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Abstract

Feeding nine billion people by 2050, yield resiliency, climate change, and remaining economically competitive
have received significant attention in the literature. Technological change in agriculture will largely dictate
our ability to meet these challenges. Although there is significant literature on technological change in U.S.
crop yields, very little has been done with Canadian yields. Moreover, the adoption and effect of various
technologies and their interaction with climate tend to be crop-region specific. To this end, we model
technological change in county-level yields for barley, canola, corn, oats, soybean and wheat in Canada. We
use mixtures to allow and test for heterogeneous rates of technological change within the yield data generating
process. While we tend to find increasing but heterogeneous rates of technological change, increasing and
asymmetric yield volatility, and increasing absolute but decreasing relative yield resiliency, our results do
differ across crops and exhibit spatial bifurcations within a crop. Using a standard attribution model, we
find changing climate has differing effects across crops. We also consider the public funding implications of
technological change for Canadian Business Risk Management programs.
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1. Introduction

Meeting expected future growth in food demand is considered a major challenge for global agriculture

(Pretty et al., 2010; Conforti et al., 2011; Searchinger et al., 2014; McKenzie and Williams, 2015). Some have

argued for food waste reduction as a possible solution (Parfitt, Barthel, and Macnaughton, 2010; Kummu

et al., 2012; Gustafsson et al., 2013; Lipinski et al., 2013; Grafton, Daugbjerg, and Qureshi, 2015) while

others have argued for a shift towards greater reliance on plant-based diets (White, 2000; Pimentel and

Pimentel, 2003; De Boer and Aiking, 2011; Ranganathan et al., 2016). Neither are consistent with economic

theory or past empirical evidence: historical increases in global wealth led to increases in both global meat

consumption and global food waste (Godfray et al., 2010; Machovina, Feeley, and Ripple, 2015). However,

technological advances have led to significant and sustained gains in average yields per acre since the mid-

twentieth century. In the United States -- the world’s largest producer of corn and soybean -- average yields

have more than quintupled and doubled, respectively (USDA NASS, 2018). In Canada, average yields have

roughly quadrupled for corn, tripled for canola, and doubled for soybean and wheat (Statistics Canada,

2018). There is no doubt that technological change will continue to play a significant role in meeting food

demand at affordable prices, a challenge exacerbated by a changing and possibly increasingly volatile climate.

The resiliency of crop yields to weather variations and pest infestations has driven vast amounts of private

and public funds into seed genomics and has received significant attention in the plant science/breeding

literature (Lin, 2011; Bennett et al., 2014; Kole et al., 2015; Mondal et al., 2016; Altieri, Nicholls, and

Montalba, 2017). Yield resiliency, which can be defined by multiple measures of mass in the lower tail of the

yield distribution, is paramount to the entire economy of developing countries and the agricultural economy of

developed countries.2 Developed countries funnel significant public monies into assisting farmers in managing

the financial consequences of low yield realizations via publicly subsidized crop insurance programs (Mahul

and Stutley, 2010). Karlan et al. (2014) found that the lack of effective yield risk management in developing

countries was the largest impediment to social and economic progress. The innovation and adoption of certain

technologies, such as triple-stacked seeds, will no doubt play a significant role in enhancing yield resiliency

and, by default, alter the public monies spent on agricultural risk management programs in developed

countries and the economic progress in developing countries.

Finally, understanding technological change in Canadian agriculture is critically important given our de-

pendence on export markets and the need to remain economically competitive. Canola seed, canola oil,

wheat, and soybean currently represent the top four agri-food exports. In 2017, 50% of canola production,

2In the crop science literature, yield resiliency is typically defined as the ability of a crop to retain its productivity following

environmental stresses (Holling, 1973). Methods to measure yield resiliency include, but are not limited to, determining the
plant biomass after recovery and resurrection from stress (Lukac et al., 2011; Gaudin et al., 2013; Griffiths et al., 2016) and

estimating the ratio of crop productivity to severeness of stress (Simelton et al., 2009).
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49% of wheat production, and 48% of soybean production were exported (Canadian Grain Commission,

2019). Conversely, the majority of barley, corn, oats, and soybean are domestically consumed in the pro-

duction of beef and pork products. In 2017, beef and pork exports totalled $6.4 billion (Agriculture and

Agri-Food Canada, 2019). Technological change is and will continue to be paramount to the competitiveness

of Canadian agriculture.

The objective of this manuscript is to estimate technological change in Canadian crop yields. As discussed,

the study of technological change is critical for meeting future food demand, enhancing yield resiliency,

mitigating any negative externalities from a changing climate, and remaining internationally competitive; all

of these are issues that have received increasing and plentiful attention across various strands of literature.

With respect to the agricultural economics literature, the modelling of technological change has almost

exclusively been in regards to U.S. yields (e.g. Skees and Reed (1986); Kaylen and Koroma (1991); Goodwin

and Ker (1998); Just and Weninger (1999); Sherrick et al. (2004); Ramirez and McDonald (2006); Woodard

and Sherrick (2011); Tack, Harri, and Coble (2012); Wu and Zhang (2012); Tack (2013); Tolhurst and Ker

(2015); Park, Brorsen, and Harri (2019)). In contrast, there is no corresponding literature in regards to

Canadian crop yields despite technological change in yields tending to be crop-region specific. To fill this

gap, we estimate the structure of technological change in barley, canola, corn, oats, soybean, and wheat using

Canadian county-level yield data. To that end, we generalize and use a mixture model approach forwarded

by Tolhurst and Ker (2015). The advantage of using mixtures in our analysis is that it allows us to test if

rates of technological change are homogeneous across sub-populations (mixtures) of the yield distribution.

In addition, the mixture model allows us to test if the probability of sub-populations is changing with

technological change. Specifically, we consider the following economically interesting questions: (i) what are

the rates of technological change in Canada by crop-region combination; (ii) do the rates of technological

change differ within the yield distribution; (iii) do rates of technological change differ between regions within

a crop; (iv) has technological change affected overall yield volatility; (v) has technological change affected

conditional (within a mixture or sub-population) yield volatility; and (vi) has technological change increased

or decreased yield resiliency.

For illustrative purposes, in Figure 1(A) we plot the 1949-2016 Middlesex, Ontario, county-level corn

yields and the estimated conditional quantiles (Koenker and Bassett Jr, 1978). Figure 1(B) illustrates

the estimated (using a mixture model with time-varying parameters) conditional yield densities at various

years and the predicted conditional yield density in year 2050. A number of points are worth noting in

regards to these Figures: (i) mean yields have roughly tripled; (ii) the rate of technological change differs

by quantile; (iii) technological change has increased yield volatility; and (iv) technological change has led to

asymmetric changes (between the upper and lower tails) in yield volatility. Interestingly, overall mean yields
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(a) Conditional Quantile Regression

(b) Estimated Conditional Yield Distribution

Figure 1. Middlesex County, Ontario, Corn Yields, 1949 - 2016.
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for Middlesex corn are expected to increase by 33% by 2050, which is notably greater than the predicted

population increase of 20%. However, the probability of 25 and 50 bushels per acre shortfalls is expected to

increase by 17% and 47%, respectively, between 2018 and 2023, which is the time frame for the Canadian

Agricultural Policy (CAP) framework and accompanying Business Risk Management (BRM) programs. To

what extent these results can be generalized to other crop-region combinations in Canadian agriculture is

unknown and the gap the manuscript intends to fill.

In addition, we consider the following two extensions. First, we use the spatial structure of our results to

identify the effect of changing climate on various estimated technological change parameters. To this end,

we use an attribution model approach proposed by Lobell and Asner (2003) and commonly employed in the

climate change literature. This extension fills a second gap by providing a sense of how climate change has

altered the yield data generating process. Second, we forecast technological change and the conditional yield

densities over the next five and ten years and compare crop insurance premium rates. This extension fills a

third gap by providing a sense of how public BRM spending may change over the next decade. Note that

BRM programs are the main avenue in Canada -- as well as in most developed countries -- of funnelling

public monies into the agricultural production sector. Federal-provincial monies budgeted for BRM under

CAP are $3 billion.

The manuscript proceeds as follows. The second section outlines the yield and climate data used for our

empirical analyses. The third section discusses estimation of conditional yield densities. The fourth section

details our estimation results while our hypothesis test results are presented in section five. The sixth section

outlines the attribution model and presents the results. The seventh section forecasts premium rates and

discusses the policy implications for Canadian BRM programs. Our conclusions are outlined in the final

section.

2. Data

Unfortunately, county-level yield data of any historical length only exists for Alberta, Saskatchewan, Man-

itoba, and Ontario.3 Yield data are available from 1978-2017 for Alberta, from 1938-2016 for Saskatchewan

(only 1970-2016 for canola), from 1993-2017 for Manitoba, and from 1949-2016 for Ontario. We decided

not to include Alberta and Manitoba given the insufficient length of yield data for the mixture models. In

Ontario, we have corn, soybean, and winter wheat yield data. Ontario accounted for 62%, 49%, and 77% of

3Ideally, farm-level yield data would be used to empirically investigate the effects of technological change given that the

adoption decision is at the farm-level. Unfortunately, such data does not exist across time or space in sufficient quantities to
be of use and thus we necessarily -- as does almost all the literature -- use county-level data. While this level of aggregation

masks farm-level heterogeneity, to the extent that technological effects are dominant across farms within a county, we will be

able to identify them with the county-level data. Coble, Dismukes, and Thomas (2007), Cooper et al. (2009), and, Claassen
and Just (2011) illustrate that year-to-year farm-level variation is generally double or more the variation in county-level yield

data and thus our results regarding volatility and tail effects are likely to be muted relative to farm-level results.
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national corn, soybean, and winter wheat production in 2017, respectively (Statistics Canada, 2018).4 We

have 32 counties for corn, six for soybean, and 26 for winter wheat. Our counties represent 97%, 40%, and

95% of Ontario corn, soybean, and winter wheat production, respectively.5 In Saskatchewan, we have yield

data for barley, canola, oats, and spring wheat. Saskatchewan accounted for 40%, 52%, 53%, and 39% of

national barley, canola, oats, and spring wheat production in 2017, respectively (Statistics Canada, 2018).6

We have 204 counties for barley, 144 for canola, 131 for oats, and 267 for spring wheat. For all four crops, our

counties represent over 95% of Saskatchewan production. In total, we have seven crops and 810 county-crop

combinations. Table 1 presents a summary of the yield data for Ontario and Saskatchewan.

Recall that we will use a standard attribution model from the climate literature to consider the effect of

a changing climate on various estimated technological change parameters (Lobell and Asner (2003)). We

exclude soybean as we only have six counties. We use daily minimum and maximum temperature and

precipitation data from 1950-2017 for each of our 34 Ontario counties and 290 Saskatchewan counties. The

temperature and precipitation data are at the longitude and latitude geographical centroids of each county.

The daily estimates are based on smoothing from nearby Environment Canada weather stations and were

provided by Natural Resource Canada (McKenney et al., 2011). We construct the usual climate variables

employed in the literature: growing degree days (GDD); harmful degree days (HDD), vapor pressure deficit

(VPD), and, precipitation (PCP). We also include PCP and VPD for only July and August following Tolhurst

and Ker (2015). We follow the approach of Roberts, Schlenker, and Eyer (2012) to estimate the distribution

of temperature using a sine curve approximation bounded by the minimum and maximum temperature for

each day. GDD is simply the sum of daily heat exposure between the lower and upper temperature threshold

Table 1. Summary of Crop Yield Data

Province Observations Summary Statistics of Crop Yield (bu/ac)

Crop Counties Period (Years) Min. Mean Median Max. Std. Dev.

Ontario
Corn 32 1949− 2016 (68) 20.2 92.9 85.0 192.9 33.3
Soybean 6 1949− 2016 (68) 16.0 33.0 32.0 56.4 9.0
Winter Wheat 26 1949− 2016 (68) 22.0 50.8 46.3 109.5 17.1

Saskatchewan
Barley 204 1938− 2016 (79) 1.0 37.8 38.0 102.7 15.5
Canola 144 1970− 2016 (47) 1.5 23.0 22.2 59.5 8.2
Oats 131 1938− 2016 (79) 1.0 48.7 48 155.8 20.6
Spring Wheat 267 1938− 2016 (79) 1.0 24.9 25.0 70.3 9.9

4We collected the yield data from the annual Agricultural Statistics Reports published by the Ontario Ministry of Agricul-

ture, Food and Rural Affairs (OMAFRA).
5Soybean production in Ontario increased dramatically by the early 1980s.
6We collected the yield data from Saskatchewan’s Ministry of Agriculture.
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(expected to be beneficial to plant growth) over the growing season. HDD is the summation of daily exposure

above the upper temperature threshold (expected to be harmful to plant growth). VPD is the difference

between the amount of water the air can hold and the amount of water it currently holds; a high VPD

indicates hot and dry conditions. PCP is the summation of precipitation over the growing season.

We use different temperature thresholds and growing seasons for each province-crop combination. Table

2 summarizes the temperature thresholds and growing season dates used for construction of our variables.

For Ontario corn, we follow Tolhurst and Ker (2016). The upper temperature threshold for corn is 29◦C,

whereas the lower threshold is 10◦C. The corn growing season starts April 1 for each county and ends by

the first day after September 1 with a minimum temperature of −2◦C. For winter wheat, Tolhurst and Ker

(2016) proposed a series of thresholds: above 12◦C with no lower bound (September to November), between

3◦C and 15◦C (December to February), and, between 9◦C and 18◦C (March to end of growing season).

The start of growing season varies widely across the province from September 5 in the northern and central

regions to October 10 in the south. The end of growing season varies from June 15 in the subsequent year to

July 20. For Saskatchewan crops, we follow Robertson et al. (2013): 5◦C to 28◦C for barley, 3◦C to 29◦C for

canola, 5◦C to 29◦C for oats, and 5◦C to 29◦C for spring wheat. The growing season for all Saskatchewan

crops starts April 1 and ends September 1.

Table 2. Summary of Growing Seasons and Critical Temperature Thresholds

Province Length of Growing Season Critical Temperature Threshold

Start End GDD GDD
Crop of Season of Season Temp Low Temp High

Ontario
Corn April 1 Sept 1 10◦C 29◦C
Winter Wheat Sept 5-25; June 15-25; n/a 12◦C a

Oct 10 July 5-20 3◦C 15◦C b

9◦C 18◦C c

Saskatchewan
Barley April 1 Sept 1 5◦C 28◦C
Canola April 1 Sept 1 3◦C 29◦C
Oats April 1 Sept 1 5◦C 29◦C
Spring Wheat April 1 Sept 1 5◦C 29◦C

a From September to November.
b From December to February.
c From March to end of growing season.

3. Estimating Technological Change and Conditional Yield Distributions

The effects of technological change on yields are almost exclusively measured by estimating change in

productivity with respect to time. Given the vast number of technological advances in seed, machinery,
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inputs, and farm management technologies with varying and unknown rates of adoption, pinpointing the

effect of a given technology is empirically impossible unless experimental plot data is used. As a result,

technological change is measured by time and reflects not only changing technology but also its interaction

with changing policy, changing climate, changing farm management strategies, etc. These effects can be

conditioned out; however, for our hypotheses we want the unconditional effects of technological change. That

is, the effect of technological change interacting within its production environment or “realized” technological

change as measured through the yearly changes in the yield distribution. Therefore, consistent with the

literature, we use time to model technological change and explicitly recognize that what we are capturing is

technological change interacting within its production and policy environments.

For the most part, the literature employs a two-step process for estimating the conditional yield distri-

bution over time (Zhu, Goodwin, and Ghosh, 2011). In the first step, technological change or the temporal

process of yields is estimated by some function of time. Examples of deterministic approaches include a

linear spline (Skees and Reed, 1986), a polynomial trend (Just and Weninger, 1999), and a robust linear

spline (Ker and Tolhurst, 2019). Examples of stochastic approaches include a Kalman filter (Kaylen and

Koroma, 1991) and an ARIMA(p, d, q) model (Goodwin and Ker, 1998; Ker and McGowan, 2000). The es-

timated residuals are often corrected for possible heteroscedasticity as per Harri et al. (2011). In the second

step, the time-conditional yields are assumed to be independent and identically distributed, and parametric

or nonparametric methods are used to estimate the distribution. There is a great amount of literature on

both approaches (Botts and Boles, 1958; Day, 1965; Gallagher, 1987; Nelson and Preckel, 1989; Moss and

Shonkwiler, 1993; Ramirez, 1997; Goodwin and Ker, 1998; Goodwin, Roberts, and Coble, 2000; Ker and

Goodwin, 2000; Ramirez, Misra, and Field, 2003; Atwood, Shaik, and Watts, 2003; Ker and Coble, 2003;

Sherrick et al., 2004; Stochs and LaFrance, 2004; Ramirez and McDonald, 2006; Woodard and Sherrick,

2011; Tack, Harri, and Coble, 2012; Wu and Zhang, 2012; Tack, 2013; Annan et al., 2014; Tolhurst and Ker,

2015). Note that none of the above cited literature is with respect to Canadian crop yields.

Technological change is often only measured at mean yields, or, if heteroscedasticity is considered, at

the mean of the year-to-year volatility. However, technological change moves mass all around the yield

distribution; thus measuring the effects of technological change beyond the means of the first two moments

can be economically informative. Figure 1(A) illustrated that technological change in Canadian crop yields

appears to be having differential effects across the distribution. First, the rate of technological change

in the lower quantiles is increasing at a lower rate than in the upper quantiles. Second, technological

change is conditionally asymmetric between the upper and lower tails, suggesting that common estimates of

heteroscedasticity which assume symmetric changes may hide information.7 An alternative approach using

7For asymmetric modelling of heteroscedasticity, see Ker and Tolhurst (2019).
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maximum likelihood methods while incorporating time directly into the parameters of the likelihood have

been proposed by Zhu, Goodwin, and Ghosh (2011) and Tolhurst and Ker (2015). Zhu, Goodwin, and

Ghosh (2011) proposed a beta distribution with time-varying parameters, whereas Tolhurst and Ker (2015)

used a mixture model, also with time-varying parameters. Because the parameters are time-varying beyond

the conditional mean, these methods are able to capture the effects of technological change throughout the

distribution. Economically, using mixtures is appealing as the mixtures themselves identify heterogeneity

which is most often the result of differing underlying economic drivers. Moreover, mixture models are

exceedingly flexible and can approximate any density to a desired level of bounded error (Everitt and Hand,

1981). Somewhat surprisingly, mixtures have been sparingly used in the agricultural economics literature.

Notable exceptions include Hall, Brorsen, and Irwin (1989) to model commodity futures, Goodwin, Roberts,

and Coble (2000) to model price uncertainty, and Li et al. (2017) to model differing GARCH processes in

commodity markets.

4. Estimation Results

A normal mixture model is defined as:

(1) yt ∼
K∑
k=1

λkN(µk(t), σ2
k(t))

where yt is the yield, K is the number of mixture components, λk is the probability of a particular component

k (subject to λk > 0 and
∑K
k=1 λk = 1), N(µk(t), σ2

k(t)) are time-varying normal distributions with mean

µk(t) and variance σ2
k(t). Empirically, we considered mixtures of 1, 2, and 3 components as well as constant

versus time-varying variances for each of the 810 county-crop combinations. Given we allow for time-varying

variances, our mixture model is a generalization of Tolhurst and Ker (2015). As is commonly done in the

literature, the mixture models were estimated using the EM-algorithm, and AIC was used to choose among

the six different model forms.8

8The EM algorithm involves two steps: an E-step and M-step. To begin with, we arbitrarily assigned an initial probability
(ρt) to each point (yt) of belonging to the lower component. This allowed us to recover an initial set of parameters by
maximizing weighted likelihoods. The E-step subsequently computes ρt for each yt using the current value of the parameters,

whereas the M-step subsequently computes a new set of parameters based on the new weights (ρt). The algorithm iterates

between the E-step and M-step until convergence. Two points are worth noting. First, the EM algorithm may converge at a
local maximum rather than the global maximum (Karlis and Xekalaki, 2003; McLachlan, 2018). Therefore, we used multiple

starting values (Finch, Mendell, and Thode Jr, 1989; Atwood et al., 1992; Karlis and Xekalaki, 2003) and chose the parameters
that maximized the likelihood across the multiple starting values. Often, the different starting values led to the same parameter
estimates. We used conditional quantile (equally spaced over 20%-80%) regression for our starting probabilities. Second, the

EM algorithm is biased in small samples towards equal component probabilities. Therefore, using our parameter estimates

from the EM algorithm as starting values we subsequently maximized a penalized (in the direction of the bias) likelihood. A
standard squared term in the direction of the bias was used as the penalty and 50 levels of tuning parameters were considered

(the tuning parameter puts more or less weight on the penalty relative to the likelihood). This led to 50 additional sets of
parameter estimates. Our chosen final estimate was the set of parameters that maximized the (un-penalized) likelihood from

amongst the 51 sets of parameters.
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For Ontario corn, a mixture of two normals with time-varying conditional variances minimized AIC in

the most counties:

(2) yt ∼ λN (αl + βlt, γl + δlt) + (1− λ)N (αu + βut, γu + δut).

Note, αl and βl are the intercept and slope coefficient in the lower component mean function, γl and δl are

the intercept and slope coefficient in the lower component variance function, αu and βu are the intercept and

slope coefficient in the upper component mean function, γu and δu are the intercept and slope coefficient in

the upper component variance function, and λ is the mixing parameter representing the probability of the

lower component.

Conversely, for the other six province-crop combinations, a mixture of two normals with constant condi-

tional variances minimized AIC in the most counties within the crop:

(3) yt ∼ λN (αl + βlt, σ
2
l ) + (1− λ)N (αu + βut, σ

2
u).

Again, we denote αl and βl as the intercept and slope coefficient in the lower component mean function, σ2
l

as the lower component variance, αu and βu as the intercept and slope coefficient in the upper component

mean function, σ2
u as the variance in the upper component, and λ as the mixing parameter representing the

probability of the lower component.

Equation (2) was estimated for each of the 32 Ontario corn counties while equation (3) was estimated for

the remaining 778 county-crop combinations for a total of 810 distinct estimates of conditional yield densities.

We imposed two restrictions on our mixture models. First, the component variances were restricted to

be above zero within the sample and 10 years forward (until 2028). This was only an issue with the

slope parameters (δl, δu) being sufficiently negative relative to the constants (γl, γu) in the time-varying

component variance equations. We tested this restriction for all counties and both components (64 tests)

using a likelihood ratio test and only one restriction was rejected which is well below the size of the test.

Second, the lower and upper component means were restricted from crossing. This happened exclusively in

the beginning of the yield series where there is strong clustering. We tested this restriction for all counties and

both components (1620 tests) using a likelihood ratio test and 104 restrictions were rejected (slightly above

size of the test). A notable benefit of using mixture models is that one can recover the estimated probability

that an observation belongs to a given component or mixture. We define the estimated probability of

observation yt belonging to the lower component as ρ̂t.
9 These probabilities can be subsequently modelled

9The estimated probability of observation yt belonging to the upper component is necessarily 1 − ρ̂t.
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as functions of explanatory variables. For example, Tolhurst and Ker (2015) modelled these probabilities as

a function of climate variables.

One of our objectives is to estimate the effect of technological change on yield resiliency. The mixture

model allows us to consider three unique measures of yield resiliency not previously considered in the liter-

ature. First, we define increased absolute yield resiliency as mean yields in the lower component increasing

through time (βl > 0). Second, we define increased relative yield resiliency as mean yields in the lower

component moving closer to mean yields in the upper component (βl > βu). Third, we define increased

frequency-based yield resiliency as the decreasing (through time) probability of a yield from the lower com-

ponent. For this latter measure, we estimate the following for each county-crop combination:

(4) ρ̂t = a+ bt+ ε

where b̂ represents the increase or decrease in the probability of the lower component through time. That is,

b > 0 corresponds to a decrease in frequency-based yield resiliency whereas b < 0 corresponds to an increase.

Table 3 summarizes the median parameter estimates for all 810 county-crop combinations. The minimum,

maximum, mean, median, and standard deviation of all parameter estimates are available in the online

appendix. Also in the online appendix are maps of each estimated parameter by crop-province combination

(to identify any spatial concentrations). Figure 2 illustrates representative estimates of the conditional mean

equations and densities at the county-crop level. We also illustrate the expected yield densities in year 2050

(corresponding to the issue of population growth and food security). There are a number of interesting

results that arise.

First, the yield distributions have changed markedly through time. This is not surprising given the past

70 years reflect very significant innovations in both seed and farm management technologies. Also of interest

is how stable the expected 2050 yield distributions appear given we are predicting 30+ years forward in

function space. Note, the yield distributions for all crops tend to exhibit negative and increasing skewness.

Ker et al. (2017) suggested that increasing asymmetric volatility is consistent with producers substituting

subsidized crop insurance for other risk-reducing technologies. The finding of increasing negative skewness

is also consistent with the findings of Ker and Tolhurst (2019) for U.S. yields. We do see some bi-modal

distributions. This results from constant component variances (chosen by AIC) and predicting 30+ years

forward. Note, a time-varying component variance structure (like in the corn model) spreads the component

mass relative to the spread in the component means adn thus significantly reduces any bi-modality. However,

for our small sample sizes, AIC, not surprisingly, tended to suggest fixed component variances.
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Table 3. Median of Estimated Parameters, by Crop and Province

Province Parameters

Crop λ αl βl γl δl αu βu γu δu b

Ontario
Corn 0.42 46.54 1.06 4.13 2.01 47.24 1.54 6.46 1.67 −0.00175
Soybean 0.19 19.00 0.19 17.74 n/a 19.70 0.40 8.03 n/a −0.00351
Winter Wheat 0.19 26.14 0.38 15.83 n/a 26.14 0.77 30.10 n/a −0.00424

Saskatchewan
Barley 0.17 14.52 0.31 54.24 n/a 20.52 0.53 52.59 n/a −0.00176
Canola 0.47 15.25 0.17 19.38 n/a 17.27 0.42 13.64 n/a −0.00060
Oats 0.33 19.18 0.44 86.58 n/a 28.14 0.65 101.29 n/a −0.00110
Spring Wheat 0.18 8.85 0.19 16.28 n/a 16.36 0.28 28.24 n/a −0.00194

Second, the estimated probability (or size) of the lower component, λ̂, tends to be significantly smaller

than the upper component in all but Ontario corn and Saskatchewan canola. Corn has been relatively more

sensitive to climate variations, and canola has been relatively more prone to pest infestations. Of particular

interest is the spatial bifurcation of λ̂ for each crop (see online appendix). In particular, Ontario winter

wheat in the west, tends to have a smaller probability of a low component realization than the eastern part.

Similarly, Saskatchewan spring wheat in the north tends to have a smaller probability of a low component

realization than spring wheat in the southern counties.

Third, the yearly change in the probability of the lower component (b̂) tends to be negative for all

county-crop combinations (plotted in Figure 4 in the appendix). This suggests that technological change is

increasing frequency-based yield resiliency. Fourth, β̂l, which represents the slope of the lower component

mean, tends to be positive for all county-crop combinations. This suggests that technological change is

increasing absolute yield resiliency. Fifth, the slope in the upper component mean, β̂u, tends to be higher

than in the lower component mean, β̂l. This result suggests differing rates of technological change within the

yield distribution and, given βu > βl, that technological change is causing increasing volatility and decreasing

relative yield resiliency. The differing rates of technological change are not surprising given that technologies

do not simply move the mean upwards and leave the rest of the distribution unaffected. That “realized”

technological change is increasing yield volatility asymmetrically is also not surprising under subsidized crop

insurance.

Sixth, if we consider the ratio βu/βl by county-crop combination, we see that the rates of technological

change in the upper component are increasing at roughly double those in the lower component for soybean,

winter wheat, barley, canola, and spring wheat. For corn and oats, the rates of technological change in

the upper component are increasing at 150% those in the lower components. As a result, yield volatility is
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(a) Peel, Ontario, Corn (b) Peel, Ontario, Corn

(c) Middlesex, Ontario, Soybean (d) Middlesex, Ontario, Soybean

(e) Hoodoo, Saskatchewan, Barley (f) Hoodoo, Saskatchewan, Barley

Figure 2. Representative Technological Trends and Estimated Yield Distribution, by Crop



14

(g) Wolseley, Saskatchewan, Canola (h) Wolseley, Saskatchewan, Canola

(i) Frenchman Butte, Saskatchewan, Oats (j) Frenchman Butte, Saskatchewan, Oats

(k) Abernethy, Saskatchewan, Wheat (l) Abernethy, Saskatchewan, Wheat

Figure 2. Representative Technological Trends and Estimated Yield Distribution, by Crop
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expected to increase more in soybean, winter wheat, barley, and canola relative to corn, oats, and spring

wheat. Figure 4 (appendix) plots the difference β̂u − β̂l. Interestingly, we see spatial bifurcations for each

crop. For both Ontario corn and winter wheat, the difference is much larger in the western part of the

province, suggesting an area of greater yield volatility. For all four Saskatchewan crops, the difference is

much larger in the northern part of the province, again suggesting an area of greater yield volatility.

Finally, if we consider the rate of technological change of the overall mean, yield is increasing at a greater

rate than population growth for all crop-province combinations. In fact, the median increases in yields

between 2018 and 2050 are 30%, 25%, and 29% for Ontario corn, soybean, and winter wheat, respectively.

Similarly, the median increases in yields are 27%, 31%, 26%, and 24% for Saskatchewan barley, canola, oats,

and spring wheat, respectively. Recall that population is supposed to increase by roughly 17-20% between

2018 and 2050. If we consider the overall standard deviation, we see that yield volatilities are expected to

increase by 42%, 41%, and 43% for Ontario corn, soybean and winter wheat, respectively, between 2018 and

2050. With respect to Saskatchewan barley, canola, oats, and spring wheat, yield volatilities (as measured by

overall standard deviation) are expected to increase by 27%, 59%, 29%, and 23%, respectively. Interestingly,

the coefficient of variation for Ontario corn, soybean, and winter wheat as well as Saskatchewan canola is

increasing, while the other crop-province combinations appear to be roughly constant.

In summary, our estimation results produce a number interesting findings: (i) technological change is

having pronounced effects on aspects of the yield distributions beyond the overall mean; (ii) technological

change is having noticeably different effects throughout the yield distribution; (iii) technological change is

increasing yield volatilities; (iv) technological change is increasing yield volatilities asymmetrically between

the two tails, with greater volatility in the lower tail; (v) technological change is increasing absolute and

frequency-based yield resiliency but decreasing relative yield resiliency; and (vi) technological change, if it

continues and to the extent that Ontario and Saskatchewan are representative, will increase mean yields at

a greater rate than expected population increases.

5. Hypothesis Test Results

The mixture model allows us to consider hypothesis tests that would otherwise not be testable. We test if

the rates of technological change are statistically different across the two components of the yield distributions

(H0 : βl = βu). For this we use a standard likelihood ratio test. In the appendix, we plot β̂u− β̂l by county-

crop combination on maps to identify any spatial clustering. We also test if the conditional variances –

variances within the components – are increasing or decreasing with technological change. Specifically, we

test H0 : δl = δu = 0 for Ontario corn, as the other crop-province combinations assumed a model (from AIC

model selection) with constant conditional variances. Again, we use a standard likelihood ratio test. Finally,
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we consider and test our three different measures of yield resiliency. First, we defined increased absolute

yield resiliency as mean yields in the lower component increasing through time. This tests H0 : βl = 0 using

a standard likelihood ratio test. Second, we defined increased relative yield resiliency as mean yields in the

lower component getting closer through time to mean yields in the upper component. This is simply our

previous test (H0 : βl = βu). Third, we defined increased frequency-based yield resiliency as the probability

of yields from the lower component decreasing through time (H0 : b = 0). To undertake this test we use

the estimated probabilities of realizations belonging to the lower component, regress them against time, and

conduct a simple t-test. However, the usual standard errors do not account for the estimated regressor,

and we therefore report rejections using jackknife standard errors as well as traditional standard errors.10

In the appendix, we also plot the slope parameter (b̂) by county-crop combinations on maps, again to

identify any spatial clustering. The four test results are located in Table 4. Note, the size of all tests is 5%.

Given we are doing multiple tests per crop (one per county) we also consider the Holm-Bonferroni multiple

testing procedure although this is not commonly done in the literature. This procedure rejects only the null

hypotheses with ordered p-values less than the sequence (α/m,α/(m−1), ..., α) to ensure the risk of rejecting

one or more true nulls is at most α, where α is the size of the test and m is the number of tests (Holm,

1979).11 This approach assumes statistical independence between tests in constructing the null of the order

statistics and is therefore overly conservative given we suspect strong spatial correlation. That said, a single

rejection under Holm-Bonferroni is sufficient to reject the “joint” null across all tests under the family-wise

rate α.

For Ontario corn, we reject homogeneous rates of technological change across the yield distribution in

25 of the 32 counties. In 24 of the 25 instances, we find β̂u > β̂l, indicating that almost all counties

exhibit increasing overall volatility. This is strong evidence of decreasing relative yield resiliency. Note, we

reject under Holm-Bonferroni as well. Recall that using AIC (not a statistical test) we found time-varying

conditional variances were preferred to constant conditional variances. We tested H0 : δl = δu = 0 and

found that 22 of 32 counties rejected the null of constant conditional variance. Again, Holm-Bonferroni

rejected as well. We find all 32 counties exhibit statistically significantly increasing absolute yield resiliency

(βl > 0). When we test the probability of the lower component fixed through time, we find only four of

10In general, the bootstrap is preferable to the jackknife. However in our analysis the residual bootstrap is invalid in the

presence of conditional heteroscedasticity and the wild bootstrap is invalid given asymmetric heteroscedasticity. Moreover,
bootstrapping the original yield data can lead to convergence problems within the components. The jackknife drops one year at

a time and recovers T jackknife estimates. The robust jackknife standard error is (T−1
T

∑T
t=1(θ̂−t− θ̂)2)0.5. Note, the jackknife

is a linear approximation to the bootstrap but is biased upwards relative to the bootstrap (Efron and Tibshirani, 1994). In this

sense, our jackknife standard errors are robust but conservative.
11Note, as m, the number of tests increases, the threshold p-values get correspondingly closer to zero. For example, for

m = 100 tests and rejection level of 0.05, the 100 thresholds of the ordered p-values are (0.000500, 0.000505, 0.000510, ..., .05).
If we find 25 rejections but the minimum p-value is not below 0.0005, then we would find no rejections using Holm-Bonferroni.

That is, once an ordered p-value is not below the corresponding ordered threshold, the test stops.
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Table 4. Rejection Counts of Hypothesis Tests

Province Ho : b = 0
Crop Counties H0 : βl ≤ 0 H0 : βl = βu SEConv SEJack

Ontario
Corn 32 32 25 4 0∗

Soybean 6 5 3 3 1
Winter Wheat 26 25 15 12 3

Saskatchewan
Barley 204 190 89 59 11
Canola 144 131 32 12 4∗

Oats 131 119 45 28 6
Spring Wheat 267 238 88 96 15

All 810 740 297 214 40

Notes : SEConv are conventional standard errors. SEJack are jackknife standard errors. ∗ denotes a fail to reject of the joint

null for a given crop using the Holm–Bonferroni method.

the counties reject the null under conventional standard errors; all four exhibit decreasing probability in the

lower component. That is, frequency-based yield resiliency is increasing. However, when we consider the

estimated regressor issue and use jackknife standard errors, we cannot reject constant probability for any

counties. Recall, Figure 4 in the appendix plots β̂u > β̂l and b̂ by county-crop combination. We see that

there is noticeable spatial bifurcation: β̂u− β̂l tends to be greater and b̂ tends to be negative in southwestern

Ontario.

For Ontario soybean and winter wheat, we find that 50% and 58% of counties reject equivalent rates of

technological change respectively. Note that for both crops all rejections are such that βu > βl, suggesting

strong evidence of decreasing relative yield resiliency. Conversely, for both crops almost all counties reject

βl ≤ 0, indicating very strong evidence of increasing absolute yield resiliency. For both tests, we reject under

Holm-Bonferroni as well. We find that 50% and 7% of the soybean and winter wheat counties, respectively,

reject constant component probabilities using traditional standard errors. In the three soybean cases and

10 of the 12 wheat cases, b̂ is less than zero, suggesting decreasing probability of a low component yield

realization and thus increasing frequency-based yield resiliency. However, when our jackknife standard errors

are considered, the number of rejections drop to one and three, respectively (all have b̂ < 0). These tests

do still reject under Holm-Bonferroni. Interestingly, we find spatial concentration for both β̂u − β̂l and b̂; as

with the corn model, β̂u − β̂l tends to be greater in southwestern Ontario, but, unlike corn, b̂ tends to be

below zero in eastern Ontario.

For Saskatchewan barley and canola, we find, 44% and 22% of counties reject the null of equal rates

of technological change, of which 91% and 100% have βu > βl, respectively. These crops also illustrate
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strong evidence of decreasing relative yield resiliency. Conversely, for both crops almost all counties reject

βl ≤ 0, indicating very strong evidence of increasing absolute yield resiliency. For both tests, we reject under

Holm-Bonferroni as well. We find that 29% and 8% of the barley and canola counties, respectively, reject

constant component probabilities using traditional standard errors. Interestingly, b̂ < 0 in 92% and 58%

of the cases for barley and canola, respectively. For barley, these results suggest increasing frequency-based

yield resiliency, whereas for canola the results are almost equally divided between decreasing and increasing

frequency-based yield resiliency. However, when our jackknife standard errors are considered, the number

of rejections for barley and canola drop to 11 and four, respectively. Interestingly, of those 11 and four

rejections, 9 and 4 have b̂ < 0. We reject under Holm-Bonferroni for barley but not for canola. For barley

we find β̂u − β̂l tends to be higher in the more northern counties, while b̂ tends to be more negative in the

more northern counties. For canola, we find similar results between the northeast and northwest counties

and the southeast and north central counties.

For Saskatchewan oats and spring wheat, we find that roughly 33% of counties reject the null of equal

rates of technological change, of which 91% and 73% have β̂u > β̂l, respectively. While oats illustrate

strong evidence of decreasing relative yield resiliency, the results are noticeably less strong for spring wheat.

In a number of southwest-southcentral Saskatchewan counties, we find evidence of increasing relative yield

resiliency for spring wheat. For both crops, the very large majority of counties reject βl ≤ 0, indicating strong

evidence of increasing absolute yield resiliency. We reject both tests under Holm-Bonferroni. We find that

21% and 36% of the oats and spring wheat counties, respectively, reject constant component probabilities

using traditional standard errors. Interestingly, b̂ < 0 in all but three cases, suggesting increasing frequency-

based yield resiliency. However, when our jackknife standard errors are considered, the number of rejections

drop to six and 15, respectively (all from b̂ < 0). Both tests under the jackknife standard errors reject

Holm-Bonferroni. We find strong spatial bifurcations of b̂ where the tendency in the more northern counties

is for b̂ < 0, indicating increasing frequency-based yield resiliency.

Overall, the results show strong evidence of differing rates of technological change for all crops despite the

low power of our tests (caused by relatively small samples; relatively high number of parameters; parameters

modelling upper moments of the data generating process; and, strong spatial correlation across the counties).

Moreover, in almost all county-crop combinations we find βu > βl suggesting increasing volatility and

decreasing relative yield resiliency with technological change. A notable exception is Saskatchewan wheat;

in the northwest we find βu > βl whereas in the southeast we find βu < βl. We found very strong evidence

of increasing absolute yield resiliency (βl > 0) across all crops and regions. We did not find significant

evidence of b 6= 0 or changing component probabilities. However, of the few results we did find, all suggest

that the probability of the lower component is decreasing with technology (b < 0) and frequency-based yield
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resiliency is increasing. We find notable spatial concentrations of our test results, which is not surprising

given the notable spatial concentrations of our parameter estimates. Finally, we did find that the statistical

strength of our tests or the percent of rejections differed significantly across the six crops. Overall, our results

are qualitatively similar to what Tolhurst and Ker (2015) found for U.S. corn, soybean, and winter wheat

county-level yields.

6. Climate Attribution Model

Changing climate has become a significant area of academic research and central to many national and

international policies. In Canada, carbon pricing has been and continues to be a contentious issue, causing

divide amongst the provinces and court actions between provincial and federal governments. With respect

to agriculture, there has been significant work with respect to changing climate and U.S. crop yields. Very

little has been done with respect to Canadian yields. In this section, we consider to what extent changing

climate has affected the yield data generating process. To this end, we use the standard attribution model

from the climate literature, proposed by Lobell and Asner (2003). This approach makes use of the spatial

heterogeneity in rates of change in yields and climate variables to identify changing climate effects. The

model is defined as follows:

(5) ∆ωi = ζ + θ∆climatei + ηi

where ∆ωi is the average yearly change in the yield response variable of interest, and ∆climatei is the average

yearly change in the climate variables where i denotes the county. This model has been heavily used in the

literature (see Tao et al. (2006), Lobell and Field (2007), Kucharik and Serbin (2008), Roberts, Schlenker,

and Eyer (2012), Tack, Harri, and Coble (2012)).

The climate attribution model is estimated by crop. As discussed in our climate section, the variables

of interest are GDD, HDD, VPD, PCP, VPDJA, and PCPJA. The mixture model approach allows us to

consider the effects of a changing climate on a number of different aspects of the yield data generating

process. To the best of our knowledge, we have not seen a complete consideration of changing climate on the

yield data generating process. In most instances, only mean yields are considered and primarily using U.S.

yield data. We consider the effects of a changing climate on a number of technological change parameters

from our estimated yield data generating processes. Specifically, we consider the average yearly change in:

(i) the lower component mean (β̂l); (ii) the upper component mean (β̂u); (iii) the overall mean denoted as ˆ̄y;

(iv) the volatility as measured by β̂u− β̂l; (v) the overall volatility as measured by the variance and denoted

σ̂2; (vi) the lower component conditional variance (δ̂l); (vii) the upper component conditional variance (δ̂u);

and (viii) the probability of the lower component (b̂). The results for Ontario are located in Table 5 and the
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Table 5. Climate Attribution Model Results: Ontario

Crop Location Measures Volatility Measures

β̂u β̂l b̂ δ̂u δ̂l ˆ̄y β̂u − β̂l σ̂2

Corn
Intercept 1.238∗∗∗ 0.422 −0.003 1.548 0.743 0.999∗∗∗ 0.816∗∗ 7.324∗∗∗

GDD −0.366 0.348 0.008∗ 2.315 0.078 −0.162 −0.715 −3.667
HDD 0.316 1.232 0.014 31.997∗∗ −3.125 3.436 −0.916 −21.065
V PD 0.750 −1.639 −0.019 −11.064 −3.367 0.014 2.390 11.051
V PDJA −0.246 0.596 0.005 10.254 13.993 1.224 −0.842 −0.133
PCP 0.228 0.182 0.000 −0.465 1.331 0.244 −0.155 −0.477
PCPJA −0.445 −0.729 0.000 5.462∗∗ 0.118 −0.256 0.284 6.503∗

R2 0.215 0.163 0.265 0.357∗ 0.112 0.271 0.166 0.254

Winter Wheat
Intercept 0.834∗∗∗††† 0.363∗∗∗ −0.009∗∗∗ n/a n/a 3.905∗∗ 0.471∗∗∗ 1.229∗∗

GDD 0.157 −0.025 −0.006∗∗∗ n/a n/a 0.406 0.182 0.013
HDD 0.186 0.027 −0.006 n/a n/a −0.168 0.159 0.084
V PD 1.264 −0.195 0.037 n/a n/a −0.561 −1.070 −0.848
PCP 0.032 −0.007 0.002∗ n/a n/a 0.695 −0.024 −0.194

R2 0.088 0.153 0.189 n/a n/a 0.117 0.052 0.115

Note : Statistical significance is indicated by ∗, ∗∗ and ∗∗∗ for the 10%, 5% and 1% levels under conventional standard errors.
Statistical significance is indicated by †, †† and ††† for the 10%, 5% and 1% levels under jackknife standard errors. Statistical

significance on the R2 is a joint test of all parameters using a Wald test based on either the conventional or jackknife covariance

matrix.

results for Saskatchewan are located in Table 6. Note, as with our earlier tests, we account for our estimated

regressor by using jackknife methods.12

For Ontario corn, we find that only four of 48 climate estimates are significant at the 10% level (below the

size of the test). When we properly account for the estimated regressor using jackknife standard errors (not

commonly done in the literature), none are significant at the 10% level. It is worth noting that changing

climate does explain more of the changes in the overall mean versus the conditional means. However, this is

not true for the conditional variances, where the spatial variation for changes in the variance of the upper

component of yields exhibits the second highest R2 (0.357) of any of the 48 regressions. Interestingly, we

only reject the null of no climate effects for the regression of δ̂u and under a conventional Wald test. The

jackknife Wald test indicates none of the regressions are statistically significant. For Ontario winter wheat,

we find that two of 24 climate estimates are significant at the 10% level, again below the size of the test.13 We

cannot reject the null of no climate effects for all six regressions under either a conventional or jackknife Wald

test. Recall, the identification strategy in the attribution model is solely dependent on spatial heterogeneity

12To account for the estimated regressor for individual t-tests, we recover the jackknife standard errors. However, for the

joint significant test, it was necessary to construct the jackknife covariance matrix using Shao (1992).
13We do not include the PCPJA and VPDJA given the winter wheat growing season.
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in the trends in yield and climate variables. Our corn and winter wheat results reflect a small geographical

area consisting of 32 and 26 counties, respectively. In this sense, our results are not surprising and may be

more indicative of the small sample size and relatively homogeneous area than a lack of a climate effect.

For Saskatchewan barley, we find that 15 of 36 climate estimates are significant at the 10% level using

conventional standard errors and two using the robust but conservative jackknife standard errors. The

greatest significance is in the overall mean regression, which is not surprising because it represents location

effects and thus power (in our tests) is much greater. The significant variables are of the expected sign. That

is, in the ˆ̄y regression, HDD and VPD are negative while VPDJA is positive. Interestingly, we reject the null

of no climate effects for all location and volatility measures under the conventional Wald test but only the

overall mean under the robust but conservative jackknife Wald test. For Saskatchewan canola, we find that

16 of the 36 climate estimates are significant using conventional standard errors but only one using jackknife

standard errors. In the regression of β̂u − β̂l, we find HDD significant and positive. We would expect that

spread in the components or volatility would increase as HDD goes up. Interestingly, we reject the null of no

climate effects for all location and volatility measures using a Wald test but none using the robust jackknife

covariance matrix. For Saskatchewan oats, we find that 22 of the 36 climate estimates are significant using

conventional standard errors and four using jackknife standard errors. Of note is that climate is explaining

the largest degree of spatial heterogeneity for the oat yield data generating process versus the other crops.

Again, we find the greatest significance in the overall mean equation. As expected, we find VPD negative

and significant, and VPDJA and PCPJA significant and positive. Again, using the conventional covariance

matrix we reject the null of no climate effects for all location and volatility measures but only for the overall

mean when we use the robust jackknife covariance matrix inside the Wald tests. Finally, for spring wheat we

find that 26 of the 36 climate variables are significant but only one when we consider the jackknife standard

errors. This result is surprising in that GDD has a negative and significant effect on the overall mean.

However, given the number of tests considered (216 t-tests), we only find one statistically significant result

of the wrong sign. Again, with the conventional Wald test we reject the null of no climate effects for all

location and volatility measures but only for the overall mean when we use the robust jackknife Wald test.

Summarizing our climate attribution results, we find: (i) weak overall statistical significance given our

small number of counties, relatively homogeneous geographical region, and sampling error in our estimated

regressors; (ii) statistical significance is much smaller in Ontario than Saskatchewan; and (iii) climate tends

to explain significantly more of the spatial heterogeneity in the technological change in the overall mean

as compared to either of the conditional means or volatility parameters. Although lacking in statistical

significance from low power, nonetheless these results are interesting and consistent with general expectations.
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Table 6. Climate Attribution Model Results: Saskatchewan

Crop Location Measures Volatility Measures

β̂u β̂l b̂ ˆ̄y β̂u − β̂l σ̂2

Barley
(Intercept) 0.134∗∗ 0.472∗∗∗†† −0.003∗∗∗ 0.434∗∗∗††† 0.338∗∗∗ 1.114∗∗∗

GDD 0.071∗∗ 0.033 0.001 0.019 −0.038 −0.196
HDD −0.444 −1.357∗ 0.025∗∗ −1.965∗∗∗† −0.913 −2.825
V PD 1.000∗∗∗ −0.087 0.031∗∗∗ −0.826∗∗∗ −1.087∗∗ −1.679
V PDJA −1.934∗∗∗ 1.021 −0.058∗∗∗ 2.097∗∗∗†† 2.955∗∗∗ 7.435∗

PCP 0.048 0.039 −0.002 0.068∗ 0.087 0.014
PCPJA −0.031 0.129 −0.001 0.082 0.159 1.694∗∗∗

R2 0.060∗ 0.101∗∗∗ 0.215∗∗∗ 0.224∗∗∗†† 0.099∗∗∗ 0.115∗∗∗

Canola
(Intercept) 0.072 0.520∗∗∗††† −0.007∗∗∗ 0.351∗∗∗†† 0.449∗∗∗† 1.880∗∗∗

GDD 0.063∗ −0.023 0.002∗∗ −0.008 −0.086∗∗ −0.451∗∗∗

HDD −7.110∗∗∗ 0.720 −0.161∗∗∗ −2.621∗∗∗ 7.826∗∗∗† 31.803∗∗∗

V PD −0.249 −0.231 −0.013 −0.518∗∗ 0.017 1.387
V PDJA 1.994∗∗ 0.833 0.059∗ 1.516∗∗∗ −1.161 −6.824∗

PCP −0.032 −0.051 0.001 −0.032 −0.019 −0.061
PCPJA 0.178 0.196∗ 0.003 0.131∗ 0.018 −0.512

R2 0.078∗ 0.192∗∗∗ 0.124∗∗∗ 0.076∗ 0.208∗∗∗ 0.252∗∗∗

Oats
(Intercept) −0.169 0.713∗∗∗†† −0.007∗∗∗ 0.635∗∗∗††† 0.882∗∗∗††† 3.899∗∗∗

GDD 0.219∗∗∗ −0.064 0.002∗∗∗ −0.055 −0.283∗∗∗ −1.494∗∗∗

HDD −5.333∗∗∗ 0.004 −0.051∗∗ −1.071 5.338∗ 44.459∗∗∗

V PD 0.691 −2.300∗∗∗ 0.024∗∗∗ −2.077∗∗∗†† −2.991∗∗∗ −7.379
V PDJA −0.774 4.508∗∗∗ −0.030∗ 3.663∗∗∗†† 5.282∗∗∗ 11.234
PCP 0.145 0.003 0.004∗∗∗ −0.005 −0.143 −0.652
PCPJA −0.118 0.832∗∗∗† −0.007∗∗∗ 0.530∗∗∗†† 0.950∗∗∗ 4.931∗∗∗

R2 0.228∗∗∗ 0.302∗∗∗ 0.295∗∗∗ 0.382 ∗∗∗††† 0.370∗∗∗ 0.330∗∗∗

Spring Wheat
(Intercept) 0.426∗∗∗ −0.019 −0.008∗∗∗ 0.417∗∗∗††† 0.444∗∗∗ 0.934∗∗∗

GDD −0.084∗∗∗ 0.063∗∗∗ 0.003∗∗∗ −0.082∗∗∗††† −0.147∗∗∗ −0.334∗∗∗

HDD −0.640 −0.088 −0.073∗∗∗ 0.541∗ −0.552 −1.472
V PD −0.290 1.071∗∗∗ 0.022∗∗∗ −0.403∗∗∗ −1.362∗∗∗ −3.773∗∗∗

V PDJA 0.893∗ −2.173∗∗∗ −0.021∗ 0.494∗ 3.066∗∗∗ 8.644∗∗∗

PCP 0.090 ∗∗ 0.078∗ 0.001 0.052∗∗ 0.012 0.073
PCPJA −0.070 −0.272∗∗∗ 0.000 −0.129∗∗∗ 0.202∗ 0.643∗∗

R2 0.112∗∗∗ 0.156∗∗∗ 0.332∗∗∗ 0.290∗∗∗††† 0.176∗∗∗ 0.215∗∗∗

Note : Statistical significance is indicated by ∗, ∗∗ and ∗∗∗ for the 10%, 5% and 1% levels under conventional standard errors.

Statistical significance is indicated by †, †† and ††† for the 10%, 5% and 1% levels under jackknife standard errors. Statistical
significance on the R2 is a joint test of all parameters using a Wald test based on either the conventional or jackknife covariance

matrix.
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Moreover, they provide a more complete analysis of the impacts of changing climate on yields by considering

the effects at and beyond the overall mean.

7. Economic Implications for Crop Insurance

Canadian BRM programs are the main avenue by which public monies are funnelled to agricultural

producers. The current policy framework -- Canadian Agricultural Partnership (CAP) -- is a five-year com-

mitment (2018 to 2023) jointly funded ($3 billion total) by federal and provincial governments. Agricultural

support programs were first offered in the 1958 Agricultural Stabilization Act. A thorough history of the

Canadian agricultural support programs can be found in Barichello (1999). The current BRM program

consists of a suite of products: AgriInvest, AgriStability, AgriRecovery, and AgriInsurance. AgriInvest al-

lows producers to deposit funds and receive matching dollars up to a maximum amount. AgriStability is

a net profit farm-level insurance program that, despite requiring only payment for sign-up, has been much

maligned because of the transaction costs and low coverage rates and has seen continuous and significant

decline in participation levels over the last seven years. AgriRecovery is a catastrophic loss program at the

region level and requires the province to make an application to trigger payments. AgriInsurance is producer

level, commodity specific, yield insurance. Producers can purchase insurance up to the 90% coverage level

in Ontario but only up to the 80% coverage level in Saskatchewan. All programs are designed, to varying

degrees, to assist producers with low yield outcomes.

We consider the implications of technological change on producer premium rates for yield insurance con-

tracts in Canada. Of particular note is that the producer paid premium rate is roughly 40% of the actuarially

rate, with the federal and provincial governments covering the remaining 60% at a 60-40 split, respectively.

Moreover, the federal and provincial governments subsidize the entire administrative and operating costs of

the program. Therefore, if producer premiums are expected to increase due to technological change, the

public monies that support those programs may (and likely will) correspondingly increase. To that end, we

compare the premium rates in 2018 with the premium rates in 2023 and 2028 under our estimated mixture

models.

The actuarially fair premium rate for a yield (y) insurance contract at a yield guarantee of yτ is:

(6) π =

∫ yτ

0

(yτ − y)dFy

where Fy is the distribution of y. Premium rates are defined in bushels per acre. Figure 3 shows box plots of

the ratio of the premium rates between 2018 and 2023 at both the 70% and 90% coverage levels and by crop.

Note, 2023 represents the end of CAP. The on-line appendix shows the same ratio of premium rates but

between 2018 and 2028. The box plots are constructed from the county premium rate ratios. For example,
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(a) 70% Coverage Level

(b) 90% Coverage Level

Figure 3. Ratio of Expected Yield Loss: π2023/π2018
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the box plot for Ontario corn consists of the 32 ratios of the premium rates corresponding to the 32 counties.

It is important to understand the premium rate calculations. First, if mean yield increases and variance is

constant, the guarantees would increase and premium rates would decrease. Second, if mean yield is constant

and variance increases, guarantees would remain constant but premium rates would increase. Third, if both

mean yield and variance increase, guarantees would increase but premium rates may increase or decrease

and, moreover, premium rates could increase at one coverage level and decrease at another. That is, mapping

changes in the yield distribution to changes in premium rates is both non-linear and intuitively non-trivial.

The median of the ratio of premium rate changes between 2018 and 2023, as well as between 2018 and 2028,

are located by crop and coverage level in Table 7.

Interestingly, despite widespread volatility increases in the estimated yield distributions, premium rates

do not correspondingly increase everywhere. At the 70% coverage level, the majority of premium rates are

expected to increase for corn, soybean, winter wheat, and canola, and decrease for oats and spring wheat.

Conversely, at the 90% coverage level, the majority of premium rates are expected to increase for all crops,

particularly corn, soybean, winter wheat, barley, and canola. Plots of the county-crop premium rate ratios

by coverage level are located in the appendix. At the 70% coverage level, we do not see any significant

spatial concentrations for Ontario corn. Conversely, at the 90% coverage level we do see spatial bifurcation:

the southwestern counties see much greater increases in premium rates than the eastern counties. With

respect to Ontario winter wheat, we see an interesting spatial pattern in that the increasing premium rates

at the 70% coverage level are spatially correlated with decreases at the 90% coverage level. With respect to

Saskatchewan barley, canola, and oats, we see a strong spatial bifurcation in the premium rate changes. The

more northern counties experience greater premium rates at both coverage levels relative to the southern

counties. Finally, for Saskatchewan spring wheat we see greater premium increases in the northwest counties

Table 7. Median Ratio of Premium Rates

Province π2023/π2018 π2028/π2018

Crop 70% Coverage 90% Coverage 70% Coverage 90% Coverage

Ontario
Corn 1.021 1.055 1.037 1.110
Soybean 1.099 1.083 1.205 1.166
Winter Wheat 1.088 1.082 1.176 1.165

Saskatchewan
Barley 0.996 1.046 0.996 1.092
Canola 1.040 1.062 1.082 1.127
Oats 0.945 1.019 0.893 1.038
Spring Wheat 0.947 1.024 0.899 1.048
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versus the southeast counties. Perhaps surprisingly, our results do not suggest widespread and significant

increases in BRM spending over the next 5 to 10 years. These results are somewhat contradictory to Tack,

Coble, and Barnett (2018) but we would expect different results for different crop-region combinations.

Moreover, as noted by Coble, Dismukes, and Thomas (2007); Cooper et al. (2009); Claassen and Just

(2011), tail and volatility effects using county-level data are muted relative to on-farm effects.

8. Conclusions

The objective of this manuscript was to estimate technological change in Canadian crop yields. The study

of technological change is critical for meeting future food demand, enhancing yield resiliency, mitigating any

negative externalities from a changing climate, and remaining internationally competitive. While there exists

significant literature modelling technological change in U.S. yields, there is no corresponding literature in

regards to Canadian crop yields. We used county-level yield data to estimate the structure of technological

change in barley, canola, corn, oats, soybean, and wheat in Canada using mixture models. We contribute

to the vast literature in modelling yields by generalizing the mixture model of Tolhurst and Ker (2015)

to allow for time-varying component variances. We conducted tests of homogeneous rates of technological

change, various yield resiliency measures, and yield volatility. While the results are very interesting in

and of themselves, we do contribute to the yield resiliency literature by introducing three new measures

of yield resiliency. We considered two interesting extensions that also fill gaps in the literature. First, we

estimated the effect of a changing climate on various location and volatility technological change measures

recovered from our mixture models (not just the mean). Second, we predicted conditional yield distributions

to ascertain the effects of technological change on future premium rates and BRM spending in Canada.

Our empirical analyses and hypothesis tests led to a number of interesting findings: (i) rates of technolog-

ical change exceed the rate of population growth; (ii) differing rates of technological change; (iii) increasing

volatility and decreasing relative yield resiliency; (iv) asymmetric volatility changes; and (v) increasing abso-

lute yield resiliency. We did not find strong statistical evidence of increasing frequency-based yield resiliency.

Perhaps one of the more interesting findings was that most of our results showed notable spatial bifurcations

within the provinces. With respect to our climate results, we found weak statistical evidence of any climate

effects, but those that we did find to be significant were concentrated in our location rather than volatility

measures. While our results are not as statistically significant as some, we do properly account for the

estimated regressor issue in our statistical tests. With respect to our BRM results, we found that, despite

widespread volatility increases in the estimated yield distributions, premium rates do not correspondingly

increase everywhere.
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Our analyses do suffer from a lack of availability of yield data. Individual farm-level data over the same

period covering the same geographical areas (or more) would have been ideal. At a minimum, greater spatial

coverage of county-level yield data would have added measurably to our empirical analyses. First, yield data

from British Columbia, Alberta, Manitoba, and Quebec would have allowed us to cover more crops and a

greater share of crop production in Canada. Second, we would be better able to identify areas of spatial

homogeneity and heterogeneity beyond provincial borders. Third, we would have significantly more power

in our changing climate regressions.
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Appendix

(a) Ontario Corn, β̂u − β̂l (b) Ontario Corn, b̂

(c) Ontario Wheat, β̂u − β̂l (d) Ontario Wheat, b̂

(e) Saskatchewan Barley, β̂u − β̂l (f) Saskatchewan Barley, b̂

Figure 4. Spatial Distribution of β̂u − β̂l and b̂, Ontario and Saskatchewan



35

(g) Saskatchewan Canola, β̂u − β̂l (h) Saskatchewan Canola, b̂

(i) Saskatchewan Oats, β̂u − β̂l (j) Saskatchewan Oats, b̂

(k) Saskatchewan Wheat, β̂u − β̂l (l) Saskatchewan Wheat, b̂

Figure 4. Spatial Distribution of β̂u − β̂l and b̂, Ontario and Saskatchewan
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(a) Ontario Corn, 70% Coverage Level (b) Ontario Corn, 90% Coverage Level

(c) Ontario Wheat, 70% Coverage Level (d) Ontario Wheat, 90% Coverage Level

(e) Saskatchewan Barley, 70% Coverage Level (f) Saskatchewan Barley, 90% Coverage Level

Figure 5. Spatial Distribution of π2023/π2018, Ontario and Saskatchewan
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(g) Saskatchewan Canola, 70% Coverage Level (h) Saskatchewan Canola, 90% Coverage Level

(i) Saskatchewan Oats, 70% Coverage Level (j) Saskatchewan Oats, 90% Coverage Level

(k) Saskatchewan Wheat, 70% Coverage Level (l) Saskatchewan Wheat, 90% Coverage Level

Figure 5. Spatial Distribution of π2023/π2018, Ontario and Saskatchewan


