnote 1).



3 Optimal policy

The optimal policy is the feasible policy that maximizes (2.11) subject
to (2.2) and (2.8) given K(0) and Q(0), where feasibility entails conditions
(2.3), (2.5), (2.7), q(t) > 0, z;(t) € [0,Z;], 7 = n,s,r,d and other feasibility
restrictions, e.g., (2.6), when imposed.

The current-value Hamiltonian corresponding to this problem is

H(t) = BQ(1),q(t) = Y alt)+ > N(®)wi(t) — 6:Ki(1)]+

i=n,s,r,d i=n,s,r,d
0(1)[R(Q(t)) — ano(t)], (3.1)
where X;(t), ¢ = n,s,r,d, and 0(t) are the costates of K;(t),i = n,s,r d,
and Q(t), respectively. The corresponding Lagrangian, which accounts for the

feasibility constraints (2.3), (2.5) and (2.7), is

L)=Ht)+ Y wu®)Ea(t) = ao(t)]+

i=n,s,r,d

§(1)[8(gon(t) + qor(t)) — gro ()] + V(1) Q(2), (3.2)

where 9(t), £(t) and p;(t), i = n,s,r,d, are the lagrange multipliers of (2.3),
(2.5) and (2.7), respectively.

Necessary conditions for an optimal allocation include (see, e.g., Leonard
and Long 1992):

(a) Natural water allocation to domestic and industrial sectors (¢,p, ¢nr):

Dj(goj (1)) < ColQ(), Gno(t)) + 11 (8) + O (g50) B+ s (1) B+0(t) —£(8) B, (3.3a)
equality holding if ¢,; > 0, j = D, I, where C; = 0C;/0g;o.
(b) Natural water allocation to agriculture and environmental sectors (g,a, ¢ug):
Dj(qoj(t)) < Co(Q(t), Gno(t)) + pn(t) +6(2), (3.3b)

10



equality holding if ¢,; >0, 7 = A, E.

(¢) Recycled water allocation to households and industrial sectors (¢,p, ¢rr):

Di(gor(t)) < Cllaro(t)) + pr(t) + Ci(gs0) B+ ps(t) B+ E(1)(1 = B),  (3.4a)

equality holding if ¢,;(t) > 0, j = D, I. If (2.6) is imposed, then (3.4a) applies
only for j = 1.

(d) Recycled water allocation to agriculture and environmental sectors (¢, 4, ¢.g):

Dj(g05(t)) < Cllaro(t)) + pr(t) +£(2), (3.4b)

equality holding if ¢.;(¢t) >0, j = A, E.

(e) Desalinated water allocation to domestic and industrial sectors (qap, qar):

Dj(q0j(t)) < Clao(t)) + palt) + Ci(gso(t)) B + ps(t)B — £(1)B,  (3.5a)

equality holding if g4 (t) > 0, j = D, I.

(f) Desalinated water allocation to agriculture and environmental uses (¢qa, qip):

D;(4o5(t)) < Cilgas(t)) + pa(t), (3.5b)

equality holding if ¢4 (t) >0, j = A, E.

(¢9) Investment in water capital stocks:

.Z’Z(t) =4 if )\z(t) > 1 y 1= n,s,nn, d. (36)
xq(t) if )\z(t) =1

(2

(h) Costate dynamics:

0(t) — pO(t) = —0L/IQ = Cog(Q1), guo(t)) — O(t)R'(Q(1)) — 9(t), (3.7h)

11



where C,g = 0C,,/0Q and R'(Q) = 0R/IQ).

(i) Complementary slackness:

i) [Vili(t) = qio(8)] = 0, 4 =, 5,7, d, (3.8a)
£()[gso(t) — aro(t)] = 0, (3.8b)
I(H)Q(t) = 0. (3.8¢)
(j) Transversality:
lim H(t)e " = 0. (3.9)

Conditions (3.3)-(3.5) are essentially demand-equals-supply, with demand
and supply on the left and right sides, respectively. Note that the C/ represent
marginal costs, the y;(t) represent capital costs, and (t) and £(¢) are natural
and recycled water scarcity costs, all expressed water price units (e.g., $/m?).

The optimal investment rule (3.6) implies a most-rapid-approach to a sin-

gular policy, explained next.
3.1 Singular policy

In condition (3.6), x%(t) is the singular investment policy and we use the
superscript “a” to signify processes under the singular policy. In particular,
K{(t) is the K, trajectory that solves (2.8) under the singular investment
policy and is referred to as the singular trajectory (or turnpike). Along the

singular policy, \;(t) = 1 and (3.7a) gives
:U“;,l(t) = (p + 52)/’}/7» i=mn,s, Ty d. (310)
The complementary slackness conditions (3.8a), then, imply

g (t) = v KEt), i =n,s,r,d. (3.11)

12



Conditions (3.10) and (3.11) give

:u?(t) = (p + 52)Kza(t)/qgo(t)> 1= n,s,r, d.

As (p+ ;) K; represents the annual cost of K;,° the u?’s are the cost of capital
per unit water or the capital component of the water price.

It turns out that the singular trajectories K®(t),i = n,s,r, d, serve as
turnpikes to which the optimal K;(¢) processes approach as rapidly as possible,

as stated in:

Property 1. The optimal K;(t) trajectory approaches as rapidly as possible

the singular path K&(t) and proceeds along it thereafter, i = n,s,r,d.

Proof. Consider first i = n (natural water) and suppose that g,.(t) > 0 under
the optimal policy. To show that x,(t) = 0 when K, (t) > KZ(t), suppose
otherwise — that A,(t) > 1 and z,(t) = Z,. In view of (3.8a) and (3.10), the
optimal ¢%.(t) = v, K2%(t) < 7,K,(t) is feasible, hence (using (3.8a) again)
tn(t) = 0. Condition (3.7a), then, implies that A, (t) grows at the rate p + d,,
50 An(t) > 1 for all ¢ > 0, which in turn implies that A, (¢) continuous to grow
at the rate p + 0,, indefinitely, violating the transversality condition (3.9). To
see this, note that when z,,(t) = z,,, (2.8) implies that z,,—d,, K, (t) behaves like
et Thus, \,(t)(Z, — 0,K,(t)) behaves like e, so e\, (t)(Z, — 6, K, (1))
does not vanish asymptotically, violating (3.9). We conclude that K, (t) >
K2(t) implies A\,(¢) < 1 and, by virtue of (3.6), x,(t) = 0.

To show that K,(t) < K%(t) implies A\,(t) > 1 and z,(t) = &,, suppose
otherwise — that A,(t) < 1 and z,,(t) = 0. Then, condition (3.7a) gives

An(t) = Da(t) = 1(p + 62) = [ (t) = ()] 7

5The capital K; could have yielded the interest pK; if deposited in the bank and in
addition inflicts the cost §;K; due to depreciation. The annual cost of K; is therefore
(p+6:)K;.

13



Now, K, (t) < K2(t) implies ¢no(t) < 7 Kn(t) < v K24(t) = ¢%.(t). Thus,
conditions (3.3) imply (noting that D; decreases in ¢o; and C, is non-decreasing
in gno) that u,(t) > u(t). It follows from the above equation that if A, (¢) <1
then \,(t) always decreases and remains below one forever, which in turn
implies that x,,(t) = 0 for all ¢ > 0 and that K, (t) — 0, violating the ¢,.(t) > 0
condition. We conclude that z,(t) = Z, whenever K, (t) < K2(t). The same

arguments can be used to verify the property for i = s, 7, d. O

Property 1 is useful because it allows focusing attention on the singular
policy, along which u¢(t) = (p+9;)/~v: and the corresponding water allocation
processes ¢f;(t) depend solely on the natural water stock process Q(t) (or its

scarcity price 6(t)) via conditions (3.3)-(3.5). Now, rewriting (3.11) as
K (t) = qiu(t) /i, i = n, 5,74, (3.12)

reveals that the turnpikes K?(t) also depend on the Q(t) process. More-
over, noting (2.8), the singular investment processes satisfy z2(t) = K&(t) +
0, K&(t), i = n,s,r,d, hence are also determined by the Q(t) process. We

conclude that:

Property 2. Along the singular trajectories, the water allocation processes
{a5(t), i = n,r,d, j = A, D, I, E}, the capital processes K{(t) and the corre-
sponding investment processes x%(t), i = n, s,r,d, depend solely on the natural

water stock process Q(t).

The property states that, along the singular trajectories, ¢%(t), K%(t) and
x%(t) are not independent states and controls, but rather depend on the natural
water stock process Q(t). It thus follows that, after the transition to the

singular trajectory, the optimal policy is driven by a single state, namely the

14



natural water stock Q(t). We can thus apply results of Tsur and Zemel (2014)

to conclude that:

Property 3. Under the optimal policy, the Q(t) and K;(t), i = n,s,r,d, pro-

cesses approach a steady state.

We denote steady states by a “hat” over a variable and assume that the

steady state is feasible, i.e., Q € (0,Q) and K; € (0,7,;/5;), i = n, s, r,d.
3.2 Steady state

In a steady state, K (t) and Q(t), hence also ¢(t) and x(t), remain constant.
Noting (2.2) and (2.8),

Gno = R(Q) (3.13)

and

[i’i :52KZ, i:n, S,’f’,d. (314)
From (3.7b) and (3.13) we obtain

i V= Cno(@ R(Q) | (3.15)

p— R(Q)

where C,,g = 0C,,/0Q and ¥ is the shadow price of the Q(f) > 0 constraint.

From J > 0, Chg < 0 and R'(Q) <0, it follows that 6 > 0, equality holding
when C,,o = 0 and Q > 0 (the latter condition implies, noting (3.8¢), ¥ = 0).
As the steady state is attained under the singular policy, all the singular-

policy properties discussed above remain valid. In particular
ﬂi: (p+5l)/%, i:n,s,r,d, (316)

and

Ki = Gio/Vi, © = n, 8,7,d. (3.17)

15



The optimal steady state policy (¢, ) and the associated natural water

and capital stocks @ and K are characterized in:

Property 4. The steady state water allocations g;;, t = n,r,d, j = A, D, I, E,
are solved from equations (3.3)-(3.5) with fi; = (p + &) /v, i = n,s,r,d, and
Q, 0,V and & are solved using (3.13), (3.15), (3.8¢) and (3.8b). The Gio, i =
n, s, r,d, are then calculated from (2.1) and (2.4), and K;, &, i=mn,s,rd, are

obtained from (3.17) and (3.14).

3.3 Summary of the optimal policy

The optimal policy proceeds along three stages: most-rapid-approach tran-
sition to the singular trajectories (turnpikes); evolution along the singular
trajectories; and steady state. During the transition period, investment in
water capital is maximal or minimal as K;(t) lies below or above its turnpike,
respectively, and the length of this period is inversely related to the invest-
ments upper bounds Z;, i = n,s,r,d. The transition period ends when all
capital stocks reach their singular trajectories. The singular trajectories (or
turnpikes) depend solely on the natural water stock and the latter eventually
enters a steady state, at which time the entire system enters a steady state

(the third and final stage).

4 Regulation

Regulation entails implementing a policy and optimal regulation is con-
cerned with implementing the optimal policy. In the present context a policy
consists of water allocation ¢(¢) and investment in water infrastructure x(t),
and both components need to be regulated. We refer to the former as ¢-

regulation and to the latter as x-regulation.
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The above analysis provides straightforward rules for regulating investment
in water infrastructure (z-regulation), namely, a most-rapid-approach to the
singular capital trajectories K?(t), i = n,s,r,d. This requires solving for the
singular capital trajectories, which, noting (3.12) and (3.17), depend on the
singular water allocations. Due to their high capital intensity and because
they serve many suppliers and users, ownership of water supply systems is
often centralized (locally, regionally or state-wide) and this feature facilitates
the regulation task. The remainder of this section considers the regulation of
water allocation (g-regulation).

Regulation tools vary from case to case based on social, cultural, institu-
tional, legal, political as well as (in the case of water) climatic and hydrological
conditions, but rely in one way or another on quotas (quantities) and prices. In
the present context quota regulation entails setting the water allocation g;;(t),
or bounds thereof, directly while price regulation consists of setting water
prices and letting suppliers and users choose the water allocation. In between
lies a range of regulation schemes that combine quotas and pricing (see Dinar
2000, Tsur et al. 2004, Tsur 2009, Booker et al. 2012, and works they cite).
The above framework lends itself directly to such regulation schemes.

To simplify the exposition, it is convenient to consider the following linear

water economy:

Di(qoj) = djo — djqo;, djo,d; >0, j =D, A I E; (4.1a)
Ci(¢io) = Cio + CiGio, Cio,¢; > 0,1 = s,7,d; (4.1b)
Co(Q, Gno) = [cno — cnQ] Gno, Cno >0, ¢, > 0; (4.1c)
R(Q) = 1o — 72Q, TosTn > 0. (4.1d)
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Under these specifications (3.15) specializes to

6 — [1§+cn(rn0 O J(p+ ), (4.2)

where ¥ > 0, equality holding if Q > 0 (cf. (3.8¢)).

It is convenient to consider the case where the natural water stock is at
its steady state . In this case, Properties 1 and 3 imply that the optimal
policy is to bring the capital stock K; to its steady state value K; as rapidly as
possible and maintain the steady state thereafter. Except for a short transition
period, the optimal policy is the steady state policy characterized in Property

4. We discuss regulation schemes that use prices and quotas.
4.1 Optimal pricing

A pricing policy involves setting p = {p;;, ¢ = n,r,d, j = A, D,I, E},
where p;; represents the price users in sector j pay for water supplied from
source ¢. Under prices p, users consume water up to the point where their
demand (i.e., their willingness to pay for the last water unit) just equals the
water price. Let ¢;;(p) denote sector j’s demand for source i’s water at prices

p. Then, ¢;;(p) satisfies
Dj(QOj(p))Spijai:nurvd7j:A7D7]7E7 (43)

equality holding if g;;(p) > 0, where ¢.;(p) = >, ,4%i(P), J = A, D, I, E,

Gio(P) = D= ra@ij(P), i = 0,7, d and ¢so(p) = B(gon(p)+4o1(p)) are as defined

N

in (2.1) and (2.4). A feasible p satisfies ¢,.(p) < R(Q) and ¢.(p) < ¢so(p).
Following (3.12), let

Ki(p) = Gio(p) /i, i =1, 8,7, 4, (4.4)
and define the following policy:
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Definition 1 (p-policy). Water is priced according to p and investments follow

a most-rapid-approach to K;(p), i = n,s,r,d.

Define the following water prices:

An': Cp, + +5n n+ Cs + +65 s+
Pnj (p+0n)/v & Blp+d5)/v
marg cost n cap cost Kn, mar cost s cap cost K
b+ (=€8) . j=D.I; (450)

nat scarcity rec scarcity

i = G (ot mt b . i=AE; 4.5b
Pnj ot o)/m+ O ] (4.5b)
mar cost cap cost K, nat scarcity

Pri = S +(p+06:) /v + ﬁg/ +B(p+0s)/vs+E(1 = B);  (4.5¢)

mar cost r cap cost K, mar cost s cap cost K rec scarcity

b= & +(p+6,) /7 + gc’s, +B(p+05)/vs+EQL—B);  (4.5d)

mar cost 7 cap cost K, mar cost s cap cost K rec scarcity
Prj = Cr + (p + 57“)/77“ + 5 y ) = A> E; (456)
~~~ —— ~~
mar cost r cap cost K rec scarcity

P = Cd, + (p+da)/va+ ﬁ; +B(p+6:) /7l + (—8) ,j=D.I;

mar cost d cap cost Ky mar cost s cap cost K rec scarcity
(4.50)
and
b= _cd, +(p+da)/va, ] =AFE. (4.5g)
mar cost cap cost Ky

Under (4.1), the p;; defined in (4.5) are the right-hand sides of the corre-
sponding optimality conditions (3.3)-(3.5), evaluated at a steady state. Calcu-
lating these prices requires the scarcity prices 0 and é of natural and recycled
water, respectively. The former, 6, is specified in (4.2), where D=0ifQ >0
and ¥ > 0 otherwise (cf. (3.8c)). When Q = 0, ¥ is set in order to satisfy
(3.13).
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The scarcity price of recycled water satisfies, noting (3.8b),

~

€[dso — Gro] = 0. (4.6)
Thus, € = 0 if the demand for recycled water (Gro) does not exceed the supply
(gso) and é > 0 otherwise. In the latter case, f is set so as to equate demand
and supply of recycled water. Notice that é acts as a subsidy on natural water
allocated to households and industrial users and as a tax on recycled water
allocated to agricultural and environmental purposes. Thus, for example, it
encourages reallocation of natural water from agricultural and environmental
users to domestic and industrial users. The reason is that the water allocated
to domestic and industria users can be reused, thereby increasing the overall
supply of water.

We now verify that, given Q = Q and (4.1),
Property 5. The p-policy (i.e., the p-policy with p = p) is optimal.

Proof. Under (4.1), the p;; defined in (4.5) are the right-hand sides of the
corresponding optimality conditions (3.3)-(3.5). When the price of ¢;; is p;j,
sector j users will demand water from source ¢ such that D;(q.;) = pi; (if
D;(0) < p;; they will demand zero). Clearly, the optimal steady state alloca-
tions ¢;;,@ =n,r,d, j = A, D, I, E, satisfy these conditions. Moreover, under
decreasing water demands, the ¢;;’s are the only allocations that satisfy these
conditions. It follows that ¢;;(p) = ¢ij, ¢ = n,7,d, j = A, D, I, E, and (4.4)
implies K;(p) = K;, i =n,s,r,d. Thus, the investment policy associated with

the p-policy is a most rapid approach to K;. O

The p;; prices bear important properties regarding cost allocation and cost
recovery. The marginal cost components, c,, ¢, ¢, and ¢4, are obvious. Con-

sider the capital cost component associated with K, (p+0,)/7», that appears
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in the prices of natural water allocations p,;, 7 = A, D, I, E. The water pro-

ceeds associated with this component are

(CjnD + Cjnl + CjnA + Can)(P + 5n)/7n - qAno(p + 5n)/’yn - f(n(p + 6n)a

where the right-most equality follows from (3.17). These proceeds exactly
cover the annual cost of K, (see footnote 5).

Consider now the price component 3(p+ Js)/7s associated with the cost of
K, (sewage collection and treatment capital), which appears in the prices of
the water allocations to domestic and industrial sectors. The water proceeds

associated with this component are

~

(Gop + Gor)B(p + 65) /s = dso(p + 65) /s = Ks(p + ds),

where the first equality uses (2.4) and the second uses (3.17). These proceeds
exactly cover the (annual) cost of sewage capital (p+ 8,) K. Because only the
domestic and industrial sectors generate sewage, which must be collected and
treated, these sectors are required to pay for these activities.

In a similar manner it can be shown that the water proceeds associated
with (p + d4)/va and (p + 6,)/7- cover the annual cost of the desalination
capital (p + 5d)f(d and recycling conveyance capital (p + 5T)Kr, respectively.
Note that desalination is often more capital intensive than recycling or natural
water supply, in which case v4 < 75, @ = n,7.5 When the depreciation rates
are the same (or similar), this implies (p + 64)/74 < (p + &)vi, @ = n, 7, so
the capital cost component of K, exceeds that of K, and K,. This implies

that prices of desalinated water allocated to the various sectors, which include

6Recall that ; K; is source i’s supply constraint. If desalination is more capital intensive
than the other two sources, it requires more capital to supply the same annual flow, hence
~a is smaller than both ~, and ~,.
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the (p + 04)/7a component, are higher than prices of water allocated from
natural or recycled sources. As a result, it is likely that D4(0) < pga and
Dg(0) < pag, in which case (4.3) implies Gga = Gar = 0, i.e., desalinated water
is too expensive for agricultural and environmental uses. If the same holds also
for the domestic and industrial sectors, i.e., Dp(0) < pap and D;(0) < par,
then desalination is not desirable.

The water proceeds generated by the marginal cost components cover, up
to a fixed amount, the variable costs of water supply, and we saw above that
the water proceeds generated by the capital cost components cover the capital
costs. The (net) water proceeds generated by the scarcity components 6 and é
have no counterpart costs to cover. These proceeds can be returned to water
users in an undistorted (e.g., lump sum) fashion. Alternatively, optimality
can be maintained without these scarcity components by introducing water

quotas.

4.2 Optimal quotas

Quota regulation entails imposing bounds on water supply from various
sources to various sectors. In an elaborate scheme, the quotas are the ¢;;, i =
n,r,d, j =A,D, I, FE, ie., the water allocation from each source to each sector.
In a less elaborate scenario, the regulator imposes the quota ¢;, on source @
suppliers, where the ¢;, are calculated from the §;; (i.e., Gio = Y i Gij). To
prevent undersupply the regulator can use lower bound quotas or impose fines
on supplies below the quota. The option to oversupply is usually avoided by
the available infrastructure, which does not allow supplying above the stated
quota.

A pure quota regulation raises the problem of how to pay for the cost (vari-
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able and capital) of water supply. Without water proceeds that are directly
related to water use, the cost of water supply must be covered from other

sources, such as tax revenues (local, state or national).

4.3 Combining prices and quotas

Quotas and prices can be combined in many ways; we discuss two examples.
In the first, the stock of natural water is required not to decline below Q (or
any other exogenously set stock). This can be accomplished in a pure pricing
scheme by adding the scarcity rent é, defined in (4.2), to the price of natural
water allocated to any sector. Alternatively, the restriction can be imposed as
a quota, i.e., ¢no = Zj ¢j < R(Q) In the latter case, the quota restriction
entails a shadow price which replaces the scarcity rent 6 and the latter should
not be included in the price of natural water.

The second example is concerned with the allocation of water for envi-
ronmental purposes. Unlike the domestic, agricultural and industrial sectors,
where individual users can be identified and required to pay for the water they
use, environmental water serves all (or many) households, i.e., is essentially
a public good. It is thus complicated to charge individual users for environ-
mental water. In such cases, the optimal allocation of environmental water
can be imposed as a (lower bound) quota: ). ¢z > Gop. To motivate sup-
pliers to allocate the right amount of environmental water, source i suppliers
can be required to supply ¢;g, for which they will be reimbursed according to
the cost of supply. The amount needed to reimburse suppliers can be raised

by appropriate taxes (the public good natura of environmental water justifies

such funding).
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5 Extensions

The above stylized water economy can be extended in a number of ways to
better resemble ubiquitous real-world situations. Extensions to situations with
more general cost structure and arbitrary number of sources and sectors are
presented in the appendix. Below we present two non-stationary extensions:
the first incorporates technical change in desalination technology; the second

accounts for growing water demands.

5.1 Technical change in desalination technology

Recall that a desalination capital worth (in monetary terms) K, can pro-
duce at most 74Ky cubic meter per year of desalinated water. Advances in de-
salination technologies can be represented by letting ~4(¢) increase over time,
reaching (perhaps only asymptotically) the upper bound 4,. Thus, as time
goes by, the same (monetary value of) desalination capital can produce larger
flows of desalinated water.” Initially ~4(0) is small and the ensuing capital
cost component of desalination (p + d4)/74(0) is large. If under the steady
state policy, conditions (3.5) hold as strict inequality, then no desalination is
initially desirable.

As time goes by, 74(t) increases and the capital cost component (p +
dq)/7a(t) decreases, eventually reaching the lowest cost of desalination cap-
ital (p + d4)/74- If under the steady state policy with the most advanced
desalination technology 7,4, conditions (3.5) still hold as strict inequalities,
then desalination will never be desirable. If some desalination is desirable un-

der 7,4 (i.e., in the steady state with 7,4 one or more of conditions (3.5) hold

"The declining cost of desalination in the last decade (see Tsur 2015) attests to such
technical change process. Tsur and Zemel (2000) analyzed technical change in desalination
technology induced by intentional R&D activities. This case is beyond the current scope.
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as equality), then there must exist some finite time ¢; > 0 following which
desalination becomes desirable. In the latter case, for ¢ > ¢4, the scale of

desalination increases over time, eventually approaching

Ka(¥a) = Gao(Va) /as
where G40 (74) is the steady state allocation of desalinated water under the most
advanced technology 74.

The optimal desalination trajectory is obtained by solving the optimal
policy with the time-dependent ~4(t) replacing the constant ;. The necessary
conditions (3.3)-(3.8) hold as specified above with ~,(¢) instead of 4. Thus, in
view of (3.6), the optimal capital stocks evolve along their most-rapid-approach
pathes with the singular trajectories K¢ corresponding to z¢(t), i = n,s,r,d.

Noting (3.6), A\;(t) = 1 along the singular policy and (3.7a) implies

i = (p+8)/vi i = n, s, (5.1a)

and

pa(t) = (p+da) /va(t). (5.1b)
The u¢, i = n,s,r,d, are the capital cost components in conditions (3.3)-
(3.5), according to which the allocations along the singular policy, ¢f;(t), are
determine and give rise to ¢f, (t) = >, qf;(t), i = n, s,r,d. The complementary

slackness conditions (3.8), then, imply

Ki(t) = qio(1)/7:(t), 1 = n, s, 7, d. (5.2)

Notice that the allocation of desalinated water (along the singular policy)
increases as time goes by because the capital cost component of desalinated
water, u%(t), decreases as the desalination technology is improved, i.e., v4(%)

increases.
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To summarize, if K 4 = 0 when 74 = 7,4, then it is not desirable to desalinate
even under the most advanced technology 74 and desalination should never be
performed. If, on the other hand, K; > 0 for some Ya € [7a(0),74], then
there exists some finite time t; > 0 following which desalination is desirable
and the optimal desalination policy is characterized by t; and the singular
trajectory K4(t), t > ts. The steady state is attained only after the technical
change process v4(t) has reached its upper bound 7, (which may happens
asymptotically), but the singular policy is easily characterized and includes

the optimal desalination policy K§(t).
5.2 Growing water demand

We consider an economy that grows at the rate ¢ < p. Suppose that
initially all water demands are satisfied from natural sources. However, the
supply of natural water cannot grow indefinitely as it is limited by the natural
recharge (derived from precipitation) and the finite natural water stock Q. As
time goes by, the economy grows and the supply of water must increase to
meet the growing demand. Improved water management, including recycling,
may suffice to meet the growing water needs for a while, but eventually these
possibilities are exhausted or become more expensive than desalination and
the latter is the only source that, for all practical purposes, can be considered
unlimited. We extend the above model to accommodate this situation.

To focus on growth effects, we consider the situation where natural water

sources have been fully exploited, i.e., the natural water stock has reached its
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lower bound @ = 0,® the supply of natural water is
Gno(t) = R(0) (5.3)

and the associated capital stock is

A

K, = R(0)/n. (5.4)

The planning challenge, then, is to set the time profile of desalination and
recycling and allocate water to the different sectors.

Each sector grows at the same rate g, such that at time t it consists of
of N(t) = e% identical sub-sectors. Thus, allocating ¢.; to each sub-sector

generates the surplus
qoj
6gtBj(q0j) :egt/ Dj(S)dS,j:A,D,[,E, (55)
0

for sector j during year t, where D;(-) is the (inverse) demand for water of
each sub-sector (or the inverse demand of sector j at t = 0).

With ¢.;(t) representing the water allocated to each of its e?" sub-sectors,
the total water allocation to sector j during year ¢ is €9 ¢.;(t). This must equal
the water supply to sector j from all sources. Let §;;(¢) represent the water

supply from source i to sector j during year ¢, so that
¢ij(t) = ey (t) (5.6)

is the water allocated to each of the e9* sub-sectors of sector 7 during year t.

In view of (5.6), the identity e¥qo; = Goj(t) = D, 4 @;(t) implies

qoj = Z QZ](t)>]:A>D>IaE (57)

i=n,r,d

8The zero lower bound is a normalization that represents the water stock below which
natural water cannot or should not (e.g., the stock at which the pumping cost exceeds the
cost of desalination) be exploited. Notice that, because R(Q) is non-increasing, R(0) is the
maximal sustainable supply of natural water.
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In addition, total water allocated from source i = r, d, satisfies
q~i0(t) - Z q~2](t)a Z =T, d?

or, using (5.6),
Go(t)= > qylt),i=rd, (5.8)

j=A,D,1,.E

and total natural water supply in year ¢ is

o) = D au(t) = R(0). (5.9)

j:A7D7I7E

The supply of recycled water is restricted according to
Gro(t) < B (e”qon(t) + €% qor(t))
which, invoking (5.6) again, reproduces (2.5).
Gro(t) < B(qon(t) + qor(t)) . (5.10)

Let K;(t) and 7;(t) denote, respectively, source i’s capital stock and invest-

ment rate, satisfying (as in (2.8))

Ki(t) = &(t) — 6,K:(1), i = s, 7, d. (5.11)
Let
Ki(t) = e 9K, (t) and z;(t) = e 9'K;(t), (5.12)
50, in view of (5.11),
Ki(t) = ai(t) — (6; + 9)Ky(t), i = s,7,d, (5.13)

and the capacity constraints (2.7) remain intact.
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The optimal policy maximizes

=A,D,I,E i=s,r,d i=s,r,d
/ [ D Bilgs(t) = Y e Cileqin(t) = Y xz(t)] e~
0 i=A,D,I.E i=s,r,d i=s,r,d
(5.14)

subject to (5.13) and feasibility constraints, given K(0), K,(0) and K,4(0),
where the costs of natural water supply, C,(¢n.(t)) = C,(R(0)), and the in-
vestment in natural capital, z,(t) = K, /6, = (R(0)/7,)/6,, are given, hence
ignored.

The current-value Hamiltonian is

Ht)= Y Bila(t) = D e "Ci(e"qo(t) = Y wi(t)+

j=A,D,I,E i=s,r,d i=s,r,d

D M@f(t) = (6 + 9 Ki(t)] (5.15)

i=s,r,d
and the Lagrangian, which accounts for the feasibility constraints (2.7), (5.9)
and (5.10), is

Lt)=Ht)+ Y mlt)iKi(t) — gio(t)]+

i=s,r,d

EB)B(gon(t) + qor(t)) = gro(t)] + (1) (R(0) — gno(t)).  (5.16)

The necessary conditions for optimal allocation of desalinated and recycled
water are identical to conditions (3.5) and (3.4) of the stationary economy; the
necessary conditions for optimal investments are identical to conditions (3.6)
of the stationary economy; condition (3.7a) remain the same (noting that

g cancel out) and so are the complementary slackness conditions (3.8a) and

(3.8b).
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We thus conclude that the optimal investment policy is to bring K;(t) =
e 9" K;(t) to its (above determined) stationary-economy steady state K;, i =
s,r,d, as rapidly as possible and maintain the steady state thereafter. The
water economy, thus, approaches as rapidly as possible the steady-state growth
path f(,(t) = e9'K;, i = s,r,d, with desalination driving the growth in water

supply.
6 Concluding comments

Water economies are complex constructs, each with its own physical and
social environments. Yet, they all share common features and their manage-
ment therefore is based on common principles. This work elucidates these
common principles in the context of a prototypical water economy containing
the features common to most water economies. A water policy consists of
water allocation from each source to each user sector at each point of time and
the investment in capital infrastructure needed to carry out these allocations.
We find that the optimal policy evolves along three stages: a transition stage,
where the water capital stocks are brought to their respective turnpikes as
rapidly as possible; a turnpike (singular) stage, where the water capital stocks
are kept along their turnpikes and move in tandem with the natural water
stock; and a steady-state stage. The turnpike (singular) trajectories depend
solely on the natural water stock. Depending on the functional forms underly-
ing the water economy, the steady state stage may be entered at a finite time
or asymptotically.

Implementing the optimal policy by means of pricing and quotas is dis-

cussed. The optimal water prices (the prices that implements the optimal
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policy) consist of three components: marginal cost, capital cost and scarcity
cost — all expressed in water price (e.g., dollar per cubic meter) units. As these
components vary across users and sources, so do the optimal water prices. The
scarcity prices are associate with natural water and recycled water. The for-
mer is obvious in regions where natural water sources are insufficient to meet
water demand. The latter follows from the constraint imposed on the supply of
recycled water due to its dependence on the water allocation to the residential
and industrial sectors.

Desalination is an unlimited but expensive source. Its use, therefore, is
justified only under severe water shortage. However, demographic and climatic
trends imply that the number of regions undergoing severe water shortage
increases with time. The model presented herein can be used to determine
when to begin desalinization activities and the extent of desalination over
time.

The model is extended to situations involving arbitrary number of sources
and user sectors, as well as to non-stationary economies with growing water
demands and improved desalination technology. It is found that the turnpike
property of the optimal policy persists in all cases. For growing economy,
the optimal policy is a most-rapid-approach to a balance growth path driven
by investment in desalination and recycling capital. The model can be used
to detect the time at which desalination should be initiated and the scale of
desalination activities thereafter.

The broad view undertaken in this work facilitates the presentation and
allows a sharp characterization of optimal policy rules, but inevitably leads
to simplifications and abstractions. A notable abstraction is the assumption

of deterministic water supplies and demands. In actual practice, natural wa-

31



ter supplies often fluctuate randomly with precipitation and the latter affects
some (e.g., agricultural) water demands as well (see, e.g., Tsur 1990, Tsur
and Graham-Tomasi 1991, Provencher and Burt 1994, Knapp and Olson 1995,
Leizarowitz and Tsur 2012). This aspect can have profound effects on optimal

policies and should, when relevant, be incorporated in empirical applications.

Appendix
The appendix shows how to account for source-and-sector specific costs

and to include arbitrary number of sources and sectors.

A Source-and-sector specific cost

So far the supply costs (variable and fixed) are assumed to be specific to
the water source but not to the user sectors. Some costs may apply only
to water allocated from a specific source to a specific sector. A common
example is when natural water allocated to households must be treated to a
drinking quality, whereas natural water allocated to industrial users, irrigators
or environmental restoration can remain at its raw state. In this case, ¢,.p
entails further treatment activities that require capital and variable costs.

Considering this example, let C,,p(+) represent the variable cost associated
with the drinking-quality treatment of natural water and K, p represent the
(cost of)) capital (infrastructure, equipment) needed to perform the treatment.

The capital constraint

is added to constraints (2.7) and the investment rate z,,p(t), driving the dy-
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namics of K, p(t) according to

Kop(t) = 20p(t) — 6upKup(t), (A.2)

is added to the investment decisions.

The term A\,p(t)[znp(t) — 6npKnp(t)] — xnp(t) is added to the Hamilto-
nian, defined in (3.1), where \,p(t) is the costate of K, p(t), and the term
tnp (O [VupKnp(t) — gup(t)] is added to the Lagrangian, specified in (3.2),
where p,,p(t) is the Lagrange multiplier of (A.1). Condition (3.3a) holds only
for j = I (natural water allocated to industrial use), and for j = D (natural

water allocated to households) the condition changes to

Dp(gon(t)) < Cr(Q(t), Gno(t)) + pin(t) + Cl(gs0) Bs + p1s(£) s + 0(t) — £(2) 5+
C;LD(an(t)) + :unD(t)’ (AB)

equality holding if ¢,p(t) > 0, where C’ ,(+) is the marginal cost of the treat-

ment activity. In addition,
0 if \,p(t) <1
Tpp(t) = € Tup if Aop(t) > 1. (A.4)
x5 (t)  if Aup(t) =1
is added to (3.6) and
Ap(t) = pAap(t) = A (t)0np — tinp () ¥np (A.5)

is added to (3.7a).

The analysis of subsection 3.1 can be repeated to show that all the singular

policy properties apply also to z%,(t), K25(t), ¢%p(t) and p,p(t).
B Many sources and sectors

In actual practice there may be a number (say V,,) sources of natural water

(aquifers, lakes and stream flows in different locations with varying water qual-
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ity), a few (say N,) recycling facilities (in different locations and producing
recycled water of different quality) and multiple (say NV;) desalination plants
(geographically dispersed). Likewise, there are Mp > 1 domestic sectors (mu-
nicipalities), M; industrial users (that vary geographically and with respect to
the water quality they require), M4 agricultural users and Mg environmental
sites.

Let M = ZFD’A’LE M; represent the total number of user sectors. The
natural water allocation is represented by ¢"(t) = {q,,;(t),m = 1,2,..., Ny, j =
1,2,..., M}, where qp; 1s the water allocated from natural source m to sector
J in year t. Similarly, ¢"(t) = {q;,;(t),m =1,2,...,N,, j = 1,2,..., M} rep-
resents the recycled water allocation and ¢*(t) = {¢Z;(t), m =1,2,... Ng, j =
1,2,..., M} represents the allocation of desalinated water. The annual allo-

cation from source type 7 to sector j is

N;
qéj(t)zzq;nj(t)v j:1727"’7M7 i:n7r7d7 (B1>
m=1

and the annual water allocation to sector j is

qg](t): Z qé](t>7 .]:17277M (B2)
i=n,r,d

The supply of recycled water from any of the N, facilities is restricted
by the sewage collected and treated in this facility. We assume that each
domestic user (a municipality, say) is served by only one recycling facility and
the same holds for industrial users.” Consequently, let J2 and JI be the
(index) sets of, respectively, domestic and industrial users served by recycling

facility m = 1,2,..., N,. Then, extending (2.4), the (annual) flow of recycled

9Economies of scale in recycling support the design of regional recycling plants, such that
each user is served by only one facility while each facility can serve multiple users.

34



water produced by facility m is

Got) =B D a0+ et ], m=1,2. N, (B.3)

JjeJIR VISES

The supply of recycled water from facility m is thus restricted by

arot) < g (t),m=1,2 ... N, (B4)

The N, natural water stocks @,,(t), m = 1,2,..., N,, evolve in time ac-
cording to

Qum(t) = Ron(Qm(t)) — ", (1), m = 1,2,..., N,, (B.5)

where R,,(-) is the recharge and

M
Gho(t) = qn;(t), m=12. N, (B.6)
j=1

is the (annual) water withdrawal associated with natural stock m.
The capital stocks K' = (K}, Kj,..., Ky ), i = n,s,r,d restrict water

allocation according to
¢ () <ALK!(t), i=mn,s,r,d m=12,..., N, (B.7)
and evolve in time according to
Ki(t)=a! (t)— 6! K (t), i =n,s,rd, m=1,2,..., N (B.8)
The annual benefit function (2.10) extends to
M Ny, N
B(Q(1),a(t) =D Bi(a3;(t) = > Cr(Qu(t), qo()) = D > Cruldhuo(t)
j=1 m=1

i=s,r,d m=1
(B.9)

and the payoff (2.11) becomes

/0 h (B(Q(t),q(t)) 3 2%@)) e, (B.10)



The optimal policy consists of the feasible ¢(t) and z(t), ¢ > 0, that max-
imize (B.10) subject to (B.5) and (B.8), given the initial water and cap-
ital stocks, where feasibility entails (B.4), (B.7), ¢(t) > 0, z(t) € |[0,z],
Qm(t) > 0,m = 1,2,..., N,, and possibly other restrictions (e.g., no allo-
cation of recycled water to domestic sectors).

The Hamiltonian corresponding to this problem extends (3.1) to

HO = BQUO.a) - 3 S 3 S0 006, K (0)]+

i=n,s,r,d m=1 i=n,s,r,d m=1

Nn

YO[B (Qui(t) = o (D], (B.11)

m=1
where ! (t) is the costate of K! (t), i =n,s,r,d, m =1,2,..., N;, and 6,,(t)
is the costate of @Q,,(t), m =1,2,..., N,,. The Lagrangian extends (3.2) to

cy=HB+ 33w ORLKL ) — (b))

i=n,s,r,d m=1

Nn
Z 60 0) 050(0) e8]+ D000 (B12)
where p! i =n,s,r,d, m=1,2,... N, are the Lagrange multipliers of (B.7),
Em(t), m = 1,2,... N,, are the Lagrange multipliers of (B.4) and ¥,,(t) are
the Lagrange multipliers of @Q,,(t) >0, m =1,2,..., N,.
The optimality conditions extend (3.3)-(3.8) in a straightforward manner.
For example, the condition regarding water allocation from natural source m

to domestic sector j extends (3.3a) to

D;(qg;(t)) < Crl(Qum (1), G (1)) + i () + CF (556 B4 15 () B+ O () — &5 (£) B,
(B.13)
equality holding if g,; > 0, where j* is the index of the sewage treatment

facility serving domestic sector j. The most-rapid-approach investment rule is
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now

0 if X (1) <1
zh(t) =<z if A\l (t)>1,i=n,s,r,d,m=1,2...,N;, (B.14)
zio(t) it N (t) =1

the costates dynamics extend to

m

Om (1) = pOm (1) = Crry, (Qun (1), G (1)) =0 () R}y (Qun (1)) =0 (1), m = 1,2, N,y
(B.15b)

and the complementary slackness conditions are
pt WKL () — ¢l ()] =0,i=n,s7rd m=12,..., N, (B.16a)

gm(t)[qzzo(t) - qz;v,o(t)] = 0’ m = ]-7 2a SR Nr’a (B16b)
Inn()Qm(t) = 0, m = 1,2, Ny (B.16¢)

Although more elaborate, the optimal policy is similar in structure to the
above simpler situation. In particular, the most-rapid-approach property is
retained and optimal K? (t) processes approach as rapidly as possible their re-
spective singular pathes and proceed along them thereafter. Along the singular
trajectories, pu'%(t) = (p+9d°) /7%, and K“(t) = q% (t)/~.,, i =n,s,r,d, m =
1,2,..., N;. Provided a steady state is eventually approached under the opti-

mal policy, the following conditions hold at a steady state:

"y = Rn(Qu), m=1,2,...,N,, (B.17a)
ém _ 19m - mQ(QmaARm(Qm»’ . 1’2’ o Nm (B17b)
p— R, (Qn)
fiy = (P4 63) [ @ =108, d, mo= 1,2, N, (B.17c)
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Kit)=¢ (/7 i=n,srd m=12 .. N, (B.17d)

=6 Ki i=mn,s,rdm=12 .. N (B.17e)

m m?

and (B.16b). As in the previous case, these conditions, together with the op-

timality conditions determining cjﬁnj, solve for the optimal steady state policy.
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