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Abstract 

The dairy sector is an important sector in Northern Ireland being the single largest contributor to its 

agricultural economy. However, the sector contributes more to soil phosphorus (P) surplus compared 

to other agricultural sectors. Consequently, the goal of this research is to analyse the environmental 

technical efficiency of dairy farms making use of a novel parametric hyperbolic distance function 

approach. The model is able to internalise P surplus as undesirable output in the dairy production 

process by treating desirable and undesirable outputs asymmetrically, thereby allowing for the 

maximum expansion of the desirable output and an equi-proportionate contraction of the undesirable 

output. The stochastic production frontier model is analysed simultaneously with an inefficiency 

model to explain variability in efficiency scores assuming the existence of heteroskedasticity in the 

idiosyncratic error term. Additionally, we estimated the shadow price and pollution cost ratio of P 

surplus in dairy farms. Our results showed that the average environmental technical efficiency 

estimates for dairy farms in Northern Ireland is 0.93. Intensification resulting in increased use of 

concentrates feed was found to be negatively related to environmental technical efficiency. We also 

found that age of the farmer and share of milk output have a positive relationship with environmental 

technical efficiency.  

 

Key words: Dairy farms; Environmental efficiency; Pollution abatement cost; Phosphorus surplus; 

Shadow price 
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Introduction 

 

The dairy sector is an important sector in Northern Ireland being the single largest contributor 

to its agricultural economy, contributing about 32% of the total agricultural output (DAERA, 2017). 

However, the sector contributes more to soil phosphorus (P) surplus compared to other agricultural 

sectors, putting pressure on the environment (Adenuga, et al., 2018a). Already about 50% of farmed 

grassland have plant-available P (Olsen-P) values greater than the critical value of 25mg/kg (Bailey, 

2015; Kleinman et al., 2015, Cave and McKibbin, 2016). Also, more than 50% of all rivers in the 

country are classified as “moderate/poor status” and about 70% of lakes are still classed as eutrophic 

under the “water framework directive” (Kleinman et al., 2015; Cave and McKibbin, 2016). Soil P 

level unlike other nutrients is fixed in supply. The implication of this is that, excess P in soils is 

detrimental not only from an economic point of view but also from an environmental sustainability 

point of view. Negative externality from agricultural production in the form of P surplus has 

detrimental effects on water quality and biodiversity. There is increasing pressure from the policy 

angle on the need to ensure that agricultural production is sustainable especially given the effect of 

agricultural pollution on the environment.    

Given the foregoing, the objective of this study is to estimate the environmental technical 

efficiency of dairy farms in Northern Ireland, incorporating P surplus as undesirable output in a 

parametric hyperbolic distance function modelling framework. The stochastic production frontier 

model is analysed simultaneously with an inefficiency model to explain the variability in efficiency 

scores assuming the existence of heteroskedasticity in the idiosyncratic error term. Additionally,  by 

employing the duality between the distance function and the maximisation of the profitability function, 

we  estimated the shadow price (marginal abatement cost) and consequently pollution cost ratio of P 

surplus in dairy farms. The shadow price is defined as the opportunity cost of reducing one more unit 

of P in terms of reduction of the revenue from dairy production activities (Hailu and Veeman, 2000; 

Färe et al., 2006; Zhou et al., 2014). The estimates of the marginal abatement cost can serve as an 

important parameter for the design of agri-environmental policy instruments required to optimize 

agricultural pollution abatement policies. For example, setting a nutrient surplus taxation policy or 

the derivation of the optimal subsidy to farmers per unit of the pollutant reduced. This will be relevant 

as empirical evidence in the implementation of government’s policies to reward farmers for 

sustainable and environmentally friendly practices. It will also be useful in the development of a 

manure market which may be necessary in transferring nutrient surplus from areas of higher 

concentration to areas of lower concentration.  

 The contribution of this study to the existing literature is threefold. Firstly, the study provides 

the first attempt to simultaneously analyse the environmental technical efficiency and marginal 
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abatement cost (shadow price) of P surplus on dairy farms using farm level panel data in Northern 

Ireland. The measure reflects not only the level of environmental pressure but also the level of 

competitiveness and economic efficiency of the dairy production systems in the country. Secondly 

and from a methodological perspective, the study employed the hyperbolic environmental technology 

distance function which is less restrictive compared to the output or input distance functions. Previous 

studies have employed mainly the radial output/input distance functions, which assumes proportional 

expansion of all outputs (both desirable and undesirable outputs), or contraction of all inputs, in the 

same direction (Färe et al., 1993; Chung et al., 1997; Hadley 1998; Hailu and Veeman, 2000). In 

contrast, the hyperbolic distance function treats outputs assymetrically by seeking to simultaneously 

expand the desirable outputs and contract the undesirable outputs given a fixed level of inputs (Cuesta 

and Zofio, 2005; Hou et al., 2015; Mamardashvili et al., 2016; Wang et al., 2017; Pena et al., 2018; 

Cuesta et al., 2009). This analogy is in line with the government’s policy that seek to reduce negative 

agricultural externalities and increase production of desirable outputs simultaneously (Hailu and 

Veeman, 2000; Färe et al., 2006). The methodology allows for the estimation of a more robust 

environmental efficiency measure and shadow price of P surplus. Lastly, unlike previous studies that 

employed the farm gate approach, our estimation of the P surplus was based on the soil surface 

balance approach which involved the development of a novel nutrient requirement model employed 

to estimate P output from grazed grass. The findings from this study will assist policy makers in 

understanding the factors that influence environmental technical efficiency and the trade-offs between 

revenue from dairy production and the negative impact of P surplus. This will be important in devising 

balanced policies to improve current operations and enhance sustainability of dairy production 

systems. 

The remaining part of this paper is divided into five sections. In section two, we present the 

theoretical framework for the hyperbolic distance function methodology. The data and empirical 

specification of the model are presented in section three while the results are reported in section four. 

The paper ends with a summary of the main conclusions in section five.  

 

Theoretical framework for the hyperbolic environmental technology distance function 

The parametric hyperbolic environmental technology distance function is based on the 

multiplicative homogeneity property of the Shephards’s distance function. The term hyperbolic is 

derived from the hyperbolic path implied by the distance function toward the efficient frontier (Fare 

et al. 1989; Cuesta and Zofio, 2005; Cuesta et al, 2009; Duman and Kasman, 2018). In line with the 

pareto optimality condition, the methodology seeks to provide a composite index that simultaneously 

captures economic and environmental balance in dairy production systems in line with the best 

production practices in the region. It provides a lot of flexibility in the evaluation of environmental 
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technical efficiency in the presence of environmentally sensitive undesirable outputs (Färe et al., 2005; 

Hailu and Chambers, 2012; Du et al., 2015). Unlike the non-parametric DEA approaches, it accounts 

for statistical noise, it is differentiable and is able to conduct statistical inference without 

bootstrapping (Färe et al., 2005; Wei et al., 2013). The results obtained using the methodology are 

also less sensitive to outliers which may negatively affect the accuracy of results (Boyd et al., 2002; 

Simar and Wilson, 2007; Wei et al., 2013; Pérez-Urdiales et al., 2016; Skevas, 2018; Adenuga et al, 

2018b). An alternative to the hyperbolic distance function approach is the directional output distance 

function which also simultaneously accounts for the expansion of desirable outputs and reduction of 

undesirable outputs by modifying the direction in which to search for an efficient counterpart of each 

farm towards the production frontier (Färe et al., 2005; Manello, 2012; Adenuga et al., 2018b). 

However, the directional distance function does not satisfy the property of commensurability (scale 

invariance) such that the efficiency measure depends on the units of measurement of the input and 

output variables that enter the model (Peyrache and Coelli, 2009; Skevas, 2018). Also, while the 

hyperbolic distance function is based on the multiplicative homogeneity property of the Shephards’s 

(1970) distance function, the directional distance function makes use of the translation property which 

is an additive analogue of the multiplicative homogeneity property of the hyperbolic distance function 

(Chambers et al., 1998; Fare et al., 2005; Cuesta and Zofio, 2005; Cuesta et al., 2009). 

Few studies that have employed the hyperbolic distance function in the economics literature. 

Examples of such studies are outlined below. Cuesta and Zofio (2005) employed the translog 

hyperbolic distance function to estimate the efficiency of Spanish savings banks, while Cuesta et al. 

(2009) used the hyperbolic and the enhanced hyperbolic distance function approach to estimate the 

efficiency scores for a set of U.S. electric industries and consequently estimated the shadow price of 

SO2 emissions which was considered as undesirable output. Suta, et al, (2010) using the hyperbolic 

distance function approach, calculated the environmental technical efficiency scores of selected EU 

farms. Glass et al., (2014) employed the enhanced hyperbolic distance function to measure the 

relative performance of Japanese cooperative banks, modelling non-performing loans as an 

undesirable output. Mamardashvili et al. (2016) applied the hyperbolic distance function to analyse 

the environmental performance and estimated the shadow price of nitrogen surplus for conventional 

and organic Swiss dairy farms using cross sectional data. Despite the popularity of this approach in 

other production sectors, only a few studies Suta et al. (2010) and Mamardashvili et al. (2016) have 

employed it in the context of agriculture. The theoretical framework for the hyperbolic distance 

function is as follows: 

 

Suppose there are n (n=1,2,….,N)  decision making units, i.e.  dairy farms in this case, 

employing multiple inputs denoted by vector 𝑥𝑛 = (𝑥1𝑛,𝑥2𝑛 , … … , 𝑥𝐽𝑛 )∈𝑅+
𝐽
    to produce a vector of 
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desirable outputs 𝑦𝑛 = (𝑦1𝑛, 𝑦2𝑛, … … , 𝑦𝑀𝑛 ) ∈ 𝑅+
𝑀   and a vector of undesirable outputs 𝑠𝑛 =

( 𝑠1𝑛, 𝑠2𝑛, … … , 𝑠1𝐾𝑛) ∈ 𝑅+
𝐾. Then, the environmental production technology can be represented by 

the output possibility set T(x) given in equation (1) (Chung et al., 1997; Cuesta, et al., 2009; Zhou et 

al., 2016; Duman and Kasman, 2018).  

𝑇(x) = {(𝑥, 𝑦, 𝑠): 𝑥 ∈ 𝑅+
𝐽  𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑠);  𝑦 ∈ 𝑅+

𝑀,   𝑠 ∈ 𝑅+
𝐾}                                             (1) 

The hyperbolic environmental technology distance function (𝐷𝐻) represents the maximum expansion 

of the desirable output vector (y) and the equi-proportionate contraction of the undesirable output 

vector (s) that places a producer on the boundary of the technology (Färe et al., 1989; Cuesta, et al., 

2009). It is formally defined in equation (2). 

                𝐷𝐻(𝑥, 𝑦, 𝑠) = 𝑖𝑛𝑓 {𝜂 > 0: (𝑥,
𝑦

𝜂
, 𝑠𝜂) ∈ 𝑇}                                                                        (2)          

As indicated by 𝜂 in equation (2), the desirable and undesirable output changes in the same 

proportion but in opposite direction. The range of the hyperbolic environmental technology distance 

function is 0 <𝐷𝐻 (x, y, s) ≤ 1. Farms are said to be fully efficient if 𝐷𝐻 = 1 implying that the estimated 

observation is on the boundary of the production frontier and it will not be possible to reduce P surplus 

or increase dairy output at the same time. If the value of the distance functions is less than 1 (𝐷𝐻 <1), 

then the farm is inefficient which leaves room for enhancing efficiency of the dairy farms by 

increasing dairy output and reducing P surplus.  

Following Cuesta et al., (2009) and Mamardashvili et al., (2016), the almost homogeneity 

property can be employed to derive the hyperbolic environmental technology distance function. 

Given a set of inputs data, desirable output and undesirable output, the function can be expressed as 

given in equation (3) 

𝐷𝐻(𝑥, 𝜙𝑦, 𝜙−1𝑠) = 𝜙𝐷𝐻(𝑥, 𝑦, 𝑠), 𝜙 > 0                                                                          (3) 

Given that 𝜙  in equation (3) is greater than 0, then imposing the almost homogeneity 

condition by setting 𝜙 =
1

𝑦𝑚
 (where 𝑦𝑚 is, without loss of generality, the Mth output), the hyperbolic 

environmental technology distance function can be expressed as presented in equation (4):  

𝐷𝐻 (𝑥𝑖 ,
𝑦𝑖

𝑦𝑚
, 𝑠𝑖𝑦𝑚) =

1

𝑦𝑚
𝐷𝐻(𝑥𝑖, 𝑦𝑖, 𝑠𝑖)                                                                             (4) 

The model can be specified based on the translog functional form given that it provides a 

flexible approximation to the production technology. It is differentiable and quite amenable to the 
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imposition of almost homogeneity conditions (Cuesta and Zofio, 2005; Cuesta et al., 2009). It is also 

linear in parameters, easy to compute and has been extensively used in the empirical literature (Färe 

et al., 1989; Coelli et al., 2005; Cuesta et al., 2009; Penal, et al, 2018; Mamardashvili, et al. 2016). 

The hyperbolic distance function is specified in a stochastic frontier analysis (SFA) framework. The 

SFA provides room for the estimation of the frontier of best production practices that envelop the data 

while assuming the existence of an idiosyncratic error term. The function 𝐷𝐻(𝑥𝑖 , 𝑦𝑖, 𝑠𝑖)  is almost 

homogenous of degrees r1, r2, r3 and r4 if, 

𝐷𝐻(𝜙𝑟1𝑥, 𝜙𝑟2𝑦, 𝜙𝑟3𝑠) = 𝜙𝑟4𝐷𝐻(𝑥, 𝑦, 𝑠), ∀𝜙 > 0                                                                (5) 

From this definition the environmental hyperbolic distance function 𝐷𝐻  is homogenous of 

degrees 0, 1, −1, 1. It is non-decreasing in desirable outputs,  𝐷𝐻(𝑥, 𝜂𝑦, 𝑠) ≤ 𝐷𝐻(𝑥, 𝑦, 𝑠), 𝜂 ∈ [0.1]; 

non-increasing in undesirable output 𝐷𝐻(𝑥, 𝑦, 𝜂𝑠) ≤ 𝐷𝐻(𝑥, 𝑦, 𝑠), 𝜂 ≥ 1 and non-increasing in inputs 

𝐷𝐻(𝜂𝑥, 𝑦, 𝑠) ≤ 𝐷𝐻(𝑥, 𝑦, 𝑠),   𝜂 ≥ 1(Cuesta and Zofio, 2005; Cuesta et al., 2009). Assuming that our 

distance function 𝐷𝐻(𝑥, 𝑦, 𝑠) is continuously differentiable, to be almost homogeneous it must satisfy 

the following expression in equation (6). 

𝑟1 ∑
𝜕𝐷𝐻

𝜕𝑥𝑗

𝐽

𝑗=1

𝑥𝑗 +  𝑟2 ∑
𝜕𝐷𝐻

𝜕𝑦𝑚

𝑀

𝑚=1

𝑦𝑚 +  𝑟3 ∑
𝜕𝐷𝐻

𝜕𝑠𝑘

𝐾

𝑘=1

𝑠𝑘 =  𝑟4𝐷𝐻                                                        (6) 

Departing from equation (6) and given that the hyperbolic distance function satisfy the homogeneity 

degrees of 0, 1, −1, 1 corresponding to r1, r2, r3 and r4 respectively we have 

∑
𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑦𝑚

𝑀

𝑚=1

𝑦𝑚 − ∑
𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑠𝑘

𝐾

𝑘=1

𝑠𝑘 = 1                                                                                                (7) 

The Translog specification of the hyperbolic environmental technology distance function  𝐷𝐻(𝑥, 𝑦, 𝑠) 

following (4) takes the form; 
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𝑙𝑛𝐷𝐻(𝑥, 𝑦, 𝑠) = 𝛼0 + ∑ 𝛼𝑗

𝐽

𝑗=1

𝑙𝑛𝑥𝑗𝑖 + 
1

2
∑ ∑ 𝛼𝑗𝑗′𝑙𝑛𝑥𝑗𝑖𝑙𝑛𝑥𝑗′𝑖

𝐽

𝑗′=1

+

𝐽

𝑗=1

∑ 𝛽𝑚

𝑀

𝑚=1

𝑙𝑛𝑦𝑚𝑖

+  
1

2
∑ ∑ 𝛽𝑚𝑚′

𝑀

𝑚′=1

𝑀

𝑚=1

𝑙𝑛𝑦𝑚𝑖𝑙𝑛𝑦𝑚′𝑖 + ∑ 𝛾𝑘

𝐾

𝑘=1

𝑙𝑛𝑠𝑘𝑖 +  
1

2
∑ ∑ 𝛾𝑘𝑘′

𝐾

𝑘′=1

𝐾

𝑘=1

𝑙𝑛𝑠𝑘𝑖𝑙𝑛𝑠𝑘′𝑖

+  ∑ ∑ 𝛿𝑗𝑚𝑙𝑛𝑥𝑗𝑖

𝑀

𝑚=1

𝐽

𝑗=1

𝑙𝑛𝑦𝑚𝑖 +  ∑ ∑ 𝜓𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝑙𝑛𝑥𝑗𝑖𝑙𝑛𝑠𝑘𝑖  

+  ∑ ∑ µ𝑚𝑘

𝐾

𝑘=1

𝑀

𝑚=1

𝑙𝑛𝑦𝑚𝑖𝑙𝑛𝑠𝑘𝑖                                                                                 (8) 

The relevant partial derivatives for the translog hyperbolic distance function presented in equation (8) 

yields the elasticities  presented in equations (9) (10) and (11) 

𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑥𝑗
=  𝛼𝑗 + ∑ 𝛼𝑗𝑗′𝑙𝑛𝑥𝑗′𝑖

𝐽

𝑗′=1

+ ∑ 𝛿𝑗𝑚

𝑀

𝑚=1

𝑙𝑛𝑦𝑚𝑖 + ∑ 𝜓𝑗𝑘

𝐾

𝑘=1

𝑙𝑛𝑠𝑘𝑖 (𝑗 = 1,2, … , 𝐽)                             (9) 

𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑦𝑚
=  𝛽𝑚 +  ∑ 𝛽𝑚𝑚′

𝑀

𝑚′=1

𝑙𝑛𝑦𝑚′𝑖 + ∑ 𝛿𝑗𝑚𝑙𝑛𝑥𝑗𝑖

𝐽

𝑗=1

+ ∑ µ𝑚𝑘

𝐾

𝑘=1

𝑙𝑛𝑠𝑘𝑖  (𝑚 = 1,2, … , 𝑀)                 (10) 

𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑠𝑘
=  𝛾𝑘 +  ∑ 𝛾𝑘𝑘′

𝐾

𝑘′=1

𝑙𝑛𝑠𝑘′𝑖 + ∑ 𝜓𝑗𝑘

𝐽

𝑗=1

𝑙𝑛𝑥𝑗𝑖 +   ∑ µ𝑚𝑘

𝑀

𝑚=1

𝑙𝑛𝑦𝑚𝑖 (𝑘 = 1,2, … , 𝐾)                   (11) 

Taking 𝑦𝑜−𝑡ℎoutput as the normalising variable to satisfy the almost homogeneity condition, 

and appending a random error term, 𝑣𝑖𝑡~N (0, 𝜎𝑣
2 ) to equation (8), the stochastic translog hyperbolic 

environmental technology distance function can be specified as presented in equation (9). The model 

is enhanced by allowing for a multi-period framework making use of panel data, hence, all variables 

are indexed with a year subscript t 
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𝑙𝑛𝐷𝐻(𝑥𝑖 , 𝑦𝑖, 𝑠𝑖)

𝑙𝑛𝑦𝑚𝑜,𝑖𝑡

= 𝛼0 + ∑ 𝛼𝑗

𝐽

𝑗=1

𝑙𝑛𝑥𝑗𝑖𝑡 +  
1

2
∑ ∑ 𝛼𝑗𝑗′𝑙𝑛𝑥𝑗𝑖𝑡𝑙𝑛𝑥𝑗′𝑖𝑡

𝐽

𝑗′=1

+

𝐽

𝑗=1

∑ 𝛽𝑚

𝑀−1

𝑚=1

𝑙𝑛𝑦𝑚𝑖𝑡
∗

+  
1

2
∑ ∑ 𝛽𝑚𝑚′

𝑀−1

𝑚′=1

𝑀−1

𝑚=1

𝑙𝑛𝑦𝑚𝑖𝑡
∗ 𝑙𝑛𝑦𝑚′𝑖𝑡

∗ + ∑ 𝛾𝑘

𝐾

𝑘=1

𝑙𝑛𝑠𝑘𝑖𝑡
∗ +  

1

2
∑ ∑ 𝛾𝑘𝑘′

𝐾

𝑘′=1

𝐾

𝑘=1

𝑙𝑛𝑠𝑘𝑖𝑡
∗ 𝑙𝑛𝑠𝑘′𝑖𝑡

∗

+  ∑ ∑ 𝛿𝑗𝑚𝑙𝑛𝑥𝑗𝑖𝑡

𝑀−1

𝑚=1

𝐽

𝑗=1

𝑙𝑛𝑦𝑚𝑖𝑡
∗ +  ∑ ∑ 𝜓𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝑙𝑛𝑥𝑗𝑖𝑡𝑙𝑛𝑠𝑘𝑖𝑡
∗  +  ∑ ∑ µ𝑚𝑘

𝐾

𝑘=1

𝑀−1

𝑚=1

𝑙𝑛𝑦𝑚𝑖𝑡
∗ 𝑙𝑛𝑠𝑘𝑖𝑡

∗

+  𝑣𝑖𝑡                                                                                                                                       (12) 

Where 𝑦𝑚,𝑖𝑡
∗ =  

𝑦𝑚,𝑖𝑡

𝑦𝑚𝑜,𝑖𝑡
 ; 𝑠𝑘,𝑖𝑡

∗ =  𝑠𝑘,𝑖𝑡  × 𝑦𝑚𝑜,𝑖𝑡 .  𝛼, 𝛽, 𝛾, 𝛿, 𝜓 𝑎𝑛𝑑 µ  are the parameters to be 

estimated. Equation (12) cannot be directly estimated given that 𝑙𝑛𝐷𝐻(𝑥𝑖, 𝑦𝑖 , 𝑠𝑖)  is not directly 

observed. This problem can be solved by making use of the logarithmic properties and denoting 

𝑙𝑛𝐷𝐻(𝑥𝑖, 𝑦𝑖, 𝑠𝑖) = 𝑢𝑖𝑡  (this can be interpreted as a one-sided error term which is assumed to account 

for farm-specific effects following Aigner et al., 1977). Moving it to the right-hand side of the 

equation, an estimable form of the model can be obtained as presented in equation (13). Terms 

involving the normalising output 𝑦𝑚𝑜,𝑖𝑡 are null. This is because the ratio 𝑦𝑚,𝑖𝑡
∗  is equal to one. The 

distance function elasticity with respect to the desirable output can however be recovered by making 

use of the almost homogeneity condition (Cuesta et al., 2009). 

−𝑙𝑛𝑦𝑚𝑜,𝑖𝑡= 𝛼0 + ∑ 𝛼𝑗

𝐽

𝑗=1

𝑙𝑛𝑥𝑗,𝑖𝑡 + 
1

2
∑ ∑ 𝛼𝑗𝑗 ,𝑙𝑛𝑥𝑗,𝑖𝑡𝑙𝑛𝑥𝑗 ,,𝑖𝑡

𝐽

𝑗 ,=1

+

𝐽

𝑗=1

∑ 𝛽𝑚

𝑀−1

𝑚=1

𝑙𝑛𝑦𝑚,𝑖𝑡
∗         

+  
1

2
∑ ∑ 𝛽𝑚𝑚,

𝑀−1

𝑚,=1

𝑀−1

𝑚=1

𝑙𝑛𝑦𝑚,𝑖𝑡
∗ 𝑙𝑛𝑦𝑚,,𝑖𝑡

∗ + ∑ 𝛾𝑘

𝐾

𝑘=1

𝑙𝑛𝑠𝑘,𝑖𝑡
∗  + 

1

2
∑ ∑ 𝛾𝑘𝑘 ,

𝐾

𝑘,=1

𝐾

𝑘=1

𝑙𝑛𝑠𝑘,𝑖𝑡
∗ 𝑙𝑛𝑠𝑘,𝑖𝑡

∗

+  ∑ ∑ 𝛿𝑗𝑚𝑙𝑛𝑥𝑗,𝑖𝑡

𝑀−1

𝑚=1

𝐽

𝑗=1

𝑙𝑛𝑦𝑚,𝑖𝑡
∗  +  ∑ ∑ 𝜓𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝑙𝑛𝑥𝑗,𝑖𝑡𝑙𝑛𝑠𝑘,𝑖𝑡
∗  

+  ∑ ∑ µ𝑚𝑘

𝐾

𝑘=1

𝑀−1

𝑚=1

𝑙𝑛𝑦𝑚,𝑖𝑡
∗ 𝑙𝑛𝑠𝑘,𝑖𝑡

∗ + (𝑣𝑖𝑡 − 𝑢𝑖𝑡)                                                              (13) 
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The composed error term ε𝑖𝑡 = (𝑣𝑖𝑡 − 𝑢𝑖𝑡) includes 𝑢𝑖, the one-sided error term that captures 

environmental technical inefficiency, that is, the distance that separates a farm from the production 

frontier. It is assumed to be independently and identically distributed across observations.  𝑣𝑖𝑡 is the 

standard random term which captures the statistical noise and is assumed to be symmetrically  

distributed around zero, 𝑣𝑖𝑡 ~N(0, 𝜎𝑣
2  ). To obtain an unbiased estimates of the frontier function’s 

parameters as well as the estimates of inefficiency, we assumed the existence of heteroskedasticity in 

the inefficiency 𝑢𝑖𝑡 and in the parameter of the idiosyncratic error term 𝑣𝑖𝑡 as presented in equations 

(14) and (15) (Caudill, et al., 1995; Hadri 1999; Kumbhakar and Lovell, 2000; Wang and Schmidt, 

2002; Belotti et al, 2013). 

𝜎𝑢𝑖
2 = exp(𝑧𝑖

′𝜑)                                                                                                                       (14) 

𝜎𝑣𝑖
2 = exp (ℎ𝑖

′𝜙)                                                                                                        (15) 

Where 𝑧𝑖
′and ℎ𝑖

′ are vectors of variables that affect the variance of the two error terms and 𝜑 

and 𝜙 are vectors of parameters to be estimated.  

Shadow price estimation 

To obtain the shadow price of P surplus, we employed the Shephard duality lemma between 

the stochastic hyperbolic distance function and the maximisation of the profitability function 

(Shephard, 1970; Färe et al., 2002).  

Given 𝑦𝑚 as the vector of desirable outputs and 𝑝𝑚 as its corresponding prices, the shadow 

price of P surplus can be derived from the profitability maximising function presented in equation 

(16) (van Ha et al., 2008; Cuesta et al., 2009; Mamardashvili et al., 2016).  

𝜌(𝑥, 𝑦, 𝑠) = max
𝑦,𝑠

{𝑝𝑚𝑦𝑚/𝑝𝑠𝑠: 𝐷𝐻(𝑥, 𝑦, 𝑠) ≤ 1}                                                               (16) 

Differentiating with respect to 𝑦𝑚 and 𝑠 respectively by taking the first order condition, where 𝑝𝑠the 

(unknown) price of the undesirable output and λ is the Lagrange multiplier we have: 
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𝑝𝑚

𝑝𝑠𝑠
= 𝜆

𝜕𝐷𝐻(𝑥, 𝑦, 𝑠)

𝜕𝑦𝑚
, 𝑚 = 1,2 … , 𝑀                                                           (17) 

−
∑ 𝑝𝑚𝑦𝑚

𝑀
𝑚=1

𝑝𝑠𝑠2
=  𝜆

𝜕𝐷𝐻(𝑥, 𝑦, 𝑠)

𝜕𝑠
                                                                 (18) 

 

Taking the ratio of the last condition to any first-order condition in the first set, we have 

 

 

∑ 𝑝𝑚𝑦𝑚
𝑀
𝑚=1

𝑠
= −𝑝𝑚

𝜕𝐷𝐻(𝑥, 𝑦, 𝑠)
𝜕s

𝜕𝐷𝐻(𝑥, 𝑦, 𝑠)
𝜕𝑦1

                                                          (19) 

 

Given that the frontier of the production possibility set is a representation of the locus of points 

for which the distance function is equal to unity, the ratio of partial derivatives on the right-hand side 

of equation (19) can be expressed as the slope of the relationship between 𝑦𝑚and s at the frontier. 

That is, by applying the implicit function theorem on the distance function, the equation becomes; 

𝑝𝑚

𝜕𝐷𝐻(𝑥, 𝑦, 𝑠)
𝜕s

𝜕𝐷𝐻(𝑥, 𝑦, 𝑠)
𝜕𝑦𝑚

= 𝑝𝑚

𝑑𝑦𝑚

𝜕𝑠
]

𝐷𝐻(𝑥,𝑦,𝑠)=1
                                                            (20) 

 

This can be interpreted as the shadow price of s in terms of 𝑦𝑚. That is, the extent to which 

the revenue from desirable outputs 𝑦𝑚 is reduced if the undesirable output s is reduced by one unit 

when the point (x, y, s) is on the production frontier. Given that the shadow price is estimated on the 

frontier, the values refers to the marginal abatement cost for the most efficient farms since farms 

operating below the frontier are able to reduce undesirable output without reducing the desirable 

output.  

Nutrient budget methodology 

In estimating P surplus, we used the OECD/Eurostat soil surface budget methodology. A 

detailed description of the methodology is given in Adenuga et al., (2018b) and is therefore described 

only briefly in this paper. It is estimated as the difference between total P input into the soil from 

chemical fertiliser, livestock manure and seeds and total P output from the soil in the form of grazed 
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grass, crop production, hays and silages. A complex part of this methodology is in the estimation of 

nutrient output from grazed grass. Previous studies have employed expert judgement, and assuming 

a fixed amount of nutrient output per hectare (Humphreys et al, 2008; Loro et al, 2013). However, 

such an assumption does not take into consideration the differences in the production management 

systems across the dairy farms. To overcome this deficiency, we developed a nutrient requirement 

model based on the difference between the net energy (NE) provided by feed purchased from off the 

farm (dry matter of concentrates and forages) and the total NE requirements of livestock on the farm 

for, maintenance, milk production, pregnancy and other activities. This was used to estimate nutrient 

output from grazed grass. It can be described as a back-calculation approach based on the number of 

grazing animals on the farm, the area under consideration and milk production data (McCarthy et al., 

2011). The NE supplied by grass can be obtained by subtracting the total NE from feed (concentrates 

and supplements), from the total NE requirement for all grazing livestock on the farm (McCarthy et 

al., 2011). The total NE requirements, converted to units of feed for lactation (UFL) and adapted to 

local farm conditions, are computed based on relevant equations published in the National Research 

Council (NRC) publication on “nutrient requirement for dairy cattle” (NRC, 2001). It was assumed 

that 1 kg dry matter of grass equals 1 unit of feed for lactation (UFL) (McCarthy et al., 2011). Stocking 

rate was expressed in terms of livestock units (LU) per hectare. The amount of nutrient output from 

grass was subsequently obtained by multiplying the quantity of grazed grass by the P coefficients in 

grass (Eurostat, 2013).  

Data and empirical specification of the model           

Study Area 

 The study was carried out in Northern Ireland (Latitude: 54°38'N. Longitude: 6°13'W). 

Northern Ireland is located in the north-east of the island of Ireland with six administrative counties. 

It is also the smallest region of the United Kingdom with a population of 1.87 million people which 

make up about 28% of the island of Ireland’s total population (NISRA, 2018). The Northern Ireland 

landscape is dominated by two large lakes (Lough Neagh and Erne), which together drain 

approximately 6000 square kilometres or 40 per cent of the land area of Northern Ireland plus a further 
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2500 square kilometre of the Republic of Ireland (Dairyman, 2011). Figure 1 shows the map of the 

study area.   

 

 

 

Analytical Techniques                                                            

  The empirical specification of the stochastic hyperbolic environmental technology distance 

function following Aigner et al, (1977) is presented in equation (26). Where i = 1, 2,…N represents 

the observed dairy farms in time t = 1, 2,….,T time periods. The study employed unbalanced panel 

dataset (2009-2014) obtained from the Northern Ireland Farm Business Survey (FBS, Northern 

Ireland) as part of the EU Farm Accountancy Data Network (FADN) requirements. The data consist 

of 498 observations from 83 specialist dairy farms.  To impose the almost homogeneity condition, the 

milk output (𝑦1,) was chosen for normalising. A time variable to capture the presence of neutral 
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technical change as well as other temporal effects is also incorporated. The equation was analysed 

assuming heteroskedasticity of the inefficiency as well as in the parameter of the idiosyncratic error 

term (Battese and Coelli 1995; Wang and Schmidt 2002; Cuesta et al. 2009).  

 

−𝑙𝑛𝑦1,𝑖𝑡 = 𝛼0 +  ∑ 𝛼𝑗

5

𝑗=1

𝑙𝑛𝑥𝑗,𝑖𝑡 +  
1

2
∑ ∑ 𝛼𝑗𝑗 ,𝑙𝑛𝑥𝑗,𝑖𝑡𝑙𝑛𝑥𝑗 ,,𝑖𝑡

5

𝑗 ,=1

+

5

𝑗=1

𝛽2𝑙𝑛
𝑦2,𝑖𝑡

𝑦1,𝑖𝑡
+

1

2
𝛽22 (𝑙𝑛

𝑦2,𝑖𝑡

𝑦1,𝑖𝑡
)

2

+ 𝛾𝑜 ln(𝑠𝑖𝑡𝑦1,𝑖𝑡) +  
1

2
𝛾𝑜𝑜(ln(𝑠𝑖𝑡𝑦1,𝑖𝑡))

2

+ ∑ 𝛿𝑗2

5

𝑗=1

𝑙𝑛𝑥𝑗,𝑖𝑡𝑙𝑛
𝑦2,𝑖𝑡

𝑦1,𝑖𝑡

+ ∑ 𝜓𝑗𝑜𝑙𝑛𝑥𝑗,𝑖𝑡 ln(𝑠𝑖𝑡𝑦1,𝑖𝑡)

5

𝑗=1

+ µ2𝑜𝑙𝑛
𝑦2,𝑖𝑡

𝑦1,𝑖𝑡
ln(𝑠𝑖𝑡𝑦1,𝑖𝑡) +  ∑ 𝜌𝜏𝑑𝜏

𝑡

𝑇

𝜏=1

+ (𝑣𝑖𝑡 − 𝑢𝑖)                                                                                                               (21) 

 

The equation is estimated based on the Green (2005) time varying fixed effect model which 

allows one to disentangle time varying inefficiency from unit-specific time-invariant unobserved 

heterogeneity (Green, 2005; Belloti et al., 2013). The conditional distribution of the inefficiency 

component was obtained following a truncated normal distribution. The inefficiency component, was 

specified as a function of explanatory variables, including farm-specific characteristics and policy 

variables. The parameters of the stochastic frontier and the determinants of inefficiency were 

simultaneously analysed in a single step procedure. This has been noted to be a better approach than 

the two-step procedure which has been shown to result in biased results (Wang and Schmidt, 2002; 

Greene, 2012; Belotti et al, 2013).  

 Following standard practice in the literature, all variables apart from the time variable were 

scaled by their geometric mean to avoid convergence issues in the maximum likelihood algorithm 

and allow for the interpretation of the estimated first order parameters as elasticities at the sample 

mean of the data (Färe et al., 2005; Cuesta, et al., 2009). The variables measured in monetary units 

were corrected for inflation using the appropriate annual producer price indices published by 

Department of Agriculture, Environment and Rural Affairs (DAERA, 2018). The time invariant 

efficiency estimates EE was calculated for each farm by using the point estimator proposed by Battese 

and Coelli (1988) given in equation (27):  
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𝐸𝐸 = 𝐸(𝑒−𝑢𝑖|휀𝑖)                                                                                                         (22) 

Where E is the mathematical expectation operator. The analysis was done using STATA 

statistical software (Belotti et al., 2013). The variables considered in the analysis are based upon the 

production process of specialised dairy farms. The five inputs included in the specification of 

hyperbolic environmental technology distance function include:  

i. total utilized agricultural area measured in hectares; 

ii. the number of livestock units on the farm measured in standardized livestock units 

(LU);  

iii. capital measured in terms of depreciation values for building and machinery; 

iv. variable inputs which consist of costs of livestock feed, fertilizers, seed and others 

measured in monetary units and  

v. labour measured in standardized labour units.  

The desirable outputs are: 

i. revenue from the sales of milk and  

ii. revenue from the sales of other outputs (sales of crops and other livestock).  

The undesirable output  

i. nitrogen surplus estimated based on the soil surface balance approach and measured in Kg. 

To analyse the determinants of environmental technical efficiency, a number of farm character-

istics obtained from the empirical literature were included in the model. The following variables were 

hypothesized to influence environmental technical efficiency. They include: age of the farmer (Z1), 

stocking density (Z2), milk sales as a share of total revenue (Z3), the cost of concentrates (Z4), farm 

size (Z5), land type (Z6), and access to environmental subsidy. (Z7).  It was hypothesized that the age 

of the farmer should have a negative relationship with environmental technical efficiency. This is on 

the basis that younger farmers are usually more amenable to adoption of sustainable dairy production 

practices (Mbehoma and Mutasa, 2013). We expect stocking density to have a negative effect on 

environmental technical efficiency as a high stocking density is likely to result in increased manure 

input to the soil per hectare of utilised agricultural area. The share of revenues from milk production 

was included in the model to capture the effect of degree of specialisation in milk production on 

environmental technical efficiency. We hypothesized a positive effect of the share of revenue from 
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milk on environmental technical efficiency as the more specialised farms are expected to be more 

amenable to adoption of improved environmental technology adoption. Increasing the amount of con-

centrates fed per dairy cow could result in increased amount of P going to the soil from manure. As 

a result, we hypothesized that it will have a negative relationship with environmental technical effi-

ciency. We expect higher efficiency for farmers with larger farm size (z5), which may indicate having 

more land to spread excess manure. Farm land is categorised into two types in the study, namely 

farms in less favoured areas (severely disadvantaged (SDA) and disadvantaged (DA) areas) and farms 

on lowland. The land type variable was measured as a dummy variable in the model. It is hypothesized 

that farms on lowland should have a positive relationship with environmental technical efficiency. 

Finally, we hypothesize a positive effect of access to environmental subsidy on environmental tech-

nical efficiency as the subsidy should provide farmers with more fund to comply with environmental 

regulations aimed at maintaining the environment. We were unable to include more variables in the 

model due to unavailability of data. Nevertheless, their effects will be controlled for in the fixed effect 

specification adopted for this study. The following variables were included in the model to account 

for heteroscedasticity of 𝑣𝑖𝑡. They include: age of the farmer (h1); milk yield (h2); amount of concen-

trates (h3); and land type (h4). A summary statistic of the variables included in the model is given in 

Table 1 
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                Table 1: Structural and socioeconomic variables (averages across 6 years period) 

Variables Mean SD 

Desirable outputs    

Dairy gross output (£) 218762.00 238145.1 

Other outputs (£) 57859.80 40749.27 

Inputs   

Utilised agricultural area (ha) 81.18 51.93 

Variable Input (£) 147667.5 183408.6 

Capital Overhead costs (£) 81889.89 73508.75 

livestock Units(LU/ha) 163.46 125.59 

Herd size (Cow) 106.60 84.02 

Labour units 1.73 0.80 

Undesirable output   

Gross phosphorus balance (Kg/ha) 13.56 10.95 

Socioeconomic and Structural variables   

Milk yield (litres/cow) 6513.19 1175.34 

Age(years) 59.61 12.97 

Stocking density(LU/ha) 2.11 0.54 

Concentrates fed (£) 81994.3 103217 

 

Results and discussions 

The parameter estimates and associated standard errors of the parametric hyperbolic distance 

function model are presented in Table 2. Most of the parameters are statistically significant at the 1% 

level. Considering the negative sign of the left side variable “𝑙𝑛𝑦1,𝑖𝑡” in equation (21), the parameter 

estimates (distance elasticities) of inputs, other outputs and undesirable outputs variables in the model 

all possess the expected sign at the mean of the data. For example, the positive sign of the other output 

parameter implies that for a given input vector x and undesirable output vector s, an increase in 

outputs will bring the observation closer to the production frontier. On the other hand, the negative 

sign of the undesirable output parameter implies that for a given output vector y and input vector x, 

an increase in undesirable output will move the observation to the right, and further away from the 

production frontier (farms become less efficient). Likewise and all things being equal, the negative 

sign of the inputs parameters implies that increase in inputs moves the boundary of production 

possibilities set upward such that the observation become further away from the production frontier. 

On the basis of these results, the monotonicity conditions are fully satisfied at the sample mean for 

the estimated hyperbolic environmental technology distance function (Skevas et al., 2018; Cuesta 

and Zofío, 2005). 

 



17 

 

 Table 2: Parameter estimates of the hyperbolic environmental technology distance function 
Parameter Estimate Std. Err 

𝛼1 (labour) -0.051 .047 

𝛼2 (land) -0.031 0.071 

𝛼3 (capital) -0.817*** 0.044 

𝛼4 (livestock units) -0.354*** 0.089 

𝛼5 (variable inputs) -0.381*** 0.048 

𝛼11 -0.119 0.111 

𝛼22 0.057 0.176 

𝛼33 -0.252 0.502 

𝛼44 0.077 0.216 

𝛼55 0.114 0.349 

𝛼12 0.042 0.112 

𝛼13 0.232 0.207 

𝛼14 0.031 0.115 

𝛼15 -0.411*** 0.157 

𝛼23 .066 .194 

𝛼24 -0.069 0.141 

𝛼25 -0.169 0.159 

𝛼34 0.078 0.246 

𝛼35 0.209 0.345 

𝛼45 -0.105 0.174 

𝛽2(other output) 0.349*** 0.022 

𝛽22 0.103*** 0.014 

𝛾𝑠(phosphorus surplus) -0.045*** 0.009 

𝛾𝑠𝑠 -0.013* 0.007 

𝛿12 0.059 0.065 

𝛿22 -0.077 0.069 

𝛿32 0.279*** 0.099 

𝛿42 -0.198*** 0.074 

𝛿52 -0.145* 0.082 

𝜓1𝑠 0.040* 0.021 

𝜓2𝑠 0.002 0.029 

𝜓3𝑠 -0.017 0.052 

𝜓4𝑠 -0.039 0.035 

𝜓5𝑠 0.061** 0.028 

µ2𝑠 0.017* 0.010 

𝜌𝜏 -0.028*** 0.005 

𝛼0(constant) -0.010 0.015 

Heteroskedasticity in σu   

φ1 (age) -0.031** 0.015 

φ2 (stocking density) 0.315 0.392 

φ3 (milk share) -5.677*** 0.810 

φ4 (concentrates value) 0.00001*** 4.19e-06 

φ5 (farm size) -0.0014 0.0059 

φ6 (land type) -0.2562 0.4495 

φ7 (environmental subsidy) 0.5877 0.5289 

φ0 (constant) 3.3406** 1.3596 

   

Heteroskedasticity in σv   

𝜙1 (age) 0.0381**** 0.0126 

𝜙2 (milk yield) -0.00006 0.00015 

𝜙3 (concentrates value) -9.55e-07 1.78e-06 

𝜙4 (land type) 0.0659 0.3541 

𝜙0 (constant) -7.4323*** 1.1469 

Log-Likelihood 468.88  

Mean EE 0.93  

SD 0.06  

Min. 0.70  

Max 1  

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% 
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The results of the analysis showed that the average environmental technical efficiency 

estimates of dairy farms in Northern Ireland is 0.93. The standard deviation of 0.06 reflects a low 

level of heterogeneity in environmental technical efficiency across the dairy farms. Similar results 

was obtained by Adenuga et al., (2018b) in which they employed the directional distance function 

approach to analyse the environmental technical efficiency for dairy farms on the island of Ireland. 

This estimate gives an indication of how far the inefficient dairy farms are from the production frontier. 

It implies that on the average, dairy farmers in the country can improve their productive performance 

by increasing desirable output from dairy production by 7.53% (1/0.93= 1.075) and simultaneously 

contract P surplus by 7% (1-0.93=0.07) using current technology. The histogram of the hyperbolic 

efficiency estimates exhibits a left-skewed pattern with a minimum efficiency of 70.3% indicating 

that the least efficient farm can increase revenue from milk production by as much as 42% while 

simultaneously reducing P surplus by 29.7% (Figure 2).  

The results imply that a reasonable percentage of the dairy farms are highly efficient. The 

relatively high level of efficiency may have resulted from the fact that milk quota wasn’t binding in 

Northern Ireland during the milk quota years such that they were able to increase revenue from milk 

production by  increasing cow numbers and milk yield per dairy cow. The parameter estimates of the 

year variable (𝜌𝜏), which is intended to capture the neutral technical change has the expected negative 

sign and was statistically significant providing evidence of technical progress in Northern Ireland’s 

dairy farms over the years considered. The result implies that the efficient farms are able to increase 

dairy production output while making use of more environmentally friendly technologies.  
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Figure 2: Distribution of environmental technical efficiency in dairy farms 

 
 
Determinants of environmental technical efficiency 

 

The set of parameters (φ1- φ7) presented in Table 2 explains the determinants of environmental 

technical efficiency. A negative parameter sign implies that the variable has a negative relationship 

with environmental technical inefficiency and consequently increases efficiency when the variable is 

increased by one more unit and vice versa. Our results showed that the age of the farmer has a 

significant negative influence on environmental technical efficiency. This implies that the older 

farmers are more efficient compared to the younger farmers. This does not conform to our a priori 

expectation. The reason may be that the older farmers are more experienced and conservative such 

that they ensure better management of nutrients. Besides, with an average age of 59 years, a good 

number of the farmers are still active, hence could make good use of their experiences to improve 

environmental technical efficiency. Reinhard et al, (1999) and Weersink et al, (1990) obtained a 

contrasting results in measuring the relationship between age and technical efficiency where they 

found younger farmers to be more efficient than the older farmers.  

We find a positive and significant relationship between amount of concentrates fed per dairy 

cow and environmental technical inefficiency.  This implies that an increase in the use of concentrates 

has a negative impact on environmental technical efficiency. This result is in contrast to that obtained 

by studies which estimated technical efficiency of dairy farms without incorporating undesirable 

output such as P surplus in the modelling framework. For example Bajrami et al., (2017); Ma et al., 

(2018), Cabrera et al., (2010) found significant, positive relationship between feed use intensification 

and technical efficiency. The result of this study has shown that the reverse occurs in the case of 
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environmental technical efficiency. Our result is in line with that obtained by Reinhard et al, (2002) 

in which they found feed use intensification to be negatively related to environmental efficiency. The 

implication of this result is that excess use of concentrates in dairy farms especially considering the 

P content of the concentrates can have detrimental effect on the environment. This result also confirms 

the suggestion by Ma et al., (2018), that intensification of dairy farms might be associated with 

negative environmental effects. The negative relationship may have resulted from the fact that during 

the milk quota years, quota was not a constraint in Northern Ireland such that dairy farms increased 

milk output by increasing the use of concentrates and reducing feed intake from grazed grass. This 

results in more nutrient going into the soil from manure than it is taken out from it in form grazed 

grass.  

The share of revenue from milk production was also found to have a statistically significant 

effect on environmental technical efficiency. This is in line with our a priori expectation implying 

that farms with greater share of revenue from milk are more efficient. This may have resulted from 

the notion that the more specialised dairy farms generates more revenue from the desirable outputs 

such that the ratio of ratio of desirable to undesirable output is higher resulting in higher level of 

environmental technical efficiency. Similar results were obtained by Skevas et al., (2018). 

Although the sign of the land type variable implies that land quality has a positive relationship 

with environmental technical efficiency, it is not statistically significant. This implies that there is no 

statistically significant difference in environmental technical efficient between lowland and less 

favoured area dairy farms. This may have resulted from the fact that majority of dairy farms in 

Northern Ireland are located on good land. Stocking density and farm size although with the expected 

sign were also not statistically significant.   

Shadow price and pollution cost of P surplus in dairy farms.  

 

The results of the shadow price analysis based on equation (19) is presented in Table 3. The 

values represent a measure of the amount that has to be given up by a farm in order to reduce P surplus 

by one additional unit. The frontier shadow price was inflated by multiplying the ratio of the average 

value of output by the average value of P surplus because all input and output variables have been 

normalized to estimate the unknown parameters (Färe et al., 2005; Tang et al. 2016). The price of the 

desirable outputs in the model are also implicitly normalised to 1 given that they are measured in 

monetary units (Mamardashvili et al., 2016; Tang et al., 2016).  
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                 Table 3: Shadow price and pollution cost ratio of P surplus in dairy farms  

Year Shadow  price((£/kg)) Pollution cost ratio 

2009 5.26 (10.12) 0.02 (0.10) 

2010 9.47 (11.41) 0.05(0.07) 

2011 10.85 (10.91) 0.04(0.05) 

2012 13.60 (10.42) 0.05(0.06) 

2013 17.28(12.67) 0.09(0.12) 

2014 15.93(10.69) 0.07(0.07) 

Average 12.29(11.74) 0.05(0.08) 

                    Standard deviations are in brackets 

 

The marginal abatement cost (shadow price) evaluated at the mean of the data was £12.29/Kg. 

This implies that on the average, £12.29 of revenue from milk production has to be given up to reduce 

P surplus by 1Kg. It must be emphasized that for farms bellow the frontier, their shadow price will 

be zero because this group of farms can still reduce P surplus without reducing revenue. The 

distribution of the shadow price estimate shows that a good number of the dairy farms have their 

shadow price around the average. However, a good number of the farms also have values above the 

average shadow price with reasonable degree of variation in the spectrum of shadow prices across 

the dairy farms. For example, the 25th percentile is 5.08 £/kg, while the 75th percentile is 19.79 £/kg 

and the maximum value is 56.41 £/kg (Figure 3). About 10% of the observations had negative shadow 

values. Mamardashvili et al, (2016) and Bokusheva and Kumbhakar (2014) also obtained negative 

values in their estimation of shadow value of N surplus in dairy farms. It is argued that a negative 

shadow price is feasible if pollution abatement is implemented in compliance with the regulations 

because there is a resource-use for abatement (Van Ha et al., 2008; Mamardashvili et al., 2016) 

Figure 3: Distribution of shadow price of P in dairy farms 
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We estimated the P pollution abatement cost per farm by multiplying the derived average 

shadow price of P surplus by the average estimated volume of P surplus per farm for each year. With 

a threshold of 5Kg/ha, the value beyond which P surplus becomes a problem (Bailey, 2016), the 

results of our estimation showed that for an efficient farm (i.e. farms at the hyperbolic production 

frontier) it will cost about £20,624 per farm to abate P surplus to the 5Kg/ha threshold. These values 

constitute about 7.5% of revenue from dairy production output over the stipulated time period.  

Also, to be able to relate pollution costs to dairy production output, we computed the pollution 

costs ratio for each farm. An average pollution cost ratio is obtained by dividing the aggregated 

pollution cost by the aggregated value of output from dairy production. The results are also presented 

in Table 3. It can be observed from the results that there has been a relative increase in the shadow 

price of P surplus and pollution cost ratio over the years considered. This implies that it has become 

increasingly costly to reduce P surplus in the dairy farms. This upward trend in shadow price of P 

surplus is consistent with those of previous studies for example, Hailu and Veeman (2000), Shaik et 

al., (2002), Bokusheva and Kumbhakar (2014), and Adenuga et al, (2018c) in which they found 

increasing shadow prices for nutrient surplus over time. In the interpretation of our results, it should 

be noted that the estimated shadow price is a measure of opportunity costs based on the assumption 

of full efficiency of the dairy farms. That is, farms located on the production possibility frontier. The 

implication of this is that the average shadow price of farms located within the production frontier 

may not be as high as what we have estimated. (Murty et al. 2007). 

Conclusion 

This study analysed the environmental technical efficiency and shadow price of P surplus in 

dairy farms employing the hyperbolic environmental technology distance function in a stochastic 

frontier analysis framework. The methodology allows for the internalisation of negative externalities 

(P surplus) in the specification of the production function. The model simultaneously account for the 

expansion of desirable outputs (milk and other outputs) and reduction in undesirable outputs (P sur-

plus) thereby providing a standardized environmental technical efficiency index for each decision 

making unit. The empirical analysis was based on unbalanced panel data set of 83 dairy farms ob-

served over the period of 2009-2014. 

 Our results revealed that dairy farms operating below the production frontier in Northern 

Ireland have the potential to improve their productive performance by simultaneously increasing de-

sirable output and reducing P surplus in the production process. Intensification resulting in increased 

use of concentrates feed was found to be negatively related to environmental technical efficiency. We 

also found that age of the farmer and share of milk output in total production have a positive relation-

ship with efficiency. This study has shown that intensification resulting  from increasing use of feed 

concentrates in the dairy diet might results in higher animal productivity and higher desirable output 
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production at the farm level, it nevertheless also have a detrimental effect on the environment if not 

properly managed. It therefore means that appropriate strategies must be put in place by the govern-

ment to ensure improved concentrates use efficiency in dairy farms for example by reducing the P 

content of dairy concentrates and improving the genetic potentials of the dairy cows.  The results of 

the study also provide a possibility for the internalisation of negative externalities in dairy production 

in Northern Ireland as it gives an indication of how much has to be given up in order to abate one 

more unit of P surplus in each farm.  

Finally, it is worth noting that the estimation of the shadow price is based on the assumption 

that farms are operating on the frontier such that, they cannot reduce P surplus without reducing 

desirable outputs. However, as shown by the environmental technical efficiency estimates, farms op-

erating below the frontier can reduce P surplus without reducing desirable output. The measurement 

of the level of environmental technical efficiency of the dairy sector would improve the knowledge 

of sustainable dairy production systems and aid in the understanding of livestock sector impacts. The 

derived results will also help policy makers in understanding the trade-offs between the desirable and 

undesirable outputs when farm-level inefficiencies are eradicated, assisting them in devising balanced 

policies to improve current operations and enhance sustainability.  
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