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Toward a
Modelling
Structures

Behavioral Approach to
Dynamic Production Choice

R. D. Weaver and S. E. Stefanou

Introduction

Given the stable position in applied literature
now held by static, duality models of choice,
the focus of innovation has shifted to devel-
opment of models of dynamic economic be-
havior. However, before jumping into this
stream it is important to assess 1) the objec-
tives and empirical relevance of study of such
behavior, and 2) the characteristics of ob-
served behavior which might help us resolve
the specification of such models. The objec-
tive of empirical study of dynamic behavior
seems clear. An accurate descriptive model is
desired which could provide the basis for pre-
diction and comparative analysis of behavior.
The relevance of any such study is limited, as
usual, by the accuracy and consistency with
which the theory of behavior upon which the
model is based simulates observed behavior.
A prerequisite of relevance is an understand-
ing of the elemental characteristics of ob-
served dynamic behavior which might suggest
the primitive elements of a theory of behavior
and motivate model specification.

In the same spirit that Weaver (1982) con-
sidered the essential characteristics of the sta-
tic choice problem faced by agricultural pro-
ducers, the nature and characteristics of the
dynamic problem must be described and
enumerated to serve as a foundation for model
specification. The theme of this paper is that
such an assessment establishes that the empir-
ical researcher is in an even weaker position
concerning dynamic model specification than
in the static case. Not only are an extensive
variety of specification issues left unresolved
in the dynamic case, but theoretical and empir-
ical tractability require strong prior restric-
tions which find little justification in observed
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behavior. If, indeed, the objective of empirical
modelling is to describe (i.e. learn about) dy-
namic behavior, then it would seem apparent
that data should be approached and analyzed
with the clearest lenses possible, one which
maximizes the probability of learning.

The paper will proceed by briefly enumerat-
ing the dynamic and stochastic characteristics
of the agricultural choice problem in the sec-
ond section. This will provide the foundation
for a general assessment of the appropriate-
ness of received theoretical models of dy-
namic behavior and for the suggestion of pos-
sible strategies for learning, Specifically, in the
third and fourth sections two approaches will
be presented. The first will involve extension
of reduced form dynamic choice functions to
accommodate a fundamental characteristic of
dynamic behavior: use of information by deci-
sion makers. The second approach presents a
means of learning from observed histories of
behavior in a way which imposes minimal
prior structural restrictions on the empirical
model.

An Assessment of the Potential Role of Eco-
nomic Theory in the Specification of Models of
Dynamic Production Behavior

Possible Approaches

Empirical study of any observed phenomena
may proceed in one of two ways. If little is
known about the phenomena, observations
might be recorded and considered in order to
generate hypotheses concerning its occur-
rence. Alternatively, what might be Iabelled
consistent modelling methods might be adopt-
ed in which a detailed specification of a model
is motivated by a specific theoretical hypoth-
esis which attempts to explain the phenom-
ena’s occurrence.
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Past empirical models of dynamics of pro-
duction choice have focused on:

1) inertia in adjustment or implementation
of plans,

2) the output sacrified (or opportunity cost)
due to adjustment of quasi-fixed input
flows, and

3) inertia in adaptation of information moti-
vating choices,

In an important sense, these early approaches
were consistent with the feeling that dynamic
choices were not simply the result of fully
rational decision-making that is free of a vari-
ety of constraints not normally considered by
neoclassical optimization models. Such con-
straints and alternative choice problems were
reviewed by Griliches and Nerlove as a basis
for providing some justification for what had
otherwise been labelled as ad hoc models. In
other words, the early dynamics literature at-
tempted to be descriptive, and importantly, to
acknowledge the complexity and subjectivity
of such decisions and the possible inappropri-
ateness of adoption of an approach where a
specific rational choice model is imposed on
the data. This approach employed a very gen-
eral theory of dynamic choice to suggest that
expected output prices might affect choice and
that adjustment of expectations and choices
might not be instantaneous. Although these
early empirical models were freed of detailed
restrictions motivated by a more precise theo-
retical hypothesis, empirical tractability re-
quired a variety of prior restrictions on the
form of the dynamic relationships. In this
sense the models were ad hoc.

Most recent work, however, has adopted the
consistent modelling approach. Static or sto-
chastic optimal control problems have been
specified in neoclassical form where dis-
counted intertemporal preferences are max-
imized subject to dynamic constraints on ad-
justment and current endowments, see e.g.
McLaren and Cooper, Epstein, Merton,
Loury. The mechanics of these problems are
by now well-known and have been extended,
at least in theoretical form, to agricultural
problems, see e.g., Burt, Koo and Dudley;
Antle; Dixon and Hewitt; Noel, Gardner and
Moore. However, empirical applicability of
these models has been severely limited by the
appropriateness of assumptions (e.g., single
output, risk neutrality, exogenous expecta-
tions, constant returns to scale, and simple
functional forms) necessary to obtain closed
form solutions.

Adoption of such models for descriptive
purposes requires verification of the underly-
ing assumptions that given available informa-
tion producers will behave in such a way that
places them on the corresponding efficient
path for the current period. Juxtaposing the
early approaches with that of recent work
leads to a questioning of the appropriateness
of use of detailed rational choice hypotheses’
as the basis for specification of dynamic
choice models. What are the characteristics of
the dynamic choice problem faced by farmers?
What is their decision process? More impor-
tantly, do answers to these questions justify
adoption of a specific detailed rational choice
hypothesis from which a consistent model can
be derived?

Characteristics of Dynamic Choice and the
Role of a Behavioral Theory

Weaver (1983) enumerated the following as
important characteristics of short-run agricul-
tural production decisions: 1) multiple outputs
are produced by multiple inputs, 2) some input
flows are quasi-fixed, 3) some input flows are
stochastic and beyond the decision-maker’s
control, e.g. climatic factors and pest effects,
4) output prices are uncertain when produc-
tion plans are made, 5) government programs
affect choices, and 6) a variety of inputs and
outputs can be adjusted to achieve short-run
constrained objectives. The model presented
can be interpreted as one of provisional choice
(Weaver 1977) where these choices can be
adapted both intra- and inter-seasonally as
new information occurs. However, where and
in what form do dynamics affect such provi-
sional choice?

Without lengthy rationalization it would ap-
pear that the following additional characteris-
tics are elemental to the dynamic agricultural
production problem,

1. Resource application is not instantane-
ous. Intra-seasonal timing of application
as well as inter-seasonal choices are de-
pendent on the occurrence of stochastic
climatic and environmental events which
are beyond the producer’s control.

2. Past allocation decisions may affect the
cost of current actions. For example, the
past sequence of cropping and cultiva-
tion methods affect current production
possibilities.

3, Inter-seasonal adjustment of quasi-fixed
factors of production may be possible



Weaver and Stefanou Approach to Mode lling 165

through long-term rental agreements or
direct purchase. However, in some cases,
these possibilities may be affected by in-
stitutional, social, and market distribu-
tion constraints.

4. Returns-to-size may be decreasing in the
short-run (intra-seasonally) though pos-
sibly increasing in the long-run (inter-
seasonally).

5. Limited management labor and time re-
sources may be required for adjustment
of quasi-fixed factors or adoption of new
technology.

6. Outputs may play intermediary roles in
producing other outputs,

If these characteristics are added to observed
characteristics of the static production choice
problem identified above, the necessary com-
plexity of any descriptive dynamic rational
choice hypothesis would seem clear. How-
ever, before adopting such a consistent model-
ling approach a closer look at the dynamic
decision environment would seem appropri-
ate.

In stepping from a static to a dynamic case,
the problem of describing the decision process
is complicated by human response to the deci-
sion environment. An important general dif-
ference between the static and dynamic deci-
sion environments is the fixity of the decision
environment. In the static case, a fixed envi-
ronment exists. In the dynamic case, two pos-
sibilities exist for how the decision environ-
ment changes. In the simplest case, the deci-
sion environment might change in a com-
pletely predictable manner. For example, the
structural characteristics of the environment
might be repeating with the levels of informa-
tion parameters changing in a predictable way.
At the other extreme, the decision environ-
ment might be non-repeating in its structure,
or even if its structure is repeating, future
levels of information parameters may not be
predictable. Consideration of the dynamic ag-
ricultural decision environment would seem to
suggest that 1) the horizon over which uncer-
tain market prices and government incentives
are predictable may be quite short and vari-
able. Not only have dramatic changes in the
structure of government supply control pro-
grams been observed (Morzuch, et al.), but
input and output markets have been dramat-
ically affected by unpredictable events during
the post-war period. Secondly, non-market
events affecting productivity of inputs and
price levels may be generated by mechanisms

that leave structural prediction of their occur-
rence infeasible. These observations suggest
that a variety of elements of the decision envi-
ronment faced by agricultural producers may
be non-repeating and where the structural
characteristics of that decision environment
are repeating, the measures of its characteris-
tics may be difficult (i.e., costly) to predict:
An important implication of this non-repeating
nature of the inter-seasonaI decision environ-
ment is that the efficiency of achieving rational
or optimal decisions may not improve as a
result of learning and adaptation to past errors
in decisions.

Given this type of decision environment, it
is important to question the descriptive use-
fulness of rational choice models. To proceed,
it is appropriate to consider the evidence
emerging from a literature which focuses on
the human behavioral aspects of observed
decision-making rather than on a prescriptive
ideal as the appropriate basis for a descriptive
theory of behavior, Thus, the approaches
based on, or motivated from this literature
might justly be labelled behavioral ap-
proaches. Several recent reviews of literature
serve as an adequate basis for establishing the
key points which have emerged over the past
thirty years of behavioralist literature, see
e.g., March, Posner, Simon (1978), or Sage.
Of primary interest is literature which has fo-
cused on the suggestions of cognitive psychol-
ogy concerning decision processes in complex
environments. Simon (1955, 1956, 1957) ini-
tially responded to empirical observations of
decision behavior by generalizing the purely
rational decision model through introduction
of human decision-making technology as a
constraint. The implication of this approach
was the concept of bounded rationality. Con-
straints were introduced to acknowledge limits
in computational capability, extent of organi-
zation and use of memory, and uncertain pref-
erences as well as consequences of actions.
Although this tone has been maintained in the
literature, lessons from empirical observation
have led to an acknowledgement that decision
processes may not be accurately described by
such simple extensions of rational models. In
particular, several lessons from this literature
seem important to note for decisions made in
non-repeating environments.

1) Individuals have vastly different compu-
tational capabilities.

2) Decisions must often be made in unex-
pected decision environments in which
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preferences are not fully specified and
where all relevant alternatives and pos-
sible consequences cannot be identified.

3) Decisions often involve a high degree of
subjective evaluation of possible alterna-
tive actions and their consequences.

4) Controlled experiments which might
allow iterative development of rational
decisions are often not feasible due to the
extent to which decision environments
change.

5) Preferences or objectives of choice are
often ambiguous and, more importantly,
interactive with past actions and their
consequences.

6) A variety of decision processes and cog-
nitive styles have been observed of
which rational processes (in which pref-
erences and the characteristics of oppor-
tunities are fully known prior to deci-
sion-making) are a subset.

7) A variety of biases have been consis-
tently observed in the processing of in-
formation by decision-makers. This sug-
gests that information is both selected
and processed in a highly subjective,
personal manner which is conditional
upon characteristics of the decision envi-
ronment, e.g. time pressure, availability
of information, and extent of change
from past experience. Furthermore, in-
dividuals are not consistent in their sub-
jective selection and processing of in-
formation. Instead, their methods or
styles vary over time as personal envi-
ronments and experiences change, as
risk preferences change, and as the cur-
rent decision problem changes.

While limited space prevents a discussion of
examples of observed behavior by agricultural
producers which are consistent with these les-
sons, in each case many come to mind. What
are the implications of this literature for empir-
ical study of dynamic production decisions in
agriculture? Three general conclusions emerge
which serve as caveats and directives for
model specification as well as for choice of an
appropriate method of empirical learning.
First, this literature suggests that there does
not exist a single, widely applicable behavioral
theory of choice, particularly in non-repeating
environments. Sage enumerates and reviews
empirical support for a wide array of models of
decision processes. These alternatives can be
organized into three general types: 1) holistic
evaluation in which preferences (possibly sub-
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jective) and all opportunities are fully known
and all alternatives are evaluated according to
their contribution to the implicit goal of con-
strained preference optimization, 2) heuristic
evaluation in which full knowledge of prefer-
ences and opportunities are not known, pre-
cluding explicit consideration of all alterna-
tives and requiring use of more simplified de-
cision rules, e.g. lexicographic or elimination
by ranked aspects, and 3) holistic evaluation
in which current alternatives are considered
within the context of past experience which
has led to experience-based decision rules
(e.g., safety first rules of Day et al.), and intu-
ition is relied upon to assess a complete
characterization of alternative actions and
their possible consequences. A second general
conclusion of this literature is that while major
aspects of a variety of decision processes have
been identified, specific models of these alter-
native processes are at a nascent stage of de-
velopment. A final conclusion is that devia-
tions between observed behavior and the pre-
dictions of rational holistic choice models do
not provide an acceptable basis for the infer-
ence that such deviations are simply stochas-
tic errors. Instead, observed deviations appear
to be persistent in occurrence, magnitude and
direction.

The implication of these conclusions for
modelling decision-making is apparent. Where
the decision environment is complex, neither
fully observable nor accessible to the decision
maker, and possibly non-repeating, holistic
models seem of questionable usefulness for
description of observed behavior. The charac-
teristics of dynamic production decisions
enumerated above suggest a need for an ap-
proach to empirical study of such decision be-
havior which is 1) free of restrictive priors of a
particular purely rational decision model, and
2) sensitive to the weakness of our current
understanding of how decisions are made.

The remainder of this paper will consider
two possible approaches which are motivated
by these two implications. First the assump-
tion of the existence of a specific form of a
ratiotial choice model will be relaxed by focus-
ing on reduced form dynamic choice functions
using cross-sectional data which may be con-
sistent with a variety of alternative choice
problems. Secondly, an analog to the classical
decision theoretic concept of the value of in-
formation is proposed for the descriptive
model in this section. Finally a dramatically
different approach to time series modelling of
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dynamic production decisions will be pre-
sented which is motivated by the researcher’s
admission that little is known about which de-
cision model is appropriate and maximum
learning from the data is desired.

Information Processing at the Firm Level

Alternative Approaches to Modelling
Information Processing

This modelling approach relies on cross-
sectional data to identify the role of informa-
tion concerning the physical environment
within an intra-seasonal production process.
Information has value to the extent that it can
influence timing and application decisions for
an input, Information is not a direct physical
input such as labor, land or fertilizer, but
rather information influences the output level
when it is used in conjunction with a direct
input. An information processing theory of
decision making is based on the assumption
that individuals have an input mechanism for
the acquisition of information, a filtering
mechanism for interpretation and an output
mechanism for making choices. Information
processing theories can be broadly classified
as either classical decision theory approaches
or behavioral approaches which are based
upon observed behavior.

The classical approach to determining the
impact and the value of information relies on
Bayesian updating and has two basic require-
ments (Raiffa). This approach requires the
problem to be highly structured. That is, the
decision maker must be aware of all of the
possible options for gathering information, all
of the events that may possibly occur, the
measure of the payoff associated with each
realization, and the chances that a given event
will occur. In this sense, the classical ap-
proach represents an example of holistic deci-
sion making (Sage), Second, the decision
maker’s choice subsequent to receiving infor-
mation should be predictable given the struc-
ture of the problem. In principle, theorists can
set up this problem as a dynamic programming
problem under uncertainty in which the condi-
tional distributions of future exogenous vari-
ables are estimated using all available informa-
tion up to the current period. In practice these
problems are difficult to solve both analyti-
cally and computationally, with the exception
of a few special cases. In many cases, approx-
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imate, suboptimal procedures may be re-
quired. The classical approach necessarily as-
sumes that managers can be represented as, at
least, “as if” mathematical statisticians capa-
ble of solving specific optimization problems
that are often beyond the analytic capabilities
of expert analysts with significant computing
power at their disposal. On the one hand,
this approach takes an important step towards
realism by allowing incomplete (or imperfect)
information to influence the actions of the
manager. On the other hand, the classical ap-
proach movei away from reality by assuming
that the manager follows optimizing rules of
behavior for situations in which the optimiza-
tion assumption has minimal empirical sup-
port. In contrast, the behavioral approach at-
tempts to rationalize observed behavior by al-
lowing for the biases and heuristics that man-
agers use in making judgments under uncer-
tainty. These approaches typically assume the
existence of feedback mechanisms that di-
rect managers onto behavioral paths through
the use of historical successes and failures
(Cross).

The way that information is used to deal
with the hazards of the operating environment
presents a formidable modelling problem and
given the great number of possible decision
models suggested by the behavioral literature,
an approach which is consistent with a wide
set of models may be in order. A large number
of studies in cognitive psychology indicate
that a variety of biases and heuristics in deci-
sion making evolve which affect information
acquisition and formulation (Tversky and
Kahneman). Despite these conclusions, the
manager’s attitude toward risk remains the
economist’s standard excuse for explaining
the deviation between observed behavior and
expected profit maximizing behavior. Recog-
nizing that managers operate within a hazard-
ous, non-repeating economic and physical en-
vironment and that they develop biases and
heuristics which affect their use of informa-
tion, part of this deviation between observed
and predicted behavior may be explained by
how information is processed by the manager.
Therefore, it is of interest to establish a model-
ling approach which explicitly allows for such
biases and heuristics in information process-
ing.

A Model of Multi-stage Input Decisions

This model focuses on the production process
within an uncertain physical environment
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where inputs are applied during the season and
result in the final product which is realized at
the end of the season; i.e., a multistage pro-
duction process. The season can be consid-
ered to be composed of a series of stages
where various inputs are appiied at each stage.
At the beginning of the nth stage a two part
decision must be made: whether information
should be acquired regarding the environment,
and the choice of input levels. The input
choice decision is influenced by the informa-
tion acquisition decision.

Consider a two stage production process.
Final production depends on the application of
inputs at two stages where these inputs are
denoted by x~k) where j indicates the input
applied, j = 1, 2, . . . , J, and k indicates the
stage, k = 1, 2. For notational convenience an
—is used to indicate the sequence of factor
demands for a given stage; i.e., X[k)= (xl(k),
xz(k),...,xJ‘k).Some inputs may be applied in
both periods (e.g., pesticides, irrigated water)
while other inputs may be applied in only one
of the periods (e.g., fertilizer). Bellman’s
principle of optimality (Bertsekas) establishes
that the manager’s optimal input application
decisions can be achieved recursively. That is,
the final decision to be made is the choice of
the level of ~~z)given past decisions (the levels
of inputs applied during the first stage and the
results of the information collection decisions
in both stages) and the state of the crop’s
performance in the second stage. At the be-
ginning of the second stage the manager’s in-
formation decision is made given the levels of
inputs applied in the first stage, y(l), and the
results of the first stage information collection
decision and the crop performance in the first
stage. This decision is preceded in the time
ordered sequence of events by the first stage
information collection decision. The charac-
terization of the decision process within a re-
cursive structure is consistent with the behav-
ioral literature. Without being more specific
about the optimization problem, this recursion
process suggests the existence of the following
generally specified sequence of demand equa-
tions for information and productive inputs

I(l) = f, (w(l), w(z), c)--

(1) ‘$ : ;: ::;:/ :::/:’ :;::? ~(l))

x,(2)= g2 (+), c,& 22)),

and output is denoted

(2) Q = h(X(l), #2), U)

where

w(k) =

c, =

l(k) =

z(k) =

~’
=

for k =
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vector of input prices associated with
the vector of inputs &(k)which are
normalized by the output price;
normalized cost of obtaining infor-
mation (assumed constant through-
out the season for the ith observa-
tion);
the information collection decision in
the kth stage;
an index reflecting the state of the
crops during the kth stage;
final output level;
random disturbance;

1,2.

The system in (1) generally differs from dy-
namic factor demand formulations (McLaren
and Cooper; Epstein) by treating the informa-
tion acquisition decision as a factor de-
manded. In theory, management decisions are
conditioned on the results of an information
collection procedure as well as the accuracy of
the information set. In practice, the data typi-
cally measure whether a manager participated
in an information collection procedure. In the
development of this model the information de-
cision is measured as a dichotomous variable:
collect information or do not collect informa-
tion. Information influences the production
process by providing a more accurate view of
the state of the crop development (or the phys-
ical factors influencing crop development).
The state of the crop development may in-
clude knowledge of the pest population level,
the stage of the plant development, or the crop
moisture requirements. However, this crop
development index (CDI) is not observed with
accuracy during the production process and
must be considered an unobservable variable.
Let the first stage CDI for the ith observation
be described by

(3) 2/1’ = TO+ @l(I/l))~i

where q is normally distributed with mean
zero and variance ti. In the second stage the
CDI for the ith observation depends on a term
which is a function of past productive input
decisions and the second stage information
collection decisions, and is described by

(4) 2/’) = ?-/l + j ‘q~j+(xjj(’)) + 4’(1/%
J=l

Equations (3) and (4) imply that the condi-
tional variance of z(k)changes as the manager



Weaver and S/efilnou Approach [O Modelling 169

acquires information. The formulation is in
keeping with the spirit of Just and Pope (1978)
and has been applied in the static setting by
Just and Pope (1979) and Griffiths and Ander-
son,

For illustrative purposes we will focus on
the special case where the information collec-
tion decision is made on a seasonal basis; i.e.,
1/’) = 1/2) = Ii. This is not a particularly re-
strictive assumption since many field monitor-
ing services contract their services at the be-
ginning of each season. Let the final output be
expressed as

(5) Q] = A fi fi [xu’k)]fj(k).
‘=1 1=1

Maintaining an expected profit maximizing
framework and following the backward recur-
sion process the information demand equation
is written as

(6) I= H,(k)a+w

where I is a dichotomous variable and w is
independently distributed normal with mean
zero and variance CO*.The logarithm of the jth
productive factor demand equations in stages
1 and 2 are written as

(7)
i~l) = H(]) ~/1) + Uj(’)

~j(2) = H(2)~j(2)+ Uj(2)

where H(l) = [Hl(*)H2(l)] with Hi(l) = [~1)
W(2)C], and H2(,) = [z(l)];H(2) a [H1(~)H~2)HJ*)]

~ith HI(2) = [W(2)C], H2(2) n [z(I)],and H3(2) e

[Z(2)]; and - denotes the natural logarithm.
Notice that the CDI for each stage is included
in an ad hoc manner. The Ujck)are normally
distributed error vectors with the properties

E{u/k)} = Oforallj = 1, 2, . . . ,J;
k=l,2;

(8) E{u/k)Uj(m)} : ~k21iN fork=m
for k # m.

Since the CDI is unobservable to the econo-
metrician in both stages, using ~(xij( 1)) Xj(1)
and substituting (3) and (4) into (7)

- (I) = H1~l)/jj,l(l) + Vj(l)

(9) ~cz) = H1[z)f3j,/*)
+ H2(2)(&,Jz)+ q2) = vj(2)

where

(lo) V,,j‘k)= @k(i~)6@j,~+ Ui,fk)
and ~j,~‘k)are the coefficients associated with
H~(k) for the jth equation. The system equa-
tions is written as

X(l)= [lJ@H1(l)]@,[l)+ y(l)
(11, & = [l@H*U)~ + y(2)

where H*(*) = [H1(2)H2(2)]and -yj = [~j,,(2’
(/3j,2’2) + 7?2)1’.

Assuming that E ● Uj(k)’= O for all j and k,
the error vectors ~k) are heteroscedastic
within each equation and stage and correlated
across stages (see Stefanou for details). In-
formation influences the estimation of the
productive factor demands by the recognition
of the heteroscedastic error structure of (9).
When information acquisition is not an option
(or is ignored), for a given stage, the error
vector Vj(k)is homoscedastic for all j. The sys-
tem of input demands requires probit estima-
tion of (6) and system estimation of (1 1). The
estimation of such a system depends on the
functional form specified for @’(I) and relies
on generalized least squares (GLS) proce-
dures that are discussed in the existing litera-
ture. The two prime considerations focus on
the heteroscedastic error variance estimation
(Hildreth and Houck; Rao (1970, 1972);
Amemiya) and the system estimation (Zellner;
Goldberger; Oberhofer and Kmenta; Mag-
nus).

Measurement of the Value of Information

A measure of the value of information can be
obtained within this framework. The concept
of the value of information becomes more
complex when one considers a dynamic deci-
sion process. One can distinguish between two
types of value of information measures: an
addition to the information set (i.e., whether
to collect information in the next production
stage), and the development of an entire in-
formation set (i.e., whether to collect informa-
tion in the next production stage). For the
model developed here, the latter type of in-
formation value measure is of interest.

The final output relationship in this case is
specified

( 12) Qi = A + ~ ~ gj’’%lj(’)+ u,
‘=1 j=I

where U is a normally distributed error vector
with mean zero and variance ~“21N, which is
IIOt correlated with Llj(n,UJ(2),Or ISfOr J = 1, 2,

., J. Let * denote the ordinary least squares
~OLS) estimate, and

s(k)
Xj and ~{k)

GLS OLS
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denote the predicted values of the jth equation
for the kth stage using the heteroscedastic
error structure (i.e., accounting for informa-
tion acquisition) and the homoscedastic error
structure (i.e., ignoring information acquisi-
tion), respectively, for the estimation of (11)
with the cost of information set equal to zero.
With the point expectation of U = O, a mea-
sure of the value of information (VOI) is

~ [Q(13) VOI = N-’ N “i - Qi
i=1 GLs OH )

where

(14) and

Qi
{

= exp A* + ~ ~ W*[iiP ON]].
OLS ‘=1 J=l

While a large VOI suggests a considerable
impact of information on managers’ produc-
tion decisions, a small VOI may suggest that
information acquisition has little value or the
description of the information variable is too
diffuse and does not adequately reflect the im-
pact of information acquisition as an input in
the production process. This measure of the
value of information is not guaranteed to be
non-negative with a zero cost of monitoring as
is the case with the classical decision theoretic
model.

If information acquisition decisions can be
made throughout the season then the system
of equations characterized by (1) needs to be
specified and estimated. This system involves
dummy endogenous variables and requires a
mixture of conventional and limited dependent
variable estimation techniques. Heckman and
Maddala and Lee have provided theoretical
and empirical examples of this type of model
estimation.

Where static production models suggest that
the level of output is not sensitive to the timing
of input applications, the approach taken in
this section allows for dynamic input applica-
tion decisions during the season using cross-
sectional data. While this model maintains the
maximization paradigm, it includes behavioral
restrictions on how information influences
production decisions. Namely, information
provides a more accurate view of the state of
the crop development and influences the de-
mand for productive inputs via the error struc-
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ture. Like the classical decision theory ap-
proach imperfect information can influence
production decisions, but the mechanism for
information processing is specified in a way
that is consistent with the data that are typi-
cally available and with a wide set of behav-
ioral models.

Estimation of Dynamic Production Choice
Functions with Minimal Priors

Approaches to Specification

The traditional functions of a theory of choice
for specification of consistent empirical mod-
els are to 1) identify relevant variables, 2)
establish a causal ordering of these variables,
i.e., partition them into two subsets: endoge-
nous and pre-determined or exogenous, and 3)
suggest a limited set of characteristics of the
functional relationship between these vari-
ables (e.g. monotonicity, symmetry, convex-
ity, linear or zero-degree homogeneity y). For
example, following Weaver (1982) a general
static theory of choice might establish the vec-
tor (Z 0) as the set of relevant variables and
hypothesize that the elements of Q are exoge-
nous information and quasi-fixed factor flows
and Z are endogenous choice variables solving

(15) max G(Z;fl).

To ensure the existence of continuous
choice functions Z = g(fl), it would be re-
quired that G(o) satisfy a further set of proper-
ties outlined in Weaver ( i982). Specific prop-
erties of g(. ) such as predictions of the signs of
own-price comparative-statics and symmetry
of substitution effects would follow only from
further assumptions concerning the properties
of G(”). For example, as Weaver (1982) noted,
twice continuous differentiability of G in Z
and Gzo = I would be required for symmetry,
a more general result than that of Pope. Simi-
larly, knowledge of the form of Gzo would be
required to establish monotonicity and the
signs of own price effects. In general, mono-
tonicity and neo-classically sloped choice
functions would not be expected. In the static
case, the further restrictions of G(”) required
to ensure existence of continuous choice func-
tions satisfying this type of properties are
often motivated by the prior belief or assump-
tion that the decision environment is repeating
and iterative learning leads decision-makers to
behavior which is “as if” rational, However,
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as Weaver (1982) noted, even when based on a
specific behavioral hypothesis, these priors
leave a wide variety of model specification
issues unresolved.

Although it is clear from McLaren and
Cooper, and Epstein that specific dynamic
choice problems can also serve these spec-
ification functions, the approach presented
here rejects the usefulness of this meth-
odological approach for construction of de-
scriptive dynamic models. The behavioral lit-
erature, in combination with observed dy-
namic characteristics of the production tech-
nology and the decision environment faced by
agricultural producers, suggests that in the
case of the dynamic production choice prob-
lem a theory of choice may be more elusive
than in the static case. This literature suggests
that even adoption of a general rational choice
hypothesis (e.g. a dynamic generalization of
(15)) may not be appropriate. A further com-
plication, to be discussed below, follows from
the fact that a dynamic theory of choice re-
quires adoption of a theory of information ac-
quisition and processing as a basis for spec-
ification of the mechanism generating 0. In the
static case, information is assumed instan-
taneously available to the decision-maker, al-
lowing this problem to be ignored. Empirical
evidence found in the behavioralist literature
of subjectivity and biases in information pro-
cessing as well as of instability of objectives
and infeasibility of iterative learning which
might converge to efficient behavior when the
decision environment is non-repeating sug-
gests that the assumption of “as if” purely
rational choice is inappropriate for descriptive
purposes in the dynamic case.

In statistical terms, this literature suggests
that 1) the compositions of sets of conditioning
pre-determined variables and endogenous
variables, as well as 2) the form of the con-
ditioned likelihood of the endogenous vari-
ables may not be stable over time for an indi-
vidual decision maker, In the aggregate, how-
ever, it may be more reasonable to assume
that the composition of behavioral styles or
modes is stable for a sufficiently large group of
decision-makers. This suggests that the behav-
ioralist literature combined with empirical ob-
servation might be relied on in a very general
way as a source of suggestions for the iden-
tification of relevant variables, while the
exogeneit y partition, and possible characteris-
tics of functional relations would be left open
to be resolved by empirical evidence.

In the face of such weak priors, what les-
sons or results can be expected from empirical
observation? Perhaps the most appropriate is-
sues to resolve would be 1) verification of
relevance of variables, 2) verification of the
causal ordering of variables, and 3) identifica-
tion of lag structures relating variables. It is
precisely these issues which modern time
series analysis is designed to resolve (see Gre-
nander and Rosenblatt; Sargent and Sims;
Geweke; Zellner and Palm), and for which
traditional econometric approaches must rely
upon resolution prior to estimation. Although
priors may be sufficiently strong for the static
case to resolve these specification issues, in
the dynamic case it seems clear that in-
sufficient priors exist and a data based time
series approach to learning would be pre-
ferred. If specific theories of choice or of in-
formation processes are to play any role in
model specification, the weakness of our
priors in the dynamic case suggests these theo-
ries should serve as guides for post-estimation
hypothesis testing rather than for restriction of
models prior to estimation.

In the remainder of this section the useful-
ness of multivariate time series methods for
empirical study of dynamic choices will be
assessed. Time series methods have in the
past been thought to produce purely data de-
pendent estimates which 1) preclude iden-
tification of structural relationships having
some theoretical interpretation and 2) often
require ad hoc restrictions on the form of es-
timated relationships. However, in what fol-
lows a method will be introduced which allows
data dependent estimation of a time series
model which may be consistent with specific
structural hypotheses. This property allows
the validity of structural hypotheses to be as-
sessed post-estimation. This possibility allows
the consistency of specific theories with em-
pirical evidence to be tested rather than as-
sumed prior to estimation.

A Time Series Approach Allowing Mhdmal
Priors and Structural Analysis

Stepping toward model specification, direct
observation can be relied upon for identifica-
tion of multiple outputs and inputs involved in
the dynamic production process. However,
the causal ordering among different outputs,
or among different inputs may be complex.
For example, outputs may directly serve as
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intermediate inputs for still other outputs, or
an indirect effect may result when their pro-
duction alters quasi-fixed input characteristics
leaving some outputs infeasible. At a mini-
mum these observations suggest 1) the exis-
tence of a vector autoregressive relationship
among outputs. On the input side, time inten-
sity and actual resource costs of adjustment of
production practices, and intertemporal rela-
tionships among production possibilities sug-
gests 2) inputs committed in one period may
affect the outcome of inputs in a future period.
Finally, 3) lags may exist in the direct produc-
tivity of inputs. These observations can be
summarized by generalizing the traditional
multiple output, multiple input short-run pro-
duction transformation function (PTF). For
example, according to these observations the
PTF used in Weaver (1983):

F(Yt, Xt) = O

would be written in Markovian (or autoregres-
sive) form:

(16) F(Yt, XtlY~, XT) = O

where

Y~,X, are vectors of 1) current output and 2)
intra-seasonally variable input and qua-
si-fixed (variable only interseasonally) in-
puts, respectively, and

Y~, XT are vectors of relevant past values of
Y~, x~,

e.g. X,~ = [Xit.-l . . . Xit-~j]

In summary, our observations suggest that
1) ~2F/dY@Yjt_T # Ofor some outputs Y,, Yj;
2) #F/dX~t~X~t_T # Ofor some inputs X~, X~;
and 3) t)F/dX~t = O although 8F/~X~t-7 # Ofor
some inputs X~. It is clear that while in the
static case the researcher need only specify
the elements of Yt and Xt, in the dynamic case
the elements of Y~ and XT (i.e. the lag struc-
ture of production) must also be specified.
While traditional priors concerning the form of
production relations might be useful in spec-
ification of the functional form of F(*), the
composition of Y~ and XT is an empirical issue
for which few priors exist. In addition, it
should be noted that the vectors Yt, Xt have
not been partitioned by their erogeneity.
Again, such specification could only follow
from adoption of a particular behavioral hy-
pothesis which recognized the fixity of certain
inputs during the period in which choices are
implemented. As noted by Weaver (1982,
1983), fixit y could follow from the absence of

rental markets or zero salvage value on input
stocks, or both. It would seem appropriate to
acknowledge that such fixity is an empirical
issue for which only the weakest priors exist.

Having identified possible inputs and out-
puts involved in the production technology,
specification of a model of production choices
requires at least a general consideration of the
determinants of choice. Suppose Kit, a vector
of current, and possible characteristics of fu-
ture stochastic levels of relevant information
variables, and fl~, a similar vector of past rele-
vant information, can be identified from past
empirical observation and consideration of
possible behavioral hypotheses. As already
noted the vector Q may include information
which is endogenous as well as that which is
exogenous to choice. Thus, values of elements
of flt which measure characteristics of future
stochastic levels of relevant information may
beat least partially determined by elements of
& or by exogenous elements of Qt.

An important implication of this observation
is that dynamic model specification requires a
consideration not only of theories of choice,
but also of a theory of the measurement and
processing of information. Rational expecta-
tions hypotheses (REH) represent an example
of such an information theory. However, as in
the case of selection of a theory of choice,
evidence in the cognitive psychology literature
suggests that no theory of information acquisi-
tion may be universally appropriate. Two al-
ternative approaches may be useful. Weaver
(1977) suggests specification of a generally ac-
ceptable, minimum information set (GAMI)
which would describe exogenous information
that could be hypothesized to be freely avail-
able, and generally relevant to decision mak-
ers. Weaver (1978) outlined a specific mea-
surement model in which such a GAMI set
could be stochastically related to price expec-
tations to allow for errors in measurement and
specification,

In summary, neither a theory of choice nor a
theory of information acquisition and process-
ing has been adopted. Instead it is suggested
that direct observation, and a variet y of behav-
ioral hypotheses be relied upon to motivate
only the set of possibly relevant variables.
Though this strategy would fail to present a
detailed model which is consistent with a par-
ticular behavioral hypothesis and a specific
information measurement model, it would
present the basis for specification and estima-
tion of a model which is consistent with the
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weakness of our priors. In addition, through
the choice of the proper estimation strategy a
variety of structural specification issues might
be resolved through data dependent learning
(Weaver (1982), Learner).

This possibility is offered by adoption of
multivariate ARMA methods. These methods,
as do any econometric time series modelling
methods, require the existence of adequate
time series observations, It would seem rea-
sonable to proceed by assuming the availabil-
ity of such data, otherwise the empirical con-
sideration of any intertemporal dynamic mod-
els would be infeasible. Specifically, we as-
sume the availability of time series for the
vectors (Yt, Xt, Q), allowing observation of
(Y~, XT, fl~). For convenience, redefine nota-
tion by defining zt as a vector of monotonic
transforms of the elements of (Yt, Xt, Ot)
which allow zt to be represented by the follow-
ing general linear ARMA model:

(17) A(L)zt = B(L)Ut

where

A(L) and B(L) are full rank matrices of
polynomials in the lag operator L, e.g.
A(L) =AO+AIL+AZL2 +,,.,

A(L) and B(L) contain only convergent
polynomials,

Ut is a zero mean vector error process with
a contemporaneous covariance matrix
equal to the identity matrix and zero serial
correlation.

As stated, (17) represents an unrestricted
ARMA form, the existence of which is guaran-
teed for any vector Zt for which there exists an
invertible MA representation Zt = @(L)Ut
where l@(L)qtl # Ofor all qt such that Iqtl < 1,
.

S ll&ll’ < ~, and Ut is serially uncorrelated,*=O
(Conditions for the existence of the MA rep-
resentation can be found in Doob).

The usefulness of this general ARMA form
for structural analysis has been established by
Zellner and Palm; Wallis; and Geweke. This
approach requires estimates of A(L) and B(L)
obtained in the absence of any prior exog-
eneit y hypothesis, Given such estimates, a
specific erogeneity hypothesis would have
testable implications. Suppose such a hypoth-
esis proposes that a vector xlt of elements of zt
are exogenous to the determination of a vector
zzt of elements of zt, Re-ordering the elements
of Ztaccording to this exogeneity partition, we
could define zto = [zltzzt] and rewrite (17) as:

Geweke has established that Zlt is exoge-
nous to Zzt if and only if 1) b(L) = O, and 2)
c(L) and d(L) involve only positive powers of
L. In this case, the second row of (18) has a
structural interpretation as a complete, dy-
namic simultaneous equation model (CDSEM)
of the determination of at conditional on the
current value of zlt as well as the past histories
of zlt and zzt. The first row of ( 18) represents a
structural model of the determination of zlt if
indeed it is exogenous. In this case, zlt could
only be explained by its own past history or
the stochastic noise elt, or both.

These results allow the important conclu-
sion that (18) represents an attractive basis for
empirical study of dynamic structural forms
when minimal priors exist concerning an ap-
propriate theory of choice or of information
acquisition and processing. Given a specific
joint null hypothesis based on any particular
theory, (18) represents an alternative hypoth-
esis whose existence is ensured by the
stochastic properties of Zt. Most importantly,
(18) cannot be interpreted as ad hoc in spec-
ification since it can be consistent with struc-
tural interpretation. This is not the case for 1)
reduced or final forms or 2) autoregressive or
moving-average representations of (18).

These points can be appreciated more com-
pletely within the context of a consideration of
estimation of the unrestricted ARMA model
(17). Estimation of an ARMA form such as
(17) or (18) requires estimation of 1) the or-
ders and 2) the parameters of the polynomials
involved in A(L) and B(L). Until recently,
consistent estimators of the orders of these
polynomials were not available. Although a
combination of various fit criteria and atten-
tion to parsimony could be used to establish
order (see, e.g. Box and Jenkins), a unique
choice of order could not be defended empiri-
cally. Without consistent estimates of order, a
unique ARMA representation cannot be iden-
tified and structural interpretation cannot be
made. An alternative is to estimate either the
AR or MA form of an ARMA model since the
order of either of these forms is theoretically
infinite. Geweke showed that spectral meth-
ods could be used to consistently estimate the
parameters of a finite approximation of the AR
form, see Weaver and Banerjee. Because the
spectral regressors are orthogonal the order of
the AR approximation can be established
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through standard sequential hypothesis tests.
As still another alternative, Geweke has also
shown that the orders of polynomials involved
in the final form of a CDSEM can be estimated
by the same method, allowing the final form to
be used to test various erogeneity hypotheses.
However, the resulting model fails to pro-
vide structural information since any final form
is consistent with an infinity of different
CDSEMS.

Fortunately, recent contributions by Akaike
(1974, 1977), Pham-Dinh-Tuan, and Hannan
provide means of obtaining consistent es-
timators of both order and parameters of
ARMA forms. This possibility suggests the
following methodology as attractive for study
of dynamic behavior.

1,”

2.

3.

4.

5.

Identify the set of products involved in
production.
Identify a set of possible behavioral
models which appear consistent with ob-
served behavior.
Extract from this set of models a set of
possibly relevant variables.
Without imposing further priors, esti-
mate the ARMA representation of the
multivariate stochastic process generat-
ing the data.
Employ this unrestricted ARMA rep-
resentation as a basis for testing restric-
tions consistent with particular behav-
ioral hypotheses.

The difference in methods of learning upon
which this proposed method is based and that
of the conventional econometric approach to
study of behavior is subtle. In the proposed
approach, minimal priors are admitted and a
model is initially estimated which is consistent
with a wide range of theories of choice and
information processing. The existence of this
initial model is motivated by statistical proper-
ties of the data rather than a specific behav-
ioral hypothesis which conditions the resulting
model. Instead, specialization of the unre-
stricted model to investigate the validity of
particular hypotheses is conducted post-esti-
mation using a restricted model, In contrast,
the conventional econometric approach relies
on a specific theory of choice and a variety of
ad hoc specification decisions to motivate a
specific econometric model prior to estima-
tion. The resulting estimated model is con-
ditioned upon a variety of both theoretic and
ad hoc priors. This approach not only clouds
potential inference, but also masks empirical
evidence which could be useful in construc-
tion of a descriptive theory of choice.
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Summary

This paper suggests that dynamic production
choice modelling should evolve from observed
behavior and should not be constrained by
currently available theoretical models that
may be inappropriate for more general prob-
lems than those encountered by agricultural
decision makers. Furthermore, these models
assume rational optimization behavior by de-
cision makers operating in fixed decision envi-
ronments in which information is instantane-
ously available and rationally processed. It
was argued that these assumptions are not ac-
ceptable descriptions of observed dynamic
behavior. Although such assumptions allow
specification of theoretical models which
might serve as bases for construction of con-
sistent empirical models, such an approach
was argued to provide limited opportunities
for empirical learning since the interpretation
of results of such models requires prior accep-
tance of the validity of underlying assump-
tions, In this context, the alternative of es-
timating an empirical model which may be
consistent with a wide range of behavioral
theories is a more attractive approach where
priors are weak concerning the mechanism
generating observed choices. This approach
allows estimation of a model which can be
interpreted independently of the validity of a
particular theory of choice or set of assump-
tions needed to derive a consistent model of
choice. However, if a particular theory of
choice is of interest, this approach allows
post-estimation investigation of its validity by
proposing the implied consistent model as a
testable null hypothesis. In this way, the ap-
proach allows consideration of specific behav-
ioral hypotheses, but does not maintain re-
strictions which would restrict the re-
searcher’s ability to discover empirical rela-
tionships that were unexpected prior to esti-
mation.
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