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IMPLICATIONS OF VOLATILITY MODELING
ON QUANTIFYING MARKET RISK

Abstract

Due to fluctuations in financial assets, market risk represents the most prevalent
risk in the category of financial risks. The process of market risk management
includes its quantification and control. Measure that quantifies the maximum
potential loss in a given period of time with a certain statistical confidence level is
the value at risk, VaR. Treating financial assets prices as a time series that could be
described as a random walk with drift or returns of financial assets as a white noise
typically underestimates the value at risk. Back testing shows that the estimation
of the risk with variance modeled as a generalized conditional autogressive
heteroscedastic (GARCH) model is a reliable method for a quantification of risk.
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NMMIIVIMKAIIMJE HAYUNHA MOJEJOBAIBA BOJIATHJIMTETA

HA KBAHTU®UKOBAILE TP KULTHOI' PUSUKA
Ancrpakr

Tporcunu pusux xoju Hacmaje kao nocreduya Konedara yeHa uHancujcke
axkmuge npeocmasba HAjpacnpoCmarseHuju pusuK y Kameeopuju Qurancujckux
pusuka. IIpoyec ynpaemarsa mpoCumHumMm pu3uKom noopasymesa mezos8y Kea-
mughuxayujy u konmpony. Mepa xojom ce xeanmuguxyje najeehu nomenyujannu
2youmax y 0amom 8pemMeHCKOM nepuody ca 00peleHum cmamucmuykom HUB0OM
nosepera npedcmasba 8peOHocm nod pusuxom, BaP («value at risky). Tpemu-
parve yena QuUHAHCUjCKe akmuee Kao 6peMencKe cepuje Koja ce Modice onucamu
Kao cayuajuu x00 ca npupacmom (,,random walk with drift”) oonocno npunoca
@unancujcke akmuge xao 6enu wiym no npasuIy nomyeryje peoHocm noo pu-
3ukom. «Back testingn-om ce nokasyje 0a npoyena 8pedHOCMU HOO PUSUKOM Cd
8apujabUNUMemom MOOeN0BAHUM KAO 2eHePAIU308aHI AYMOPecPeCUOHU YCI08HU
xemepockeoacmuunu (GARCH) moden npedcmasmsa noy30any memooy 3a K6aH-
mugurayujy pusuxa.

Kawyune peuu: epeonocm noo pusukom, CmaiHu 601AMUIUMEN, NPOMEHbUBU
gonamunumem

Introduction

Expected return and its variability are the key issues in the process of risk control

and it’s valuation. The assumption of stationarity of time series of financial assets’ return,
which in practice often is not fulfilled leads to underestimation of the level of market risk.
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Its calculation perform a significant number of professional investors (banks calculate
interest rate VaR etc)!

Financial assets variability

Starting from the common assumption that the prices of financial assets have
stochastic character which can be described as a random walk with drift:

x,=pu+x,,+& E()=0 E(E)=0 E@E)=0 )
return can be calculatet as:
V=X, =X, =HTE, E(gt)zo- E(th):GZ E(gtgs)zoza t#s

If we assume that the return on financial assets is calculated continuously, which
is equation (2) has the form:

Yi_In(S,,)~1In(S,)_p+&, E(z)=0 E(z,e)=0 E(6,6)=0 (=

v S8 .
where ! denotes return and ~+1° "~ are prices.
Then, if the assumptions of model are met: E(g,)=0 , E(g/)=0" and

E(s,e,)=0 for t # s (which means that returns are independently and identically
distributed with mean p and variancy ¢?) then applies:

E(In(S,,,) =t*u VAR(n(S,,,) =t*c’.

This relationship stems from the fact that the linear combination of variables with
normal distribution (which is a common assumption about the distribution of return) is
also normally distributed. If the variable does not come from a normal distribution, based
on the central limit theorem their mean has an approximate normal distribution.

Assumptions of random walk model are in practice often not met. Time series are
characterized by the existence of correlation in residuals, with the variance that is variable
in time (heteroscedasticity) and symmetrical distribution with thick tails. Periods of high
volatility are followed by periods of lower volatility and vice versa. Autoregressive
model can be evaluated using least squares if the time series is covariance stationary, and
residuals are not correlated (Weiseberg, 2005). If the autocorrelation of the residuals is
significantly different from zero, model is not well specified.

As it has been previously mentioned, heteroscedasticity indicates residuals
variance dependence on independent variables (Nelson, 1991, Bollerslev 1996). In
contrast, homoscedacity presents random error variance independence of the independent
variables. In order to produce reliable models it is important to detect heteroskedasticity
in time series. Robert Engle gave a solution to test the interdependence of the variance
in one period of the variance in the previous period (Christoffersen, 2000). This type is
called autoregressive conditional heteroskedastity (ARCH).

ARCH (1) model has the form:

2
E~N(0,a) + A1E] ) oo rapgpeeeeeeeneneeaeene 4)

! About bank interest rate risk see.Radevi¢, Lekpek (2010)
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with distribution &,, conditional on its value in the past &,_;, has a normal distribution

-1°
with a mean 0 and variance @, . If a= 0, the variance of the random errors in each period

is a,.If a,> 0 the variance in the observed period depends on how much was the
variance in the previous period. If the variance is significant in one period, then over the
next period, will be even more significant.

For example consider the correlation structure of daily returns of the company &
Goodyear Tire (GT) in the period from August 2008 to July 2009 (Fig. no.1).

Fig.1 Autocorrealation of residuals, Fig.2 Partitial autocorrelation of residuals,
Goodyear & Tire Goodyear & Tire
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The graph shows the correlation structure of 1,2, ... 20 lags, with a confidence
interval of 95%, which is shown by horizontal lines. Correlations within this interval
are not considered statistically significant. The autocorrelation graph did not show any
characteristic pattern. As in Fig. no. 2 it can be seen that even partial autocorrelation graph
is also not typical. Assumptions of the model described by equation (2) are satisfied from
the existence of serial correlation of residuals. Correlogram of squared returns given in
Fig. no. 3 indicates that, although the yields are not necessarily correlated, their variance
is characterized by the existence of serial autocorrelation.

For quantification of serial correlation of residuals, it can be used formal tests that
are based on hypothesis testing, such as Ljung-Box-Pierce Q-test and Engle’s ARCH test.

Ljung-Box-Pierce analysis of independence of random variables is based on

L 7 2
Q-statistics © = N (IV 4 2) > et 5)
2N (
where N is the sample size, L number of lags for which autocorrelation is calculated,
while I’k2 is the serial correlation at lags k. Q-statistic hasa ¥ ? distribution.
The null hypothesis of no serial correlation at lags k is rejected if the test statistics

with confidence interval (1 — ) , for the L-lag is greater than the critical value, ie:

2
Q > Zl—a,L
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In this example the obtained result is statistically significant, which confirms the

presence of serial correlation in residuals.

Fig. 3 Autocorrealation, Goodyear & Tire-
squared returns
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Fig.4 Autocorrealation, Goodyear & Tire-
squared standardized residuals
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A formal test for autoregressive conditional heteroskedasticity was also statistically
significant and indicates that the observed series is characterized by existence of ARCH
effects.

The basic model for a random walk with drift must therefore be adjusted in order
to fulfill basic assumptions of the model. In practice for modeling the time variable,
conditional variance is most commonly used in simple GARCH (1,1) model described
by the equations:

G2 =t G072, AJE2 | wrrrsrrrsesssssss s s s (6b)

t t—1

The general form of the GARCH (P, Q) model is:

il Qo
O-r2 —k+ ZGI_O_?_I_ + ZAjg?—j B PP PO PP PP PPN (6¢)
i1 J=1

where o-f_l.is the estimated value of the variance in the next period expressed as a linear
combination of the estimated number of variances from previous periods O'i ; and
realized errors Etz_ ;e

Residuals with stochastic character can be presented in the form of:
€y T O, Z, 5 ekttt @)
where O',2 is the estimated value of the variance in the next period expressed as a linear
combination of the estimated number of variances from previous periods O'tzfi and

realized errors é‘tz_ i Thus standardized residuals are independent and equally distributed
(Barone-Ades, 1997).
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Estimation of parameters in regression equations (6a) (6b) gives the model that
best describes the data sample:

P, = 0.00032133 4 £, oovrrrrreeeeisiseeeeeeessssssssss s ®)
o] =0.00014172 +0.87880,, + 0.089556&, | cvveeouvvvererreeerreeierevieeneeiiseneneas (11)

Correlogram of squares of standardized residuals indicates that the variances are
not correlated with each other.

Evaluation of value at risk by Monte Carlo Simulation with
constant and variable volatility

In order to determine the maximum loss over a period of specific period at

given statistical level of confidence (1—(1) by Monte Carlo simulations with assumed
constant volatility, from assumptive distribution (usually standardized multivariate
normal distribution) are generating a large number of equally probable outcomes with
probability in the interval from 0 to 1 that represents realization of random variable X.

For each realization of random variable X, marked as X ma
Vector of portfolio returns are calculated as:

-R, =f,(X)=Kk , + 4, where:

-m indicates the m-th simulation;
-k is the Cholesky decomposition of the matrix X ;

- X, is the return vector of the m-th simulation;

-X, is the m-th realization of the random variable X from the standardized
multivariate normal distribution;

- U is a vector of the expected value of random variable X.

The values for mean p and variance ¢ are determined based on a sample of
historical data for a specific period..

Daily VaR for the required level of confidence (1 - ) is determined as the
percentile of the set which consists of a large number of simulations. Value at risk for an
investment horizon T is estimated from equation:

VaR,, =VaR, *T -

Note again that this method of calculating the value at risk is made with the
assumption that the variance and covariance remain constant value over time (Hamzagic,
2010).

In contrast, GARCH models give more realistic predictions of variance (Baillie,
1992). In order to determine the variance in the number of time periods in this paper, will
be used GARCH (1,1) model.

After determining total standard deviation for all securities in the portfolio value
of the variance covariance matrix, with the approximation, which involves a constant
correlation (not observed for the overall period, but at a level of observation), among the
securities in the portfolio is obtained as the product matrix:
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corv =

In the diagonal matrix, are present total standard deviations (i.e. the total regression
error), while kor marks correlation matrix of returns.

The only difference in estimating value at risk by Monte Carlo simulation with
assumed constant and variable volatility is in tha way of calculating variance-covariance
matrix. It should be noted that this method predicts the value at risk over the next T
periods, because in the variance covariance matrix are given overall standard deviation,
as opposed to the Monte Carlo simulation with assumed constant volatility when the

value at risk for one is determined first and then multiplied with ﬁ .

Back testing of evaluation of value at risk by Monte Carlo simulation
(consatnt and variable volatility)

Reliability assessment of a certain level of risk is done by comparing the estimated
VaR using Monte Carlo simulations (constant volatility) and Monte Carlo simulations
(variable volatility) for a given period and return achieved in the same period.

Taking into consideration freely selected portfolio weighted by market
capitalization from different industries and with the following structure: Industrial
Metals & Minerals: Alpha Natural Resources (ANR), Independent Oil & Gas: Petrohawk
Energy Corporation (HK), Biotechnology: Celgene Corporation (CELG), Gilead
Sciences (Gilda), Dairy Products: Dean Foods (DF), Plastics & Rubber: Goodyear Tire
& Rubber (GT), Networking & Communication Devices: Juniper Networks (JNPR),
Internet Information Providers: Google (GOOG), Semiconductor: Trina Solar (TSL)
Financial: Nasdag OMX Group (NDAQ).

Fig. 5 Monte Carlo simulation (variable | Fig. 6 Monte Carlo simulation (constant

volatility) volatility)
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Monte Carlo simulations (variable volatility) was performed for the selected
portfolio in the period from 8/8 /2008 to 6/10/2011. There where 716 observations and
31 times realized returns were lower than those introduced by the 95% VaR. That is 4.3%
of all observations and it can be considered as a satisfactory result (Fig. no. 5).

By contrast, method Monte Carlo simulation (constant volatility) gave unreliable
results (Fig. no. 6). For the same set of data (previously designated portfolio and in the
same period) realized returns were lower than those introduced by the 95% VaR in 56
cases that is 7.8 % (of 716 observations) and it comes from the corridors of 5%.

Concluding remarks

The issue of variability is essential in many applications related to investment
decisions and risk management. Estimation of value at risk represents a legal obligation
for a significant number of professional investors. Adopting the assumption that financial
asset prices follow a random walk with drift path, and that return is a white noise, with
no confirmation of conditions that every autoregresive model must satisfy in order to be
well-specified, leads to unreliable results and underestimating the value at risk.
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