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Abstract

By now it is widely recognized that the more serious threats of cli-
mate change are associated with abrupt events capable of inflicting losses
on a catastrophic scale. Consequently, the main role of climate policies
is to balance between mitigation efforts, aimed at delaying (or even pre-
venting) the occurrence of such events, and adaptation actions, aimed
at minimizing the damage inflicted upon occurrence. The former af-
fects the accumulation of greenhouse gases in the atmosphere; the latter
determines the impact of loss once the event occurs. This work exam-
ines the tradeoffs associated with these two types of policy measures by
characterizing the optimal mitigation-adaptation mix in the long run.
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1 Introduction

It is widely recognized by now that the more serious threats of climate
change are associated with abrupt changes capable of inflicting losses on a
catastrophic scale (Alley et al. 2003, Field et al. 2012). Each link in the
chain leading from anthropogenic emission of greenhouse gases (GHG) to the
abrupt change in climate and the ensuing damage involves uncertain elements
(Schelling 2007, Tol 2012). An appropriate framework to analyze such situa-
tions involves discrete events triggered by conditions that are either imperfectly
understood (e.g., include unknown parameters) or involve genuine stochastic
elements. Any climate change-induced event can be categorized as one or a
combination of these two types.

Tsur and Zemel (1996), for example, studied the first type of climate events
— those triggered when a certain threshold is crossed (i.e., tipping point events).
While the threshold itself does not change (hence crossing it is a deterministic
event), its location depends on parameters that are unknown or only partially
known to modelers and policymakers. In contrast, the events analyzed in Tsur
and Zemel (1998) or Gjerde et al. (1999) are triggered by genuinely stochastic
conditions. It turns out that the method of analysis as well as the ensuing
optimal policies differ between these two types of events (see discussion in Tsur
and Zemel 2007). Here we consider the latter type of climate events — those
triggered by stochastic conditions.

Policy measures for dealing with threats of abrupt climate change can be
categorized into two types. The first includes measures aimed at delaying
or even preventing the event occurrence by reducing emission of GHG or by

capturing (sequestering) carbon and storing it at harmless locations. Such



measures are commonly referred to as mitigation policies. Measures of the
second type are aimed at reducing, or even eliminating, the damage caused by
the event once it occurs, e.g., building levees to prevent flooding, developing
a cure or a vaccine for diseases that are likely to spread due to the arrival of
certain pathogens, or developing crop varieties that can better sustain a range
of climate conditions. These measures are commonly referred to as adaptation
policies. A comprehensive climate policy contains measures of both types and
characterizing the optimal policy requires evaluating the tradeoffs between
them (Tol 2005, Bréchet et al. 2013). In this work we present a framework
for accomplishing this goal, focusing on the long run.

To that end, we use the mitigation-adaptation framework offered by Zemel
(2015), which combines mitigation policies affecting the random occurrence
date of a detrimental event (such as in Tsur and Zemel 1998) with adaptation
policies affecting the damage inflicted upon occurrence (such as in Tsur and
Withagen 2013). By assuming that the costs and effects of adaptation invest-
ments are linear, Zemel (2015) was able to characterize the entire time profile
of the optimal mitigation-adaptation policy.

In this work we relax this linearity assumption and focus on characterizing
the optimal steady state, i.e., the optimal adaptation-mitigation policy in the
long run.  We do this by extending the method of Tsur and Zemel (2014c)
for characterizing optimal steady states of multi-state dynamic systems to sit-
uations involving random events. In the present context the model contains
two state variables: an atmospheric GHG stock, affecting the occurrence prob-
ability of a detrimental event and determined by the mitigation policy; and
an adaptation capital stock whose role is to reduce the damage inflicted upon

occurrence.



We provide necessary conditions for the location and stability of optimal
steady states. These conditions give rise to a simple method for characteriz-
ing the optimal mitigation-adaption mix in the long run. A caveat regarding
the relation of these results to the realities of the climate change problem is
in order here. The literature presents a long list of potential climate-related
catastrophes of very diverse nature. The threats differ in the dependence of
the hazard rates (or frequency of occurrence) on the GHG stock, the events
may be recurrent or give rise to a single irreversible shock, the damage may
destroy capital or affect consumption directly, induce loss of life or give rise
to other forms of decreased welfare. Obviously, a two-state analytic model
cannot pretend to describe the details of all such possibilities, nor is it the
purpose of the present paper to provide such a description. This goal may be
better addressed by running any of the complex numerical Integrated Assess-
ment Models. Here, we employ a specific (though non-trivial) formulation to
illustrate how the method works in a particular setting. Indeed, many of the
assumptions can be altered to fit other catastrophic models of choice. The
characterization of the optimal climate policy will correspondingly change, but
the method suggested here is general enough to study these variants in a simple

and unified manner.

2 Setup

An abrupt climate-change induced event, capable of inflicting a severe dam-
age, may occur at some uncertain future date 7. The distribution of T is gov-
erned by a hazard rate function h(Q) that depends on the atmospheric GHG

stock Q. The event inflicts a damage ¥ (k) that depends on the adaptation



capital k available at 7. The climate policy consists of mitigation efforts to
curb the accumulation of GHG and of investment in adaptation capital. The
policymaker task is to set the optimal mix of these two activities over time.

The model described below addresses this problem.

2.1 Climate policy

Production activities at time ¢ generate emissions at the rate m(t) that

accumulate to form the GHG stock Q(t) according to

Q(t) =m(t) —1Q(t), (2.1)

where 7 is the natural GHG removal rate. Emission is bounded above by a
finite maximal rate m and mitigation at time ¢ is measured as the difference
m — m(t) between the maximal and actual rates. The upper bound on m
implies the maximal feasible GHG stock Q = m/vy. Given that no event has
occurred by time ty, the GHG stock process Q(-) affects the distribution of

the random occurrence date T of the event through the hazard rate function

h(Q) according to
S(t|te) = PriT > t|T > to} = e Jo Q) (2.2)

for t > tg > 0. The corresponding conditional distribution and density

functions of T' are, respectively,
Pr(t|to) = 1= S(t|to) and fr(t|to) = FA(t]to) = h(Q(t)e” " @™, (2.3)

We assume that h(0) = 0; A'(Q) > 0; A"(Q) > 0.
Occurrence at time 7" inflicts the damage ¢ (k(7")), where ¢(-) decreases in

the adaptation capital k at a diminishing rate: (k) > 0, ¥'(k) < 0, ¥"(k) > 0.



The adaptation capital accumulates according to
k(t) = a(t) — 0k(t), (2.4)

where a(+) is the investment in adaptation capital and § is a depreciation rate.

The production activities associated with emission give rise to the instan-
taneous utility u(m, a) which increases with the emission rate m and decreases
with adaptation investment rate a (since the latter comes at the expense of

consumption). More specifically, we assume!

U () >0 for 0 <m < m; wug(-,-) <0 fora>0;

Upn () < 05 Uga () < 05 U (5 aal-,-) > 1, (- ). (2.5)

A climate policy consists of the action processes {m(t),a(t),t > 0}. A policy

is feasible if m(t) € [0,m] and a(t) > 0 for all £ > 0.

2.2 Payoff

We consider recurrent events, i.e., events that may occur again and again,
where the distribution of the next occurrence date is determined by the hazard
process h(Q(t)), as defined in (2.2), when ty is the previous occurrence date
or zero if no event has yet occurred.? Each time the event occurs it inflicts
the penalty 1(k) corresponding to the adaptation capital k at the occurrence

date. Apart from inflicting the penalty, occurrence does not change the flow of

!Subscripts denote partial derivatives. In typical applications, the contributions of m
and a to the utility are independent, us, = 0 and the last condition is trivially satisfied.
The assumption on u,, represents the point of departure from the model of Zemel (2015),
since it rules out a linear dependence on the control variable a.

2See Tsur and Zemel (1998) for a distinction between single occurrence and recurrent
events. In the present formulation, increased GHG concentration implies higher frequency
of occurrence, while for some climate events (e.g., hurricanes) the threat is of increased
intensity. Note, however, that we deal here with environmental catastrophes, i.e., rare
events of exceptional intensity and impact. Varying the event intensity also affects the
frequency of extremely intense occurrences.



utility or the dynamics of the stock variables, nor the probability distribution
of yet another occurrence. We stress again that this damage specification is
just one possibility out of a rich menu of possible environmental damages, such
as capital destruction or reduced utility. It is adopted here because it allows a
clear distinction between the roles of mitigation and adaptation in this model.

Let v(Q, k) denote the value function (i.e., the value of the objective ob-
tained with the optimal policy when the initial stocks are () and k). Assuming,
without loss of generality, that ¢y = 0 and the first event occurs at 7T', the payoff

at to =0 is

/0 w(mi(t), a(t))e'dt + e o(Q(T), k(T)) — (k(T))].

Taking expectation with respect to the distribution 7', using (2.2)-(2.3), gives

the expected payoff

/0 " fulmi(®), a(t)) + h(QU))p(QUE), k(t))] e SIPH@Odgr  (2)

where
P(Q, k) = v(Q, k) — (k) (2.7)

is the continuation value at the time of occurrence. The optimal policy is
the feasible process {m(t),a(t), t > 0} that maximizes (2.6) subject to (2.1)
and (2.4), given Q(0) = Qo, k(0) = ko. The value v(Qo, ko) is obtained by
evaluating the objective (2.6) at the optimal policy. Note that (2.6) contains
the value function v(-,-) via the continuation value ¢(-,-), implying that v(-, )
is only implicitly defined. For long run analysis aimed at characterizing the

steady states, the implicit definition poses no difficulty, as shown below.



3 Long run properties

Let X = (Q, k) and C = (m, a) denote, respectively, the state and action
vectors (a prime over a vector or a matrix indicates the transpose operator).
For any state X, let C (X)) denote the adaptation-mitigation actions that main-

tain the state fixed at X indefinitely. Noting (2.1) and (2.4),
C(X) = (1Q, 0k)". (3.1)

Let W(X) denote the expected payoff obtained when the (not necessarily
optimal) steady state policy C(X) is maintained indefinitely (before and after
occurrences). Under this policy, the state process remains fixed at X and
the T' distribution (2.3) reduces to exponential (with the parameter h(Q)).

Evaluating (2.6) under the steady state policy gives

u(1Q.5k) + h(Q)p(X)
WX == Q)

(3.2)

Since the steady state policy proceeds also after occurrence, the continuation

value ¢(X) reduces to W(X) — (k) and (3.2) becomes

_ w1 0K) + QW (X) — v(k)]

W) PENI0)

Solving for W (X)), we find

_ urQ. 3k) = (@ (k)

W(X) p

(3.3)

The first term u(yQ, 6k)/p is the steady state value without catastrophic risk.
The second term describes the expected cumulative loss from a Poisson series
of events when the penalty v associated with each event is weighted at the

discount factor corresponding to its time of occurrence.



Let f(X,C) = u(m,a)+ h(Q)p(X) be the instantaneous utility associated
with the expected payoff (2.6). The gradient vector of f with respect to C,
evaluated at (X, C(X)) is given by

h—(uw@ﬁm)' (3:4)

The state-dynamics equations (2.1) and (2.4) can be jointly expressed as

X =G(X,0), where

_~_ (70 _ [ m—7Q
cxor=c- (3 0)x-("732)
Let J¢ and JS denote the Jacobian matrices with respect to X and C, re-

spectively. Then,

ﬁ:(gyg),g:(éf) (3.5)

Next, following Tsur and Zemel (2014c) we introduce the function?

100 = (1)) =0+ @) (€T o+ Wx(X), 39

where

1y un(vQ, 0k) — K (Q)y (k)
Wx(X) = P ( 0 ua(7Q, 0k) — h(Q)Y' (k) )

is the gradient vector of W (X). In the present setting, noting (3.4) and (3.5),

L(-) specializes to

CpERQ) [ (04 ) um(1Q,K) — H(Q)U(H)
LX) =—7= (<p+5>ua<vc2,5k>—h<@>w'<k> ) (3.7)

We shall show below that the function L(-) represents the tradeoffs associ-
ated with internal steady states, in the sense that its terms cancel each other

when evaluated at such states. Formally:

3J is given in (3.5) as the identity matrix, hence including its inverse in the definition
of L appears redundant. We keep it here for consistency with the general theory (see
Appendix) and to allow extensions with more complicated state-dynamics equations.

8



Property 1. Assume the state bounds 0 < Q < Q and 0 < k < k. The
following conditions hold at an optimal steady state X = (Q,k)':

(i) If Q € (0,Q) and k € (0,k) then L(X) = 0.

(i1) If Q = Q, then I,(X) > 0; if k = k, then 1,(X) > 0.

(iii) If Q = 0, then 1;(X) < 0; if k = 0, then 1y(X) < 0.

Property 2. If a steady state X at which L(X) = 0 is locally stable,* then
det(JE(X)) > 0.

With some modifications to account for the presence of a ()-dependent
hazard, the proofs of the properties proceed along the steps of the proofs of
Propositions 1 and 2 in Tsur and Zemel (2014c¢). The proof of Property 1 is
outlined in the appendix; the proof of Property 2 is omitted.

For the model at hand, Property 1 implies, noting (3.7), that at an internal

~

steady state (where L(X) = 0) the following conditions hold:

R(Q)v(k) o hQ(k)
ﬁ and ua(’}/Q,(Sk) = —p—|—5 .

U (7Q, 0k) =
The first condition defines the optimal steady state for the () process when the
adaptation capital is constrained at k. Tt relates the increase in utility flow
when the emission rate is increased by the marginal amount dm = ~vd(@ to the
increase in the expected damage flow corresponding to shifting the pollution
stock by d@ and evaluating at the effective discount rate p+~ associated with
the () dynamics. The second condition defines the optimal steady state for the
k process when the GHG stock is constrained to be fixed at Q It relates the

decrease in utility flow when the investment rate is increased by the marginal

amount da = ddk to the decrease in the expected damage flow corresponding

1X is locally stable if there exists some € > 0 such that (along the optimal trajectory)
X (to) — X|| < € at some o implies X (¢) — X.

9



to shifting the adaptation capital by dk and evaluating at the effective discount
rate p+ ¢ associated with the & dynamics. When both stocks are free to vary,
an optimal steady state requires both conditions to hold, demonstrating the
way in which the L function captures the tradeoffs associated with the steady
state for each of the stock variables.

Evaluating the Jacobian of L at the internal steady state, we find

( V(P + )t (YQ, 0k) = B (QU (k) 6(p + 7)tma(1Q; 0k) — W (Q) (k) )
V(P + 0)tima(YQ, 6k) = W (Q)Y' (k) 8(p + 0)uaa(vQ, 0k) — M(Q)¥"(k) /)
(3.8)

The two diagonal elements of J% are negative. Condition (2.5) regarding t,,q
ensures that the presence of this term in the off-diagonal elements cannot, on
its own, reverse the sign of the determinant (i.e., h = 0 implies that det(J%) is
positive). The stability condition of Proposition 2, then, depends essentially
on the magnitude of #'(Q) (k) vis-a-vis the other elements of the matrix. The

stability property is examined in more detail in terms of a specific example in

the following section.

4 Example

We follow Zemel’s (2015) example, modifying the adaptation policy to
allow for nonlinear effects. Table 1 presents the specifications and parameter
values used in the numerical solution. Using Table 1, L(X), defined in (3.7),

specializes to

n@.m - ((p+7)(a Q) -

M) (4.1a)

k+ K,

10



and

p+BQ ( QKB )
I2(Q, k) = —(p+0)1+ p) (kO + —— | . 4.1b
2(Q, k) p (p+0)(1 + p)(kd) it K, ) (4.1b)
Table 1: Function specifications and parameter values.
Function Specification Parameter value Description
u(m,a) am —m?/2 —a'™ a=2p=1 utility
h(Q) BQ £ =0.005 hazard rate
(k) VoK /(Km + k) o =10, K,, =50 damage function
p=0.03 discount rate
v =0.01 GHG decay rate
0 =0.03 capital depreciation rate
Q=200 maximal GHG stock
= 33.33 maximal adaptation capital

Viewing the solution @ of [;(Q, k) = 0 as a function of k, i.e. Q = Q1(k)
we find

R
Ql (k) = R1 — m where Rl =

6Km¢0

=Q and Ry = .
T o +1)

«
;
The function @ (-) is increasing. The higher is the adaptation capital k, the
lower is the inflicted damage hence the planner can increase the GHG stock
and the associated hazard. This observation reflects an important adaptation-
mitigation tradeoff: a higher adaptation capital provides a higher insurance
coverage against the perils of a climate change catastrophe, hence reduces the
incentive to exert mitigation efforts in order to avoid or delay occurrence.

Viewing the solution @ of l5(@, k) = 0 as a function of k, i.e. Q = Q2(k)
we find

0"(p+0)(L+p)

— H 2 =
Qg(k’) ng’ (k + Km) where Rg = ﬁmeO

11



The function @Q(+) is also increasing. The larger is the GHG stock, the higher
the risk and the incentive to invest in increasing k. The condition that L(-)
must vanish at an internal steady state clearly displays the tradeoffs between
the two responses to the hovering risk. Indeed, imposing this condition entails
Q1(k) = Q2(k) which reduces to a polynomial equation in k. Using the values

in Table 1, we find that the conditions /; = I, = 0 reduce in this example to
0.00144 x k(k + 50)® — 200 x (k + 50) + 6250 = 0. (4.2)

This 4" order polynomial equation in k£ admits two real roots, of which one
is negative hence infeasible, while the other corresponds to the feasible steady
state X = (Q, k) = (106.178,16.616). At this state, the Jacobian matrix (3.8)
reduces to

J3(X)

_pt h(Q) ( —0.0004 0.000563 ) . (4.3)

0 0.000563 —0.0054

which has a positive determinant, as required by Property 2 for (Q, /%) to be
locally stable.

While these considerations leave a unique candidate for an internal steady
state, one needs to investigate also the possibility of corner steady states. This
requires to check the sign of the relevant component of L(-) at each possible
corner. To consider the possibility that an optimal steady state falls on a
boundary Q = Q = 200 or Q = 0, Figure 1 depicts the functions L(Q, k)
and 11(0,k) for k € [0,k]. Tt is seen that the upper curve is negative and
the lower curve is positive for all & € [0, k], ruling out, by virtue of Property
1, the possibility that a steady state falls on one of the () boundaries. This
means that the occurrence hazard is insufficient to drive the GHG stock (and
the corresponding emission rate) all the way down to zero, but on the other

hand, it does not allow this stock to reach the maximal level @) that would

12



have been obtained if the emission rate m were chosen so as to maximize the

utility » at all times.

1(Qk)
[ Lk
11(0,k)
0.05
0.04
003/ »

Figure 1: The upper panel shows [;(Q,k) vs. k. The lower panel shows
[1(0,k) vs. k. The upper curve is always negative and the lower curve is
always positive in the feasible range for k, ruling out a steady state with
either Q = Q or Q = 0.

To check the possibility that the steady state falls on a k boundary (k =0
or k = k = 33.33), Figure 2 shows l5(Q, k) and [(Q,0) for Q € [0,Q]. The
upper curve is negative for all Q € [0, Q], ruling out the possibility of a steady
state falling at k = k (Property 1). The lower curve is positive for all Q > 0
and crosses zero at () = 0. Thus the same Property allows a steady state with
k=0 only if Q = 0. However, Q = 0 was ruled out above, implying that

the steady state cannot fall on a k boundary: in the long run some adaptation

13



5(Q,0)
6.75

451

225+

50 100 150 200

Figure 2: The upper panel shows l5(Q,k) vs. Q. The lower panel shows
15(@,0) vs. Q. The upper curve is always negative and the lower curve is
always positive in the feasible range for (), ruling out a steady state with either
k=Fkork=0.

is desirable but not at the full feasible rate. This leaves the internal state
(Q, l%) = (106.178,16.616) as the unique optimal steady state in this case.

Increasing the hazard sensitivity parameter § from 0.005 to 0.01 changes

the polynomial equation (4.2) to
0.00072 x k(k + 50)% — 200 x (k + 50) + 12500 = 0

and this equation does not admit any real root. It follows from Property 1
that no internal steady state (with both @ and k away from their respective
corners) can be optimal and at least one state must lie on a corner. We

investigate the various possibilities with the help of Figures 3 - 5.
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-5.25¢

-0.01} k=125

‘ \15 20 25 30 o

-0.02¢

Figure 3: 1;(Q, k) (upper panel) and [;(0, %) (lower panel) vs. k under high
hazard sensitivity 8 = 0.01. The negative values of [;(Q, k) rule out a steady
state with () = Q). The negative values of /,(0, k) leave open the possibility
of a steady state with ) = 0 and k < 12.5.

Observing the upper panel of Figure 3, we see that Property 1-(ii) rules
out the possibility that Q = @Q (because I;(Q,k) < 0 for all k € [0,k]). In
contrast, the lower panel leaves open the possibility that Q = 0 as long as
k < 12.5 (since [;(0,k) < 0 for k € [0,12.5]). Setting @ = 0 in (4.1b) yields
a negative value for l5(0, k) for all £ > 0 hence Property 1-(i) implies that
no internal k£ state can couple with Q = 0 to form an optimal steady state.
However, with &k = 0, we obtain from the same equation I3(0,0) = 0 hence the
double-corner state (Q, /Af) = (0,0) meets the conditions of Property 1 for an

optimal steady state.

Turning to Figure 4, the lower panel shows that Property 1-(iii) rules out

15



h(Q,k)

s s s s s 1 s s s s
50 100

Figure 4: I5(Q, k) (upper panle) and l5(Q,0) (lower panel) vs. the GHG stock
@ under high hazard sensitivity 3 = 0.01. The positive values of Iy(@Q, 0) rule
out a steady state with & = 0 and ¢ > 0. The positive values of l5(@Q, k)
leave open the possibility of a steady state with k = &k and @ > 167.67.
However, the latter possibility is ruled out by considerations involving l1(Q, k)
(see Figure 5 below).

the possibility that £ = 0 and Q > 0 (since [5(Q,0) > 0 for @ > 0) but leaves
open the possibility Q =k = 0, discussed above. The interpretation of the
upper panel is somewhat more complex. First, it rules out the possibility
that & = k for Q < 166.67 (by virtue of Property 1-(ii), since Iy(Q,k) < 0
for () < 166.67). Thus, if a steady state with k =k is optimal, it must have
Q > 166.67. However, Figure 5 shows that 1,(Q, k) < 0in this Q range, hence

Property 1 implies that such a steady state cannot be optimal.

The above considerations leave (Q, k) = (0,0) as the unique optimal steady

16
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Figure 5: 11(Q, k) vs. the GHG stock () under high hazard sensitivity 5 = 0.01.
The negative values of I;(Q, k) at the higher () states rule out (by virtue of
Property 1-(ii)) a steady state with k& = k and () in this range.

state in the case of B = 0.01. The result can be attributed to the high
hazard sensitivity. The strong dependence of the hazard rate on the GHG
stock provides a strong incentive to reduce emissions and bring the occurrence
probability down to zero. However, eliminating the risk also removes the
motivation to invest in adaptation, hence the adaptation capital stock k is
also driven down to its lowest feasible level. The tradeoffs between mitigation

and adaptation measures are evident in this case.

5 Concluding comments

We study long-term adaptation-mitigation tradeoffs in situations involving
risk of catastrophic climate events, where the mitigation policy influences the
event occurrence probability and the adaptation policy affects the severity
of damage upon occurrence. The analysis extends Zemel (2015) to non-
linear policies and is based on the multi state L—method of Tsur and Zemel
(2014c), appropriately modified to allow for uncertain discrete events. We

find that the method can identify a unique candidate for the optimal two-

17



dimensional steady state, both when this state is interior, determined by the
adaptation /mitigation tradeoffs, as well as when it is a corner state depending
on some feasibility constraint. In both cases, the eventual steady state reflects
the strong interaction between the adaptation and mitigation responses to the
catastrophic risk.

Although the model is presented in the context of a climate change prob-
lem, the framework can be used, with obvious modifications, in other multi-
dimensional resource situations involving uncertain discrete events, such as an
abrupt regime shift in the dynamics of exploited ecosystems and other regen-
erating resources (see examples in Dasgupta and Méler 2003, Tsur and Zemel

2007, Polasky et al. 2011, de Zeeuw and Zemel 2012).

Appendix

Proof of Property 1: The following derivation combines the arguments of Tsur
and Zemel (2014a,b) to show how the properties of the L-method presented
in Tsur and Zemel (2014c) extend to the case of a multi-state system evolving
under event uncertainty. We recall the notation f(X,C) = u(C)+ h(Q)p(X)

and
f(X,C(X))
p+hQ)

and note that although the simple form adopted here for the state equation

W(X) = /OOO F(X,C(X))e P @ltar =

X = G(X, C) reduces the Jacobian J§ to the identity matrix (see 3.5), the for-
mulation holds for more general specifications hence we refer to this Jacobian
in its general form.

For any feasible X, we compare the payoff W (X)) obtained under the steady

state policy C' = C(X) with the payoff obtained from a small feasible variation
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of this policy. If the variation policy yields a payoff that exceeds W (X), then
the steady-state policy is not optimal at X and this state does not qualify as
an optimal steady state. For small ¢ > 0 and A = (01,02)’, the variation

policy is defined by

CEA(t) = CX)+ [JE(X,C(X))'A  if t<e
B C’(X(e)) if t>e

While t < e, C*2(t) deviates slightly from the steady-state policy C'(X), then

it enters a steady state at X (¢). During the first period when ¢ < ¢,
X = G(X,C(X)) + JE(X, CLX))IEX, CX)) A+ 0(6) = A+ 0(0),

which brings the state at t = ¢ to X () = X + A + o(0d).
Let I'(t) = fot [p+h(Q(s))]ds. The contribution to the objective under the

variation policy C*2(¢) during t < ¢ is evaluated, up to o(¢d) terms, by
/0 F, (X(t), C(X) +[JE(X, C(X))]‘1A> et =
/0 N (X(t), C(X) + [JE(X, é(X))]*lA) e (@It gy
[ (X000 + 8 O a) et - @iy
The first integral in the right can be expressed as
/05f(X,C‘(X))e‘[”*"“”“dw[fo(X,C*(X)ﬂ’[Jé?(X,C*(X))]‘l[eAHo(sé) =
W(X) [1 = e W@ 4 [fo(X, C(X)) [JE (X, C(X))] 7 eA] + o(<d),

and the second integral is o(&d).
The contribution of C% during the infinite period ¢ > ¢ is evaluated, up to

o(gd) terms, by

/ T FX(E), X () gy / T o+h(QENIW (X ())ebH@rgy -

/ [p+HR(Q(e)) W (X)e PHH QN g+ / " o+h(QEN W (X [eAle 1@y,
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The first integral on the second line can be expressed as
W(X) / [P+ h(Q(E))|e- QN gy — J7(X)e—lerh@ENk — ()~ +h@ | o(25)

and the second integral is approximated by [Wx (X)]'[eA] 4 o(£d).
Summing the contributions of the two periods gives the payoff V*2(X)

obtained under the variation policy:
VEAX) = WX) + [JE GO folX, (X)) + Wx(X)] [eA] + o(c).
Thus, noting (3.6),

VEA(X) = W(X) = (LX) AL/ [p + h(Q)] + o(e0).

The signs of the elements of A can be freely chosen, while € > 0. Now,
if L(X) # 0 we can set A = 0L(X), where § is a small positive constant,
hence [L(X))'A > 0. This implies V=4(X) > W(X) and X is not an optimal
steady state. Thus, only the roots of L(-) qualify as legitimate candidates
for an optimal steady state. The only possible exceptions are the feasibility
bounds of @ and k. Choosing §; > 0 is not feasible at Q because this policy
would drive the Q(-) process outside the feasible domain. Tt follows that
X = (Q, k) cannot be excluded as an optimal steady state if [;(X) > 0. A
similar argument implies that X = (0, k) cannot be excluded as an optimal
steady state if {;(X) < 0. Analogous constraints on the sign of lo(X) apply
at the corner states X = (Q, k) and X = (Q,0)". O
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