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Optimal Agricultural Pest Management 
with Multiple Species 

Michael E. Wetzstein, Philip Szmedra, Wesley N. Musser, and 
Charlene C. J. Chou 

Increased concern for the environmental ef-
fects of pesticides has led to considerable 
interest in optimal management strategies for 
controlling pest populations affecting agricul-
tural production. This issue has been consid-
ered by a number of researchers (Feder and 
Regev; Hall and Norgaard; Hueth and Regev; 
Lazarus and Swanson; Marsolan and Rudd; 
and Talpaz and Frisbie). With the exception of 
Feder and Regev, these studies considered 
only one species. This approach involves seri-
ous limitations since a grower is generally con-
fronted with multiple species during the pro-
duction period. For example, insect prey-
predator relationships may exist in the field 
(Feder and Regev). Alternatively, as an insect 
pest develops through a number of growth 
stages, multiple pests in effect exist (Reichel-
derfer and Bender). 

The biological interaction of multiple 
species influencing a management strategy has 
been examined by Larkin (1966), and Shoe-
maker (1973a, 1973b). However, investiga-
tion of the economic implications of species 
interaction influencing a producer's manage-
ment strategy has received limited attention. 
Feder and Regev were concerned only with 
interactions occurring between a prey-
predator relationship and did not consider the 
case of multiple pests. 

The objective of this paper is to extend the 
theoretical models of earlier research to ac-
commodate multiple species. A general dy-
namic model of two pests with interaction is 
specified in an optimal control framework. 
The maximum principle is utilized to derive 
theoretical solutions for the problem which 
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illustrates the impact of multiple species on 
optimal pest management strategies. 

Basic Theoretical Model 

A common concept of pest management is to 
utilize economic thresholds based on pest 
population levels and economic returns from 
pest control. Management programs of this 
type involve multiperiod analyses and are 
necessarily dynamic. Our approach assumes 
producers operate within a multi-period op-
timization framework. Producers control deci-
sions influence two insect species, one possi-
bly a beneficial, and the other a pest, or alter-
natively, one species with two distinct growth 
stages, in a single crop environment. The 
planning horizon is one growing season with 
the season partitioned into periods beginning 
in period t0 and ending in period T. 

Given a two-species, one-crop management 
model, the state variables of the system at the 
beginning of period t are: 

qt = measure of plant yield, 
xlt — the density of species 1, and 
x2t — the density of species 2. 

The producer in each time period has control 
of ut, a species control input, which is a com-
posite of various control inputs directed at the 
species. For example, ut may be composed of 
various insecticides for controlling an insect 
pest. 

The objective of the model is to maximize 
the net benefits or net returns over a growing 
season with other control inputs besides 
species control inputs at their optimal levels. 
Given a concave benefit function B(qT) and a 
convex cost function c(ut) the objective is to: 

T-l 
(1) Maximize   B(qT) —  ^ c(ut)  . 

T=to 
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The basic problem includes three sets of con-
straints in difference equation form. Two con-
straint sets represent the species control equa-
tions. These constraints model the effect of 
the control inputs on the population level of a 
species from period t to t + 1 and are given by: 

(2) xn-t-i = xlt + f Kxu, x2t, ut, t), 
(i =  1,2) (t = to, . . . , T -  1), 

where f' is the change in the species popula-
tion. Equation (2) is a very simplified differ-
ence equation for resource level determina-
tion. Similar models have been employed by 
Hall and Norgaard, and Hueth and Regev. The 
main difference in these equations, compared 
with previous models, is the inclusion of pos-
sible species interaction. For example, Xj 
could be a predator to xt resulting in fxjt1 < 0. 
Other properties of f * are fxit* > 0 and fut

! ^ 0. 
The argument t enters explicitly in (2) since 
the species population level may change 
through time. 

The third constraint set corresponds to the 
plant growth equations. Plant growth at t + 1 
is, 

(3) qt+i = qt + w(qt, xu, X2t, t), 
(t = to, . . . , T - 1), 

where w is the increase in plant size from t 
to t + 1 given any damage that may have 
occurred during this interval. If xlt is a pest 
then wXit < 0, if it is a beneficial then wXit > 0. 
Equation (3) is, once again, a common plant 
growth equation with the main exception 
being the influence of multiple species. In 
most applications, qx is actual final output of 
the crop and qt is potential final output as-
sessed in period t. 

Optimal Control Problem 

The optimal control problem is one of max-
imizing (1) subject to constraint sets (2) and 
(3). To find the necessary conditions to this 
maximization problem a procedure analogous 
to static optimization with Lagrange multi-
pliers is used. The constraining relations must 
hold at each t over the entire interval t0 to T, 
so a multiplier function rather than a single 
Lagrange multiplier for each constraint is em-
ployed. The Lagrangean function is then, 
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(4) L =   ^    H +  Xt+,(qt - qt+1) 
t=t0 . 

2 1 
+ 2 rit+i(Xit - xit+1) 

i=l J 
where X and yt are known as costate, aux-
iliary, adjoint or influence variables and are 
the dynamic equivalents of the Lagrange mul-
tipliers of static problems. H, the Hamiltonian 
function, is, 

(5) H = -c(ut) + Xt+1w(qt, X«, X2t, t) 
2 

+  X Tfc+if *(Xlt, X2t, ut, t). 
i=l 

The Hamiltonian function is defined as the 
intermediate function, c(ut), of the objective 
functional plus the product of the costate vari-
ables and functions defining the rate of change 
of the state variables. Imagine H to be multi-
plied by A, a change, then H is the sum of the 
total cost incurred in the interval A plus the 
accrual of the state variables during the inter-
val valued at their marginal values. Thus, AH 
is the total contribution of the activities that go 
on during the interval A, including both the 
direct effect to the objective functional and the 
change in the value of the state variables dur-
ing the interval. Differentiating (4) with re-
spect to ut and equating the derivative to zero 
results in the following necessary condition. 

(6) aL/3ut = — flc/dut + yit+ifut1 
+ T2t+1 fut

2 = 0, 

This states that along the optimal path of the 
decision variable at any time the marginal 
short-run effect of a change in decision must 
just counter-balance the effect of that decision 
on future benefits. Therefore, ut should be 
chosen so that the marginal immediate cost 
just equals the marginal long-run benefit, 
which is measured by the increment in the 
total value of the objective functional, (-yit+i, 
721+1), multiplied by the effect of the decision 
on the change in the state variables. The re-
maining necessary conditions are obtained by 
differentiating (4) with respect to qt and Xn- 

(7) dL/3qt = Xt+iwqt + Xt+1 — Xt = 0, 

(8) dL/aXu = Xi+iw  + -yit+ifxitxit
1 

+ yat+ifxn2 + yit+1 - y^ = o, 
(i = 1,2). 

The rates at which the value of a state vari-
able are changing are given by — (Xt+1 — Xt) 
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and -(yit+1 — 7u). Equations (7) and (8) assert 
that when the optimal time path of changes in 
the state variable is followed, the change in 
value of a unit of the state variable in a short 
interval of time is its contribution to enhancing 
the value of the state variable at the end of the 
interval. Or expressed in a different manner, 
systemic changes in crop and insect states op-
timally controlled, will lead to conditions in 
each subperiod within the production horizon, 
which will generate the necessary conditions 
for optimality at the end stage. These rates can 
also be interpreted as the loss that would be 
incurred if the change in a state variable were 
postponed for a short time, or alternatively the 
net contribution of change in the level of the 
state variables to future benefits. Finally, the 
transversality conditions for this model are, 

(9) XT = dB/aqT = 0, and yiT 
= dB/dXiT = 0,     (i = 1,2). 

The economic interpretation of these condi-
tions is clarified by obtaining the following 
expressions for A.t, ylt and y2t from equations 
(7) through (9), (see Appendix): 

(10) A.t = (aB/aqT)OqT/3qt), and 

(11) yit = Et
l+ At1 

where: 

Et1 =   JT   (aB/aqT)(aqT/aqr+1) 
r=t 

(aqr+j/dXir) ( aXir/aXit), 
T-l 

A,' =  2 /V 
r=t 

JEr+1
k +    £   D f̂in-i1 

I r=t+l \ 

+   ]T   Dr(Er+1* +   £   Dp^E^1 
r=t+2 V r=t+3 V 

T-l T-l \Y\1 
+   £   Dr' . . .   +   X   IVE,"        , 

r=t+4 r=t-l ///} 

(i   ^   k;   i,   k   =   1,   2),   and   Dr*   =   (axktW 
axir) (axir/axit). 

Equation (10) can be clearly interpreted. \t 
is the additional level of benefits received from 
a given amount of plant growth in period t. 
Equation (11) is, however, a bit more com-
plex. This equation measures the effect that 
species population levels exert on plant 
growth and thus on net benefits. Interaction 
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between the species is measured by the expres-
sion, At1. Given independence between the 
species, i.e., no interaction, At1 equals zero 
and (11) simply becomes, 

(12) yit = Et1. 
Thus, yit measures the change in the level of 
benefits from a given population level of the 
species in period t. Considering interaction At

l 

measures the rippling effect through time 
caused by the interaction among species. Or 
more explicitly, the effects of multi-pest or 
pest-predator interaction in the current period 
are distributed over subsequent periods due to 
abberations in population dynamics imposed 
by the intruding species. Specifically, D/ mea-
sures the population level of species k in the 
next period given a change in the population 
level of species i. Combining Dr' and Er+1

k 

results in a measure of the change in benefits 
given a change in species k caused by a change 
in species i. A similar process occurs with 
expressions Dr

k and Er+j1 except species k is 
now influencing benefits through species i. 
This interaction may continue forward in time 
until the terminal state T is obtained. How-
ever, as with most rippling effects, the process 
will probably dampen out after two or three 
periods, as the initial effect is incorporated 
into the growth process. 

The effect of species interaction on benefits 
depends on whether the interaction is a prey-
predator or multiple pest relationship. For 
example, assuming species one is a predator 
that reduces the population of species two 
and also that species two has no effect on 
species one then (11) would reduce to: 

TH = Et1, 
Tfet = Et

2 + At
2. 

In this case the interaction is negative, Dr
2 < 

0, resulting in an increase in net benefits. 

Economic Thresholds 

The optimal timing and amount of control 
applied to field crops can be determined from 
investigating (6). Substituting (10) and (11) into 
(6) gives: 
(13)    -ac/5ut 

+ (Et-,/ + At+1
1)(axlt t+1/3u ) 

+ (Et+l
2 + A2t+1

2)(ax2t+1/aut) = o. 
The terms in (13) are the marginal values asso-
ciated with the application of a control vari- 



74       April  1985 

able in period t. The first term is the marginal 
cost of the control in period t. The following 
two terms are the marginal values of the ac-
cumulative effects of controlling species popu-
lation levels with ut. Equating these marginal 
values to zero maximizes net benefits. If these 
species are detrimental pests, then these terms 
are marginal benefits. If, however, a species is 
beneficial and an application ut reduces its 
population level, then the marginal benefit 
transfers to a marginal cost. 

It is interesting to note that the economic 
threshold is still influenced by the presence of 
multiple species even if no interaction occurs 
within the system. In this case (13) reduces to: 

(14) -ac/dut + Et+il(dxlt+1/dut) 
+ Et+1

2(dx2t+1/3ut) = 0, 

and, as is evident, ut remains a function of 
both species population levels. 

Equation (13) can also be interpreted to in-
dicate the impact of abstracting from multiple 
species. If species two is ignored: 

(15) -ac/aut + Et+xKdXu+i/aut) * 0. 

If x2 is a beneficial species then the full level of 
marginal resource cost is not considered in 
(15). In this case the producer will administer 
the control prematurely when marginal costs 
are greater than marginal benefits. Similarly if 
x2 is a detrimental species, marginal costs will 
be less than marginal benefits and the pro-
ducer will have applied the control either too 
late or in insufficient quantities. These conclu-
sions hold regardless of the interaction among 
species. That is, a comparison between (14) 
and (15) reveals that a bias still exists in the 
economic threshold if one of the species is 
ignored. 

The implications of these results for eco-
nomic threshold determination are illustrated 
in Figure 1 for two pest populations in period v 
within a production horizon. An additional 
pest control option with cost MC is compared 
with the marginal benefits of the control, MBi 
and MB2, associated with pest 1 and 2, respec-
tively. The marginal benefit curves are con-
cave following the assumption that the posi-
tive effects of the control action decline 
through time. Considering pest 1, point A in 
Figure 1 is the level of direct benefits in period 
v associated with a pest control. In subsequent 
periods the population of pest 1 will be re-
duced as a result of the pest control in period 
v. The level of these additional benefits are 
measured in Figure 1 by B-A. However, only 
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considering pest 1 results in the cost of the 
pest control, C, exceeding the total benefits, 
B, and no control should be taken. With the 
inclusion of pest 2, but ignoring any possible 
pest interaction, as described by (14), control 
cost may still exceed benefits. This is indi-
cated in Figure 1 where point D, the total 
benefits associated with this control action, is 
less than its cost, C. If pest interaction occurs 
in a dynamic population context, as described 
by (13), marginal benefits of control, point E, 
will exceed costs, point C, and a control action 
should be enacted. Thus, failure to consider 
multiple species interaction in a dynamic con-
text may result in a suboptimal cost action. 

Approaches to Application 

The dynamic and stochastic nature of natural 
processes contribute to the difficulties of 
finding closed form solutions to specific empir-
ical problems. Dimensionality constraints 
place further limits on acceptable approaches 
to feasible solutions. Various empirical meth-
odologies have been applied to pest control 
problems. Reichelderfer and Bender ap-
proached their study through simulation meth-
ods. Regev, Gutierrez and Feder; Marsolan 
and Rudd; and Talpaz et al. have used non-
linear optimization techniques to solve their 
problems numerically. These numerical 
search procedures have computational prob-
lems as the number of variables increase. 
Nonseparability of the movements of state 
variables from one period to another rules out 
the possibility of solving this type of control 
system analytically. Specifically, pest densi-
ties and control decisions are interdependent 
among periods. Methods capable of incor-
porating these linkages are needed to effec-
tively model the evolution of the system 
states. 

Dynamic programming and polyperiod pro-
gramming are two approaches sufficiently 
comprehensive in their methods to accommo-
date the specific problems of agro-ecosystem 
modeling. Optimization of a multiperiod 
model within a consistent dynamic theoretic 
framework, requires incorporation of all sig-
nificant interrelationships between periods. 
Modeling multiple pest populations, and sev-
eral growth stages for each pest, requires a 
large number of state variables to effectively 
approximate field conditions. An advantage of 
polyperiod programming over dynamic pro- 



 

Figure 1.    The Effect of Pest Interaction on Economic Threshold Determination in Period v. 

gramming is the ability of polyperiod models 
to accommodate this requirement. In addition, 
this methodological approach provides im-
provements over simulation which only gives 
the best outcome from alternative exoge-
nously determined control methods. 

Another attractive method in modeling dy-
namic systems is mixed integer programming, 
which is appropriate when one or more of the 
control variables can take on only integer val-
ues. This is generally the case for pesticide 
applications where the decision to apply a pes-
ticide is discrete. The objective function of 
such a model is to maximize returns above

neously select the optimal combinations of 
control variables and pest densities at all time 
periods. Activities can be divided into three 
sets: species activities, treatment activities 
and damage activities. Intertemporal relation-
ships among the state variables and their rela-
tionship with the control variables are ex-
plained by row restrictions. For instance, 
growth of a pest may be sensitive to variations 
in weather and other environmental condi-
tions. While the full stochastic environmental 
influences cannot be represented by this type 
of model, the influences in different time pe-
riods for various growth stages of pests can be
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and rows for each growth stage at each time 
period. Data required for estimating pest pop-
ulation densities are the densities of pests at 
various growth stages for each time period. 

Treatment and damage activities can be 
modeled in a similar fashion. Equations for the 
treatment activities would be based on the kill 
efficiency rates of various control methods. 
Estimation of pest damage equations are a 
more difficult methodological problem due to 
the continuous nature of crop injury through 
the growth period. The usual approach is es-
timating damages in terms of final yield reduc-
tion. Damage data may be obtained from ex-
periments where pests were allowed to attack 
the crop at varying time durations. 

Two major weaknesses of polyperiod mod-
els are their nonstochastic nature and re-
quirements of linear activities. The latter prob-
lem can be accommodated by developing a 
linear spline type technology through estima-
tion of linear pest treatment and damage ac-
tivities for each time period. This provides for 
possible nonlinear relationships of the ac-
tivities. The former problem is a more difficult 
one to reconcile. The stochastic nature of the 
crop growth system requires the incorpora-
tion of a modeling process reflecting these ran-
dom traits. However, stochastic programming 
models become unwieldy as the number of 
activities and controls increase to reflect the 
stochastic nature of the underlying processes. 
Even very simple models can reach unman-
ageable proportions (Anderson, Dillon, and 
Hardaker). The alternative is to resort to simu-
lation where the optimality algorithm has been 
removed and thus both the nonlinear and 
stochastic nature of the problem can be inves-
tigated. 

Conclusions 

The results of this paper indicate that the de-
velopment of optimal management programs 
for the control of crop pests should consider 
the existence and possible interaction of mul-
tiple species. Research investigating these in-
teractions will lead to improvements in eco-
nomic threshold determination and aid 
decision-making relative to control of the pro-
duction environment. Two areas of further re-
search are logical follow-ups to this study. 
First, theoretically investigating the possible 
interactions of multiple crops on pest popula- 
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tions. For example, one crop may be a host for 
an insect which affects another crop. This 
could be accomplished by modifying equation 
(2) to incorporate plant growth. Second, inves-
tigate empirically the influence of multiple 
species and crops on economic thresholds. 
Unfortunately, current data limitations in 
many cases constrain research of this type. 
Further developments in biological research 
designed to uncover significant systematic re-
lationships will facilitate future empirical eco-
nomic investigations. 
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Appendix 

Solving the difference equations (5) and (6) for At, yu and 
y2t respectively results in: 

T-l 
(Al) Xt =  XT Yl (1 + w«r) 

i—t 
(A2)    YU = Xt+,wXu + -Xkt+ifxlt

h 

+ X xv+1wxtv f[ a + w> 
v = t+l s=t 
T-l v-1 + x 7kv+ 1 fX i v

h  n 
V—t+l  S=t

(i + w> + VIT n (i + V), 
r-t 

(i * k; i, k = 1, 2). 

Note that: 

(A3) wx,tj = aqjt+i/Sxu, 

(A4) f*lt
k = axkt+l/3xlt. 

From equation (3): 

qT = qT-i + WT-i 
= qT-2 + wT-2 "*"  WT-I 

= qt + wt + wt+i . . . + WT^I 

hence (A5)     3qT/^qt =  1 +  dwt/flqt 
+ dwt+i/aqt. . . + awT-!/aqt. 

since 

dWt+i/Sqt = (dWt+i/aqt+t)(aqt+l/aqt) = wQt+1(l + wqt), 

it can be shown that (A5) becomes 
r-i 

(A6) 3qT/aqt =   ]~] (1 + w,r). 
r=t 

Similarly, from equation (2) 
Ll-l 

(A7) axiv/axtt = Yl (i + fx.s'), 
s=t 

(A8) ax)T/axit = TL \i + fx)r'). 
r=t 

Substituting equations (9), (A3), (A4) and (A6) through 
(A8) into (Al) and (A2) and solving for yu and y2t results 
in equations (10) and (11). 


