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ABSTRACT 

Over the past 20 years, U.S. agriculture has witnessed profound changes with respect to technology, 
climate, farm policy, and other factors (ethanol production, Chinese demand, etc.) that have major 
repercussions with regards to the geographic distribution of crop production — particularly, from a 
market share and geographic basis. There have been many recent studies that have examined both the 
direct and indirect impacts of these production factors upon crop yields, acreage, and production from 
both a temporal and spatial perspective. However, little to no attention has been paid to the impact of 
these factors upon the relative influence of each individual state’s crop production outcomes as they relate 
to the national outcome. 

The purpose of this study is to address this question of state-level geographic importance for U.S. corn 
and soybeans by employing the following procedure. First, a metric is constructed to measure crop 
production outcomes at any geographic level by comparing the current year’s production to the recent 
historical norm. This metric, called a production performance index (PPI), is simply the difference 
between the current year’s crop production and the Olympic average (drop minimum and maximum and 
take arithmetic average of remaining values) of the previous five years of production. The dataset used in 
the study includes annual crop production values for the 1970 through the 2017 crop years. The PPI, 
given its five-year lag, is calculated with values for the U.S., each major producing state, and the “Other 
States” residual from the 1975 to 2017 crop years for both corn and soybeans. The PPI time series is 
divided into two distinct sets of time periods as a proxy for the changes mentioned above: (1) the 1975 to 
1995 crop years, and (2) the 1996 to 2017 crop years. The 1996 crop year was chosen as the dividing 
point since it represents a watershed year in U.S. corn and soybean production — the commercialization 
of the first GMO corn (Bt corn) and soybean (Roundup Ready) varieties. 

Each states’ relative influence upon the national production performance outcome is determined by 
regressing the individual states’ PPI values upon the national PPI value for corn and soybeans under each 
time period. The regression analysis is conducted using correlated component regression (CCR) – a 
relatively new statistical tool for sparse and mulicollinear datasets. The absolute value of the standardized 
coefficient values from the regression model are used to rank each state with regards to its influence. Each 
state’s percentage share of the sum of the absolute coefficient values was also calculated and used to 
calculate a Herfindahl-Hirschman Index (HHI) by summing the squared values of the percentage shares. 
The HHI is used as a measure of the geographic dispersion of production importance for the national 
aggregate. 

Overall, the results showed a shifting geographic dynamic for both corn and soybeans with the emphasis 
shifting from east to west in general direction. This makes intuitive sense as many of the observed 
technological and climatic changes over the past several decades point towards corn and soybean varieties 
that require a shorter growing season, and the increase in the number of frost-free days in many of the 
states in the northern reaches of the U.S. Corn Belt region. Additionally, the greater utilization of 
irrigation in crop production has likely contributed to the westward expansion of both corn and soybean 
production — often at the expense of wheat and cotton production. The slight decline in the HHI for corn 
indicates that production influence is becoming slightly more diversified from a geographic perspective. 
For soybeans, the opposite effect has occurred with a slight increase in the HHI pointing towards greater 
influence from the key producing states of Iowa, Minnesota, and Illinois — likely the result of a shift 
from corn to soybean acres as all three states lost influence shares in corn production between the two 
time periods.
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INTRODUCTION 

During the growing season for major U.S. crops, much of the crop production information 
generally comes at the state and lower geographical levels. This holds true even through the 
harvest of a particular crop. For example, the widely following USDA Crop Progress reports 
provide information on crop progress (planting, development, and harvest percentages) and 
condition (categorical rating percentages) for the major production states for each major U.S. 
crop on a weekly basis during the growing season. Additionally, soil moisture (sub- and topsoil 
strata) ratings are reported for the lower 48 states. Projected planted and harvested areas are also 
reported on a state level for the major states at multiple times during the growing season. Most 
major private reporting organizations; such as Informa IEG, the Proexporter Network, and INTL 
FCStone; also generally report growing season production information on a state-level using 
USDA’s major producing states for each major crop. 

However, for most economists and industry analysts involved in forecasting, the relevant 
production numbers are generally at the aggregate national level which feeds into the projected 
supply and demand balance tables such as those regularly reported in the USDA World 
Agricultural Supply and Demand Estimates (WASDE) which is reported monthly throughout the 
year. This raises the natural question of whether certain states production outcomes provide a 
bellwether signal for the national production outcome. That is, if a particular state (or group of 
states) is experiencing excellent (above average) growing conditions, does this translate into a 
national production outcome that is above average? 

Besides the aforementioned economists and industry analysts, this question also has importance 
for many firms engaged in agricultural production and agribusiness. For example, firms involved 
in logistics are interested in this information as they have to plan ahead in terms of positioning 
transportation resources to meet the anticipated demands for transportation from the points of 
production to the sources of demand. Additionally, this information is also important from an 
inter-temporal perspective as storage decisions can effectively utilize this type of information.  

Additionally, firms involved in agricultural production technology can use this information in 
making long-term planning decisions. This includes the orientation of investments in technology 
development at major public research institutions such as land-grant universities, in addition to 
the rapid increase in private sector spending on research and development. 

Finally, this question has very important implications regarding risk management. In particular, 
have changes in the crop production technology, climate, farm policy, and other production 
                                                 
1 Research Associate Professor, Department of Agribusiness and Applied Economics, North Dakota State 
University. Address all correpondence to: David W. Bullock, 624 Barry Hall, 811 2nd Avenue North, Fargo, ND 
58102 or david.w.bullock@ndsu.edu. 
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factors over the past twenty years resulted in greater or lesser production risk from a 
geographical perspective. In particular, many of the risks impacting national crop production 
(droughts, disease outbreaks, etc.) tend to be regional rather than national in nature. If a 
particular region has a highly significant influence upon the national outcome, then overall 
production risk from these events is likely to be increased rather than reduced. Diversification is 
an important risk management strategy and the more diverse the geographic importance of crop 
production, the lower the risk posed to the national aggregate. 

It is a well known fact that changes in crop production technology, farm policy, and global 
climate are having profound effects upon not only the level but the geographic distribution of 
crop production in the U.S. and around the world.  For example, since the first half of the 
1990’s, the acreage planted to soybeans in North Dakota has increased by over 800 percent – an 
increase of over 5.2 million acres which moves North Dakota from #18 to #9 in production 
ranking over the same period. 

A recent article in the Wall Street Journal (Bunge 2018) drives home the effect of climate 
change and shorter maturing crop varieties by examining the changes in crop production 
occurring in Upper Alberta, Canada. Since 1950, average temperatures around La Crete, Alberta 
have increased by 3.6 degrees Fahrenheit which has increased the growing season by nearly two 
weeks. While wheat and canola still dominate crop production in Canada, the area planted to 
corn has increased by 20 percent and soybeans has roughly doubled over the past decade alone. 
The article quotes Cargill CEO David MacLennan from a 2016 interview: 

“Today, the U.S. corn belt is in Iowa, Illinois, Indiana. In 50 years, it may be 
in Hudson Bay, Canada.” 

The main purpose of this study is to devise a methodology for measuring the relative importance 
of state-level production outcomes in predicting the national U.S. outcome for two crops: corn 
and soybeans. First, a production performance metric is constructed that measures the annual 
production level versus the normally observed level over the previous five years. This metric is 
constructed for each of the major corn and soybean production states (18 each) as determined by 
USDA-NASS in their monthly and annual Crop Production reports. This metric is also 
calculated for the total production of the United States as a whole and the residual amount (i.e., 
United States minus 18 states total) is used to calculate the performance for the states (”Other 
States”) not included in the set of 18 major producing states. These metrics are calculated for the 
1975 through 2017 crop years using historical data (1970 to 2017) from the USDA-NASS. 

To measure the relative influence of the individual states upon the national crop production 
outcomes, regressions were set up for each crop and time period (4 in all) with the United States 
production performance metric as the dependent variable and the individual states’ production 
performance metrics as the explanatory variables. The regression standardized coefficient values 
from each regression are used to rank each state in terms of its influence upon the national 
metric. Because of data sparsity and multicollinearity issues, the standard OLS regression model 
could not be used to derive accurate coefficient estimates. Therefore, a relatively new regression 
procedure, called correlated coefficient regression (CCR; Magidson 2010), that was developed 
to directly handle the issues of data sparsity and multicollinearity, was applied to the dataset. 
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A secondary purpose of this study is to measure the impact of recent technological, climatic, and 
policy factors upon the state ranking and also the geographic concentration of this influence. To 
accomplish this purpose, the dataset containing the performance metrics is divided into two time 
periods: (1) the 1975 to 1995 crop years representing the period just prior to the 
commercialization of the first GMO crop varieties, and (2) the 1996 to 2017 crop years which 
covers the period following the commercialization of GMO varieties. The latter period can also 
be characterized by the increasing influence of bio-fuel production, major changes in farm policy 
moving away from supply control to a more market-based income support emphasis, and the 
highly publicized increases in global temperatures and weather volatility which had been 
occurring even prior to 1996. 

To measure the geographic concentration of influence, a Herfindahl-Hirschman Index (HHI) was 
calculated on the absolute percentage shares of the standardized coefficients. By comparing the 
derived HHI from each time period for each crop, the impacts of the technological, climatic, and 
policy factors upon the concentration in production risk can be observed. 

In the next section, background on the recent developments in the aforementioned production 
factors is provided. This is followed by a review of the literature pertaining to the impacts of 
these factors upon crop yields and the geographic distribution of acreage and production. The 
next section describes the data and the research methodology utilized in this study, followed by 
the research results, and finally a section discussing the major findings and conclusions. 

BACKGROUND 

The 1996 crop year represented a watershed in the history of U.S. corn and soybean production. 
The prior year (1995) saw the introduction of the first approved GMO crop with the introduction 
of the Flavr Savr tomato by Calgene, Inc. (Bruening and Lyons 2000). The 1996 crop year saw 
the commercialization of the first GMO variety offering herbicide tolerance (HT) which was 
introduced by Monsanto (Roundup Ready™ soybeans). The same year saw the 
commercialization of the first variety offering insect resistance (IR) was introduced by Ciba-
Geigy (Maximizer™ corn) which contains a gene that expresses a protein from the bacterium 
Bacillus thuringiensis (Bt) which is toxic to the European corn borer and related species (James 
and Krattiger 1996). 

Until 2009, herbicide tolerance and insect resistance remained the dominant traits in GM 
development (Shakya, Wilson and Dahl 2013). These traits were often offered in stacks (multiple 
GM traits in one variety) and were primarily producer focused in terms of their benefits. 
Additional producer traits under development include drought tolerance (DT) and nitrogen-use 
efficiency. While having the potential to boost yield, most of these early traits focused primarily 
upon reducing production risk and producer costs as well as providing convenience. 

According to data from USDA-ERS2, approximately 92% of U.S. corn acreage and 94% of U.S. 
soybean acreage was planted to GE crops in 2017. This is up from 25% of U.S. corn acreage and 
54% of U.S. soybean acreage in 2000. All of the soybean acreage was planted to HT varieties in 
2017 while 84% of the corn GE acres was planted to stacked trait varieties, 13% to HT only 
varieties, and the remaining 3% to IR only (Bt) varieties. This differs considerably from 2000 
                                                 
2 https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/ 



4 

when 72% of corn GE planted acres was IR only, 24% was HT only, and 4% was stacked 
varieties for corn. Figure 1 shows the planted acreage share history for U.S. GE corn and 
soybean acreage for the 2000 to 2017 crop years. 

 
Figure 1. Acreage Share of Genetically Engineered Crops: U.S. Corn and Soybeans 

In addition to the aforementioned GMO technological advances, other advances in varietal 
development and crop breeding have had a major influence upon the level of crop production 
and its geographic distribution. For example, the development of faster maturing corn and 
soybean varieties has drastically shortened the required growing season and increased the reach 
of corn and soybean production into northern states with shorter growing seasons. Other areas of 
technological advancement in corn and soybean production include precision agriculture, 
improved tillage practices, and fertilization. 

Climate change has also had a major impact upon the level and geographic distribution of U.S. 
corn and soybean production. The changes in the earth’s climate in the past century have been 
well-documented. According to data compiled by NASA3, the current level of CO2 in the 
atmosphere is nearly 100 million parts per million higher than the highest level from the previous 
400,000 years (using data gleaned from ice core samples). Largely driven by the much higher 
CO2 levels, the average planetary surface temperature has risen 2 degrees Fahrenheit since the 
late 19th century with 16 of the 17 warmest years on record since 2001. Additional data 

                                                 
3 https://climate.nasa.gov/evidence 
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documents warming ocean temperatures, decreasing snow cover, rises in sea level, declining 
Arctic sea ice, a notable increase in extreme weather events, and increased ocean acidification. 
These trends are documented in greater detail in a recent report by the leading international body 
on climate change (IPCC 2015). 

Changes in U.S. farm policies and crop insurance have also contributed to the changing 
geographic nature of U.S. corn and soybean production. The passage of the Federal Agricultural 
Improvement and Reform (FAIR) Act of 1996 (also informally called the “Freedom to Farm 
Act”) greatly increased producer planting flexibility by allowing participants to plant 100 percent 
of their total base acreage to any crop with some limitations on fruits and vegetables. This 
effectively allowed farmers in traditionally non-corn and soybean producing regions (such as the 
wheat producing areas of the Northern Plains) to experiment with planting short-season corn and 
soybean varieties. However, the statistical evidence is relatively weak regarding the impact of 
“decoupled” payments upon U.S. crop area (Adams et al. 2001). 

Reforms to the crop insurance program and the introduction of new revenue insurance products 
due to passage of the Federal Crop Insurance Reform Act of 1994 greatly reduced the production 
and marketing risks faced by row crop farmers by making the coverage more affordable (via 
premium subsidies and catastrophic coverage) and reducing the impact of production risk in 
forward contracting and/or hedging of crops (via revenue insurance). This reduction in overall 
production risk may have had the side effect of reducing the value of enterprise diversification as 
a risk management strategy (O’Donoghue, Roberts and Key 2009) resulting in changes in the 
geographical distribution of crop acreage. 

Finally, the emergence of ethanol, due to a combination of rising gasoline prices and Federal 
policies supporting bioenergy, as a significant demand market for corn has also had an impact 
upon the distribution of acreage to both corn and soybean production (Wallander, Claassen and 
Nickerson 2011). Farm-level data indicate a net expansion of both corn and soybean acreage at 
the expense of cotton and uncultivated hay acreage. 

PREVIOUS STUDIES 

For major U.S. field crops, total production at all geographic levels can be broken down into two 
components: (1) the yield per harvested acre, and (2) the number of harvested acres. Harvested 
acreage is generally a function of planted less abandoned acreage. In the long term, changes in 
technology, climate, and policy will have an influence upon the geographic distribution of both 
planted acreage, and yield per planted acre. Much of the previous research in this area can be 
divided into studies that examine these changes from either the perspective of impacts upon crop 
yields or the geographic distribution of planted acreage and crop production. 

Impacts of Climate, Technology, and Policy upon Crop Yields 

Thompson (1963, 1969, 1970, 1986, and 1988) built upon the earlier work of Wallace (1920), 
Ezekiel (1941), Houseman (1942), and Hendricks and Scholl (1943) in using regression models 
to separate the impacts of technology and weather upon yield. Thompson used piecewise linear 
trends to model technological advancements in corn and soybean production. The fitted yield 
values from these models, referred to as “normal weather yields”, were used as inputs into 
curvilinear regression models that examined the impacts of seasonal precipitation and 
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temperature (measured as deviations from normal) to explain yield performance. One of the 
major geographic conclusions from Thompson’s work was the overlap in the optimal seasonal 
weather conditions for growing both corn and soybeans – the main exception being the 
importance of August precipitation to soybeans (important in the pod-filling stage). This led to 
the prediction, in 1970, that the Corn Belt region would eventually be referred to as the ‘Corn 
and Soybean Belt’ region. 

Thompson also examined the long-term effects of climate change upon crop yields, noting that 
the observed trend of increasing CO2 in the earth’s atmosphere is likely a contributing factor in 
increases in corn yields (1986). He examined the impacts of increased weather variability, 
beginning in 1972, upon corn yields noting that there was also greater variability in yields 
following 1972. He indicated a cyclical pattern in corn yields of approximately 18 years in length 
that may be tied to lunar and El Nino cyclical phenomenon; however, no conclusive evidence of 
a connection was established (1988).  

Menz and Pardey (1983) examined the impact of nitrogen fertilization upon corn yields and the 
question of whether yields were potentially reaching a plateau. They used a regression model 
that effectively split the impact of nitrogen fertilization rates from weather and other 
technological impacts. They used trend as a proxy for other technologies, weighted average July 
precipitation in five major corn belt states as a proxy for weather, and a dummy variable to 
separate out the effect of the 1970 corn blight. Their results showed a much reduced but still 
positive marginal physical product (MPP) from nitrogen application (dropping from 0.79 
bu/ac/lb in 1954-60 to 0.15 bu/ac/lb in 1971-80). They found a constant contribution of 1.0 
bushels per year attributable to non-nitrogen technologies. They also noted the disappearance of 
a price response by corn yields, finding that the earlier results of Houck and Gallagher (1976) no 
longer appeared to hold.  

A more recent analysis of the long-term impact of technology and climate change upon corn and 
soybean yields can be found in two studies by Tannura, Irwin and Good (2008a, 2008b). Using a 
modified version of Thompson’s (1988) multiple regression model, they examined three key 
questions: 1) Has the relationship between weather, climate change, and technology, and corn 
and soybean yields in the key producing states (Illinois, Iowa, Indiana) changed since the last 
comprehensive studies? 2) Has the trend rate of yield growth for corn accelerated since the mid-
1990’s? and 3) How does the accuracy of yield forecasts from the regression model compare to 
benchmark forecasts such as those generated by the USDA? 

In addressing the first question, their results showed an asymmetry in that yields (relative to 
trend) were more negatively impacted by unfavorable weather versus positive impacts due to 
favorable weather conditions. Technology, June/July precipitation, and July/August temperatures 
were all found to be significant in impacting the corn yield. May/June temperatures were found 
to be minimal in significance.  For soybeans, yields were most impacted by technology and June 
through August precipitation (August being most significant). July/August temperatures were 
also found to be important in soybean yield performance. 

To further address the first question, the authors utilized two statistical tests that were applied to 
the modified Thompson models to see if structural changes in the relationships had occurred. 
The first set of tests used the unknown breakpoint tests of Quant (1960) and Andrews (1993) to 
derive the Quant Likelihood Ratio (QLR) statistic. The tests identified potential breakpoints in 
1988 for Illinois corn, 1983 for Iowa corn, and 1988 for Iowa soybeans. To better assess the 
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reasons for these structural changes, a second set of tests using dummy variables was applied to 
the explanatory variables in the models. These results were inconclusive in identifying an 
obvious reason for the observed structural changes. Then, the QLR test was applied to groupings 
of the explanatory variables. The July/August temperature variable for Iowa corn had a 
significant breakpoint in 1983. However, the authors generally conclude, given some of the 
unreasonable implications of the breakpoint analysis and the fact that impacts would likely be 
seen across both crops and all three states, that the structural change tests were inconclusive in 
terms of a change in the relationship between yield and the explanatory variables. 

To address the second question of technology acceleration impacts upon corn yields, the authors 
deployed two forms of structural change tests to the corn yield trendline model alone. The first 
set of tests utilized the QLR unknown breakpoint test of structural change. These tests failed to 
identify the mid-1990’s as a breakpoint in the slope of the corn yield trend model. The second set 
of tests used the Chow test of a specified structural break at a specified point (using 1995 as the 
breakpoint).  These tests also indicated that there was not significant structural break in the corn 
yield trendline model in the mid-1990’s. 

To address the third question, the authors set up a yield forecasting competition between the 
modified Thompson model, a yield trendline model, and the USDA forecasts for key forecasting 
dates (June 1, July 1, August 1, and September 1) during the growing season for both corn and 
soybeans from 1980 through 2006. The forecasts were compared using the root mean squared 
error (RMSE), root mean squared percentage error (RMSPE), the mean average error (MAE), the 
mean average percentage error (MAPE), and the modified Diebold-Mariano (MDM) test as 
developed by Harvey, Leybourne and Newbold (1998). The modified Thompson model forecasts 
were no more accurate than the trendline forecasts for June 1 and July 1. For corn, the modified 
Thompson model began outperforming the trend model beginning on August 1 while for 
soybeans, the model outperformed trendline on September 1. This make sense since the results of 
the modified Thompson model should improve as more weather information is available during 
the growing season. USDA forecasts outperformed both the modified Thompson and trendline 
models over all time periods. However, the encompassing tests showed that combining the 
modified Thompson with the USDA forecast could improve forecast accuracy an average of 10 
percent for corn and 6 percent for soybeans. 

Kukal and Irmak (2018) examined the long-term variability in climate and yields for corn, 
soybeans, and sorghum using 46 years (1968 to 2013) of county-level data from 9 Great Plains 
states (Kansas, North Dakota, South Dakota, Wyoming, Iowa, Nebraska, Oklahoma, Texas, 
Colorado). Analysis of crop yield variability was limited to only those counties that had data 
available across at least 60% of the study period (246 for corn, 242 for sorghum, and 225 for 
soybeans).  Yield and climate variability were both represented using the statistical coefficient 
of variation. Using the R2 statistic from regressing climate variability (temperature and 
precipitation) upon yield variability, they found that climate variability explained 18%, 23%, and 
23% of yield variability for corn, sorghum, and soybeans over the study period. They found that 
the general trend in temperatures was beneficial for corn but detrimental for sorghum and 
soybeans. The general trend in precipitation was beneficial for all three crops. They examined 
the differences between irrigated and non-irrigated yields and found that irrigated yields were 
more robust and an effective mitigation strategy against climatic impacts. They also found 
considerable geographic variation in the results regarding climatic trends and the yield responses 
to those trends. 
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There have been numerous other studies examining the impacts of climate change and 
technology upon yields. Garcia et al. (1987) assessed the impacts of weather and technology 
upon U.S. corn yield variability over two time periods: 1931 to 1960 and 1961 to 1982. They 
found that when yields were adjusted for weather, the variance in corn yield is more likely to be 
equal across the time periods – indicating the relative importance of weather in explaining yield 
variability.  

Kaufmann and Snell (1997) estimated a hybrid model that accounted for both climatic and social 
(market conditions, technical factors, scale of production, and policy environment) impacts upon 
corn yields in the U.S. They found that their model was highly effective in assessing the social 
impacts upon corn yields – particularly in assessing the relative costs and benefits for adaption.  

Schlenker and Roberts (2009) examined the nonlinear and asymmetric relationship between 
temperature and crop yields and examine the implications of long-term temperature projections. 
They found, holding current growing regions fixed, that area-weighted average yields are 
predicted to decrease by 30 to 46 percent before the end of the 21st century under the slowest 
warming scenario and decrease by 63 to 82 percent under the most rapid warming scenario using 
the Hadley III model. 

Lobell, Schlenker and Costa-Roberts (2011) developed a database of yield response models to 
evaluate the impact of climate trends on global yields by country for the period of 1980 to 2008. 
The crops analyzed were corn, wheat, rice, and soybeans. To estimate the impacts of climate 
trends, four scenarios were applied to historical temperature and precipitation data for each 
country over the study time period: (1) actual values over the time period, (2) actual temperature 
and detrended precipitation, (3) detrended temperature and actual precipitation, and (4) 
detrended temperature and precipitation. For corn and wheat, the results indicated a global net 
yield loss of 3.8 and 5.5 percent respectively over the study time period. For rice and soybeans, 
the results essentially balanced out across regions. 

Cai et al. (2013) developed a climate index using principal components to estimate the linkage 
between climate and regional crop yields in the U.S. The indices were also forecast using three 
long-term climate projections (Australian CSIRO 3.5, Canadian CGCM 3.1, and Japanese 
MIROC 3.2) to derive long-term implications for crop yields. Their results indicated that future 
hotter/drier weather conditions will likely have a more significant negative impact upon crop 
yields in the southern states with only mild impacts in the most northern states. 

Lobell et al. (2014) examined field level data on corn and soybean yields in the Central U.S. 
from 1995 to 2012 to examine changes in yield sensitivity to drought. Their results indicate that 
yield sensitivity to drought has been increasing over time. The authors suggest that a key factor 
contributing to this increased sensitivity may be planting density even though new varieties are 
more robust to crowding. 

Tolhurst and Ker (2015) modeled the impact of technological change upon crop yields using a 
mixture of normal distributions (EM algorithm) with embedded trend functions to account for 
technology in the different components of the distribution. This allows for the incorporation of 
the higher moments (beyond first two moments) of the yield distribution in the estimation of the 
impacts of technological change. The model was applied to county-level corn, soybean, and 
wheat yields from Illinois, Indiana, and Iowa for the period from 1955 to 2011. Their results 
indicated that technological change may alter the shape of the yield distribution beyond just a 
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location-scale shift in the parameters. In particular, they found that the rate of technological 
change in the upper components was greater than the rate of change in the lower components of 
the yield distribution for all three crops. 

Du et al. (2015) examined the impact of exogenous geographic and climatic factors upon the 
moments of the crop yield distribution with a focus on the skewness (3rd moment) parameter. 
The data examined included crop insurance unit yield data for corn and soybeans in 13 states 
(Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, 
Oklahoma, South Dakota, and Wisconsin) and wheat yield data from 11 states (all mentioned 
except Iowa and Wisconsin) from 1990 to 2009. Their results indicate that better natural resource 
endowments (climate and soils) decrease the observed skewness in yields which supports their 
theoretical hypotheses. 

Chen, Chen and Xu (2016) examined the impact of climate change upon corn and soybean yields 
in China using the Schlenker and Roberts (2009) model. Their results indicated a loss of about 
$820 million to China’s corn and soybean sectors in the previous decade due to global warming. 
They also projected that China’s corn and soybean yields will decline by 3-12% and 7-19% 
respectively by 2100 if current climate trends continue. 

Huffman, Jin and Xu (2018) examined over a half-century of panel data on U.S. Midwest rain-
fed state-average corn yields. They broke down the observed yields into two components: (1) the 
yield potential which was modeled as a stochastic production frontier where nitrogen 
fertilization, public corn research, and biotechnology introduction have an effect; and (2) damage 
to yield potential due to weather and pests which was modeled as an asymmetric control 
function. They found that nitrogen use, public corn research, and adoption of biotechnology 
increase yield potential while soil moisture stress reduces yield potential. They also found that 
excess heat severely reduces nitrogen productivity and that biotechnology primarily abates yield 
damage due to soil moisture stress but does not abate damage due to excessive heat. 

Impacts of Climate, Technology, and Policy Upon The Distribution of Crop Acreage and 
Production 

Much of the research focusing upon the impact of climate and technology upon the geographic 
distribution of crop acreage and production has generally linked these impacts with other direct 
or indirect economic impacts. Rosenzweig and Parry (1994) combined data from individual crop 
yield studies to obtain a global picture of the simulated change in crop yield associated with 
different climate scenarios. A world food trade model was then applied to simulate the economic 
consequences of the potential changes in crop yields and global production levels. A major 
conclusion of their study is the appearance of a major disparity in agricultural vulnerability 
between developed and developing countries with regards to climate change. 

Mendelsohn, Nordhaus and Shaw (1994) measured the economic impact of climate change upon 
land prices using a Ricardian approach rather than a production function approach. Using cross-
sectional data from almost 3,000 counties in the U.S., they find that higher seasonal temperatures 
(with the exception of autumn) result in lower farm values while increasing seasonal 
precipitation (outside of autumn) increases average farm values. Applying the Ricardian 
approach did result in a significantly lower estimated impact when compared to the production 
function approach with one case even suggesting (excluding positive impacts from higher CO2 
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levels) that global warming may have significant economic benefits for agriculture. They also 
found that the most negative impacts of climate change upon cropland values would occur in the 
southern United States with most of the positive impacts occurring in the central and northern 
states. 

Schlenker, Hanemann and Fisher (2006) utilized a hedonic (Ricardian) regression approach to 
examining the link between climatic variables (degree days and precipitation) and U.S. farmland 
values east of the 100th meridian (the boundary of agriculture not primarily dependent upon 
irrigation). They utilized a hedonic model to project farmland values under four long-term 
climatic scenarios from the Hadley HadCM3 model (B1, B2, A2, and A1F1). Their results 
generally show both positive and negative impacts upon farmland values on a county-by-county 
basis. The number of counties exhibiting losses exceeded the number of counties exhibiting 
gains. 

Deschenes and Greenstone (2007) estimate the impact of climate change upon the U.S. 
agricultural sector by estimating the impact of year-to-year variations in temperature and 
precipitation upon agricultural profits. They used county-level panel data to estimate the effect of 
weather on agricultural profits, conditional on county and state by year fixed effects. Using the 
long-run climate change predictions from the Hadley 2 Model, they found that climate change 
will result in a $1.3 billion (2002 $) or 4.0 percent increase in aggregate U.S. agricultural profits. 
Their results show significant variation across states in terms of changes in profitability with 
South Dakota (+$720 million) showing the largest projected increase and California (-$750 
million) showing the largest decrease. In percentage terms, West Virginia (+189.6%) had the 
largest increase and New Hampshire (-127.4) had the largest decrease. 

Marshall et al. (2015) examined the impact of climate change on the regional water balances in 
the U.S. and the resultant impact upon the geographic distribution of irrigated versus non-
irrigated acreage. They explored farmer response under two hypothetical cases: (1) where 
irrigation water supply constraints don’t exist so that production impacts are purely due to 
biophysical factors, and (2) where decisions are constrained by irrigation water supplies to 
isolate the impacts of water balances. Their results indicated that, from a national perspective, 
the impact of irrigation water supply distribution was small relative to the direct biophysical 
impacts upon crop yields. 

Miao, Khanna and Huang (2016) investigated the effect of crop price and climate variables upon 
non-irrigated U.S. corn and soybean yields and acreage using a large county-level panel dataset 
from the 1977 to 2007 period. Their results indicated that climate change was attributable to 
declines in corn production ranging from 7 to 41 percent and declines in soybean production 
ranging from 8 to 45 percent when controlling for price effects. They also found that omitting 
price variables resulted in an overestimation of the climate change impact upon corn yields by up 
to 9 percent and upon soybean yields by up to 15 percent. 

Burke and Emerick (2016) examined the impact of recent large variations in temperature and 
precipitation upon long-run adaption strategies to climate change by U.S. producers. Their 
results suggested that farmers were no more able to mitigate the negative impacts of climate 
change in the long-run as compared to in the short-run. They provide evidence that the lack of 
adaption was not driven by a lack of awareness regarding climate change rather they attribute 
this observation to the fact that farmers either lacked adequate long-run adaption options or they 
found those options available to be too expensive to implement. Using climate projections from 
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18 different climate change models, the authors projected that annual U.S. corn productivity 
would decline by roughly 15 percent by the year 2050, which is on par with the losses 
experienced during the severe drought of 2012. 

Haile et al. (2017) analyzed determinants of global crop production for corn, wheat, rice, and 
soybeans over the period of 1961 to 2013 using seasonal production, price change, and price 
volatility data at the country level along with climate data from 32 global circulation models. 
Their results indicated that price and weather extremes not only have adverse impacts upon 
global food production but they also positively contribute to year-to-year fluctuations in global 
food availability. Using the climate predictions from the 32 GCM’s, they project that climate 
change will reduce global food production by up to 9 percent in the 2030s and by 23% in the 
2050s with a large heterogeneity across countries and crops. Their results also indicate that 
improvements in technology and agronomic practices have the capacity to offset some of the 
negative consequences of climate change impacts upon variability in food availability along with 
production. 

Fei, McCarl and Thayer (2017) examined the effects of historical patterns in precipitation, 
temperature, and atmospheric gases along with the frequency of extreme weather events upon 
acreage adaption of cereal grains with a focus upon the Pacific Northwest region. Their results 
indicate that under climate change, in general, wheat production shifts northward in the Southern 
Great Plains, westward in the Northern Great Plains, and eastward in Oregon and Washington 
which are all cooler climates. They also found that overall wheat production would decline from 
6 million acres under the no climate change scenario to between 5.4 and 5.7 million acres under 
the four climate change scenarios that were examined. Production declines in Oregon and 
Washington were partially offset by increases in Idaho when comparing the no change to the 
climate change scenarios. They also found that winter wheat would supplant spring wheat 
varieties along the northern border as an adaption to the warmer climate. 

Li, Miao and Khanna (2019) examined the expansion of ethanol production in the United States 
and its impact upon land-use when controlling for the effect of changes in relative crop prices. 
Their empirical analysis utilized county level acreage data for the 2003 to 2014 crop years. They 
estimated a reduced-form, two-equation econometric model where the dependent variables were 
county level corn acreage and aggregate crop acreage. The explanatory variables included state-
level corn prices, an aggregated crop price index, a fertilizer price index, population density, and 
average precipitation. Ethanol capacity and prices were modeled as endogenous to the system 
using a panel data instrumental variable estimator with county fixed effects. Ethanol capacity 
was modeled using an interaction term between railroad density associated with the county and 
the volume of ethanol mandated under the Renewable Fuel Standard (RFS). Prices were modeled 
using lagged crop stocks, and natural gas prices as a proxy for fertilizer costs. They found that an 
increase in ethanol capacity has led to a modest 3% increase in corn acreage and less than a 1% 
increase in total crop acreage between 2008 and 2012. Prices were found to have effects twice as 
large as ethanol capacity but this effect was essentially reversed by the sharp downturn in prices 
after 2012. 
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DATA AND METHODOLOGY 

To calculate the relative over- or under-performance of annual corn and soybean production, a 
production performance index (PPI) was calculated as a proxy for the state and national 
production level relative to recent history. The formula for the PPI is as follows: 

 1 5( , , ),t t t tPPI P O P P− −= −    (1) 

where Pt is the production level in time period t, and O(·) is the Olympic average function (drop 
minimum and maximum values and average the remaining three values). Therefore, the PPI 
measures the degree by which the current year’s production either exceeded (over-performed) or 
fell short of (under-performed) the normal production level from the preceding five years. The 
Olympic average was used to minimize the impact of any extremely good or bad years when 
setting the past benchmark of what could be considered a “normal” production level for a 
particular region (state or national) at the time of comparison. 

The PPI is illustrated for the U.S. and Iowa in Figure 2. As would be expected, there is a high 
degree of correlation (87.5 percent) between the two measures since Iowa is a major source of 
U.S. corn production. However, the Iowa measure is less volatile than the U.S. measure due to its 
smaller area. 

 
Figure 2. Production Performance Index (PPI) Values for U.S. and Iowa, 1975 to 2017 

To analyze and rank the relative contribution of each state to the overall U.S. PPI index, a 
standard approach might be to estimate a linear regression model with the U.S. PPI as the 
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dependent variable and the individual states’ PPI’s as the independent variables. The 
standardized coefficient values from the linear regression could be used to rank the individual 
states and test for significance. However, there are a couple of issues that arise with the 
application of linear regression to this particular dataset: (1) with the dataset split between 1975 
to 1995 and 1996 to 2017, there are nearly as many independent variables as there are 
observations (referred to as the sparsity problem), and (2) the independent variables have a high 
level of correlation (multicollinearity) which can overstate the variance of the individual 
estimators and result in inaccurate individual coefficient values and t-statistics (Kennedy 1998). 

Traditional econometric approaches to sparse data and multicollinearity typically involve one of 
four approaches (Kuhn and Johnson 2013): (1) acknowledge and ignore the problem, (2) leave 
out or combine the most problematic variables, (3) utilize a penalized regression method such as 
ridge or lasso regression, or (4) utilize a regression method based upon principal components 
such as principal components regression (PCR) or partial least squares (PLS). Another, more 
recent development in this area has been the introduction (Magidson 2010) of correlated 
component regression (CCR) which has some similarities but also some major differences with 
PLS. 

Using a penalized or principal component based method typically involves the trade-off of 
increasing bias in exchange for a reduced variance in order to reduce the overall mean squared 
error (MSE) of the model prediction. In the case of penalized regression models, this is 
accomplished by adding a penalty function to the least squares optimization procedure that will 
tend to shrink the coefficient estimates of some variables towards zero in order to reduce the 
penalty cost. While generally effective at variable reduction when compared to stepwise 
regression and other variable reduction techniques, penalized models have the disadvantage of 
ignoring the presence of suppressor variables in the dataset. These unobserved, latent variables 
are not directly measured in the independent variable set but may have an important bearing 
upon the predictive ability of the model by enhancing the prediction capability of the visible, 
observed independent variables. 

In the case of principal components regression (PCR), the unobserved components are derived 
from a subset of the eigenvalues of the variance-covariance or correlation matrix of the 
independent variable set. The number of eigenvalues utilized is generally chosen by setting a 
percentage threshold on the amount of total variable explained by the eigenvalues or by visual 
examination of the eigenvalues using a scree plot. The eigenvectors (principal components) from 
the chosen set of eigenvalues have the advantage of being orthogonal (have zero correlation). 
However, the principal components are optimized using information only from the set of 
independent variables and do not consider information contained in the dependent variable. 
Therefore, one may come up with cases where regressing the dependent variable upon the 
principal components results in significant information from the underlying independent variable 
set being disregarded through the elimination of lower ranked eigenvalues or through the 
removal of principal components that contain useful information but have statistically 
insignificant regression coefficients. 

The use of supervised PCR (Bair et al. 2006) provides some improvement since each 
independent variable is assured of having its predictive significance evaluated (provided the 
matrix of independent variables is fully identified and non-sparse so that the OLS estimation 
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procedure does not break down). However, supervised PCR still has the disadvantage of 
overlooking components that may act as suppressor variables. 

Partial least squares (PLS) overcomes both of the aforementioned issues with PCR since the 
dependent variable is included with the independent variables in deriving the orthogonal 
components such that the optimization of each vector is heavily weighted in the direction of the 
dependent variable through correlation scores within an iterative weighting process. 
Additionally, the PLS regression procedure takes into account the impact of unseen latent 
suppressor variables. However, for explanatory modeling, PLS has a significant drawback in that 
the procedure will naturally be biased in the direction of predictors with the highest variance. 
This requires that the independent predictor variables be preprocessed via normalization and can 
result in over- and under-statement of the standardized regression coefficients. Also, due to the 
preprocessing, it is more difficult to quantify the relationship of each independent variable to the 
identified latent suppressor variables which makes their identification more difficult. 

The correlated component regression (CCR) model is based upon two tuning parameters: the 
number of components to be derived (k) and the number of independent variables to retain in the 
model (p). Tuning of these parameters is done using a cross-validation procedure such as m-fold 
validation. A cross-validation metric such as R2, mean squared error (MSE), or area under the 
receiver operating curve (AUROC) is chosen for optimization under the cross-validation 
procedure. The CCR procedure is extremely flexible and versions have been developed for 
modeling ordinary least squares (CCR-Linear), logistic (CCR-Logistic), linear discriminant 
(CCR-LDA), survival (CCR-Cox), and latent variable (CCR-Latent) models. For CCR-Logistic 
and CCR-LDA, the dependent variable is limited to two values (binary) so it cannot be applied to 
multinomial models. 

The CCR-Linear algorithm begins with all P of the independent variables and estimates the 
following P single-variable regression equations: 

 (1) (1)
, ,i g g g iY Xδ λ= + ⋅   (2) 

where iY  is observation i of the dependent variable with i = 1,…,N ; ,g iX  is observation i of 
independent variable g = 1,…,P; (1)

gδ and (1)
gλ are the regression intercept and slope parameters for 

independent variable g. 

The first correlated component variable, CC1, is then constructed as the linear, weighted average 
of each predictor using the single equation slope coefficients as the weights: 

 (1)
1, ,

1

1 ˆ ,
P

i g g i
g

CC X
P

λ
=

= ⋅ ⋅∑   (3) 

From (3), the 1-component model is then estimated as: 

 (1) (1)
1 1, ,i iY CCα β= + ⋅   (4) 

with the relevant cross-validation (CV) metric (CV-R2 or CV-MSE) stored from this regression 
model for later determination of the optimal number of retained components in the model. The 
CC1 component is called the direct effects component since it measures the direct impact of each 
independent variable upon the dependent variable without any latent suppressor effects. 
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The second component variable (CC2) is constructed by first estimating the following regression 
equation for each of the independent variables: 

 (2) (2) (2)
1, 1, , ,i g g i g g iY CC Xδ γ λ= + ⋅ + ⋅   (5) 

then, using the results from (5) to derive the correlated component: 

 (2)
2, ,

1

1 ˆ ,
P

i g g i
g

CC X
P

λ
=

= ⋅ ⋅∑   (6) 

The second component CV metric is then derived from the following regression equation: 

 (2) (2) (2)
1 1, 2 2, ,i i iY CC CCα β β= + ⋅ + ⋅   (7) 

Note that CC2 and subsequent derived component variables represent latent suppressor effect 
variables in the correlated component model.  

The progression of component derivations can continue up to when the number of components 
equals the number of independent variables if the model is fully identified and non-sparse, or the 
maximum number specified by the user. In the case where the number of components equals the 
number of independent variables, the CCR model will be equivalent to the OLS regression 
model. The initial regression model would be: 

 ( ) ( ) ( ) ( )
1, 1, 1, 1, , ,P P P P

i g g i P g P i g g iY CC CC Xδ γ γ λ− −= + ⋅ + + ⋅ + ⋅   (8) 

With the final component equal to: 

 ( )
, ,

1

1 ˆ ,
P

p
P i g g i

g
CC X

P
λ

=

= ⋅ ⋅∑   (9) 

and 

 ( ) ( ) ( )
1 1, , ,P P P

i i P P iY CC CCα β β= + ⋅ + + ⋅   (10) 

to determine the final cross-validation metric. 

Once the optimal number of components (K*) is determined using the optimal value of the cross-
validation (CV) metric, the number of independent variables can either be specified by the user 
(up to P) or can be optimally determined using a step-down procedure. The first step in the step-
down procedure is to estimate the model with all of the predictors and calculate the cross-
validation metric. In the next step, the independent variable with the smallest absolute value of 
its standardized coefficient is removed and the model is re-estimated with the reduced set of 
independent variables. This is repeated until there is only one independent variable left in the 
dataset. The optimal set of independent variables (P*) is the set that produces the optimal value 
of the cross-validation metric. 

Initial results presented by Magidson (2010) indicated that CCR can perform as well or better 
than PCA-based and penalty function approaches when forecasting out-of-sample values from 
sparse and multicollinear datasets. In another paper (Magidson and Wassmann 2010), the 
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potential value of latent suppressor variables in the detection of prostate cancer was 
demonstrated using an application of CCR-LDA to patient data. 

To date, most published applications of CCR have been in the medical and sociological fields 
(Alkerwi et al. 2015). Given its recent development, applications of CCR in the economics 
literature have been relatively sparse with the exception of a paper presented at a math and 
engineering conference (Trivedi and Birau 2013) that examined correlation between several 
international stock indices and a recent logistics paper (Garver and Williams 2018). 

The dataset is comprised of the state-level corn and soybean production from 1970 to 2017 for 
the 18 major corn producing (Colorado, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, 
Minnesota, Nebraska, North Carolina, North Dakota, Ohio, Pennsylvania, South Dakota, 
Tennessee, Texas, and Wisconsin) and soybean producing (Arkansas, Illinois, Indiana, Iowa, 
Kansas, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nebraska, North 
Carolina, North Dakota, Ohio, South Dakota, Tennessee, and Wisconsin) states as determined by 
the USDA. The dataset also contains the national-level production for both crops and an “Other 
States” aggregate is derived as a residual when subtracting the sum of the 18-state production 
from the national aggregate. The data come from the USDA-NASS Quick Stats online database.4  
The 18-major states typically5 comprise between 92.3 to 96.3 percent of the national corn and 
between 89.5 and 99.1 percent of the national soybean production over the time period 
examined. 

To characterize and interpret the estimated correlated component (CC) variables, a Spearman’s 
rank-order correlation was calculated between each component and a set of corn production and 
weather data. The corn production data included yield versus trend (using trendline fit from 1948 
to 2017), the difference between final planted acreage and the March 1st estimate from the 
USDA’s Prospective Plantings report (representing a proxy for prevented plant acres), and an 
excess acreage abandonment proxy measured by the difference between the percent of planted 
acres not harvested and the Olympic average of the same measure over the previous five years. 

The weather variables come from data in the U.S. National Weather Service’s Oceanic Niño 
Index (ONI)6, version 5, and a set of annual weather measurements for Des Moines, Iowa 
covering daily temperatures (average, maximum, minimum, extreme maximum, and extreme 
minimum), days with minimum temperatures below a threshold (zero, 32 degrees Fahrenheit), 
days with maximum temperatures above a threshold (70 and 90 degrees Fahrenheit), heating 
degree days, cooling degree days, precipitation (total and extreme maximum daily in inches), 
days with precipitation above 0.1 inches and 1.0 inches, snowfall (total and extreme daily 
maximum), number of days with snow depth greater than one inch, and highest daily snow depth 
in inches. All of the Des Moines weather measurements come from data in the NOAA Climate 
Data Online7 database. 

                                                 
4 https://quickstats.nass.usda.gov 

5 Based upon 95% confidence interval. 

6 http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php 

7 https://www.ncdc.noaa.gov/cdo-web/ 
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RESULTS 

In this paper, the Magidson CCR model was applied to the examination of the relative 
importance of each state in predicting the PPI on a national scale for both corn and soybeans. 
This was done over two separate time periods (1) the 1975 through 1995 crop years and (2) the 
1996 through 2017 crop years. The state-level rankings and impact are derived from the 
standardized coefficients of the CCR regression procedure. For each crop and time period, a 
Herfindahl-Hirschman Index (HHI) was calculated by summing the squared percentage shares of 
the standardized coefficients (absolute value). This allowed for an examination of the degree and 
change in geographic concentration across the two time periods. A primary hypothesis examined 
was whether the introduction of new crop technologies combined with changes in climate and 
farm policy resulted in a greater geographic dispersion of the relative influence of each state 
upon the national aggregate. This would imply a decline in the HHI from the 1975-1995 to the 
1996-2017 periods for each crop. 

The results presented in this paper were derived using the CORExpress™ software package from 
Statistical Innovations (www.statisticalinnovations.com). The maximum number of correlated 
components (p) was set to eight for each estimation and the step-down procedure of variable 
selection was not utilized (all of the states were retained in the estimated model). Each model 
was estimated using a 4-fold cross-validation option using R2 as the CV metric in the CCR-
Linear procedure. 

U.S. Corn: Initial Time Period (1975-1995) 

The cross-validation procedure for corn in the pre-GMO time frame (1975 to 1995) resulted in a 
maximum CV-R2 of 0.987 with 4 components retained. The estimated correlated component 
coefficient values ( ˆ

iβ ) are shown in the second column of Table 1 along with the coefficient 
standard errors, t-statistics, and levels of significance. All four components are highly significant 
with p-values less than 0.01. The standardized coefficient values and the percentage shares are 
also shown in the last two columns of the table. The direct effects component (CC1) has almost a 
2/3 (65.1%) share of the total standardized coefficient value. The next two indirect effects 
components (CC2 and CC3) have an almost equal share (13.7% and 14.3%) while the final 
component (CC4) has the lowest share at 6.9 percent. Note that the percent shares of the 
standardized totals can be used as a proxy for the percent of variability explained by the 
component. 

Table 1. Correlated Component Regression and Standardized Coefficients, Corn, 1975 to 1995 Period 

 

The vector product of each states’ ( gX for g = 1,…, 19) component loading ( ( )ˆ i
gλ ; i = 1,…, 4) 

with its individual PPI value in each year to derive the correlated component values by year (t = 

Correlated Component Value Standard Error T-Statistic Pr > |t| Signif*
Standardized 

Value

Share of 
Standardized Total 

(%)
CC1 0.0754 0.0027 28.327 < 0.0001 *** 0.8150 65.1%

CC2 0.2861 0.0201 14.251 < 0.0001 *** 0.1715 13.7%

CC3 0.4415 0.0451 9.780 < 0.0001 *** 0.1786 14.3%

CC4 0.5861 0.1527 3.839 0.0014 *** 0.0865 6.9%

*Three-stars = signficantly different from zero at 99% level, two-stars = 95%, one-star = 90%.
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1975,…,1995) and these values can be plotted to provide additional information about the 
characterization of each component. Figure 1 shows the values of the four correlated components 
for corn by year during the 1975-1995 period. 

 
Figure 3. Correlated Component Values for Corn, 1975 to 1995 Period 

As expected, the direct effects component (CC1) is highly correlated with the corn production 
metrics (yield versus trend, excess abandonment, and planted acreage differential) with signs in 
the expected directions for all three (positive for yield versus trend and planted acreage 
differential, and negative for excess abandonment). The first indirect effects component (CC2) is 
positively correlated with cooling degree days, average daily temperature, and average minimum 
daily temperature – reflecting a suppressor effect tied to cooler than normal years such as 1976 
and 1993. The second indirect effects component (CC3) is negatively correlated with cooling 
degree days, the extreme maximum temperature, days with maximum over 90 degrees, average 
minimum temperature, average temperature, and yield versus trend – reflecting a suppressor 
effect tied to very hot years (such as 1983 and 1988). The final indirect effects component (CC4) 
is negatively correlated with excess abandonment and cooling degree days while positively 
correlated with yield versus trend and extreme maximum snowfall – likely reflecting a 
suppression effect tied to late season conditions and abandonment. 
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Table 2. Individual States’ Coefficient Values and Shares, Corn, 1975 to 1995 Period 

 
The individual states’ non-standardized and standardized coefficient values along with the 
percent standardized share (absolute value) are shown in Table 2. The states are ranked in order 
by their share of the absolute standardized coefficient values. Note that each state’s (g) non-
standardized coefficient value ( ĝφ ) is calculated as: 

 
4

( )

1

ˆ ˆ ˆ ,i
g g i

i
φ λ β

=

= ⋅∑   (11) 

One of the weaknesses of the CORExpress software package is that it does not provide 
coefficient standard errors and t-statistics for the regression coefficients; however, these can be 
derived from the regression standard errors of the component coefficients as follows: 

 ( ) ( )
24 2( )

1

ˆ ˆ ˆ( ) ( ) ,i
g g i

i
se seφ λ β

=

= ⋅∑   (12) 

where se(·) is the standard error for the regression coefficient. The constant coefficient represents 
the intercept ( α̂ ) from the optimal CV-R2 regression.  

The results indicate that during the 1975 to 1995 period, Iowa and Illinois had a dominant share 
(39.6%) of the influence upon the overall national corn production outcome. The next tier of 
states (Minnesota and Indiana) had an approximate 15% share. Note all of the coefficients are 
statistically significant at the 95% confidence level with the exception of Nebraska, Tennessee, 
and Texas. The Herfindahl-Hirschman Index of 1,103 is below the 1,500 threshold that the U.S. 

Rank* State Coefficient
Standard 

Error T-Statistic Pr > |t| Signif***
Standardized 
Coefficient Share(%)*

1 IOWA 1.167 0.061 19.225 < 0.0001 *** 0.282 23.1%
2 ILLINOIS 0.993 0.053 18.659 < 0.0001 *** 0.201 16.5%
3 MINNESOTA 0.810 0.074 10.990 < 0.0001 *** 0.092 7.6%
4 INDIANA 0.899 0.071 12.702 < 0.0001 *** 0.088 7.2%
5 SOUTH DAKOTA 1.577 0.122 12.896 < 0.0001 *** 0.068 5.6%
6 MICHIGAN 2.091 0.126 16.641 < 0.0001 *** 0.068 5.6%
7 KANSAS 2.373 0.092 25.890 < 0.0001 *** 0.062 5.1%
8 WISCONSIN 1.050 0.074 14.236 < 0.0001 *** 0.060 4.9%
9 OTHER STATES 0.952 0.052 18.193 < 0.0001 *** 0.058 4.8%
10 MISSOURI 0.995 0.053 18.823 < 0.0001 *** 0.044 3.6%
11 NORTH CAROLINA 2.197 0.115 19.028 < 0.0001 *** 0.039 3.2%
12 OHIO 0.604 0.072 8.356 < 0.0001 *** 0.038 3.1%
13 KENTUCKY 1.341 0.227 5.911 < 0.0001 *** 0.031 2.5%
14 NORTH DAKOTA 3.313 0.727 4.556 0.0003 *** 0.025 2.0%
15 PENNSYLVANIA 1.243 0.355 3.496 0.0030 *** 0.024 2.0%
16 NEBRASKA 0.126 0.082 1.532 0.1450 0.012 1.0%
17 COLORADO 0.835 0.367 2.277 0.0369 ** 0.010 0.9%
18 TENNESSEE 0.866 0.875 0.990 0.3369 0.010 0.8%
19 TEXAS -0.184 0.107 -1.714 0.1059 -0.005 0.4%

23.144 19.423 1.192 0.2508
1,103               

*Rank and share based upon absolute value of standardized coefficient.
**Equals sum of squared percentage shares (range from 0 to 10,000).
***Three-stars = signficantly different from zero at 99% level, two-stars = 95%, one-star = 90%.

Herfindahl-Hirschman Index**
[Constant]
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Department of Justice would consider a moderate level of concentration and well below the 
2,500 threshold that would be considered highly concentrated. 

Table 3 shows each states’ standardized loading upon each of the four correlated components. 
The cells are shaded based upon the coefficient ranking for each component with light yellow to 
green representing positive loadings and dark yellow to red representing negative loadings. Iowa 
and Illinois both have positive loadings on all four components. Minnesota has a negative 
loading on the high temperature component (CC3) while Indiana has a negative loading upon the 
cool temperature component (CC2). Nebraska, with its heavier influence upon irrigated 
production, is less susceptible to the high temperature (CC3) and the abandonment (CC4) 
components, having a strong negative loading on both. The same holds true for Colorado to a 
lesser extent. 

Table 3. Individual States’ Standardized Loadings on Correlated Components, Corn, 1975 to 1995 Period 

 

U.S. Corn: Latter Time Period (1996-2017) 

The four-fold cross-validation procedure resulted in the optimal selection of five components in 
the post-GMO period (1996 to 2017). The CV-R2 value was 0.9733. The component regression 
coefficients (non-standardized and standardized) are shown in Table 4. All five components are 
significant at the 99% confidence level. The direct effects (CC1) coefficient has just under a 2/3 
share (60.7%) of the standardized value with the remaining 39.3% in the indirect effects 
components (CC2, CC3, CC4, and CC5). 

CC1 CC2 CC3 CC4
IOWA 0.087 0.464 0.547 0.390
ILLINOIS 0.086 0.131 0.505 0.208
MINNESOTA 0.076 0.185 -0.162 0.319
INDIANA 0.077 -0.122 0.316 -0.122
SOUTH DAKOTA 0.073 0.145 -0.165 0.150
MICHIGAN 0.074 0.089 0.028 -0.146
KANSAS 0.050 0.008 0.091 0.041
WISCONSIN 0.070 0.115 -0.143 0.100
OTHER STATES 0.070 -0.104 0.116 -0.017
MISSOURI 0.068 0.007 -0.054 -0.036
NORTH CAROLINA 0.057 -0.049 0.026 -0.043
OHIO 0.079 -0.160 0.074 -0.141
KENTUCKY 0.079 -0.332 0.135 -0.011
NORTH DAKOTA 0.052 0.011 -0.193 0.173
PENNSYLVANIA 0.076 -0.277 -0.066 0.249
NEBRASKA 0.079 0.078 -0.235 -0.272
COLORADO 0.031 0.064 -0.054 -0.190
TENNESSEE 0.067 -0.290 -0.154 0.370
TEXAS 0.032 -0.156 0.020 -0.091

Correlated Component
State
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Table 4. Correlated Component Regression and Standardized Coefficients, Corn, 1996 to 2017 Period 

 

Figure 4 shows the plot of the component values by year. An examination of the Spearman rank-
order correlation coefficients with the production and weather metrics indicates that the direct 
effects coefficient (CC1) has significant (p-value of 0.1 or less) negative correlation with the 
levels of excess abandonment, extreme maximum temperature, number of days with maximum 
temperatures over 90 degrees. CC1 has significant positive correlations with yield versus trend, 
days with minimum temperature below zero, days with maximum temperature less than 32 
degrees, total precipitation, days with precipitation greater than 1 inch, and days with 
precipitation greater than 0.1 inch. The plot shows that CC1 has mostly positive to neutral values 
for most years with the exception of 2002 and the extreme drought year of 2012. 

 
Figure 4. Correlated Component Values for Corn, 1996 to 2017 Period 

Correlated 
Component Value

Standard 
Error T-Statistic Pr > |t| Signif*

Standardized 
Value

Share of Standardized 
Total (%)

CC1 0.1580 0.0033 47.6970 < 0.0001 *** 0.985 60.7%

CC2 0.3938 0.0227 17.3549 < 0.0001 *** 0.270 16.6%

CC3 0.5297 0.0470 11.2639 < 0.0001 *** 0.197 12.2%

CC4 0.7200 0.1381 5.2132 < 0.0001 *** 0.106 6.5%

CC5 0.7062 0.2335 3.0246 0.0081 *** 0.064 4.0%

*Three-stars = signficantly different from zero at 99% level, two-stars = 95%, one-star = 90%.
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The first indirect effects component (CC2) has a significant negative correlation on the change in 
the annual average ONI index and a positive correlation with the average temperature level. 
Strong positive increases in the annual average ONI are associated with strong El Niño years 
(1997 and 2015) indicating that this component reflects a suppressor effect tied to the El Niño 
cycle. The second indirect effects component (CC3) has significant positive correlations with the 
extreme minimum temperature, the 2nd half (last six months of calendar year) ONI index value, 
and days with a minimum temperature less than 32 degrees. This coefficient also is negatively 
correlated with the extreme maximum temperature, the average daily minimum temperature, the 
total level of precipitation, and days with precipitation greater than 1.0 inch. This would indicate 
a suppression effect tied to hot, humid conditions – particularly in the latter half of the growing 
season. The third indirect effects component (CC4) has a strong positive correlation with the 2nd 
half average ONI and days with precipitation greater than 1.0 inch. It also has positive 
correlation with total snowfall and days with highest daily snow depth greater than or equal to 1 
inch. This component is likely a suppressor effect tied to the overall level of soil moisture and 
precipitation. The fourth and final indirect effects coefficient (CC5) has a significant negative 
correlation with the extreme maximum temperature and a positive correlation on yield versus 
trend. It also has a negative correlation on cooling degree days, days with maximum temperature 
above 90 degrees, and excess abandonment. This component obviously represents a suppressor 
effect related to extremely hot conditions – particularly later in the growing season.  

Table 5. Individual States’ Coefficient Values and Shares, Corn, 1996 to 2017 Period 

 

 

Rank* State Coefficient
Standard 

Error T-Statistic Pr > |t| Signif***
Standardized 
Coefficient Share(%)*

1 ILLINOIS 0.874 0.022 39.089 < 0.0001 *** 0.228 13.5%
2 NEBRASKA 1.540 0.048 32.145 < 0.0001 *** 0.215 12.8%
3 IOWA 0.927 0.043 21.724 < 0.0001 *** 0.194 11.5%
4 INDIANA 1.526 0.107 14.267 < 0.0001 *** 0.181 10.7%
5 KANSAS 1.393 0.180 7.738 < 0.0001 *** 0.133 7.9%
6 SOUTH DAKOTA 1.066 0.031 34.041 < 0.0001 *** 0.097 5.8%
7 MISSOURI 0.877 0.112 7.837 < 0.0001 *** 0.079 4.7%
8 OTHER STATES 0.668 0.040 16.525 < 0.0001 *** 0.076 4.5%
9 PENNSYLVANIA 2.694 0.181 14.853 < 0.0001 *** 0.070 4.2%
10 TEXAS 1.202 0.121 9.944 < 0.0001 *** 0.061 3.6%
11 NORTH CAROLINA 3.085 0.154 19.994 < 0.0001 *** 0.059 3.5%
12 COLORADO -2.176 0.522 -4.167 0.0007 *** -0.053 3.1%
13 MINNESOTA 0.523 0.027 19.321 < 0.0001 *** 0.051 3.1%
14 TENNESSEE -2.887 0.587 -4.920 0.0002 *** -0.049 2.9%
15 NORTH DAKOTA 0.706 0.033 21.116 < 0.0001 *** 0.043 2.5%
16 WISCONSIN 0.784 0.099 7.912 < 0.0001 *** 0.037 2.2%
17 MICHIGAN 1.123 0.119 9.461 < 0.0001 *** 0.029 1.7%
18 KENTUCKY 0.488 0.231 2.111 0.0509 * 0.015 0.9%
19 OHIO 0.178 0.149 1.193 0.2503 0.014 0.8%

84.279 15.860 5.314 0.0001 ***
818              

*Rank and share based upon absolute value of standardized coefficient.
**Equals sum of squared percentage shares (range from 0 to 10,000).
***Three-stars = signficantly different from zero at 99% level, two-stars = 95%, one-star = 90%.

Herfindahl-Hirschman Index**
[Constant]
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Table 5 shows the individual states’ coefficients (non-standardized and standardized) ranked by 
their absolute percent share of the total standardized values. Almost half (48.5%) of the total 
value is in the top four states (Illinois, Nebraska, Iowa, and Indiana). All of the coefficients are 
statistically significant at the 90% level or higher except for Ohio which is also the lowest ranked 
among the states. The Herfindahl-Hirschman Index is well below the DOJ guidelines for a 
concentrated market. 

Table 6. Individual States’ Standardized Loadings on Correlated Components, Corn, 1996 to 2017 Period 

 

 

Each states’ standardized loadings on each component is shown in Table 6. Note that, unlike the 
pre-GMO period, every state has at least one negative loading upon at least one of the correlated 
components. 

U.S. Corn: Summary of Changes in State Rankings and Concentration 

A summary of the change in states’ rankings and standardized shares along with the change in 
the HHI is contained in Table 7. In terms of rankings, the states with the largest increases are 
Nebraska (from 16th to 2nd), Texas (19th to 10th), Pennsylvania (15th to 9th), Colorado (17th to 
12th), and Tennessee (18th to 14th). Note that three of these states (Nebraska, Texas, and 
Colorado) have significant acreage under irrigation. States with the largest declines are Michigan 
(6th to 17th), Minnesota (3rd to 13th), Wisconsin (8th to 16th), Ohio (12th to 19th), and 
Kentucky (13th to 18th). Three of these states (Michigan, Minnesota, and Wisconsin) are among 

CC1 CC2 CC3 CC4 CC5
ILLINOIS 0.133 0.180 0.242 -0.013 0.038
NEBRASKA 0.129 0.208 0.055 0.242 -0.069
IOWA 0.113 0.275 0.154 -0.304 0.152
INDIANA 0.122 -0.128 0.129 0.407 0.412
KANSAS 0.117 0.152 -0.515 0.418 0.535
SOUTH DAKOTA 0.116 -0.082 0.012 0.039 -0.020
MISSOURI 0.127 -0.083 -0.077 -0.296 0.350
OTHER STATES 0.061 -0.021 0.143 0.040 -0.168
PENNSYLVANIA 0.073 -0.093 0.147 0.037 -0.154
TEXAS 0.103 0.053 -0.120 -0.179 -0.185
NORTH CAROLINA 0.058 -0.054 0.126 -0.056 -0.033
COLORADO 0.037 -0.012 -0.295 0.066 -0.539
MINNESOTA 0.012 0.168 -0.028 -0.001 -0.003
TENNESSEE 0.058 -0.232 -0.028 -0.432 0.125
NORTH DAKOTA 0.015 0.056 0.077 0.015 -0.054
WISCONSIN 0.057 0.061 -0.229 0.043 0.078
MICHIGAN 0.016 -0.029 0.078 0.101 -0.081
KENTUCKY 0.106 -0.287 0.024 -0.227 0.116
OHIO 0.091 -0.269 -0.134 0.417 -0.315

State
Correlated Component
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the northernmost tier of the Corn Belt. In terms of percentage share, Nebraska (+11.8%) had the 
largest gain while Iowa (-11.6%) had the largest decline. 

Table 7. Change in State-Level Rankings and Shares, Corn 

 

The Herfindahl-Hirschman Index (HHI) declined by 286 points between the two periods 
indicating a minor lowering (by HHI standards) of the share concentration among the states. 
Therefore, one can conclude that the recent technology, climate, and farm policy changes 
resulted in a moderate dispersion of the geographic influence of corn production upon the 
national aggregate when compared to the earlier 1975-1995 period. The change in rankings also 
indicated that irrigation (Nebraska, Colorado, and Texas) may be a primary factor in the shifts in 
geographic importance for national corn production. However, in general, there appears to be a 
pronounced shift from East to West in terms of geographic importance with major gains in states 
such as Nebraska and Texas with major losses in Iowa, Minnesota, and Michigan. 

U.S. Soybeans: Initial Time Period (1975-1995) 

The four-fold cross-validation procedure resulted in an optimal CV-R2 of 98.32% with three 
correlated components for the 1975 to 1995. Table 8 shows the estimates for the non-
standardized and standardized coefficients along with statistical significance indicators and 
standardized coefficient shares. All three coefficients are statistically significant at the 99% 
confidence level. The direct effects coefficient (CC1) has almost ¾ (74.7%) of the total 
standardized value. The remaining shares are almost evenly distributed across the two indirect 
effects coefficients with CC2 having a slightly higher share. 

1975 to 1995 1996 to 2017 Change 1975 to 1995 1996 to 2017 Change
IOWA 1 3 -2 23.1% 11.5% -11.6%
ILLINOIS 2 1 +1 16.5% 13.5% -3.0%
MINNESOTA 3 13 -10 7.6% 3.1% -4.5%
INDIANA 4 4 0 7.2% 10.7% +3.5%
SOUTH DAKOTA 5 6 -1 5.6% 5.8% +0.2%
MICHIGAN 6 17 -11 5.6% 1.7% -3.9%
KANSAS 7 5 +2 5.1% 7.9% +2.8%
WISCONSIN 8 16 -8 4.9% 2.2% -2.8%
OTHER STATES 9 8 +1 4.8% 4.5% -0.2%
MISSOURI 10 7 +3 3.6% 4.7% +1.1%
NORTH CAROLINA 11 11 0 3.2% 3.5% +0.3%
OHIO 12 19 -7 3.1% 0.8% -2.3%
KENTUCKY 13 18 -5 2.5% 0.9% -1.6%
NORTH DAKOTA 14 15 -1 2.0% 2.5% +0.5%
PENNSYLVANIA 15 9 +6 2.0% 4.2% +2.1%
NEBRASKA 16 2 +14 1.0% 12.8% +11.8%
COLORADO 17 12 +5 0.9% 3.1% +2.3%
TENNESSEE 18 14 +4 0.8% 2.9% +2.1%
TEXAS 19 10 +9 0.4% 3.6% +3.2%

Herfindahl-Hirschman Index 1103 818 -285

Rank
State

Share
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Table 8. Correlated Component Regression and Standardized Coefficients, Soybeans, 1975 to 1995 Period 

 

A plot of the correlated components over time is shown in Figure 5. The direct effects coefficient 
(CC1) has statistically significant (p-value less than 0.1) and positive Spearman rank-order 
correlation with yield versus trend, extreme maximum snowfall, number of days with snow 
depth greater than 1 inch, days with minimum temperature below zero, days with maximum 
temperature below 32 degrees, and heating degree days. The one significant negative coefficient 
was on the excess abandonment variable. This coefficient also had negative coefficients for the 
average annual temperature, days with temperature over 90 degrees, extreme maximum 
temperature, and average maximum temperature. 

 
Figure 5. Correlated Component Values for Soybeans, 1975 to 1995 Period 

The first indirect effects component (CC2) did not have any statistically significant correlations 
with the production metric and weather variables. The highest correlation was a negative 
relationship with the days with minimum temperature below 32 degrees with had a p-value of 
0.114. The next three ranked correlations (in level of significance) were all positive loadings on 
days with maximum temperature above 70 degrees, the extreme maximum temperature, and days 

Correlated Component Value
Standard 

Error T-Statistic Pr > |t| Signif*
Standardized 

Value
Share of Standardized 

Total (%)
CC1 0.1163 0.0026 45.3784 < 0.0001 *** 0.9596 74.7%

CC2 0.3625 0.0474 7.6399 < 0.0001 *** 0.1889 14.7%

CC3 0.3192 0.0684 4.6653 0.0002 *** 0.1363 10.6%

*Three-stars = significantly different from zero at 99% confidence level, two-stars = 95%, one-star = 90%.
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with maximum temperature above 90 degrees. This indicates that the coefficient is positively 
influenced by hotter temperatures and negatively influenced by cooler temperatures. 

The final indirect effects component (CC3) had statistically significant positive relationship with 
days with minimum temperature below zero and negative correlation with 1st half average ONI 
and days with precipitation over 1.0 inch. The coefficient was also positively related to the 
planted acreage differential indicating a negative relationship with prevented plant acres. 
Overall, this indicates that the component reflects a sensitivity to early season conditions that 
impact the rate of planting for the crop.  

Table 9 shows the state non-standardized and standardized coefficient values along with the 
statistical significance and standardized share indicators. All of the coefficients were statistically 
significant at the 99% level with the exception of Michigan which was significant at the 95% 
level.  

Table 9. Individual States’ Coefficient Values and Shares, Soybeans, 1975 to 1995 Period 

 

In terms of standardized share, there is not much distance between the top four states (Missouri, 
Iowa, Illinois, and Other States) ranging from 9.8 down to 8.9 percent. There is also not much 
distance separating the second tier of states (Ohio, Tennessee, and Mississippi) ranging from 7.9 
to 7.1 percent. The Herfindahl-Hirschman Index value of 680 indicates a very low level of 
concentration among the shares and is much lower than the value for corn (1,103) in the same 
time period. 

Rank* State Coefficient
Standard 

Error T-Statistic Pr > |t| Signif***
Standardized 
Coefficient Share(%)*

1 MISSOURI 1.156 0.048 24.106 < 0.0001 *** 0.140 9.8%
2 IOWA 0.818 0.037 21.934 < 0.0001 *** 0.137 9.6%
3 ILLINOIS 0.743 0.024 31.443 < 0.0001 *** 0.127 8.9%
4 MINNESOTA 1.169 0.055 21.324 < 0.0001 *** 0.127 8.9%
5 OTHER STATES 0.705 0.067 10.458 < 0.0001 *** 0.113 7.9%
6 OHIO 1.294 0.043 30.132 < 0.0001 *** 0.106 7.4%
7 TENNESSEE 2.358 0.248 9.523 < 0.0001 *** 0.102 7.1%
8 MISSISSIPPI 1.252 0.125 10.009 < 0.0001 *** 0.083 5.8%
9 NEBRASKA 1.583 0.087 18.150 < 0.0001 *** 0.081 5.6%
10 LOUISIANA 1.215 0.111 10.908 < 0.0001 *** 0.069 4.9%
11 INDIANA 0.806 0.039 20.479 < 0.0001 *** 0.066 4.6%
12 SOUTH DAKOTA 1.441 0.109 13.232 < 0.0001 *** 0.051 3.6%
13 KANSAS 1.077 0.089 12.128 < 0.0001 *** 0.048 3.3%
14 KENTUCKY 1.297 0.214 6.072 < 0.0001 *** 0.046 3.2%
15 NORTH CAROLINA 1.511 0.146 10.375 < 0.0001 *** 0.042 2.9%
16 ARKANSAS 0.414 0.064 6.509 < 0.0001 *** 0.033 2.3%
17 WISCONSIN 1.652 0.141 11.707 < 0.0001 *** 0.030 2.1%
18 NORTH DAKOTA 1.361 0.150 9.084 < 0.0001 *** 0.018 1.3%
19 MICHIGAN 0.651 0.272 2.392 0.0286 ** 0.012 0.8%

-5.211 6.382 -0.816 0.4255
680                  

*Rank and share based upon absolute value of standardized coefficient.
**Equals sum of squared percentage shares (range from 0 to 10,000).
***Three-stars = significantly different from zero at 99% confidence level, two-stars = 95%, one-star = 90%.

[Constant]
Herfindahl-Hirschman Index**
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The individual states’ standardized loadings upon the correlated components is contained in 
Table 10. Note the strong suppression effect for the Delta and southern Corn Belt states 
(Kentucky, Mississippi, Tennessee, and Arkansas) under CC2. The Plains states (Kansas, 
Nebraska, and South Dakota) have strong suppression effects under CC3 along with Michigan 
and Indiana. 

Table 10. Individual States’ Standardized Loadings on Correlated Components, Soybeans, 1975 to 1995 Period 

 

U.S. Soybeans: Latter Time Period (1996-2017) 

The four-fold cross-validation procedure produced an optimal CV-R2 at the maximum of eight 
correlated components for the 1996 to 2017 period. The non-standardized and standardized 
coefficient values along with the indicators for level of significance and standardized share are 
shown in Table 11. The direct effects component (CC1) has almost 60% of the total standardized 
share with the first three indirect effects components (CC2, CC3, and CC4 each having around a 
10% share. All of the coefficients are statistically significant at the 95% level or better with the 
exception of the final component (CC8) which has a p-value (0.107) just outside the 90% 
confidence range. 

CC1 CC2 CC3
MISSOURI 0.106 0.216 -0.017
IOWA 0.089 0.229 0.063
ILLINOIS 0.103 0.136 0.022
MINNESOTA 0.079 0.187 0.114
OTHER STATES 0.090 -0.111 0.353
OHIO 0.083 0.119 0.028
TENNESSEE 0.096 -0.183 0.324
MISSISSIPPI 0.092 -0.191 0.221
NEBRASKA 0.085 0.084 -0.120
LOUISIANA 0.054 -0.057 0.209
INDIANA 0.087 -0.030 -0.087
SOUTH DAKOTA 0.049 0.095 -0.099
KANSAS 0.061 0.033 -0.124
KENTUCKY 0.101 -0.289 0.024
NORTH CAROLINA 0.077 -0.138 -0.044
ARKANSAS 0.078 -0.183 -0.052
WISCONSIN 0.048 -0.037 -0.072
NORTH DAKOTA 0.004 0.079 -0.006
MICHIGAN 0.057 -0.143 -0.113

State
Correlated Component
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Table 11. Correlated Component Regression and Standardized Coefficients, Soybeans, 1996 to 2017 Period 

 

The component values over time are shown in Figure 6 and Figure 7. For the direct effects 
component (CC1), the component has statistically significant and positive Spearman rank-order 
correlations with yield versus trend, annual average ONI, and 1st half ONI. It has negative 
correlations with extreme maximum temperature, days with minimum temperature under 32 
degrees, days with maximum temperature over 90 degrees, and the extreme minimum 
temperature. 

 
Figure 6. First Four Correlated Component Values for Soybeans, 1996 to 2017 Period 

Correlated 
Component Value

Standard 
Error T-Statistic Pr > |t| Signif*

Standardized 
Value

Share of Standardized 
Total (%)

CC1 0.131 0.001 119.999 < 0.0001 *** 0.912 59.7%

CC2 1.115 0.056 19.779 < 0.0001 *** 0.152 9.9%

CC3 0.726 0.060 12.026 < 0.0001 *** 0.167 10.9%

CC4 0.904 0.084 10.807 < 0.0001 *** 0.157 10.3%

CC5 0.403 0.061 6.548 < 0.0001 *** 0.053 3.5%

CC6 0.978 0.258 3.793 0.002 *** 0.038 2.5%

CC7 1.041 0.378 2.751 0.017 ** 0.033 2.1%

CC8 0.396 0.229 1.730 0.107 0.016 1.1%

*Three-stars = significantly different from zero at 99% confidence level, two-stars = 95%, one-star = 90%.
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The first indirect effects coefficient (CC2) does not have any correlation coefficients that are 
statistically significant (p-values less than 0.1); however, the most significant correlation is 
positive with the yield versus trend. This is followed by negative correlations with days with 
maximum temperature over 70 degrees, and the extreme minimum temperature. This component 
appears to be a reinforcement of the direct effects although note that it provides a very strong 
suppressive effect on the drought year of 2012 when compared to the direct effects component. 

The second indirect effects component (CC3) has significant negative correlations on average 
minimum temperature, average temperature, excess abandonment, and average maximum 
temperature. It has positive correlations on 2nd half ONI, heating degree days, and change in 
annual ONI. This component appears to have a suppressive effect related to weather variability 
particularly in terms of temperatures. 

The third indirect effects component (CC4) has significant positive correlation with average 
minimum temperature, average maximum temperature, and average temperature. It has 
significant negative correlation with the extreme maximum temperature and total snowfall in 
inches. Again, this component reflects weather variability and appears to offset many of the 
years for CC3. So, it is likely the CC3 and CC4 reflect a combined effect related to weather 
extremes. 

 
Figure 7. Last Four Correlated Component Values for Soybeans, 1996 to 2017 Period 

The fourth indirect effects component (CC5) has significant positive correlations with the planted 
acreage differential, 2nd half ONI, the extreme maximum temperature, and average annual ONI. 
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It also is negatively correlated with the extreme maximum snowfall. This component likely has 
effects tied to planting progress and early season growing conditions. 

The fifth indirect effects component (CC6) has only one significant correlation that is positively 
related to the extreme maximum snowfall. It also has negative correlations with extreme 
maximum daily precipitation and the planted acreage differential. As with CC3 and CC4, it 
appears to have an opposite relationship with CC5 and is likely that CC5 and CC6 represent a 
combined effect. 

The sixth indirect effects component (CC7) has a significant positive correlation with the extreme 
maximum precipitation and total precipitation variables. Therefore, it is likely tied to the level of 
precipitation. The final indirect effects component (CC8) has significant negative correlation with 
days with precipitation over 1.0 inches and total precipitation. It has a positive correlation with 
2nd half ONI. As with the previous two pairs, it appears that CC7 and CC8 work together to 
reflect overall precipitation during the growing season. 

Table 12. Individual States’ Coefficient Values and Shares, Soybeans, 1996 to 2017 Period 

 

 

Table 12 shows the individual states’ non-standardized and standardized coefficients along with 
indicators for the level of statistical significance and standardized share. All of the states’ 
regression coefficients are significant at the 99% level with the exception of the Other States 
(90% significant), and Louisiana and Michigan (not significant). Wisconsin is notable in having 

Rank* State Coefficient
Standard 

Error T-Statistic Pr > |t| Signif***
Standardized 
Coefficient Share(%)*

1 IOWA 1.361 0.075 18.110 < 0.0001 *** 0.259 15.9%
2 MINNESOTA 1.572 0.099 15.809 < 0.0001 *** 0.204 12.5%
3 ILLINOIS 1.090 0.039 28.071 < 0.0001 *** 0.200 12.3%
4 INDIANA 1.092 0.080 13.688 < 0.0001 *** 0.102 6.3%
5 KANSAS 1.038 0.061 17.014 < 0.0001 *** 0.094 5.8%
6 OHIO 1.264 0.072 17.480 < 0.0001 *** 0.092 5.7%
7 TENNESSEE 1.903 0.205 9.290 < 0.0001 *** 0.079 4.9%
8 MISSOURI 0.736 0.077 9.512 < 0.0001 *** 0.078 4.8%
9 NEBRASKA 0.967 0.066 14.691 < 0.0001 *** 0.077 4.7%
10 SOUTH DAKOTA 0.811 0.032 25.691 < 0.0001 *** 0.074 4.6%
11 ARKANSAS 1.490 0.223 6.691 < 0.0001 *** 0.072 4.4%
12 NORTH DAKOTA 1.009 0.036 27.797 < 0.0001 *** 0.072 4.4%
13 MISSISSIPPI 1.685 0.162 10.401 < 0.0001 *** 0.069 4.3%
14 WISCONSIN -1.560 0.214 -7.279 < 0.0001 *** -0.059 3.6%
15 KENTUCKY 0.916 0.126 7.291 < 0.0001 *** 0.039 2.4%
16 NORTH CAROLINA 0.915 0.151 6.072 < 0.0001 *** 0.026 1.6%
17 OTHER STATES 0.230 0.112 2.055 0.0605 * 0.014 0.8%
18 LOUISIANA -0.259 0.202 -1.282 0.2224 -0.009 0.5%
19 MICHIGAN -0.182 0.150 -1.219 0.2446 -0.006 0.4%

10.460 3.401 3.076 0.0088 ***
838                  

*Rank and share based upon absolute value of standardized coefficient.
**Equals sum of squared percentage shares (range from 0 to 10,000).
***Three-stars = significantly different from zero at 99% confidence level, two-stars = 95%, one-star = 90%.

[Constant]
Herfindahl-Hirschman Index**
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a highly significant but negative regression coefficient. In terms of the share of total standardized 
coefficient values, Iowa stands out in the top spot with 15.9% followed by Minnesota (12.5%) 
and Illinois (12.3%). There is a big gap before reaching the next tier of states (Indiana, Kansas, 
and Ohio) beginning at 6.3 percent. Note that the Herfindahl-Hirschman Index value of 838 
represents an increase from the earlier 1975-1995 period. 

Table 13. Individual States’ Standardized Loadings on Correlated Components, Soybeans, 1996 to 2017 Period 

 

The individual states’ standardized loadings upon the correlated components are shown in Table 
13. Note that Wisconsin’s negative influence can be traced to negative loadings on six out of the 
eight components with a strong negative loading on the weather variability (CC3 and CC4) and 
planting progress (CC6) components. 

U.S. Soybeans: Summary of Changes in State Rankings and Concentration 

Table 14 shows a summary of the change in rankings and standardized shares by state along with 
the change in the Herfindahl-Hirschman Index. The biggest upward jumps in the rankings were 
Kansas (13th to 5th), Indiana (11th to 4th), North Dakota (18th to 12th), and Arkansas (16th to 
11th). The largest downward jumps in the rankings were Other States (5th to 17th) and Louisiana 
(10th to 18th). In terms of standardized shares, Iowa (+6.3%) had the largest increase while the 
Other States (-7.1%) had the largest decrease. Note that the top state from the pre-GMO 
rankings, Missouri, saw a significant decline in both ranking (1st to 8th) and share (-5.0%). 

Unlike corn, the HHI for soybeans increased by 158 points between the two periods which 
indicates an increase in concentration rather than a decline; however, this is a relatively minor 
increase by HHI standards. While this is somewhat surprising given the results for corn, it is 
likely due to the technological gains in the major producing states (Iowa, Illinois, and Minnesota) 
more than outweighing the distributive impacts of shorter maturing varieties and longer growing 
seasons in the northern and western states. Given the changes in rankings, as with corn, there 

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
IOWA 0.120 0.771 -0.047 0.549 -0.048 -1.002 -0.109 -0.148
MINNESOTA 0.089 0.233 -0.128 0.241 0.610 0.997 0.222 -0.433
ILLINOIS 0.131 0.418 -0.044 -0.027 -0.013 0.373 0.260 0.423
INDIANA 0.121 -0.222 0.132 0.183 -0.353 -0.045 -0.359 0.414
KANSAS 0.100 0.147 0.026 -0.073 -0.152 0.050 0.080 -0.533
OHIO 0.093 -0.368 0.090 0.232 0.043 0.047 0.186 0.103
TENNESSEE 0.074 0.140 0.112 -0.221 0.157 0.341 -0.540 0.219
MISSOURI 0.105 -0.306 0.123 0.070 -0.310 -0.029 0.564 -0.253
NEBRASKA 0.097 0.159 -0.090 -0.054 -0.294 0.283 -0.251 0.061
SOUTH DAKOTA 0.105 0.051 -0.114 -0.060 0.060 0.044 -0.151 -0.080
ARKANSAS 0.026 0.197 0.127 -0.207 0.133 -0.225 0.740 0.445
NORTH DAKOTA 0.079 -0.158 0.038 0.084 0.159 -0.094 -0.043 0.054
MISSISSIPPI 0.034 0.222 0.125 -0.104 0.187 -0.360 0.278 -0.337
WISCONSIN 0.088 -0.149 -0.272 -0.314 -0.002 -0.529 -0.067 0.038
KENTUCKY 0.071 -0.094 0.086 -0.136 0.054 0.019 -0.360 0.207
NORTH CAROLINA 0.047 -0.258 0.139 0.017 0.125 0.001 -0.235 -0.160
OTHER STATES 0.038 -0.201 0.091 -0.219 0.107 0.383 0.317 -0.104
LOUISIANA 0.045 -0.083 0.055 -0.161 0.086 -0.612 -0.109 0.063
MICHIGAN 0.077 -0.224 -0.206 -0.115 0.112 -0.127 0.246 0.028

State
Correlated Component
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appears to be a general shift from East to West in geographic importance (with the exception of 
Indiana). 

 

Table 14. Change in State-Level Rankings and Shares, Soybeans 

 

SUMMARY AND CONCLUSIONS 

Over the past 20 years, U.S. agriculture has witnessed profound changes with respect to 
technology, climate, farm policy, and other factors (ethanol production, Chinese demand, etc.) 
that have major repercussions with regards to the geographic distribution of crop production. 
There have been many recent studies that have examined both the direct and indirect impacts of 
these production factors upon crop yields, acreage, and production from both a temporal and 
spatial perspective. However, little to no attention has been paid to the impact of these factors 
upon the relative influence of each individual state’s crop production outcomes as they relate to 
the national outcome. This question has particular importance to those engaged in a wide range 
of crop production and marketing activities ranging from logistics to storage to research and 
development on crop technology and cropping alternatives. The question is also important from a 
risk management perspective since history has shown that major crop production events, both 
negative and positive, tend to be limited in geographical perspective. Therefore, the more 
concentrated the geographic importance of a particular crop’s production, from a national 
perspective, the more significant the impact of any production event (drought, hurricane, etc.) if 
the event area contains the geographic locus of crop production from an importance perspective. 

1975 to 1995 1996 to 2017 Change 1975 to 1995 1996 to 2017 Change
MISSOURI 1 8 -7 9.8% 4.8% -5.0%
IOWA 2 1 +1 9.6% 15.9% +6.3%
ILLINOIS 3 3 0 8.9% 12.3% +3.4%
MINNESOTA 4 2 +2 8.9% 12.5% +3.7%
OTHER STATES 5 17 -12 7.9% 0.8% -7.1%
OHIO 6 6 0 7.4% 5.7% -1.8%
TENNESSEE 7 7 0 7.1% 4.9% -2.2%
MISSISSIPPI 8 13 -5 5.8% 4.3% -1.5%
NEBRASKA 9 9 0 5.6% 4.7% -0.9%
LOUISIANA 10 18 -8 4.9% 0.5% -4.3%
INDIANA 11 4 +7 4.6% 6.3% +1.7%
SOUTH DAKOTA 12 10 +2 3.6% 4.6% +1.0%
KANSAS 13 5 +8 3.3% 5.8% +2.4%
KENTUCKY 14 15 -1 3.2% 2.4% -0.8%
NORTH CAROLINA 15 16 -1 2.9% 1.6% -1.3%
ARKANSAS 16 11 +5 2.3% 4.4% +2.1%
WISCONSIN 17 14 +3 2.1% 3.6% +1.6%
NORTH DAKOTA 18 12 +6 1.3% 4.4% +3.2%
MICHIGAN 19 19 0 0.8% 0.4% -0.5%

Herfindahl-Hirschman Index 680 838 158

State
Rank Share
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The purpose of this study is to address this question of state-level geographic importance for 
U.S. corn and soybeans by employing the following procedure. The regression results for corn 
indicated that Iowa, Illinois, and Minnesota were the primary states influencing corn production 
in the earlier 1975-1995 period with a 47.2% share of the standardized coefficient values. For the 
later 1996-2017 time period, Illinois, Nebraska, and Iowa occupied the three spots with a 37.8 
percent share. Minnesota fell 10 places from 3rd down to 13th while Nebraska increased 14 
places from 16th to 2nd. Other states making significant gains in the rankings included Texas, 
which rose 9 places from 19th to 10th overall. The HHI declined by 286 points (1103 to 818), 
which indicated a moderate increase in the dispersion of geographic influence from the former 
(1975-1995) to the latter (1996-2017) periods. 

The regression results for soybeans indicated that Missouri, Iowa, and Illinois were the primary 
states influencing national soybean production in the 1975-1995 period with a much lower (than 
corn) 28.3 percent share of the standardized coefficient values. The HHI value of 680 for 
soybeans was also considerably lower than corn (1103) indicating that soybeans were 
considerably more diversified from a geographic perspective in the earlier period. For the latter 
1996-2017 period, the top three states were Iowa, Minnesota, and Illinois with a 40.7 percent 
share of the standardized values. The residual (”Other States”) value had the largest decline in 
ranking falling 12 places from 5th to 17th. Louisiana (-8) and Missouri (-7) also saw major 
declines in ranking while Kansas (+8), Indiana (+7), and North Dakota (+6) had the largest 
increases in rankings. The HHI for the 1996-2017 period increased to 838 which was slightly 
larger than corn (818) and indicated a slight increase in the concentration of geographic influence 
among the top states for soybean production. 

Overall, the results showed a shifting geographic dynamic for both corn and soybeans with the 
emphasis shifting from east to west in general direction. This makes intuitive sense as many of 
the observed technological and climatic changes over the past several decades point towards corn 
and soybean varieties that require a shorter growing season, and the increase in the number of 
frost-free days in many of the states in the northern reaches of the U.S. Corn Belt region. 
Additionally, the greater utilization of irrigation in crop production has likely contributed to the 
westward expansion of both corn and soybean production — often at the expense of wheat and 
cotton production. The slight decline in the HHI for corn indicates that production influence is 
becoming slightly more diversified from a geographic perspective. For soybeans, the opposite 
effect has occurred with a slight increase in the HHI pointing towards greater influence from the 
key producing states of Iowa, Minnesota, and Illinois — likely the result of a shift from corn to 
soybean acres as all three states lost influence shares in corn production between the two time 
periods. 
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