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On the Use of Spectral Value Decomposition for the 

Construction of Composite Indices 

Luca Farnia, Fondazione Eni Enrico Mattei, Venice, Italy 

Abstract. High dimensional composite index makes experts’ preferences in set-

ting weights a hard task. In the literature, one of the approaches to derive weights 

from a data set is Principal Component or Factor Analysis that, although concep-

tually different, they are similar in results when FA is based on Spectral Value 

Decomposition and rotation is not performed. This works motivates theoretical 

reasons to derive the weights of the elementary indicators in a composite index 

when multiple components are retained in the analysis. By Monte Carlo simula-

tion it offers, moreover, the best strategy to identify the number of components 

to retain. 

Keywords: Composite Index, Weighting, Correlation Matrix, Principal Com-

ponent, Factor Analysis. 

1 Introduction 

Every composite index involves an initial effort by the developer to specify the phe-

nomenon under analysis throughout the choice of the dimensions and underlying ele-

mentary indicators belonging to them. Apart this initial step, two polar typologies of 

composite index could be defined, based on the degree of involvement of one or more 

decision makers in its construction, namely in the data normalization and criteria 

weighting step: fully unsupervised and fully supervised composite index. 

Most composite indices existing in the literature belong to the first category since that 

data driven normalization techniques (the most common min-max, or z-score), equal 

weighting or geometric mean or no weights (Mazziotta and Pareto, 2016) have been 

applied to construct such measure; fully supervised composite indices are strongly the 

minority; a non-exhaustive example can be found in Pinar et al. (2014) and Campagnolo 

et al. (2018).  

There is no agreement on the best strategy to use for its construction despite the hand-

book of composite indicators developed by OECD in 2008 in collaboration with the 

Joint Research Centre COIN of the European Commission. Indeed, on one side some 

scholars criticize it because of its weak theoretically nature; they consider it an ideo-

logical statement rather than practically functional indicator; on the other side, there is 

a continuous effort by researchers in overcoming some implicit issues due to the tech-

niques used to build them.  

The weighting approach is one of the major disputes; at its root there is the debate 

between uniform and not uniform weights. In many cases there are not scientific rea-

sons to choose equal weights, because communicating in a straightforward and easy 
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way the results of a composite index is the priority. Haq (2003) argued that, if there is 

insufficient reason to discriminate among the indices, equal weights should be used. 

Chowdhury and Squire (2006) referred to equal weighting as “obviously convenient 

but also universally considered to be wrong”.   

Weights, moreover, have a straightforward economic and social interpretation in linear 

aggregation functions. Ravallion (1997) for example, strongly criticized both the first 

edition of Human Development Index1 and the Multidimensional Poverty Index (Akire 

and Foster, 2007) in 2011 because, focusing on the marginal rates of substitution (MRS) 

between the indices’ dimensions, argued that they were questionable. MRS introduces 

a second debate on the use of compensatory approach in the construction of composite 

index. This issue can be solved using specific aggregation function such as the constant 

elasticity of substitution or the most advanced and non-additive technique, i.e. Choquet 

integral and fuzzy measures (Ishii and Sugeno, 1985; Grabisch, 1996, 1997, 2000; Mar-

ichal 2000a, 2000b; Meyer and Roubens, 2005), pushing the construction of composite 

indices towards the border between a fully supervised approach and modelling, namely 

Structural Equation Model (Kline, 1988). 

However, high dimensional index makes experts’ preferences in setting weights a hard 

task and obliges the developer to adopt a fully unsupervised approach. Referring again 

to Haq (2003) this paper argues that discriminating among indicators should be done 

whenever blocks of correlated indicators are detected and the latter are unevenly dis-

tributed among them. The reason is that the dimension with the highest number of in-

dicators within it will have the highest influence on the composite index, not because it 

is explicitly more important than other dimensions, but implicitly for construction. This 

is hence an undesirable consequence and a valid reason to discriminate among varia-

bles. This work proposes the use of Spectral Value Decomposition (SVD) as a tool to 

differentiate weights. SVD is the fundamental mathematical properties of a covari-

ance/correlation matrix and it is at the bases of Principal Component (PC) and Factor 

Analysis (FA). Since neither the components nor the factors are used to construct di-

rectly composite indices (for the reasons explained in section 3), but instead the rescaled 

eigenvectors or loadings, I voluntarily prefer citing the latter to avoid entering the field 

of formative/reflective models (see Simonetto, 2102 for a state of art) that is unneces-

sary and beyond the scope of this work. 

The paper is organized as follows: section 2 describes the main approaches to weigh 

indicators; section 3 describes some existing procedures to derive weights by means of 

PC or FA and explain some theoretical reasons to derive the weights; Section 4 shows 

the results of Monte Carlo simulation for the special cases when blocks of independent 

indicators are generated. Section 6 concludes. 

2 Weighting Techniques 

Three macro typologies of weighting system exist: equal weighting, weighting based 

on experts’ preferences and those based on the statistical properties of the data. There 

1 Human Development Report (1990) 
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is no weighting system above criticism (see Greco et al. 2013 for a review of issues on 

weighting). Each approach has its benefits and drawbacks. Probably there will be no 

end word on which approach is the best because most depends on the scope of the 

composite index and on the number of elementary indicators belonging to it.  

This last point is the most binding one when weights are derived according to experts’ 

preferences: when the number of indicators considered is relevant (see for example the 

list of indicators suggested by United Nations for measuring Sustainable Development 

Goals), approaches based on expert’s preferences become a severe challenge, not only 

because it would be excessively time consuming for decision makers but also because 

the results could be biased by the complexity required. As mentioned in the introduc-

tion, the application of fuzzy measures and Choquet Integral would be the most pow-

erful and brilliant approach to solve the problem of criteria weighting and data aggre-

gation simultaneously, allowing to model both compensatory and non-compensatory 

preferences; indeed, they can exactly replicate the arithmetic mean, weighted average, 

min-max operator and Ordered Weighting Average (OWA) operator (Yager, 1988). 

The Achille’s heel is the exponential complexity as the number of indicators used in-

creases: the most simplified version, the so called 2-additive model (Grabisch, 1997) 

requires the elicitation of 𝑛(𝑛+1)/2 parameters where 𝑛 represents the number of in-
dicators analysed. Other approaches based on experts’ preferences are Budget Allo-

cation Process, Analytic Hierarchy Process (Saaty, 1977) and its generalization Ana-

lytic Network Process (Saaty, 2004) and Conjoint analysis (Green et al. 2001; Wind 

and Green 2013); they allow for compensatory data aggregation only. 

On weights derived by statistical properties of data, I mention Correlation Analysis, 

Data Envelopment Analysis (Charnes et al., 1978); Principal Component (Pearson, 

1901; Hotelling, 1933) and Factor Analysis (Spearman, 1904) are the special focus of 

the next chapters. 

3 Principal Component and Factor Analysis in Composite 

Indices 

In Principal Components (PC) latent and orthogonal dimensions are linear function 

of observed variables; in Factor Analysis (FA) instead, observed variables are linear 

function of latent and orthogonal dimensions. Even though they are conceptually dif-

ferent, their utilization in the construction of composite indices is the same: nor in PC 

and in FA, indeed, the estimates of the components and factor themselves are used 

directly to compute the synthetic measure but, instead, as a device to derive the weights 

of the elementary indicators. This happens to avoid cases in which an indicator, ad-

justed for its polarity, has a direct impact that is discordant in sign with the synthetic 

measure we are computing. The results between PC and FA are identical whenever both 

eigenvectors and eigenvalues of the covariance or correlation matrix of the indicators 

(hence SVD) are used to estimate the linear parameters and factors are not rotated. 

Other techniques could be used in FA to extract factors, two of them still rely on SVD 

such as the Principal Factor method and Iterated Principal Factor method, the last is 

based on Maximum Likelihood method. 
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SVD is the fundamental property of symmetric matrices in general and of covariance 

and correlation matrix in statistics. The covariance matrix of a random vector 𝐱 (𝑝 × 1), 

can be decomposed by SVD as 𝐶𝑜𝑣(𝐱) ≡ 𝚺𝒙 = 𝐀𝚲𝐀′ where 𝐀 is the eigenvector ma-

trix and 𝚲 the eigenvalue matrix. If we partition both the eigenvector matrix and the 

eigenvalue one into two submatrices representing the first 𝑘 components and the last 

(𝑝 − 𝑘), then 𝐶𝑜𝑣(𝐱) = 𝐀1𝚲1𝐀′1 + 𝐀2𝚲2𝐀′2. Both PC and FA (based on unrotated 

principal component) uses SVD to estimate the linear parameters of the first 𝑘 compo-

nents: in PC 𝐳 = 𝐀′1𝐱; in FA 𝐱 = 𝐀1𝚲1
1/2

𝐟 + 𝛆. The coefficients of the FA are therefore 

proportional to those of PC and these makes identical the derived weights for composite 

indices. 

Many approaches exist in the literature to derive the weights and to construct a com-

posite index by means of PC or FA, but other that, there is no consensus on which is 

the best one to use. Generally speaking these could be split into two main approaches: 

in the first one, the developer uses only the first component (the one explaining most 

of the variance in the data) to build an index; in the second one, the developer, conscious 

that the first component represents an unsatisfactory portion of the total variance, uses 

additional components and then merges the components weighting them according to 

the proportion of variance explained by each. To the first approach belong the studies 

of Ram (1982), Ayanso et al. (2011) and Nguefack et al. (2011) who rescaled the coef-

ficients to sum one, because they were all concordant in sign. Other authors (Avanzini, 

2011; Man et al., 2015) retained the first component and squared the coefficient to de-

rive the weights; in this case the weights represent the proportion of variance explained 

for the first component. To the second approach, with different techniques, belong the 

studies of Berlage (1988), Dialga et. Al (2016) and Nicoletti et al. (2000); by means of 

FA, some of them used the squared loadings in the selected components, others kept 

only those with highest value among factors and them rescaled them. In all cases factors 

are weighted according to their proportion on explained variance. 

In the following I will motivate why retaining only the first component could be 

wrong and why weighting components/factors according to their explained variance is, 

instead, always wrong; I will explain some theoretical remarks to give a rationality for 

a correct approach. On one side retaining only the first component could be unsatisfac-

tory because other components would be discharged even if important. This is espe-

cially true when the covariance matrix and not the correlation one is used in SVD, be-

cause the first component will be formed essentially by the variables with highest var-

iance. Moreover, suppose of having 𝑝 statistically independent random variables with 

unit variance; each component will explain 1/𝑝 of the total variance. If we retain the 

first component, we would discharge (𝑝 − 1) equally important variables. Second; 

weighting components proportionally to their explained variance is conceptually 

wrong: this is very clear in FA since the columns of 𝐀1𝚲1
1/2

 are proportional to their 

eigenvalues. In doing that, we overweigh indicators that are correlated penalizing those 

that are independent, leading consequently to unbalanced composite index. The follow-

ing example, although extreme, will better explain the above issue: suppose we are 

going to construct a composite index with three indicators, two of which are perfectly 

positive correlated, while the third is statistically independent from the others. One of 

the two correlated variable is redundant and could be dropped in the composite index. 
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If we impose equal weights among variables, the composite index is unbalanced be-

cause one dimension, formed by the two correlated variables, is weighted twice with 

respect the second one, formed by the independent variable. The reader can see that 

weighting each component according to the proportion of explained variance leads to 

the same undesirable result. In the construction of composite indices, it is not recom-

mended the technique that fits the data best but, instead, it is to prefer the one that best 

fits the dimensions the data are explaining, in which indicators that are statistically in-

dependent are weighted proportionally more than those that are correlated. To this aim, 

when using PC/FA technique, each component/factor should have the same weight. 

If we form, from the matrix 𝐀1, the matrix 𝐁 where 𝑏𝑖𝑗 = 𝑎𝑖𝑗
2  represents the portion 

of variance explained by variable 𝑖-th to the 𝑗-th component, then each column sums to 

1; the optimal weight vector is: 

𝐰∗ =
1

𝑘
𝟏′𝐁 (1) 

where 𝑘 represents the number of components retained. Hence the weight assigned 

to the variable 𝑖-th represents its average contribution on the total variance explained 

by the components. Using equation 1), in the above example the two correlated varia-

bles have weights 1/4 and the third 1/2.  

Regarding the number of components to retain, some guidelines have been proposed 

(see Rencher, 2002); the leading one is to retain enough components to account for a 

specified percentage of the total variance, say 80% or those components whose eigen-

values are greater than the average. The above remarks suggest for merging the two: let 

𝜆𝑖 the 𝑖-th eigenvalue and 

𝐶 = {𝑑|𝑎𝑟𝑔𝑚𝑖𝑛𝑑𝑓(𝑑) = |∑ 𝜆𝑖 − 0.8𝑝𝑑
𝑖=1 |}, 𝑑 = {1, … , 𝑝} (2) 

𝐷 = {𝑣|𝜆𝑣 ≥ 1}, 𝑣 = {1, … , 𝑝} (3) 

the optimal number of components to retain 𝑑∗ is given by: 

𝑘∗ = 𝑚𝑎𝑥(𝑑, 𝑣) (4) 

Monte Carlo simulation (see Section 4) shows however that the best strategy, at least 

to identify potential blocks of independent variables in the composite index, is to retain 

components whose eigenvalue is greater than average. 

4 A Special Case – Blocks of Independent Variables 

Consider for simplicity 5 indicators with zero mean; the first 3 belong to a first latent 

dimension; the other 2 to a second dimension independent from the first one. We can 

model the above setting in the following: 
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[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑦1

𝑦2]
 
 
 
 

=

[
 
 
 
 
𝑎1 0
𝑎2 0
𝑎3 0
0 𝑎4

0 𝑎5]
 
 
 
 

[
𝑓1
𝑓2

] +

[
 
 
 
 
𝜀1

𝜀2

𝜀3

𝜀4

𝜀5]
 
 
 
 

 (5) 

or, compactly as: 

𝐱 = 𝚿′𝐟 + 𝛆 (6) 

with 𝐶𝑜𝑣(𝛆) = 𝚺𝛆 = 𝑑𝑖𝑎𝑔(𝜎𝜀1
2 , 𝜎𝜀2

2 , 𝜎𝜀3
2 , 𝜎𝜀4

2 , 𝜎𝜀5
2 ) and 𝐶𝑜𝑣(𝐟) = 𝑑𝑖𝑎𝑔(𝜎𝑓1

2 , 𝜎𝑓2
2) for 

construction. Hence  

𝐶𝑜𝑣(𝐱) = 𝚺𝐱 = 𝚿′𝚺𝐟𝚿 + 𝚺𝛆 (7) 

𝐶𝑜𝑟(𝐱) = 𝐑𝐱 = 𝐃𝚺𝐱𝐃 (8) 

with 𝑑𝑖𝑎𝑔(𝐷) = 𝑑𝑖𝑎𝑔(𝚺𝐱)
−1/2. It follows for example that: 

𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑗) = 𝑎𝑖𝑎𝑗𝜎𝑓1
2  (9) 

𝐶𝑜𝑟(𝑥𝑖 , 𝑥𝑗) =
𝑎𝑖𝑎𝑗𝜎𝑓1

2

√𝑎𝑖
2𝜎𝑓1

2 +𝜎𝜀𝑖
2

√𝑎𝑗
2𝜎𝑓1

2 +𝜎𝜀𝑗
2

 (10) 

𝐶𝑜𝑣(𝑥𝑖 , 𝑦𝑗) = 0  for 𝑖 = 1,2,3 and 𝑗 = 1,2 (11) 

For each observation 𝑖 = 1,… 𝑛 we have 𝐱𝑖′ = 𝐟𝑖′𝚿 + 𝛆𝑖′ and: 

𝐗 = 𝐅 𝚿 + 𝐄 (12) 

Equation 12) allows us to simulate any set of cantered random variables with the prop-

erties given in equation 6), 7) or 8). 

The following results have been found simulating 11 random variables; the first 6 be-

long to the fist dimension, the next 3 to a second one and the last two to a third dimen-

sion. In every simulation we allow some parameters to vary: 𝑎𝑖~𝑈[−1,1] with 𝑖 =

1,… ,11; 𝑓𝑗~𝑁 (0, 𝜎𝑓𝑗

2 ) where 𝜎𝑓𝑗
~𝑈[1,6] with 𝑗 = 1,… ,3. In all cases let 𝜀𝑖~𝑁(0,1). 

Scope of the exercise is to check whether Spectral Value Decomposition can correctly 

identify the true structure of sample data and weigh the variables in such a way that the 

overall weight of each block is the same, hence one third. 

Two techniques are compared to retain the correct number of components: Method 

A - many components as the number of eigenvalues greater than average; Method B - 

many components to ensure a total explained variance of 80%. The extraction is done 

using both the covariance (Table 1 to Table 3) and correlation matrix (Table 4 to  

Table 6). 
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Table 1 - Overall weight for each block on a given percentile. Extraction based on covari-

ance matrix. Sample size n=50 

 Method A Method B 

Block 5° 50° 95° 5° 50° 95° 

1° 0.290 0.489 0.995 0.048 0.496 0.996 

2° 0.002 0.333 0.500 0.001 0.333 0.500 

3° 0.001 0.326 0.497 0.001 0.251 0.497 

 
Table 2 - Overall weight for each block on a given percentile. Extraction based on covari-

ance matrix. Sample size n=100 

 Method A Method B 

Block 5° 50° 95° 5° 50° 95° 

1° 0.324 0.495 0.998 0.031 0.497 0.998 

2° 0.001 0.333 0.500 0.001 0.333 0.500 

3° 0.000 0.329 0.498 0.000 0.255 0.498 

 
Table 3 - Overall weight for each block on a given percentile. Extraction based on covari-

ance matrix. Sample size n=300 

 Method A Method B 

Block 5° 50° 95° 5° 50° 95° 

1° 0.329 0.498 0.999 0.010 0.499 0.999 

2° 0.000 0.333 0.500 0.000 0.333 0.500 

3° 0.000 0.332 0.499 0.000 0.260 0.499 

 
Table 4 - Overall weight for each block on a given percentile. Extraction based on correla-

tion matrix. Sample size n=50 

 Method A Method B 

Block 5° 50° 95° 5° 50° 95° 

1° 0.332 0.381 0.546 0.293 0.427 0.595 

2° 0.238 0.326 0.413 0.201 0.322 0.460 

3° 0.188 0.279 0.332 0.158 0.248 0.341 

 
Table 5 - Overall weight for each block on a given percentile. Extraction based on correla-

tion matrix. Sample size n=100 

 Method A Method B 

Block 5° 50° 95° 5° 50° 95° 

1° 0.332 0.357 0.523 0.263 0.421 0.602 

2° 0.245 0.331 0.418 0.198 0.325 0.480 

3° 0.200 0.305 0.333 0.164 0.250 0.372 
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Table 6 - Overall weight for each block on a given percentile. Extraction based on correla-

tion matrix. Sample size n=300 

 Method A Method B 

Block 5° 50° 95° 5° 50° 95° 

1° 0.333 0.340 0.504 0.254 0.406 0.621 

2° 0.249 0.333 0.399 0.173 0.328 0.494 

3° 0.229 0.326 0.333 0.165 0.250 0.391 

 

As it can be seen from the results, latent dimension extraction based on the covari-

ance matrix leads to biased results even in large sample cases. On the other hand, ex-

traction based on correlation matrix and eigenvalues greater than 1 is the optimal solu-

tion guaranteeing unbiased and consistent estimates at a higher rate of convergence 

respect the method based on explained variance.  

There is one more particularity on Method B that makes method A preferable. The 

following second simulation explains the issue. For each simulation, let 𝑎𝑖 = 1 ∀𝑖 =
1,… ,11, 𝜎𝑓𝑗

2 = 1 ∀𝑗 = 1,2,3 and we choose 𝜎𝜀𝑖
2  in such a way that the correlation among 

variables is fixed and equal for all combinations within blocks. Figure 1 shows, for a 

sample size 𝑛 = 50, the overall block weight for any correlation values between 0.05 

and 1. While with method A the trajectories converge to the equal weights case, with 

method B they converge only below a certain threshold and then explode to undesirable 

values. The reason is the following: for low level of correlations, more components are 

necessary to explain 80% of total variance; above a certain threshold instead, only few 

components are enough to explain the same amount of variance and the dimension 

formed by the fewest number of indicators is penalized.  

A second characteristic is that the weights of the blocks converge at their desired 

values at a higher rate with method A respect method B as correlation increases. These 

results, at least for this special case, seems to slightly modify the conclusion made in 

equation 4 and opting for the eigenvalues criterion to retain components. 
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Figure 1 - Overall block weight given different correlation values; 50° percentile and sample 

size 𝑛 = 50. Method A (top); Method B (bottom) 

 

5 Conclusions 

This works explains some theoretical reason to derive weights when multiple compo-

nents or factors are retained in the analysis. Future works however are necessary to test 
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the validity of such approach when the variables among blocks are at least weakly cor-

related. However, most will depend on the strength of such blocks as the preliminary 

results of this work have shown: indeed, in the special case of independent variables 

among blocks, the higher the difference of correlation among blocks, the easier the 

identification of such structure and more reliable the derived weights as a consequence. 
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