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Abstract

Excessive exploitation diminishes the capacity of natural resources
to withstand environmental stress, increasing their vulnerability to ex-
treme conditions that may trigger abrupt changes. The onset of such
events depends on the coincidence of random environmental conditions
and the resource state (determining its resilience). Examples include
species extinction, ecosystem collapse, disease outburst and climate
change induced calamities. The policy response to the catastrophic
threat is measured in terms of its effect on the long-term behavior of
the resource state. To that end, the L-methodology, developed orig-
inally to study autonomous systems, is extended to non-autonomous
problems involving catastrophic threats.
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1 Introduction

Many resource situations reach the stage where further exploitation threat-
ens to trigger an abrupt event that, once occurred, changes the underlying
regime for the worst. When the conditions that trigger such events are well-
understood and predictable, the occurrence time 7' can, in principle, be con-
trolled. Often, however, these conditions are not well-understood or involve
genuine stochastic elements or both, in which case 7" can be determined only
up to a probability distribution that depends on the exploitation policy. An
early example is the exploitation of a stock of unknown size, studied by Kemp
(1976), where T stands for the depletion time. A slight extension of the term
“depletion” to include situations in which the resource can no longer be ex-
ploited or becomes obsolete allows one to associate T" with an uncertain date
of nationalization (Long 1975) or with the occurrence date of various envi-
ronmental catastrophes (Cropper 1976). The same framework can be used
to consider advantageous events, such as the arrival of a backstop substitute
(Dasgupta and Heal 1974, Dasgupta and Stiglitz 1981).

While the uncertainty in the cake-eating problem of Kemp (1976) is solely
due to ignorance, the uncertainty in political (nationalization) or environmen-
tal events involves genuine stochastic elements. The distinction between the
two types of uncertainty plays out most pronouncedly via the specification
of the hazard rate function, measuring the probability density of the event
occurrence (the realization of T') in the next time instant. In all of these
variants, the optimal policy maximizes the expected payoff, where the expec-
tation is taken with respect to the distribution of 7. This distribution, in

turn, depends on the nature of the event (see the survey by Tsur and Zemel



2014a).

This work considers the type of catastrophic events that are triggered by a
confluence of conditions involving the resource state and genuinely stochastic
elements. Such events show up in a variety of resource situations, including
exploitation and exploration of nonrenewable resources (Deshmukh and Pliska
1985), biological resources vulnerable to a catastrophic collapse (Reed and
Heras 1992), forest fires (Reed 1984), pollution control (Clarke and Reed 1994,
Tsur and Zemel 1998), nuclear accidents (Cropper 1976, Aronsson et al. 1998),
ecological regime shift (Méaler 2000, Dasgupta and Méler 2003, Méler et al.
2003, Polasky et al. 2011, de Zeeuw and Zemel 2012), and climate change
induced calamities (Tsur and Zemel 1996, 2008, 2009, Gjerde et al. 1999,
Naevdal 2006, Bahn et al. 2008).

When a full analytic solution to the management problem is not available
(a common situation), the analysis is focused on long-term behavior as sum-
marized by the optimal steady state to which the system converges. A careful
examination of optimal steady states, then, allows discerning the impacts of
the catastrophic threat on optimal management policies. Recently, Tsur and
Zemel (2014b) generalized the L-method developed in Tsur and Zemel (2001)
to characterize the location, stability and approach time of optimal steady
states by means of a simple function of the resource state. The analysis
in Tsur and Zemel (2014b) is confined to single-state, infinite-horizon, au-
tonomous models. Here we extend the results to the situation of resource
management under risk of abrupt change. The difficulty is that the intro-
duction of catastrophic threats renders the underlying model non-autonomous
because the accumulated hazard depends explicitly on time. The problem

can be recast in an autonomous form at the cost of introducing a second state



variable, but the two-states formulation also does not fall into the category
considered by Tsur and Zemel (2014b). Extending the L-method to problems
involving catastrophic threats allows deriving properties analogous to those
of risk-free models regarding the location and stability of the optimal steady
states.

The next section lays out the general framework and specifies the catas-
trophic threat. In Section 3, properties of optimal steady states under catas-
trophic threats are derived. Section 4 illustrates numerically the potential
effects of catastrophic threats on optimal resource management policies. Sec-

tion 5 concludes and the appendix contains technical derivations.

2 Setup

Let X (t) represent a resource or environmental state at time ¢, e.g., the
stock of mineral, freshwater, biomass or the concentration of some pollutants

in the soil, water or atmosphere. The state X (¢) evolves in time according to

X(t) = g(X (1), e(t)), (2.1)
where the control variable ¢(t) represents the exploitation rate at time t. Given
the initial state X (0), an exploitation policy {c(t), ¢ > 0} generates the state
process {X(t),t > 0} according to (2.1) and gives rise to the utility flow
{u(X(8), c(t)), t = 0}

The functions g(-,-) and u(-,-) are assumed to be twice continuously dif-

ferentiable and to satisfy
lge] > a >0, ue <0, and (gee/ge)tc >0 (2.2)

for all X € (X, X) and ¢ € (c,é), where the subscripts denote partial deriva-

tives with respect to the corresponding arguments. The feasible domains of



the state and the control, [X, X] and [c, ], represent physical or regulatory
constraints (see discussion in Tsur and Zemel 2014b), and a is a given posi-
tive constant. The bound on g. implies that the action chosen is effective in
controlling the evolution of the stock, while the curvature assumptions on u
and ¢ ensure that the Hamiltonian is strictly concave in ¢ (see Appendix B).
Notice that we impose no constraints on the signs of uy or gy, as the state X
can be beneficial (e.g., a biomass stock) or damaging (e.g., a pollution stock).

In addition to its contribution to the instantaneous utility u(-, -), the state
X also affects the occurrence probability of a detrimental event of catastrophic
consequences. The catastrophic threat is characterized by the occurrence
probability and by what happens after occurrence. The consequences of
occurrence are represented by the post-event value p(X). Examples of various
specifications of the post-event value are presented in Section 4.

Denote the event occurrence time by 7" and let F(t) = Pr{T < t) and
f(t) = F'(t) be the associated probability distribution and density functions,
as perceived at the initial time (¢ = 0). The stock-dependent hazard rate

h(X) is related to F(t) and f(t) according to
MX()A = PriT € (tt+A]|T > t} = =

where A is an infinitesimal time interval. Thus, h(X(t)) = —dIn(1—F(t))/dt,

implying
F(t)=1—exp (—/0 h(X(s))ds) and f(t) =h(X(@)[1—F(t)]. (2.3)

For beneficial states (e.g., when X is a productive stock), h(+) is non-increasing
(a higher stock entails a smaller occurrence probability), whereas for harmful

states (e.g., pollution), h(-) is non-decreasing.
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Given the occurrence time T, the exploitation policy {¢(t), t > 0} generates
the payoff
T
| uX@etne e+ e Tex (),
0
where p is the time rate of discount. Taking expectation with respect to the

distribution of 7', noting (2.3), yields the expected payoff

| vexo.mes (— / o+ h(X(s))]ds) it, (2.4)

where

U(X,c) =u(X,c)+ h(X)p(X) (2.5)

is the catastrophic-threat inclusive instantaneous benefit. Note that the ex-
ponential term in the expected payoff (the hazard-inclusive discount factor)
renders the problem non-autonomous. Therefore, the problem falls outside
the class of models considered in Tsur and Zemel (2014b). We turn now to
extend the methodology of Tsur and Zemel (2014b) in order to characterize

the steady state properties of problems involving catastrophic threats.

3 Steady state properties

The optimal policy is the feasible policy that maximizes (2.4) subject to
(2.1) given X (0) = X,. We assume that an optimal policy exists and denote
the corresponding value (the expected payoff under the optimal policy) by
v(Xp). An important feature of optimal trajectories of autonomous single

state problems carries over to the problem at hand:

Property 1. When the optimal state trajectory is unique, it must be mono-
tonic in time. If multiple optimal trajectories exist, at least one of them is

monotonic.



To verify the claim, consider first the case where the optimal state trajec-
tory is unique. Notice that the exponential factor in the objective is similar to
a simple discount factor in that a manager reaching the state X at some time
t faces, at that time, the same optimization problem he would have to solve at
t = 0 if the initial stock were the same state X. This is so because the value of
exp (— fot o+ h(X (3))]ds> serves at ¢ merely as an overall normalization con-
stant for the objective which cannot affect future decisions. Consider now a
non-monotonic optimal state trajectory: there exist two distinct times t; < ¢,
around a local extremum of the trajectory such that X(t;) = X(t3) = X
while X (t1) = g(X,c(t1)) # X(t2) = (X, c(ty)) so that ¢(t;) # c(t2). But
the optimization problem at time t is identical to that at time t;, as both
state processes are initiated at the same stock X. Since c(t;) is optimal at
t1, setting c(t2) = c(t1) must also be optimal at ¢5. This contradicts the as-
sumption of a unique optimal trajectory. When the problem admits multiple
optimal solutions we can apply a consistent selection rule (e.g., always choose
the maximal optimal ¢) to obtain a monotonic optimal state trajectory. In
such cases, we shall always refer to the monotonic optimal process.

As the state space is bounded, the monotonic optimal state process must

converge to a steady state:

Property 2. The optimal state trajectory converges monotonically to a steady

state.

Let M (X) represent the (not necessarily optimal) steady state exploitation
policy satisfying
9(X, M(X)) =0, (3.1)

It is assumed that M(X) exists and is feasible for all X € [X, X]. Noting
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(2.2), the derivative
M'(X) = —gx (X, M(X))/ge(X, M(X)) (3:2)

is well defined. Adopting the policy ¢ = M (X) indefinitely leaves the state

fixed at X and yields the expected payoff

U(X, M(X))

W(X) = X), 3.3
()= S < o) 3.3)
equality holding at the optimal steady state X.
Define the function L : [X, X] — IR by
Ue(X, M(X)) 1o
LX)=[p+h(X)] | 7 +WI(X)], 3.4a
()= o+ (X)) | 255+ W) (3.42)

which, using (3.2) and (3.3), can be expressed as'

L) - DX M)

- XM [p+ h(X) — gx (X, M(X))] +

Ux (X, M(X)) - W(X)R(X). (3.4b)

The latter form shows how L(-) can be obtained from the model’s primitives
U(-, ')7 g(v ')7 90() and h()
Let X denote an optimal steady state. The function L(-) is used to identify

candidates for such states as follows:

Property 3. (i) L(X) = 0 is necessary for X € (X,X); (1) L(X) < 0 is

necessary for X = X; (iii) L(X) > 0 is necessary for X = X.

Property 3 extends Proposition 1 of Tsur and Zemel (2014b) to the present,

non-autonomous model. The proof is presented in Appendix A.

IThe factor p + h(-) in (3.4a) might appear redundant, as it affects neither the roots of
L(-) nor the sign of its derivative at these roots. However, in actual applications this factor
often simplifies the expression for L(-) which includes the W’'(-) term, while W(-) has the
factor p + h(-) in its denominator.



The property identifies two types of potential steady states: unconstrained
steady states, where L vanishes, and constrained (corner) steady states, where
L # 0. Property 3 provides necessary conditions. In fact, not every root
of L qualifies as a stable steady state. The following result, which extends
Proposition 2 of Tsur and Zemel (2014b) to the present model, serves to narrow

down the list of candidates for a stable steady state:
Property 4. A root X of L(-) cannot be a stable steady state if L'(X) > 0.

The proof is presented in Appendix B.

The catastrophic threat affects the resource management problem via the
hazard rate, which enters the objective (2.4) both in the discount rate and
in the instantaneous benefit U. The running discount rate increases from p
to p+ h(X(t)), with two conflicting effects. First, the increased impatience
promotes aggressive exploitation (less conservation) because it reduces the
importance of future outcomes, thereby depresses motives to give up current
utility in favor of future benefits.

Second, the discount rate p + h(X) turns endogenous through its depen-
dence on the stock X. When the event is damaging (i.e., p(X) < W(X))
and the state is beneficial (e.g., a biomass stock), the endogeneity effect en-
courages conservation because it calls for efforts to reduce the hazard. To see
this, note that the terms involving A'(-) in (3.4b) can be combined together
to form the positive expression h'(X)[p(X) — W(X)].2 Recalling that L(-) is
decreasing at a stable steady state, this positive contribution acts to increase
the value of the root, representing a higher steady state stock and more con-

servative extraction. Which of these conflicting effects dominates depends on

2The h'(X)p(X) term is obtained from Ux.



the magnitude of 2'(X)/[p + h(X)] and varies from case to case.?

Properties 3 and 4 extend the results of Tsur and Zemel (2014b) to the
present case of catastrophic threat. The current situation is more compli-
cated because the introduction of catastrophic threats renders the problem
non-autonomous, and this violates a requirement in Tsur and Zemel (2014b).
It turns out, however, that this difficulty can be overcome because in a small
vicinity of the steady state the variations in hazard are very small, hence the
non-autonomous term exp (— fot h(X (3))0[3) is close to a simple exponential,
similar to the standard discount factor. Thus, with some modification, the
arguments of Tsur and Zemel (2014b) follow through, even though the corre-
sponding L function obtains additional terms that account for the effects of
the catastrophic threat on the optimal policy (see Appendix A).

Figure 1 illustrates the use of L(-) for identifying candidates for optimal

steady states according to Properties 3 and 4.
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Figure 1: Possible L functions and the corresponding optimal stable steady states.

It follows from Properties 3 and 4 that X is unique in the following cases:

Property 5. (i) If L(+) crosses zero once from above in [X , X|, then the steady

3See the numerical illustration in Section 4 as well as the examples in Tsur and Zemel
(1998) and de Zeeuw and Zemel (2012).



state X falls on the unique root of L(-); (i) If L(X) > 0 for all X € [X , X],
then X = X; (iii) If L(X) <0 for all X € [X,X], then X = X .

In the next section we solve for the optimal steady states in several con-
crete examples with different catastrophic threats. The examples illustrate
how characteristic features of catastrophic events affect optimal management

policies in the long run.

4 Applications to various types of events

Catastrophic events are characterized by the corresponding post-event val-
ues and hazard rate functions. Events that impact ecosystems often entail
abrupt changes in the system dynamics. The post-event value in such cases
is the outcome of the management problem proceeding under the post-event
regime. The discrete regime shift is in many cases a simplified description of
the actual complex, non-convex behavior that underlies the ecosystem dynam-
ics (see Polasky et al. 2011, and references they cite). A slightly more general
formulation, offered by Tsur and Zemel (1998), describes the post-event value
©(+) in terms of a penalty ¢ inflicted upon occurrence. This formulation dis-
tinguishes between single occurrence and recurrent events. The latter allow
for multiple penalties inflicted each time the event occurs. Examples of single
occurrence events include disease outbursts, affecting fish, plants or animal
(including human) populations, following which there is no risk of another
outburst (because the disease has led to extinction or because the remaining
population became immune). As another example, consider the abrupt and
massive intrusion of saline or polluted water into a freshwater lake or aquifer,

which is rendered thereafter obsolete.
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Recurrent events inflict a penalty ¢ upon occurrence but otherwise do not
change the underlying resource dynamics and the post-event problem contin-
ues under the same occurrence risk as before. The post-event value in such
cases equals the pre-event value at the state of occurrence minus the penalty.
Various climate change induced calamities are of this nature, e.g., category
five hurricanes or forest fires (Reed 1984) with occurrence hazards that de-
pend on climate parameters which in turn may vary with the atmospheric
concentration of greenhouse gases.

In the examples below X represents a pollution stock, accumulated due to
emissions from production activities. The latter generate a constant income
stream which is allocated between consumption ¢(t) and abatement z(t). Nor-
malizing the income rate to unity, c is restricted to the interval [0,1]. Abate-
ment activities, z = 1 — ¢ € [0, 1], reduce emissions via the emission function
E(+) given by

Ez)=a—(a—p)zx, a>p>0, (4.1)

such that the pollution dynamics take the form

X =g(X,c)=E(1-c¢)—6X, (4.2)

where 0 is a natural pollution decay parameter. The constants o and 3 rep-
resent maximal (no abatement) and minimal (all income is allocated to abate-
ment) emissions, yielding X = a/§, X = 3/6 and X € [X, X]. The tradeoffs
between consumption and pollution are manifest in (4.2): consumption comes
at the expense of abatement, increasing emissions and the associated pollution
stock.

The instantaneous utility takes the iso-elastic form

_ 1—
= —

u(X,c) =u(c) - ~on >0, (4.3)

11



where ¢,,;, > 0 is a given small constant (see below). Note that the pollution
stock X does not enter directly in the utility function. In this example the
detrimental role of pollution is introduced only via its effect on the occurrence
probability. In particular, the hazard rate function is assumed linear in the

stock,

h(X) = bX, (4.4)

so that #'(X) = b > 0. By keeping a clean environment (X = 0), the
occurrence risk can be avoided altogether.
Using (4.1)-(4.2), the steady state policy M (X) =1— E~'(§X) specializes

to
(5X—ﬁ_
a—pF

M(X) = (4.5)

< <
|>i =<

hence M(X) =0 and M(X) = 1.
4.1 Single occurrence events

We consider two types of single-occurrence events. Both entail an im-
mediate penalty ¢ upon occurrence. Events of the first type damage the
environment irreversibly to the extent that the post-event income flow (¢t > T')
reduces to the small trickle ¢,,;, which must be allocated entirely for essential
consumption.* Such consequences might follow when the event destroys some
major factor of production that cannot be restored. Single-occurrence events
of the second type inflict a penalty ) upon occurrence and in addition initiate
a regulation that restricts the pollution level not to exceed X (T') anytime in

the future.’

4Note that the utility (4.3) is normalized such that u(cpiyn) = 0.
5Such a regulation might come as a political response to appease public outrage associated
with the occurrence.

12



Using the superscripts sol and so2 to denote the first and second types of

single occurrence events, the corresponding post-event values are

O (X) = /0 u(Coin e Pt — 1) = —1) (4.6)

and
F(X) = / T (M)t — g = u(M(X)) -6, (4T)

where u(-) and M(-) are specified in (4.3) and (4.5), respectively. These
post-event values can be used to derive the corresponding functions L7(X),
Jj = sol,s02. Setting the utility parameters (¢, and 7), the discount rate
(p), the emission parameters (« and (), the pollution decay rate (§) and hazard
sensitivity (b) equal to the values given in Table 1, leaves the penalty 1 as the

only free parameter for the numerical experiments below.

Table 1: Parameter values.

Parameter Value

Cnin 0.05
p 0.03

i 2

« 0.5

I} 0.01

)

b

0.025
0.01

Using these specifications, the L-function for sol events becomes

LYX)= — 0+ bX — | — .
O =S = [P0 = p+bX
(4.8)
The first term is positive and diverges at X = X. Thus, L(-) is positive

near the lower bound, which is excluded, therefore, from the list of candidate
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steady states (Property 3). The second term comes with a minus sign, so that
L vanishes when these two terms cancel out. Note that the penalty i) appears
in the second term in combination with (—c.-7/(1=7))/p = 1/(p Cmin), that is,
with the present value associated with the constant term of the utility function.
This can be understood by noting that, over and above the one-time penalty
1, sol events inflict a cost in the form of reduction in consumption to the
subsistence level ¢, . Indeed, even when ¢ = 0, the value of ¢, (5% of
income — see Table 1) is sufficiently small (hence the latter cost is high) to
ensure that the second (negative) term of L*! dominates the first (positive)
term at X = X, hence L(X) < 0. Thus, L**! must have a root in (X, X) and
some abatement activities should take place for all ¢ > 0 (see lower panel of
Fig. 2).

As the penalty v increases, the second (negative) term of (4.8) increases
(in absolute value) decreasing L*°!(-) and pushing its root to lower X values,
in accordance with the extra precaution called for by the increase in damage
(see Fig. 2). Note also that the coefficient of ¢ in the second term of L*! can
be written as h'(X)p/[p + h(X)], indicating the tradeoffs between the hazard
endogeneity h/(-), which acts to reduce emissions, and the hazard inclusive
discount rate p+h(-), representing impatience and acting to increase pollution.
In particular, an exogenous (constant) hazard, with A'(-) = 0, eliminates the
penalty term and pushes the steady state to X no matter how large the hazard
and penalty are. It is the option to decrease the hazard, rather than the hazard
value per se, that drives the abatement policy.

These considerations are illustrated in Figure 2, where the upper panel de-
picts L' (X) for various values of ©. One notes that although the function is

not monotonic, it possesses a unique root (where L decreases), which identifies

14



500 1000 1500 ZOOg

Eigure 2: Upper panel: L*°*(X) for various ¢ values. Lower panel: Optimal steady state
X as a function of the penalty 1 for sol events.

uniquely the optimal steady state (Property 5) for each ¢ value. The lower
panel displays the ensuing optimal steady states X as a function of . The
effect of the penalty on decreasing the steady state pollution is evident.
Single occurrence events of the second type add the term w(M(X))/p to
the post event value (see equation (4.7)). Except for exceedingly small stocks
(where M (X) < ¢4, this term is positive hence the event is not as damaging

as those of the first type. Adding the contribution of this term gives

W (X)u(M(X)) | h(X)u'(M(X))M'(X)
p+h(X) p

hence L*°?(X) > L*°!(X) for all X such that M(X) > c¢pin, which implies

LsoQ(X) — Lsol(X> +

15



higher steady state values under this type of events. Indeed, one finds

w2y X=X (p+0)(p+bX)  pb
L (X)_(S(X—X)Q p - Ox (4.9)

10 15 20
W = 2000
X
20
15
10
5
I W = 659.75
500 1000 1500 2005

Figure 3: Upper panel: L*°*(X) for various ¢ values. Lower panel: Optimal steady state
X as a function of the penalty v for so2 events.

The first term of (4.9) is again positive and tends to infinity at the lower
bound X. One notes that the penalty in the second term is not accompanied
by 1/(pCmin), as was the case for sol events. This is so because the post-
occurrence restriction to the essential consumption rate c¢,,;, is not imposed
here. As a result, the term vanishes for ¢) = 0 and is small for small penalties.

This implies that L*?(-) does not have a feasible root with small penalties,

16



and the corner state X is the unique steady state in these cases (Property 5).
The intuition here is that when the damage is small, abatement expenses are
not justified. The penalty coefficient h'(X)p/[p+ h(X)] in front of ¢ remains
as for the sol events, demonstrating that the tradeoffs discussed above hold
also for this type of events.

Examples of L*?(-) functions are displayed in the upper panel of Figure 3,
where they take only positive values over the feasible domain [X, X| = [0.4, 20]
for all ¢ < 659.75, implying that no abatement is desirable at the steady state
(i.e., X=X-= 20). For larger penalties, L°%(-) admits a unique, stable root
X e [X, X] which defines the optimal steady state. Again, the root decreases

with v, as shown in the lower panel of Figure 3.

4.2 Recurrent events

Recurrent events also inflict a damage 1 upon occurrence but the problem
continues under the same risk of more events occurring later on. The post-

event value, thus, is given by

e(X) =v(X) -, (4.10)

where v(X) is the value function, defined by

00 t

o) = max [“luteto) + HCEOCEO exo (= [+ nCx (NS
<t Jo 0

subject to (2.1), given X (0) = X and ¢(t) € [0,1]. Since ¢(+) of (4.10) contains

v(-) and at the same time appears in the objective defining it, both functions

are only implicitly defined. Nevertheless, the corresponding L—function can

be obtained and used to characterize optimal steady state candidates in much

the same way as in the previous, single-occurrence events.
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According to (3.3), W(X) < v(X), equality holding at an optimal steady
state. It follows that at such a state both v(X) = W(X) and v'(X) = W/(X)
must hold. Thus, we can use (4.10) and express W (-) at an optimal steady

state as
u(M(X)) + MX)W(X) — 9]

Wix)= o+ h(X)

Solving for W (X) yields

The first term u(M(X))/p is the steady state value without catastrophic risk
(the relevant discount rate is the riskless rate p because, in this recurrent event
example, occurrence does not interrupt the utility flow).

The second term measures the expected damage from an infinite series
of Poisson inflicted penalties, when each penalty is discounted at the factor

corresponding to the respective random occurrence time. Thus,
WHX) = [u'(M(X))M'(X) = K (X)¥]/p,

which gives, upon substituting (4.3)-(4.5) in (3.4a),

Lre(X) _ §<))§:§>2 (p—i-(s)(’é()—i-bX) . (P+ZX)b¢ . (411)

Comparing with (4.9) we see that the positive term remains unchanged,
while the negative penalty term is multiplied by the factor [(p+h(X))/p]* > 1
hence L™(X) falls short of L*?(X) and its respective root is obtained at a
lower value of X. Recurrent events imply more prudence than their so2

counterparts. In fact, (4.11) can be recast in the form

o p+h(X)[ X-X

~z(p0) —h(X)p|.

L) p 6(X - X)
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The coefficient (p + h(X))/p serves merely as a normalization factor that
cannot modify the roots of L"(-) which are determined by the expression in
the square brackets. Thus, the tradeoffs depend on the hazard endogeneity
R'(-), but not on h(-) per se. As explained above, the hazard-inclusive discount
rate is not the relevant rate for recurrent events, hence the incentive it provides

to increase emissions does not apply in this case.

L

100 200 300 400

Figure 4: Upper panel: L™(X) for various 1 values. Lower panel: Optimal steady state
X as a function of the penalty i for recurrent events.

Figure 4 presents L™(X) for different values of i) (upper panel) and the
optimal steady state as a function of ¢ (lower panel). For small penalties

(b < 11.2) L™(X) > 0 for all X € [X,X], implying that X = X = 20
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(Property 3). For ¢ > 11.2, L"¢(X) admits a unique root X € [X,X],
where L/(X) < 0, and this root is the unique optimal steady state (Property
5). Again, the root of L(-) decreases with 1, as the lower panel of Figure 4

reveals.

4.3 The three events compared

X
20

15

10
¥ =659.75

— T T

<
T
LB
=
N

500 1000 1500 ZOOg

Figure 5: Optimal steady states for the three event types vs. the penalty .

Figure 5 compares the optimal steady states for the three types of events.
It shows that the response to catastrophic threats, in terms of abatements
efforts to reduce the associated hazard, varies considerably across the three
event types. FEvaluated at the same one-off occurrence penalty v, so2 and
recurrent events are similar in that both leave no room for abatement when the
penalty is small. Otherwise, recurrent events are more harmful, and the long-
run pollution levels are smaller. sol events incorporate another component
into the damage term, hence imply significant abatement even when ¢ = 0.
The crossing of the sol and recurrent curves shows how the relative weights

of the various tradeoff considerations change with .
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5 Concluding comments

Situations where resource exploitation threatens to trigger abrupt catas-
trophic changes have become prevalent as more of our planetary resources
dwindle in quantity and/or quality due to prolonged exploitation over and
above their capacity to renew. In many examples, the catastrophic threats
enter the resource management problem via the hazard function with two con-
flicting effects. First, the hazard increases the discount rate thereby reduces
the importance of future utility and discourages conservation. Second, the
hazard endogeneity encourages conservation. The long-run overall effect can
be evaluated in terms of the steady states. It turns out that the details of
the specifications of the hazard and damage associated with the events are of
great importance. To study these effects, we characterize the steady states by
extending the L-method of Tsur and Zemel (2001, 2014b) to non-autonomous
models involving catastrophic threats.

The L-method is implemented by means of a simple function of the re-
source state, denoted L(-) and specified in terms of the model’s primitives,
such that an internal optimal steady state must be a root where L crosses
zero from above. If only one such root exists, this root is the unique opti-
mal steady state. When multiple roots exist, the one corresponding to the
optimal steady state may depend on the initial state. The overall effect of a
catastrophic threat is then identified by investigating how the details of the
event specifications modify the appropriate roots of L. Examples of three
prototypical events illustrate the application of the L-method and illuminate

the tradeoffs discussed above.
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Appendix: Proofs
The proofs in this Appendix extend the arguments of Tsur and Zemel

(2014b) to non-autonomous problems involving catastrophic threats.

A Proof of Property 3

Proof. For any feasible state X we compare the value W (X)) obtained by the
policy ¢ = M(X) with the value obtained from a small feasible variation of
this policy. If the value under the variation policy exceeds W(X), then X
does not qualify as an optimal steady state.

For arbitrarily small constants ¢ > 0 and J, consider the variation policy

eé(t)_ M<X)+6/90<X;M(X)) if t<e
| M(X(e) if t>e¢

For the short period t < ¢, this policy deviates slightly from the constant state

policy, then it enters a steady state at X (¢). During the initial period t < e,
X =g(X(t), M(X) +6/g.(X,M(X))) = & + 0(5).5 hence

X(€) = X =€d + o(ed).

Let I'(t) = fot[p + h(X(s))]ds and g. = g.(X, M(X)). The contribution of

¢ to the objective during t € [0, ¢€) is evaluated as
/ U(X(8), M(X) +6/ge) e "Vt = / U (X(t), M(X) +6/ge) e PHhXtgy 4
0 0
/ U(X(t), M(X)+6/gs) [e"D) — e~ 0HnXD1) gy
0

The first integral in the right can be expressed, recalling (3.3), as

(X)

‘ U(X, M
U(X, M(X))e erhOk g 4 ’
/0 M(X)

) _
oY, ) €d + o(ed) =
Ue(X, M(X))

WL )

€d + o(€d),

5The notation o(x) denotes small terms such that o(x)/z — 0 when x — 0
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and the second integral is o(ed).

The contribution of ¢ during the infinite period t > € is
/ T U (), M(X(e)))e P Olegy / "o+ h(X ()W (X (€))e PO gy
/OO[,0+h(X(e))]W(X)e_[p+h(X(€))]tdt+/oo[p+h(X(e))}W’(X)eée_[p+h(X(6mtdt+o(65).
The first integral on the second line can be expressed as
W(X) / OO[,0+h(X(e))]e_[”+h(x(€))]tdt = W(X)elHhXEle — pi7(X) eI+l o(5)

and the second integral is approximated by W’(X)ed + o(ed).

Summing the contributions of both periods gives

Ue(X, M(X))

€d _
0 =W+ <gC<X,M<X>>

+ W’(X)) €d + o(€d),

or
v(X) = W(X) = L(X)ed /[p + h(X)] + o(ed) (A1)
where L(X) is defined in (3.4a).

While € > 0, the sign of § can be freely chosen. Thus, if L(X) # 0 we
can set sign(§) = sign(L(X)) to ensure that v**(X) > W (X) hence X is not
an optimal steady state. It follows that only the roots of L(-) qualify as
candidates for optimal steady states. The only exceptions are the bounds X
and X. Choosing § > 0 is not feasible at X because this policy would lead
the process outside the feasible domain. Therefore, X cannot be excluded as

an optimal steady state if L(X) > 0. A similar argument holds for the lower

bound X if L(X) < 0. O

B Proof of Property 4

Proof. Consider S(t) = exp (— fg h(X(s))ds) as a second state variable and

let A and p denote the current-value co-states corresponding to X (-) and S(-),
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respectively. The current-value Hamiltonian corresponding to the problem of

maximizing the objective (2.4) subject to the dynamic constraint (2.1) is
H=U(X,c)S+ \g(X,c) — uh(X)S. (B.1)

The necessary conditions for (an interior) optimum include:

Ul X,¢)S 4+ Age(X,¢) =0, (B.2)
A= ph = —[Ux(X,¢)S 4 Agx (X, ¢)] + ph'(X)S. (B.3)

and
fr = pp = —U(X, c) + ph(X). (B.4)

The last equation is integrated from ¢ to oo, yielding

where v(X) is the value obtained for the maximal objective when the initial

stock is X. Denoting the normalized shadow price by
A=)\/S,

the necessary conditions take the form

U(X,¢) + Ag.(X,c) =0, (B.5)
A= lgx (X, c)—(p+h(X))]M—UX(X, o)+h (X)v(X) =((X,c). (B.6)

9e(X, )
At an optimal interior steady state X, where ¢ = M(X) and v(X) = W (X),

we find

~

(X, M(X)) = —L(X) =0, (B.7)
which agrees with A(-) being stationary at the steady state.
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Next, we express the optimal control ¢ as a function of the state variable

X, say c(t) = C(X(t))7 where
C(X) = M(X). (B.8)
Define the functions
A(X) = ge(X, C(X))Uee(X, C(X)) = Ue(X, C(X))gee( X, C(X)), (B9

According to assumption (2.2), the expression A(X)/g.(X,C(X)) is strictly
negative, which ensures that H is concave in c. Taking the time derivative of

(B.5) and using (B.6) to eliminate A, we find

/ A(X) B(X) ((X,C(X))
N ax.cm) e o)y tex o) " (B.11)

Equation (B.11) is a first order differential equation, which together with
(B.8) defines C'(X) for all X in the relevant neighborhood. Indeed, for
X # X the coefficient of C’(X) is non vanishing while the other two terms
of (B.11) are finite, hence the derivative C’(X) is well defined. A diffi-
culty with its evaluation at X arises because the function g(+,+), appearing
at the denominator of the last term, vanishes at X. However, in an un-
constrained steady state, L(X) = 0 and the singularity is removed because
((X,0(X)) = ¢(X,M(X)) = —L(X) = 0 (cf. (B.7)) This term, then, can

be evaluated using I'Hopital’s rule. Using (B.7), we find

d¢(X,C(X))
dX

"For the existence and continuity of C(-) near the steady state, see Tsur and Zemel
(2014Db).

= LX) + (X, C(X)C'(X) = M'(X)],
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while (3.2) implies

w = gx (X, C(X))+g.(X, C(X))C'(X) = g.(X, C(X))[C'(X)—M"(X)).
It follows that

L fax.ce)) (%) e

The last term on the right and side is obtained by taking the derivative of

(B.6) with respect to c,

p+h(X) —gx(X,.C(X)  B(X)
R2(X.C(X)) 4:(X, (X))

which, using (3.2), reduces (B.11) in the limit X — X to

A (C’(X) BV SEARLCY, ) P 1 N
ge(X, C(X)) 9.(X,C(X)) ) C'(X) - M"(X)
Denoting
AX)=C'(X) - M'(X), (B.12)

we obtain the quadratic equation

AT - LX) ) 9K O LK)
9.(X,C(X)) AR)

=0. (B.13)

To determine which of the solutions of (B.13) corresponds to the stable
steady-state slope-difference A(X), observe that the state X is attractive
only if g.(X,C(X))A(X) < 0. To see this, consider a state just below
the steady state, say X, = X —¢e To approach X from below requires
X = g(X.,C(X.)) > 0. Recalling that g(X., M(X.)) = 0, this implies
9.[C(X.) — M(X.)] > 0, while ¢.[C(X) — M(X)] = 0. Recalling that g, is

bounded away from 0, we confirm that g.A(X) < 0.
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Next, we write the solutions of (B.13) as

A

. . o pHRX) 4L (X)g3(
9e(X, C(X))AX) = — <1i\/1+ [p+ h(X

X’C({Q)) . (B.14)
)JPA(X)

Since A(X)/g? < 0, the argument of the square-root operator above does
not fall short of unity only if L'(X) < 0. In this case, we have one non-
positive solution for g.A(X) which can provide the boundary value C'(X) =
M'(X)+A(X) for the differential equation (B.11). In contrast, if L'(X) > 0,
the argument falls short of unity and the two solutions in (B.14) are either
positive or complex, hence (B.11) does not yield a solution that converges to

X. This rules out the possibility that L'(X) > 0 at a stable steady state,

verifying Property 4. O]
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