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Implications of volatility modeling 
on quantifying market risk

Abstract

Due to fluctuations in financial assets, market risk represents the most prevalent 
risk in the category of financial risks. The process of market risk management 
includes its quantification and control. Measure that quantifies the maximum 
potential loss in a given period of time with a certain statistical confidence level is 
the value at risk, VaR. Treating financial assets prices as a time series that could be 
described as a random walk with drift or returns of financial assets as a white noise 
typically underestimates the value at risk. Back testing shows that the estimation 
of the risk with variance modeled as a generalized conditional autogressive 
heteroscedastic (GARCH) model is a reliable method for a quantification of risk. 
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Импликације начина моделовања волатилитета 
на квантификовање тржишног ризика

Апстракт

Тржишни ризик који настаје као последица колебања цена финансијске 
активе представља најраспростањенији ризик у категорији финансијских 
ризика. Процес управљања тржишним ризиком подразумева његову кван-
тификацију и контролу. Мера којом се квантификује највећи потенцијални 
губитак у датом временском периоду са одређеним статистичком нивоом 
поверења представља вредност под ризиком, ВаР («value at risk»). Трети-
рање цена финансијске активе као временске серије која се може описати 
као случајни ход са прирастом („random walk with drift“) односно приноса 
финансијске активе као бели шум по правилу потцењује вредност под ри-
зиком. «Back testing»-oм се показује да процена вредности под ризиком са 
варијабилитетом моделованим као генерализовани ауторегресиони условни 
хетероскедастични (GARCH) модел представља поуздану методу за кван-
тификацију ризика. 

Кључне речи: вредност под ризиком, стални волатилитет, променљиви 
волатилитет

Introduction

Expected return and its variability are the key issues in the process of risk control 
and it’s valuation. The assumption of stationarity of time series of financial assets’ return, 
which in practice often is not fulfilled leads to underestimation of the level of market risk. 

СТРУЧНИ ЧЛАНЦИ
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Its calculation perform a significant number of professional investors (banks calculate 
interest rate VaR etc)1

Financial assets variability 

Starting from the common assumption that the prices of financial assets have 
stochastic character which can be described as a random walk with drift:

ttt xx εµ ++= −1 , 0)( =tE ε ,	
22 )( σε =tE ,	 0)( =stE εε  ...........................(1)

return can be calculatet as:
tttt xxy εµ +=−= −1 , 0)( =tE ε ; 

22 )( σε =tE , 0)( =stE εε za st ≠ ............. (2) 

If we assume that the return on financial assets is calculated continuously, which 
is equation (2) has the form:

ty = )ln()ln( 1 tt SS −+ = tεµ + , 0)( =tE ε , 0)( =stE εε , 0)( =stE εε , st ≠ ..............(3)

where 1, −ttr denotes return and tt SS ,1+  are prices. 

Then, if the assumptions of model are met: 0)( =tE ε  , 22 )( σε =tE  and 

0)( =stE εε  for st ≠  (which means that returns are independently and identically 
distributed with mean  μ and variancy σ2 ) then applies: 

µ*))(ln( 1 tSE t =+  2
1 *))(ln( σtSVAR t =+

.

This relationship stems from the fact that the linear combination of variables with 
normal distribution (which is a common assumption about the distribution of return) is 
also normally distributed. If the variable does not come from a normal distribution, based 
on the central limit theorem their mean has an approximate normal distribution.

Assumptions of random walk model are in practice often not met. Time series are 
characterized by the existence of correlation in residuals, with the variance that is variable 
in time (heteroscedasticity) and symmetrical distribution with thick tails. Periods of high 
volatility are followed by periods of lower volatility and vice versa. Autoregressive 
model can be evaluated using least squares if the time series is covariance stationary, and 
residuals are not correlated (Weiseberg, 2005). If the autocorrelation of the residuals is 
significantly different from zero, model is not well specified.

As it has been previously mentioned, heteroscedasticity indicates residuals 
variance dependence on independent variables (Nelson, 1991, Bollerslev 1996). In 
contrast, homoscedacity presents random error variance independence of the independent 
variables. In order to produce reliable models it is important to detect heteroskedasticity 
in time series. Robert Engle gave a solution to test the interdependence of the variance 
in one period of the variance in the previous period (Christoffersen, 2000). This type is 
called autoregressive conditional heteroskedastity (ARCH). 

ARCH (1) model has the form:

tε ~ ),0( 2
110 −+ taaN ε ........................................................................,,,,,...................(4)

1 About bank interest rate risk see.Radević, Lekpek (2010)
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with distribution tε , conditional on its value in the past 1−tε , has a normal distribution 

with a mean 0 and variance 0a . If a = 0, the variance of the random errors in each period 

is 0a . If 1a > 0 the variance in the observed period depends on how much was the 
variance in the previous period. If the variance is significant in one period, then over the  
next period, will be even more significant. 

For example consider the correlation structure of daily returns of the company & 
Goodyear Tire (GT) in the period from August 2008 to July 2009 (Fig. no.1).

Fig.1 Autocorrealation of residuals, 
Goodyear & Tire
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Fig.2 Partitial autocorrelation of residuals, 
Goodyear & Tire 
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The graph shows the correlation structure of 1,2, ... 20 lags, with a confidence 
interval of 95%, which is shown by horizontal lines. Correlations within this interval 
are not considered statistically significant. The autocorrelation graph did not show any 
characteristic pattern. As in Fig. no. 2 it  can be seen that even partial autocorrelation graph 
is also not typical. Assumptions of the model described by equation (2) are  satisfied from 
the existence of serial correlation of residuals. Correlogram of squared returns given in 
Fig. no. 3 indicates that, although the yields are not necessarily correlated, their variance 
is characterized by the existence of serial autocorrelation.

For quantification of serial correlation of residuals, it can be used formal tests that 
are based on hypothesis testing, such as Ljung-Box-Pierce Q-test and Engle’s ARCH test.

Ljung-Box-Pierce analysis of independence of random variables is based on 

Q-statistics ∑
= −

+=
L

k

k

kN
r

NNQ
1

2

)(
)2( .................................................................(5)   

where N is the sample size, L number of lags for which autocorrelation is calculated, 

while 2
kr  is the serial correlation at lags k. Q-statistic has a  2χ distribution.

The null hypothesis of no serial correlation at lags k is rejected if the test statistics 

with confidence interval ( )1 α−  , for the L-lag is greater than the critical value, ie:
2

,1 LQ αχ −>
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In this example the obtained result is statistically significant, which confirms the 
presence of serial correlation in residuals.

Fig. 3 Autocorrealation, Goodyear & Tire-
squared returns
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Fig.4 Autocorrealation, Goodyear & Tire-
squared standardized residuals
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A formal test for autoregressive conditional heteroskedasticity was also statistically 
significant and indicates that the observed series is characterized by existence of ARCH 
effects. 

The basic model for a random walk with drift must therefore be adjusted in order 
to fulfill basic assumptions of the model. In practice for modeling the time variable, 
conditional variance is most commonly used  in simple GARCH (1,1) model described 
by the equations:

tty εµ += ................................................................................................................ (6a)
2

11
2

11
2

−− ++= ttt AGk εσσ ........................................................................................ (6b)

The general form of the GARCH (P, Q) model is:

∑∑
=

−
=

− ++=
Q

j
jtj

P

i
itit AGk

1

2

1

22 εσσ ,.........................................................................(6c)

where 2
it−σ is the estimated value of the variance in the next period expressed as a linear 

combination of the estimated number of variances from previous periods 2
it−σ  and 

realized errors 2
jt−ε . 

Residuals with stochastic character can be presented in the form of:

ttt zσε = , ...................................................................................................................(7)

where 2
tσ is the estimated value of the variance in the next period expressed as a linear 

combination of the estimated number of variances from previous periods 2
it−σ  and 

realized errors 2
jt−ε . Thus standardized residuals are independent and equally distributed 

(Barone-Ades, 1997). 
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Estimation of parameters in regression equations (6a) (6b) gives the model that 
best describes the data sample:

tty ε+= 00032133.0 ................................................................................................(8)
2

1
2

1
2 089556.08788.000014172.0 −− ++= ttt εσσ ...................................................(11)

Correlogram of squares of standardized residuals indicates that the variances are 
not correlated with each other. 

Evaluation of value at risk by Monte Carlo Simulation with 
constant and variable volatility

In order to determine the maximum loss over a period of specific period at 

given statistical level of confidence ( )α−1  by Monte Carlo simulations with assumed 
constant volatility, from assumptive distribution (usually standardized multivariate 
normal distribution) are generating a large number of equally probable outcomes with 
probability in the interval from 0 to 1 that represents realization of random variable X. 

For each realization of random variable X, marked as mX ,
Vector of portfolio returns are calculated as:
- µ+== mmm kXXfR )( , where:

-m indicates the m-th simulation; 
-k is the Cholesky decomposition of the matrixΣ ;

- mX  is the return vector of the m-th simulation;
-

mX  is the m-th realization of the random variable X from the standardized 
multivariate normal distribution;

-µ  is a vector of the expected value of random variable X.
The values ​​for mean µ and variance σ are determined based on a sample of 

historical data for a specific period.. 
Daily VaR ​​for the required level of confidence (1 -

TVaRVaR T *, αα =

) is determined as the 
percentile of the set which consists of a large number of simulations. Value at risk for an 
investment horizon T is estimated from equation:

TVaRVaR T *, αα = .

Note again that this method of calculating the value at risk is made with the 
assumption that the variance and covariance remain constant value over time (Hamzagić, 
2010).

In contrast, GARCH models give more realistic predictions of variance (Baillie, 
1992). In order to determine the variance in the number of time periods in this paper, will 
be used GARCH (1,1) model.

After determining total standard deviation for all securities in the portfolio value 
of the variance covariance matrix, with the approximation, which involves a constant 
correlation (not observed for the overall period, but at a level of observation), among the 
securities in the portfolio is obtained as the product matrix:



195  ЕКОНОМИКА





































=

nn

korCOV

σ

σ
σ

σ

σ
σ

..0
....
...
0..

..0
....
...
0..

2

1

2

1

 .

In the diagonal matrix, are present total standard deviations (i.e. the total regression 
error), while kor marks correlation matrix of returns.

The only difference in estimating  value at risk by Monte Carlo simulation with 
assumed constant and variable volatility is in tha way of calculating variance-covariance 
matrix. It should be noted that this method predicts the value at risk over the next T 
periods, because in the variance covariance matrix are given overall standard deviation, 
as opposed to the Monte Carlo simulation with assumed constant volatility when the 
value at risk for one is determined first and then multiplied with T .

Back testing of  evaluation of value at risk by Monte Carlo simulation 
(consatnt and variable volatility)

Reliability assessment of a certain level of risk is done by comparing the estimated 
VaR using Monte Carlo simulations (constant volatility) and Monte Carlo simulations 
(variable volatility) for a given period and return achieved in the same period.

Taking into consideration freely selected portfolio weighted by market 
capitalization from different industries and with the following structure: Industrial 
Metals & Minerals: Alpha Natural Resources (ANR), Independent Oil & Gas: Petrohawk 
Energy Corporation (HK), Biotechnology: Celgene Corporation (CELG), Gilead 
Sciences (Gilda), Dairy Products: Dean Foods (DF), Plastics & Rubber: Goodyear Tire 
& Rubber (GT), Networking & Communication Devices: Juniper Networks (JNPR), 
Internet Information Providers: Google (GOOG), Semiconductor: Trina Solar (TSL) 
Financial: Nasdaq OMX Group (NDAQ).

Fig. 5 Monte Carlo simulation (variable 
volatility)

          author’s calculation

Fig. 6 Monte Carlo simulation (constant 
volatility)

           author’s calculation
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Monte Carlo simulations (variable volatility) was performed for the selected 
portfolio in the period from 8/8 /2008 to 6/10/2011. There where 716 observations and 
31 times realized returns were lower than those introduced by the 95% VaR. That is 4.3% 
of all observations and it can be considered as a satisfactory result (Fig. no. 5).

By contrast, method Monte Carlo simulation (constant volatility) gave unreliable 
results (Fig. no. 6). For the same set of data (previously designated portfolio and in the 
same period) realized returns were lower than those introduced by the 95% VaR in 56 
cases that is 7.8 % (of 716 observations) and it comes from the corridors of 5%.

Concluding remarks

The issue of variability is essential in many applications related to investment 
decisions and risk management. Estimation of value at risk represents a legal obligation 
for a significant number of professional investors. Adopting the assumption that financial 
asset prices follow a random walk with drift path, and that return is a white noise, with 
no confirmation of conditions that every autoregresive model must satisfy in order to be 
well-specified, leads to unreliable results and underestimating the value at risk. 
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