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Abstract

We build an index of abnormal weather conditions to study the short-run response of
wheat and maize futures prices following a weather shock in Europe. As weather dis-
ruptions are not contemporaneous to the ensuing supply shock, there exist several price
impact channels stemming from crop yield losses through which a climate anomaly can
affect market prices. The formation and updating process of expectations of future spot
prices is a key channel linking weather news and futures contract prices. Spot prices
might not react contemporaneously due to contracts’ rigidity and existing buffer stocks.
However, advanced information on future availability can rapidly be priced in futures
contracts. We estimate the average change in LIFFE wheat and maize futures contracts
returns for a set of European weather events. Results suggest that later stages of the grow-
ing cycles of both wheat and maize are the most affected by abnormal weather and such
impact is reflected with greater emphasis on contracts with maturities that are further
away in time.

Keywords: Weather shocks, Europe, Futures Prices, Traders’ anticipations, Rational
expectations, Wheat, Maize
JEL : O13, Q13, Q56

1. Introduction

With the advent of electronic trading and evermore competitive global markets, pub-
lic grain and supply reports are not market news anymore. Traders increasingly rely on
their own crop models and weather forecasting tools to gain an edge. Weather conditions
are among the main driving forces in models of agricultural price formation for they de-
termine future supply shocks. The influence of weather patterns on crop yields is well
documented by the scientific literature, through the impact of biophysical conditions on
plant growth and labor productivity. Similarly, price reactions to supply shocks have been
studied at large. The key causal link between weather and market prices is the impact on
crop yields. However, financialised commodity markets function at a speed not compa-
rable to relatively slow changing weather data and even slower materialisation of supply
shocks. The sequential timing between observable weather events and their consequences
on production, combined to market reactivity implies the existence of several price im-
pact channels and the formation of future spot price expectations. Such expectations on
forthcoming spot prices are embedded in the relationship between spot and futures prices.
This paper studies the short-run response of wheat and maize futures prices on Euronext
following a weather shock in Europe.

We develop a simple index of weather anomalies in Europe based on the number of
regions undergoing abnormal rainfall or temperature conditions. This index is explored
in a panel fixed effect with Euronext maize and wheat contracts from 2006 to 2017.

Section 2 discusses the literature on event studies and arrival of new information
in agricultural commodities markets. Sections 3 formulates a simple futures contract
pricing model to assess reactions to weather shocks. Section 4 presents the data empirical
implementation. Results are discussed in section 5 and section 6 concludes.
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2. Literature

2.1. Futures pricing and event studies

A commodity can be exchanged in a cash transaction, fetching a spot price. Al-
ternatively, the right market infrastructure might allow a risk averse seller to enter in
a forward or a futures contract with a counterpart in anticipation of a price change.
Futures contract prices play an important role in price discovery as they embed all infor-
mation known to market on cost of storage, future supply and expected future spot prices.

The spot price must equal the futures price, adjusted for some cost of storage and
financing. The relationship is held by the no arbitrage equilibrium. If the futures were
priced lower than the adjusted spot price, a market participant could earn a risk-less
profit by purchasing futures contracts, short selling the cash commodity, and investing
the proceeds. However, in the short run, the relationship is not perfect as high transac-
tion costs can generate short lived deviations from the equilibrium, especially for grain
commodities. The higher transaction costs faced by the spot market often lead its futures
equivalent to react faster to new information and therefore lead the price discovery pro-
cess. However, the causality might run in both directions and change over time (Garbade
and Silber (1983); Silvapulle and Moosa (1999)).

While agricultural futures markets have been studied from numerous different perspec-
tives,1 We start by examining a strand of the literature exploring how new information is
absorbed by futures markets. A key source of information for traders stems from various
government agencies reports. For the US markets, USDA publications play a major role.
Early papers examining the informational content of these reports for futures markets
typically examine price behaviour in trading days preceding and immediately following
announcements ( Summer and Mueller (1989); Fortenbery and Sumner (1993); Garcia
et al. (1997)). Carter and Galopin (1993) challenged the newsworthiness of USDA hogs
reports through an estimation of the willingness to pay for early access to the reports. A
conclusion later nuanced by Colino and Irwin (2010). Over time, the forecasting accuracy
of public agencies have improved along with the availability of data and statistical tech-
niques both in the US (Egelkraut et al. (2003)) and Europe (Van der Velde and Nisini
(2018)). But so did private models.

More recently McKenzie (2008) implemented a finer identification of the impact on
markets expectation generated by public provision of market information in USDA re-
ports. They demonstrated that reports bring information, but futures prices adjust to
the news quickly and efficiently. Looking further into this announcement effect, Ad-
jemian (2012) estimates that, over the period 1980-2010, new information incorporated
into futures prices within a single day. Bringing this estimate down to 10 minutes for
more recent years, Lehecka et al. (2014) pointed out that the rise of electronic trading
makes the market evermore rapid in absorbing new information. They found the impact
of USDA corn production forecasts vanishes almost immediately in the futures market.
And this efficiency level is partly explained by changes in beliefs due to privately informed
traders significantly affecting trading volumes observed prior to USDA announcements,
as estimated by Fernandez-Perez et al. (2018) who confirmed the asymmetric impact of
such private news. Information asymmetry within increasingly globalised agricultural
markets made some specific USDA announcements on international demand and supply

1See Garcia and Leuthold (2004) for a review.
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more relevant as pointed out by Isengildina-Massa et al. (2008), providing a slightly dif-
ferent perspective on these public announcements. A last item to note in the section is
the work of Mattos and Silveira (2016) who study the impact of crop reports from U.S.
and Brazil on nearby US contracts of corn and soybean. To highlight that crop reports
released in the months preceding the beginning of harvest are most impactful, they used
a TARCH model with dummy variables. The times series approach developed later in
this chapter follows a similar methodological approach.

This body of research generally concludes that institutional publications of production
data brought significantly new information to US and European markets during the eight-
ies. But even though their accuracy has improved over time, their informational value has
gradually declined since then, especially for their respective domestic markets. Futures
markets have significantly expanded and volumes have exploded with electronic trading
taking over pit trading. Today’s private production estimates are now quasi equivalent
to their public counterparts and hence already priced in at release time. This literature
is nonetheless particularly useful as it laid out the ground for so-called event studies. As
traders have developed their own forecasting models able to rival the USDA reports, true
market news must now be searched for among other types of events. Weather conditions
are key drivers of production forecasts, embedded in all models. Recently, Van der Velde
et al. (2018) highlighted that crop forecasting models are less accurate when coping with
extreme weather events, especially if unprecedented. The next section discusses studies
on weather events.

2.2. Weather events empirical applications

The literature specifically focused on the role of weather variations in food commodi-
ties futures pricing is particularly scarce. In a two step prediction workflow, futures
prices forecasts typically rely on the output of yield forecasting models fed on weather
data. Some studies have focused on connecting the El Nino variation to futures market
Keppenne (1995); Liao et al. (2010). But the El Nino is a rather global phenomenon that
in turn triggers local weather events.

In an earlier exploration of the impact of weather shocks on futures markets, Stevens
(1991) attributed part of US cereal prices behaviour during the growing season to non
random weather pattern. But he does not provide a quantification of this relationship.
Later on, Hennessy and Wahl (1996) confirmed that rainfall and temperature have impor-
tant influences on the variability of soybean, corn and wheat futures prices. More recently
Goodwin and Schnepf (2000) analyse the determinants of price variability in US corn and
wheat futures markets. They found a significant role for growing conditions, relying on
an index derived from weekly reports of crop progress. Although they did not specifically
used temperature or precipitation, an index of crop conditions is very similar to weather
data in the type of information it carries. It informs the expectations of futures supply.

It is worth noting that even though non traded, weather processes are not ignored by
financial markets which provide options to hedge against weather risk. Derivatives built
on temperature features such as heating and cooling degree days deliver payoffs according
to various contract settings (Benth and Benth (2007); Ritter et al. (2011)).

3. Price formation model with weather news

A conceptual framework is needed to examine futures market adjustments to new
weather information. Consider a simple model where the inventory level, ∆Nt, is the
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difference between demand, Q(.), and supply, X(.):

∆Nt = X(Pt; z2t, e2t...)−Q(Pt; z1t, e1t...) (1)

In the terminology used by Pindyck (2001), ∆Nt is the net demand, which must equal
net supply, as expressed in equation 1. Aside from the price, demand shifting factors,
z1, typically include changes in consumer preferences, availability of a substitution good,
demographics and growth. In the shorter run, sudden loss of consumer trust in a good
might also reduce demand. In addition to the market price, supply is affected by factors
such as cost of production, technology and weather conditions, represented by z2. Finally,
e1 and e1 are random shocks.

The cash price is thus a function of the drivers of supply and demand:

Pt = f(∆Nt; z1t, z2t, et) (2)

The price of storage is the payment by inventory holders for the privilege of holding
a unit of the good, usually referred to as the marginal convenience yield. It reflects the
cost of storage, the depreciation and the opportunity cost of capital. The convenience
yield reflects the increased utility associated with the immediate availability of the good.

Futures prices also must equal the expected future spot prices net of the storage cost,
the risk free interest rate and the convenience yield. Denoting the convenience yield by
Ψt, in the presence of futures contracts priced as Ft,t+1 for a delivery in t + 1, the no
arbitrage condition implies that:

Ψt = (1 + rt+1)Pt − Ft,t+1 + kt+1 (3)

where rt+1 is the risk-free interest rate and kt+1 is the physical cost of storage. When
making decision regarding arbitrage, the expected return on investment of stock holding
is the difference between the price at time of purchase and the expected future spot price.
Denoting the expected future spot price Et(Pt+1) and the resulting discount rate ρt+1 ,
we have that :

Et(Pt+1)− Pt + Ψt − kt = ρt+1Pt (4)

Consider that the futures and spot prices are bound by the no arbitrage condition
(equation 3) and that the expected return of storage in t depends on the expectations
of spot price changes. With discount and interest rates known for the upcoming period,
equations 3 and 4 might be combined to obtain a relationship between futures prices and
expected futures spot prices:

Ft,t+1 = Et(Pt+1) + (rt,t+1 − ρt,t+1)Pt (5)

This specifications puts the formation of traders’ expectations at the centre of the
futures price formation process. Advance information on the upcoming harvest, It, can
be used to form early estimates of future supply which will in turn determine future
spot prices (equations 1 and 2). By shifting the expected future supply, and therefore
modifying the expected future spot price, weather plays a determinant role in futures
contract prices. Combining the interest and discount rates into βt,t+1, a reduced form
model emerges, centred around expectations :

Ft,t+1 = Et(Pt+1|It) + βt,t+1Pt (6)
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WeatherAnomaly

Ft,t+1 Et(Pt+1)

Expectations Update

Arbitrage Optimization

Figure 1: Weather impact channel on futures market

4. Empirical model and data

To examine market reactions to a weather anomaly in Europe, we start from equation
5 which states that futures prices are moved by the drivers of expectations on future
spot prices. Weather data carries advance information regarding future supply, especially
during the growing months, and therefore shapes these expectations. We examine ab-
normal weather days through the estimation of a panel fixed effect model, in the spirit
of the event study approaches reviewed in section 2. A set of interacting variables iden-
tifies to what extent weather anomalies influence the price of different contract maturities.

4.1. European temperature and precipitation data: indices of abnormal conditions

This section presents an index of marginal weather changes to measures abnormal
weather conditions. Reconciling the relatively slow changing weather data with higher
frequency market data is not straightforward. Traders typically react instantly but a
weather event that matters for future production might unfold over a period of several
weeks. As a first step to tackle this problem, we start by using the cumulative rainfall and
cumulative temperature in a moving window of 40 days. We also examine the deviation
from the average conditions calculated across windows of 20 years. Finally we look at
abnormal days, i.e. days during which the temperature was outside the range of two
standard deviations around the 20 year moving average.

We use the E-OBS 17.0 daily gridded observational dataset for precipitation, temper-
ature and sea level pressure provided at a 0.25 degree pixel resolution by the European
Climate Assessment & Dataset project (Van den Besselaar et al. (2011)). We mask the
rasters with the global land cover2 so as to keep only cells predominantly covered by
croplands and non forest vegetation. Then, we sum precipitation and temperature data
from cells within the NUTS 1 administrative borders to derive local level indicators. To
account for the fact that weather during a specific day cannot influence the outcome of
the overall season while markets adjust on a daily basis, we compute a set of daily weather
indicators for each region:

• Hot day : Day during which the 40-day rolling average temperature stood above 2
standard deviations of the rolling long term average (20 years).

• Cold day : Day during which the 40-day rolling average temperature stood below
2 standard deviations of the rolling long term average (20 years).

• Rain deficit day : Day during which the 40-day rolling average rainfall stood below
2 standard deviations of the rolling long term average (20 years).

• High precipitation day : Day during which the 40-day rolling average rainfall stood
above 2 standard deviations of the rolling long term average (20 years).

2https://www.eea.europa.eu/data-and-maps/data/global-land-cover-250m (EEA).
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Based on the above definitions, European wide information is obtained by summing the
number of regions facing an abnormal weather day.

The maps in figure 5 provide example of daily rasters used to construct weather
variables. These variables are plotted in figures 3 and 4. Abnormal episodes such as the
warm spell of 2007 are apparent. Up to 70% of regions might experience the same type
of event at once. A particularity and a limitation of this approach is that Europe might
experience at the same time abnormal hot and cold or dry and wet days, across different
regions. However these types of event are generally highly negatively correlated.

Number of NUTS 1 regions experiencing days of:
High temperature Low temperature Rainfall deficit High rainfall

Min. 0.000 0.00 0.00 0.00
1st Qu. 0.00 0.00 0.00 1.00
Median 1.00 1.00 10.00 4.00

Mean 5.55 2.70 15.40 6.05
3rd Qu. 5.00 2.00 10.00 9.00

Max. 71.00 69.00 49.00 4.00

Table 1: Descriptive statistics (1990-2017)

4.2. Financial data: wheat and maize futures contracts from Euronext

4.2.1. Contracts panel data

For wheat, we consider Euronext Paris milling wheat futures contracts (trading code
’EBM’) exchanged on the London International Financial Futures and Options Exchange
(LIFFE)3. These contracts are traded for delivery months November, January, March and
May until May 2015 and then September, December, March and May from September
2015 onward, such that 12 delivery months are available for trading and quoted in euro
per tonne of wheat delivered in an approved silo in Rouen, France.

Maize prices come from Euronext Paris corn futures contracts (trading code ’EMA’)
issued with delivery in January, March, June, August and November such that ten deliv-
ery months are available for trading. Approved silos for delivery can be found in French
cities of Bayonne, Blaye, Bordeaux, La Rochelle Pallice, and Nantes

For both commodities, these contracts are linked to produce from EU origin only (see
Figure 5 for a distribution of production across EU). The price data is obtained from
Quandl/CHRIS and all price observations are brought into a panel in which the unit of
observation is the contract-day. Some contract data is reported for more than a year
before delivery. All observations are dropped for contracts trading at a time earlier than
1.5 year from maturity.4

3The LIFFE was acquired by the New York Stock Exchange in 2007, to form NYSE Euronext. It is
now part of the Intercontinental Commodity Exchange (ICE).

4A change in reporting occurred in 2013, when the Intercontinental Exchange (NYSE: ICE), completed
acquisition of NYSE Euronext. This applies for the case of wheat for which, in addition, two contracts
with delivery in F and X, traded exceptionally in 2013-2014 and 2014-2015 respectively, were omitted.
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4.3. Empirical application: A panel fixed effect approach

Consider an estimation of the weather news contribution to futures prices in equation
5 through a panel fixed effect model. For this exercise, each individual contract is a unit
of observation, throughout its trading lifespan. In the spirit of event studies reviewed in
section 2, the informational nature of abnormal weather days is assessed with a set of
markers in the dataset for these particular events.

Estimates are obtained by regressing the return of settle prices at day t for delivery
in month j of year i, Ft,i,j , on specific weather parameters:

Ft,i,j = β0 + β′
1W̄t + rt + τi,j + yi + s+ ηt,j (7)

where W̄t is a vector of European level abnormal weather indices derived from the num-
ber of NUTS 1 regions experiencing abnormal conditions, for each day, t. The estimated
model includes year fixed effects ( yt) and contract fixed effects (τi). A monthly seasonal
cycle is also included, (st). Finally, ηt,i is an error term, clustered at the contract level to
capture heteroskedasticity. The interest rate is represented by rt the risk free interest rate
(German Government 10 years bond) and the storage loss parameters from our structural
model in equation 5 are absorbed by the time and contract fixed effects.

In Europe, winter wheat is planted from September to December and harvested from
June to August, whereas spring wheat might be planted from February to March and
harvested during July-August. We explore the different impacts of abnormal days in
each month preceding harvest with a set of interactions.

5. Results and discussion

This section presents an assessment of the marginal effect of regions experiencing
days above or below normal weather conditions (increments of 10 regions). Tables 2 and
3 present results of the panel fixed effect estimates for wheat and maize respectively and
where the unit of observation is the contract-day, between 2006 and 2017. Weather in-
dices coefficients give the change in percentage points associated to each increase of 10
regions/day undergoing a weather anomaly. Both result tables feature a first specification
with the four weather variables interacted with quarters. The second specification focus
on the last few months of the growing cycle and interacts weather variables with months
to map the impact of weather across this part of the seasonal cycle. Finally, the last two
specification explore the impact on prices for near deliveries (within the next 6 months)
and far deliveries (more than 6 months, up to 1.5 years). All models have a set of year and
monthly dummies to control for seasonality in prices returns. Year fixed effects capture
the overall price return trend.

Coefficients from specifications with monthly or quarterly interactions are to be inter-
preted differently than a basic specification. The first coefficient represents the impact for
the base period. Coefficients associated to months or quarters are the additional impacts.
The total impact of an additional 10 regions undergoing a particular anomaly in a given
month can therefore be obtained by summing the base term and the specific month’s
interaction.

For wheat, a high temperature anomaly throughout the continent is significantly as-
sociated with higher prices returns across all specifications (table 2). Interactions reveal
that high temperatures can have the strongest impact on wheat prices in the second and
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third quarters, which coincide with the latest stages of the growing cycle. Monthly inter-
actions also suggest that hot weather can have a slightly negative impact on returns in
June. High rainfall anomalies are significantly associated to higher price returns across
all quarters except the second. Results also suggest that cold spells push price returns
up in the second quarter (specification 1) or the month of June (specification 2). Period
of drought have a significant and positive impact across the seasonal cycle except during
the second quarter.

Differences between specification 3 and 4 suggest that weather has a stronger impact
on contracts with deliveries further away in time. This implies that grain stocks might
buffer the short run adverse impact of supply shocks, but are less effective over a longer
time horizon.

For maize, the results present a similar picture, with drought events significantly in-
creasing price returns, except in the second quarter (table 3). Abundant rainfall seems
to be perceived as beneficial for crop prospects until June, after which the price returns
will increase with the anomaly. Hot anomalies also seem to reduce price returns across
specifications. Dry spells increase maize price returns (base coefficient of the first speci-
fication), except during the second quarter).

Price returns for far deliveries are slightly more affected than short run ones, but to
a lesser extent than for wheat.
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Table 2: Impact of weather anomalies on daily Euronext wheat returns

All year Growing period Near (< 180 days) Far (>180 days)

(1) (2) (3) (4)

Constant −.459 (.419) −.507∗∗∗ (.174) 2.011∗ (1.151) −1.073∗ (.593)
Interest Rate −.078∗∗ (.035) .290∗∗∗ (.085) −.209∗∗∗ (.079) −.060 (.043)
hot anomaly −.016 (.017) .103∗∗∗ (.026) .009 (.045) −.020 (.020)
cold anomaly −.009 (.021) −.003 (.037) −.007 (.036) −.006 (.028)
dry anomaly .099∗∗ (.048) −.191 (.239) −.035 (.114) .127∗∗ (.055)
wet anomaly .113∗∗∗ (.026) .119 (.106) .061 (.063) .130∗∗∗ (.029)

Quarterly interactions with high temperature days
hot:Q02 .042∗∗ (.021) .010 (.052) .055∗∗ (.025)
hot:Q03 .047∗∗ (.023) −.003 (.053) .050∗ (.027)
hot:Q04 −.011 (.022) −.034 (.050) −.007 (.026)

Quarterly interactions with cold temperature days
Q02:cold .084∗∗∗ (.030) .065 (.053) .120∗∗∗ (.039)
Q03:cold −.092 (.087) .119 (.178) −.116 (.105)
Q04:cold .026 (.055) .089 (.102) .004 (.083)

Quarterly interactions with rain deficit days
Q02:dry −.186∗∗∗ (.061) −.007 (.128) −.228∗∗∗ (.074)
Q03:dry −.159 (.102) −.138 (.232) −.154 (.118)
Q04:dry −.033 (.063) .091 (.126) −.038 (.081)

Quarterly interactions with rain deficit days
Q02:wet −.310∗∗∗ (.036) −.200∗∗ (.078) −.362∗∗∗ (.043)
Q03:wet −.071∗∗ (.031) −.049 (.071) −.083∗∗ (.037)
Q04:wet −.039 (.043) .017 (.091) −.069 (.051)

Monthly interactions with high temperature days
m05:hot −.096∗∗∗ (.035)
m06:hot −.113∗∗∗ (.037)
m07:hot −.038 (.037)

Monthly interactions with cold temperature days
m05:cold .058 (.081)
m06:cold .201∗∗ (.078)
m07:cold −.169 (.130)

Monthly interactions with rain deficit days
m05:dry .204 (.246)
m06:dry −.259 (.264)
m07:dry −.129 (.295)

Monthly interactions with high rainfall days
m05:wet −.229∗∗ (.116)
m06:wet −.434∗∗∗ (.115)
m07:wet −.104 (.110)

Observations 11,172 3,506 2,908 8,264
R2 .024 .045 .050 .027
Adjusted R2 .015 .025 .018 .016

Note:Year, month and contract fixed effect included in all specifications.
Dep. var. :Log returns of settle prices: log(P1/Pt−1) ∗ 100
Significance: * p < .10, ** p < .05, *** p < .010. Standard errors in parentheses.
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Table 3: Impact of weather anomalies on daily Euronext maize returns

All year Growing period Near (< 180 days) Far (>180 days)

(1) (2) (3) (4)

ir .187∗∗ (.075) .785∗∗∗ (.147) .382 (.355) .185∗∗ (.082)
Constant −.663∗∗∗ (.230) −1.621∗∗∗ (.233) −1.396 (1.359) −.673∗∗∗ (.246)
hot anomaly −.098∗∗∗ (.029) .192∗∗∗ (.062) −.072 (.092) −.102∗∗∗ (.031)
cold anomaly −.025 (.125) 1.700∗∗ (.701) .099 (.425) −.067 (.135)
dry anomaly .169∗∗∗ (.063) .119 (.797) .211 (.153) .145∗∗ (.071)
wet anomaly .048 (.044) .489∗∗ (.238) .208 (.148) .043 (.047)

Quarterly interactions with high temperature days
hot:Q02 .047 (.041) −.054 (.131) .059 (.043)
hot:Q03 .107∗∗∗ (.041) .113 (.116) .110∗∗ (.046)
hot:Q04 .029 (.040) .032 (.122) .033 (.043)

Quarterly interactions with cold temperature days
Q02:cold −.011 (.154) −.172 (.570) .014 (.163)
Q03:cold −.206 (.239) −1.137∗ (.655) −.004 (.268)
Q04:cold −1.039∗∗∗ (.396) −.918 (1.249) −1.062∗∗ (.435)

Quarterly interactions with rain deficit days
Q02:dry −.619∗∗∗ (.185) −1.309∗∗ (.538) −.504∗∗ (.199)
Q03:dry .062 (.164) .403 (.401) −.029 (.183)
Q04:dry −.087 (.106) −.291 (.269) −.052 (.119)

Quarterly interactions with high rainfall days
Q02:wet −.348∗∗∗ (.069) −.446∗∗ (.212) −.340∗∗∗ (.074)
Q03:wet .023 (.060) −.087 (.178) .015 (.066)
Q04:wet −.093 (.072) −.112 (.219) −.105 (.077)

Monthly interactions with high temperature days
m05:hot −.620∗∗ (.246)
m06:hot −.291∗∗∗ (.073)
m07:hot −.201∗∗ (.095)
m08:hot −.711∗∗∗ (.117)

Monthly interactions with cold temperature days
m05:cold −1.732∗∗ (.694)
m06:cold −1.827∗∗ (.759)
m07:cold −3.147∗∗∗ (.809)
m08:cold −.140 (.828)

Monthly interactions with rain deficit days
m05:dry .028 (.925)
m06:dry −1.284 (.816)
m07:dry −.081 (.889)
m08:dry .609 (.832)

Monthly interactions with high rainfall days
m05:wet −.539∗∗ (.257)
m06:wet −.914∗∗∗ (.255)
m07:wet −.382 (.250)
m08:wet −.439∗ (.249)

Observations 6,182 2,243 1,029 5,153
R2 .025 .098 .067 .026
Adjusted R2 .016 .079 .020 .016

Note:Year, month and contract fixed effect included in all specifications.
Dep. var. :Log returns of settle prices: log(P1/Pt−1) ∗ 100
Significance: * p < .10, ** p < .05, *** p < .010. Standard errors in parentheses.
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6. Conclusion

Alongside the increased market orientation of the last iterations of the European Com-
mon Agricultural Policy (CAP), futures markets have gradually taken more importance
among risk management options for European producers, especially for the grain sector.
Although few farmers are directly trading futures contracts, commercialisation intermedi-
aries routinely offer fixed or differed price forward contracts, informed by futures market
pricing.

Weather conditions are among the main forces driving pricing models, for they de-
termine future supply shocks. The influence of weather patterns on crop yields is well
documented by the scientific literature. Similarly, price reactions to supply shocks have
been studied at large. However agri-commodities’ futures behaviour in the face of weather
anomalies deserves better scrutiny within the literature and the policy making community.
Enhanced understanding of agri-food markets reaction to climatic anomalies is relevant
to the undergoing effort of improving risk management strategies in a market oriented
CAP confronted to climate change, and in an evermore financialised context. Hence, this
paper presents insights on how such a financialised type of agricultural commodity market
is affected by climate disruptions, as measured by abnormal weather days. An estimation
of the impact of weather anomalies on European wheat and maize futures markets is
provided to explore how weather information moves the futures contract prices. Building
from basic theoretical elements of futures pricing, we show that weather developments
affect futures prices through impacting drivers of spot prices in the next period, which
are mediated to current prices by expectations. We use this framework to set up a panel
fixed effects for wheat and maize European futures contracts.

The panel fixed effect estimations indicate that abnormal weather events raise futures
prices more often than the opposite, through a positive impact on returns. It also confirms
that price sensitivity to weather shocks varies along the seasonal cycle. Results suggest
that later stages of the growing cycles of both wheat and maize are the most affected by
abnormal weather and such impact is reflected with greater emphasis on contracts with
maturities that are further away in time.

This analysis has several limitations. First, the ECAD weather data has the advantage
of being of a higher spatial resolution than most publicly available alternatives and makes
a finer analysis possible. But the dataset has several missing periods for different pixels
(e.g. Sicilia, Northern Italy, Poland). Second, the empirical identification of a meaningful
weather event for agriculture is still insufficient. Options to improve on this area are
the use of growing degree days, a recourse to a country specific crop calendar to focus
on important weeks of the crop cycles, a better land use mask to better map wheat and
maize producing regions, and definition of events combining rainfall and temperature.
These options should be considered in an improved version of this work. Furthermore,
the contract fixed effect approach has the advantage to increase the available number of
observations, but the term structure is lost, thereby obscuring useful information. Finally,
an interesting additional option for future research would be to inform the empirical
implementation by an analysis of standard trading strategies.
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Annex: Figures

Figure 2: Temperature and rainfall across NUTS 1 regions on the 27th of August 2017 and 25th
of December 2013 respectively. Source: Author based on ECAD data.
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Figure 3: Abnormal precipitation levels in Europe. Days at the right end of a moving window of 40
days whose average temperature is above or below 2 standard deviations of the local long term average.
Source: Author based on ECAD data.

Figure 4: Abnormal precipitation levels in Europe. Days at the right end of a moving window
of 40 days whose average precipitation is above or below 2 standard deviations of the local long term
average. Source: Author based on ECAD data.
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Figure 5: Wheat and maize production area across EU countries. For wheat, France and Germany
have the largest total surface under cultivation, followed by a cluster of four countries, namely Poland,
Romania, Spain and the United Kingdom. Surfaces for maize are the largest in the group made of France,
Germany and Romania, followed by the cluster of Poland, Italy, Slovakia and Bulgaria. Source: Author
based on Eurostat data.
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