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Abstract

The Federal Crop Insurance Program -- operated by the United States Department of Agricul-
ture’s Risk Management Agency (RMA) -- offers various types of insurance, covers a multitude of
crops, carries significant liability, and is the cornerstone of domestic farm policy. Currently, RMA
uses county yield data from the 1950s onwards to set guarantees and estimate premium rates for
their area yield and revenue insurance products but trims yield data prior to 1991 in rating their
newer shallow loss products. The past 70 years reflect very significant innovations in both seed and
farm management technologies; innovations that have likely moved mass all around the support of
the yield distribution. Although the RMA rating methodology corrects for time-varying movements
in the first two moments, it is unclear whether using the entire yield series remains appropriate.
We use distributional tests and an out-of-sample retain-cede rating game to answer if RMA should
or should not historically trim yields in estimating their premium rates. Despite small sample sizes
and the need to estimate tail probabilities, the historical data appears to be sufficiently different
such that trimming is justified. While we caution against extrapolation of our results, they do give
cause for consideration in other empirical analyses using historical yield data.
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Introduction

The Risk Management Agency (RMA) uses historical county-level yield data to set guarantees,

estimate premium rates, and calculate indemnities for their area programs. Moreover, these county

level rates are used in estimating farm level rates. Many in the literature have used this data to

consider a variety of issues related to rating crop insurance contracts (Miranda and Glauber, 1997;

Goodwin and Ker, 1998; Goodwin and Hungerford, 2015; Yvette Zhang, 2017). In many cases,

and certainly with respect to RMA rating methodology, yield data are detrended and adjusted

for possible heteroscedasticity and then assumed to be independent and identically distributed.

Zhu, Goodwin, and Ghosh (2011) denote this the “two-stage method”. For most major crop-

region combinations, annual NASS county yield data exist from the 1950s onwards and reflect very

significant innovations in both seed and farm management technologies, which have likely moved

mass all around the support of the yield distribution. This begs the question to what extent, if

any, do yield losses in the 1950s and 1960s inform much about yield losses in 2019? That is, despite

correcting for movements in the first two moments of the yield data generating process (dgp), does

the identically distributed assumption hold? The issue of trimming is exacerbated by the need to

estimate tail probabilities. Interestingly, and in direct contrast to their area programs, RMA uses

yield data starting in 1991 to rate the newer area-based shallow loss products. This highlights

an underlying, but empirically undocumented notion, that the yield dgp has significantly changed

over the past half-century, possibly rendering the more historical data useless or even harmful in

estimating premium rates.

Changes in seed and farm management technologies and their effects on yields have been well

documented in the agronomy literature. Notable examples include the introduction of biotech seeds

and precision farming. Many have shown that corn, soybean and wheat yields in the United States

have more than doubled from 1950 to mid-1990s (Reilly and Fuglie, 1998; Fernandez-Cornejo, 2004;

Duvick, 2005; Egli, 2008; Fernandez-Cornejo et al., 2014; Assefa et al., 2017; Egli, 2017). They tend

to suggest that roughly half of the yield gain is attributed to genetic seed improvements while the

other half is attributed to improved agronomic practices. Although the agronomy literature has

focused on changes in average yields, some have also documented increasing volatility in yields

(Naylor, Falcon, and Zavaleta, 1997; Kucharik and Ramankutty, 2005; Challinor et al., 2014; Leng,

2017). Conversely, there has been a relatively large body of work on the changes in yield volatility

by agricultural economists, primarily driven by issues related to crop insurance (Harri et al., 2011;

Claassen and Just, 2011; Yvette Zhang, 2017). With respect to changes in the higher moments (> 2)

of the yield distribution, there has been markedly less work. Zhu, Goodwin, and Ghosh (2011), using
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NASS county level yield data for corn, soybean and cotton, find changes in higher moments through

time. Tack, Harri, and Coble (2012), using county level cotton data in Arkansas, Mississippi, and

Texas, found that the third moment, or skewness, was changing with time for Mississippi and Texas.

Note that changes in higher moments indicate the common approach of correcting for changes in

the first two moments is not sufficient for the identically distributed assumption in most of the

literature as well as the RMA rating methodology for area-based programs. However, given the

need to estimate tail probabilities, the above results (which are very region-crop specific) do not

necessarily suggest historically trimming yield data will lead to more accurate premium rates; the

loss function for each is over very different subsets of the density space.

The objective of this manuscript is to answer the question whether RMA should or should

not trim their historical yield data in estimating crop insurance rates. Using county-level NASS

yield data for corn, soybean, and winter wheat we first, for completeness, consider nonparametric

distributional tests to assess if the adjusted yield data may result from different dgps. Second,

we use an out-of-sample retain-cede rating game -- commonly employed in the literature -- to

compare premium rates from the full versus historically trimmed yield data. Specifically, we focus

our trimming at 1991 to reflect the distinction between RMA’s area based insurance programs and

their shallow loss programs.

The remainder of this manuscript proceeds as follows. The next section details the NASS yield

data, the RMA detrending methodology, and the RMA heteroscedasticity treatment. The third

section presents the statistical results from testing the identically distributed assumption. The

fourth presents the economic results using an out-of-sample retain-cede rating game. The final

section summarizes our findings.

NASS Yield Data, Detrending Methodology, and Heteroscedasticity Treatment

NASS provides 49 categories of field crops including beans, cotton, corn, grain, hay, peanuts,

mint, rice, soybeans, and wheat. The data generally date back to the 1950s. We use county level

yield data for corn, soybean, and winter wheat for the period 1951–2017 (67 years). Our corn

and soybean analysis focuses on states that account for the majority of national corn and soybean

production. We removed counties with one or more missing yield observations as well as any state

that does not have 25 or more counties. We also removed all states that reported more than ten

percent of their acreage as irrigated in the 2012 Census of Agriculture. After doing so, we are left

with seven states for corn: Illinois (IL), Indiana (IN), Iowa (IA), Minnesota (MN), Ohio (OH), South

Dakota (SD), and Wisconsin (WI). These states accounted for 57.8 percent of harvested acreage and
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61.8 percent of national production in 2017. All corn states except South Dakota met the inclusion

criteria for soybean. These six states accounted for 50.5 and 53.9 percent of national harvested

acreage and production, respectively, in 2017. For winter wheat, we considered the top 15 states

that had less than ten percent of their acreage irrigated in 2012 Census of Agriculture, only two of

which met the inclusion criteria: Kansas (KS) and Michigan (MI). These two states accounted for

29.2 percent and 28.9 percent of national harvested acreage and production, respectively, in 2017.

In total, our data comprises 414 corn, 373 soybean, and 64 winter wheat counties.

Premium rates are estimated using a two-step process in which a trend is first estimated and

then residuals are adjusted for possible heteroscedasticity. A two-step process is by far the most

common in the literature as noted by Zhu, Goodwin, and Ghosh (2011). RMA estimates the

temporal process of yields, denoted yt = (y1, ..., yT ), for each crop-county combination using a

robust two-knot linear spline:

(1) yt = θ1 + θ2t+ δ1d1(t− k1) + δ2d2(t− k2) + εt

with d1 = 1 if t ≥ k1 and d2 = 1 if t ≥ k2 for knots k1, k2 ∈ (1 + k̄, . . . , T − k̄) and k2− k1 ≥ k. The

k, k̄ ≥ 10 are a prior imposed bounds which prevent the knots from locating too close together (k)

or too close to either endpoint (k̄). Knot locations ki are selected using a grid search (least-squares

criterion). The model is run with zero, one, and two knots and then the number of knots used

is selected using AIC.2 Given the number of knots, two robustness procedures are performed; the

spline is iterated to convergence with Huber weights and then twice through a bisquare function.

Specifically, let ε̃t be the estimated residuals from the robust spline with the chosen number of

knots and η̃t = ε̃t/
√
T−1

∑
ε̃2t . The Huber function assigns weight one to observations if |η̃t| < c

and weight c/|η̃t| otherwise with a default c = 1.345. Similarly, the bisquare function weights

observations (1− (η̃t/c)
2)2 if |η̃t| < c and zero otherwise with default c = 4.685.3

Denote the residuals from the above detrending process as ε̂t and the fitted values as ĝ(t) = ŷt.

The heteroscedasticity adjustment via the Harri et al. (2011) estimates:

(2) ln(ε̂2t ) = α+ γ ln (ŷt) + vt.

2We do not impose the spatial and temporal priors on knots used by the RMA.
3Given any results are dependent on the choice of detrending method, we considered three alternative methodologies
to ensure robustness of our results: (i) linear model estimated by L2; (ii) linear model estimated by L1; and (iii)
nonparametric local lines using out-of-sample cross validation for the smoothing parameter. Our results are robust
to any of these alternative detrending methodologies.
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Note, constant and proportional variance in the underlying yield data correspond to γ = 0 and

γ = 2, respectively. Yields are adjusted based on a one-step ahead forecast (ŷT+1) and the het-

eroscedasticity coefficient (γ̂):4

(3) ŷ∗t = ŷT+1 + ε̂t

(
ŷT+1

ŷt

) γ̂
2

The adjusted yields are then used to generate the empirical premium rate for period T + 1

(4) π∗T+1 =
1

T

T∑
t=1

max
{

0, λŷ∗T+1 − ŷ∗t
}

where λ is the coverage level such that λŷ∗T+1 is the yield guarantee.

Testing the Identically Distributed Assumption

When testing for structural change, generally a Chow-type test is used; the sample is split into

different sub-populations and residuals from regression equations within the sub-populations are

combined with the residuals from a regression equation spanning the two samples to form a Wald

type test statistic. The Bai-Perron test is a sup-type test of the Chow test in that it does not

assume the breakpoint is known or the number of breakpoints. The Wilcoxon rank sum test is like

a Chow test and primarily has power against changes in location. Overall, these tests have power

only against changes in the conditional mean function (first moment) and thus, unsurprisingly,

resulted in very little rejections on the adjusted yields across the crop-county combinations.5 We

are interested in structural changes in the higher moments of the dgp, beyond the conditional mean

or variance. A common choice is Kolmogorov-Smirnov (KS) test which considers the maximum

difference between two empirical distribution functions and thus has power against differences in all

moments. Note, the test is nonparametric in that the test statistic is a function of the two empirical

distribution functions. Also, the KS test has been shown to have relatively low power in comparison

to Chow or Bai-Perron tests as these tests have an infinitely smaller space of alternatives (Wilcox,

1997). Moreover, the difference between two empirical distribution functions is most pronounced for

differences in the location, followed by differences in scale, and then higher moments in sequential

order. Recall we will only be testing differences in the higher moments and thus the power of the

KS test is further weakened in that the two samples we are comparing have near identical first two

moments. The KS test statistic is denoted Dn,m and defined as:

4RMA uses a two-step ahead forecast because of data availability/timing issues. We choose a one-step ahead forecast
for our analysis simply to gain an additional degree of freedom given we are truncating an already short time series.
5Given we have corrected for the time-varying changes in the first moment in our detrending process, any rejections
reflect the inappropriateness of the underlying functional form in the detrending process.
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(5) Dn,m = sup
x
| F1,n(x)− F2,m(x) |,

where F1,n and F2,m are the empirical distribution functions of the first and the second samples

respectively. Specifically, the entire yield series is detrended and corrected for heteroscedasticity

and then split pre and post 1991 corresponding to the different RMA rating procedures; recall the

area-based programs use all the yield data whereas the newer supplemental loss programs only use

yields from 1991 onwards. The null of the KS test is rejected at level α when

(6) Dn,m > c(α)

√
n+m

nm
,

where c(α) is calculated from the Kolmogorov distribution.

We also consider a second test forwarded by Li (1996) and further developed by Li, Maasoumi,

and Racine (2009) (denoted LMR test). This LMR test is similar to a Cramer-von Mises test in

that rather than based on the supremum difference, it is based on the integrated squared difference.

Specifically, the LMR test smooths the data using kernel methods and calculates the integrated

squared difference. Moreover, Li, Maasoumi, and Racine (2009) find power is increased if one

bootstraps the null, using randomization methods, rather than use an asymptotic expansion for

the distribution of the test statistic. Specifically, the entire yield series is detrended, corrected for

heteroscedasticity, and then divided into two subsets pre and post 1991. The test statistic is defined

as:

(7) LMR =

∫ ∞
−∞

(
f̂1(x)− f̂2(x)

)2
dx,

where f̂1 and f̂2 are kernel estimates based on the two subsets of data. Li, Maasoumi, and Racine

(2009) suggest using least squares cross validation for bandwidth selection. Moreover, the kernel

estimates under the bootstrap samples to recover the distribution of LMR under the null use the

same two bandwidths in each bootstrap. In our application, 500 bootstrap samples were used to

construct the null.

The test results are presented in table 1. As expected, the LMR test has significantly more

power than the KS test given the LMR test statistic is calculated over the entire support and a

randomization method is used for creating the null. Second, the results reject that the data pre

and post 1991 come from the same distribution in many of the crop-state combinations despite

the small number of observations. In corn, 30% of the counties reject at the 5% significance level
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while 41% reject at the 10% significance level. The results are similar across the seven states.

Soybean exhibits somewhat less significance as compared to corn; 14% of the counties reject at the

5% significance level while 24% reject at the 10% significance level. Winter wheat exhibits very

little statistical significance, just 6% of the counties reject at the 5% significance level while 14%

reject at the 10% significance level, barely above the size of the test. Interestingly, these results

correspond to the level of research expenditures in the three crops over the past half-century. Corn

has seen the most innovation while wheat has seen very little. The LMR test results (p-value) for

corn, soybean, and winter wheat are graphically illustrated by county-crop combination in Figure

1. There does appear to be geographical clustering. For example, with respect corn the majority

of the central counties -- the high production counties -- reject the null of identically distributed.

With respect to soybean, the clustering rejections are in the more eastern counties. With respect

to winter wheat, the clustering in Michigan is to the west while in Kansas it is to the southwest.

Table 1. Identically Distributed Test Results

Number of Rejections

Crop-State Number of KS Test LMR Test

Counties α = 0.05 α = 0.10 α = 0.05 α = 0.10

Corn
Illinois 73 1 12 38 46
Indiana 60 2 4 13 20
Iowa 91 4 18 22 34
Minnesota 57 11 21 25 27
Ohio 58 1 5 5 12
Wisconsin 48 4 10 11 20
South Dakota 27 0 2 9 11

Soybean
Illinois 82 1 3 14 18
Indiana 59 1 1 6 12
Iowa 93 0 0 5 15
Minnesota 55 3 6 11 17
Ohio 51 0 2 9 14
Wisconsin 33 0 0 9 14

Winter Wheat
Kansas 35 0 0 1 3
Michigan 29 0 1 3 6

Trimming and Estimating Crop Insurance Rates

Results from the previous section call into question the identically distributed assumption from a

statistical perspective, but provide little information regarding economic importance. As previously
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Figure 1. Maps of p-values: LMR Test
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Figure 1. Maps of p-values: LMR Test, Continued

mentioned, the loss functions for estimating a distribution versus a premium rate are over different

subsets of the density space. We consider the effect of trimming in rating crop insurance contracts

by using an out-of-sample retain-cede rating game consistent with the literature. Specifically, the

game allows two players using different methodologies to estimate premium rates and adversely

select against one another. The game was first proposed by Ker and McGowan (2000) and has

since been employed by Racine and Ker (2006), Harri et al. (2011), Annan et al. (2013), Tack and

Ubilava (2015), Yvette Zhang (2017), and Shen, Odening, and Okhrin (2018) to justify alternative

rating methodologies. The game was modified with an additional test of rating efficiency in Ker,

Tolhurst, and Liu (2016). Park, Brorsen, and Harri (2018) utilized both tests in proposing an

alternative rating methodology which exploits spatial closeness. The game was inspired by the

retain-cede decision of private insurers in regards to the crop insurance contracts they sell. Some

salient features of the U.S. crop insurance program are relevant to the game. First, RMA rather

than private insurers set the rates for all policies. Second, the private insurer must sell all policies in

a state that it operates in (even if it deems the policy to be under-priced). Third, the private insurer

shares, asymmetrically, in the underwriting gains and losses of all policies it sells. Fourth, there
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is a mechanism in which private insurers can significantly reduce their exposure on policies they

deem unwanted.6 Given these salient features, private insurers determine which policies to retain

and which to cede. That is, private insurers retain policies they believe over-priced and expect an

underwriting gain and cede policies they believe under-priced and expect an underwriting loss. As

a result, private insurers necessarily develop their own rates in attempts to strategically adverse

select against RMA and recover excess rents. Mimicking this allows one to hypothetically compare

two sets of premium rates: one based on the full yield series and one based on the trimmed yield

series. This is in contrast to the past literature that employs the retain-cede game to evaluate

alternative rating methodologies using the same data.

Specifically, we assume RMA uses the full historical yield data from 1951-1997 on a county-crop

basis to estimate the RMA premium rates for 1998. Conversely, the private insurer estimates their

rates using a 25 year trimmed data set; that is yields from 1973-1997.7 Both the RMA and the

private insurer use the RMA rating methodology outlined above and as such the only difference in

the two sets of rates is the result of trimming the historical yield data. Based on the two sets of rates,

the private insurer identifies which contracts to retain and which to cede. The underwriting gains

or losses for the set of retained and ceded contracts are calculated using the actual yields in 1998.

This process is repeated for 20 years and the loss ratios (defined as the ratio of total underwriting

losses to total premiums) for both the retained and ceded sets of contracts are calculated. We

conduct the game for each crop-county combination at the 90% coverage level where the very large

majority of area-based contracts are purchased.

As in the above cited literature, we undertake two hypothesis tests. The first tests whether the

loss ratio from the retained contracts is less than the loss ratio from retaining contracts randomly

(choosing which contracts to retain randomly is equivalent to the private insurer being indifferent

between the two sets of competing rates). Like Li, Maasoumi, and Racine (2009), randomization

methods are used to recover the p-value. Game 1 mimics the current reality of the US crop

insurance program. However, the private insurer has an advantage because they react to the RMA

premium rates. As such, whichever of the two competing rates the private insurer uses has an

inherent competitive advantage in game 1. This advantage is nullified in game 2 by contrasting

the changes in loss ratios under both sets of the competing rates (see Ker, Tolhurst, and Liu, 2016,

for details). The number of contracts considered is the number of counties multiplied by 20 years;

8,280 contracts for corn, 7,460 contracts for soybean, and 1,280 contracts for winter wheat. The

6Specific details are outlined in the USDA-RMA Standard Reinsurance Agreement with approved private insurers.
7The 25 year trimming roughly corresponds to the 1991 cutoff. We also did trimming at 30 years and our results
were qualitatively identical and quantitatively very similar.
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results, which include percent retained by the private insurer, the government or ceded contracts

loss ratio, the insurer or retained loss ratio, p-value of game 1, and p-value of game 2, are presented

in Table 2.

Table 2. Out-Of-Sample Retain-Cede Rating Game

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Crop-State Counties Private (%) Government Private p-value p-value

Corn

Illinois 73 66.1 0.581 0.519 0.0207 0.1316
Indiana 60 72.5 0.676 0.560 0.0013 0.0577
Iowa 91 59.1 0.411 0.270 0.0013 0.0577
Minnesota 57 75.9 0.228 0.195 0.0000 0.0577
Ohio 58 68.1 0.713 0.585 0.0013 0.2517
Wisconsin 48 77.0 0.543 0.378 0.0013 0.7483
South Dakota 27 81.3 0.810 0.545 0.0000 0.0002

Soybean

Illinois 82 51.4 0.874 0.467 0.0059 0.2517
Indiana 59 70.5 1.019 0.538 0.0002 0.0207
Iowa 93 52.4 0.840 0.531 0.0059 0.1316
Minnesota 55 76.2 0.787 0.491 0.0013 0.0059
Ohio 51 76.1 0.734 0.640 0.0059 0.1316
Wisconsin 33 85.5 1.054 0.738 0.0013 0.2517

Winter Wheat

Kansas 35 32.9 1.525 0.814 0.0059 0.0577
Michigan 29 49.0 0.346 0.349 0.2517 0.1316

Under a 25-year trimming decision rule, we find the private insurer’s loss ratio is less than the

RMA loss ratio for all 14 of the 15 state-crop combinations (Michigan wheat is higher only in the

third decimal place). For corn, the private insurer loss ratio ranges from 66% to 89% of the RMA

loss ratio. For soybean, the ratio ranges from 53% to 87%. Given only two states for winter wheat,

the ratio is 53% for Kansas and 101% for Michigan. With respect to the first game, p-value 1 is

significant in all state-crop combinations but Michigan wheat, suggesting that economically and

statistically significant rents can be recovered by private insurers by trimming the yield data. With

respect to the second game, p-value 2 is significant at the 10% level for seven of the 15 state-crop

combinations, suggesting that trimming leads to statistically significantly more accurate premium

rates. In no cases did not trimming lead to statistically significantly more accurate premium rates.

Specifically, with respect to corn, four of the seven states were significant. With respect to soybean,

two of the six states were significant. Finally, with respect to winter wheat, one of the two states
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were significant. In summary, the out-of-sample retain-cede rating game provides strong evidence

for trimming, consistent with the results from the last section.

Conclusions

Historical yield data has been utilized in many empirical applications in literature, most notably

in applications related to crop insurance. In general and with good cause, all available historical

yield data used. Most applications account for time-varying lower moments but assume time-

constant upper moments. In addition, RMA does the same in estimating the premium rates of

their area products. However, there has been significant innovations in farm management and seed

technologies in the past half century such that mass has likely moved all around the yield distri-

bution. Not surprisingly, a few papers have found changes in the upper moments of the yield dgps

thus questioning the standard approach of correcting the first two moments only. Our distributional

test results find strong evidence of the inappropriateness of the identically distributed assumption

for corn and soybean and markedly less so for winter wheat. These results are surprisingly strong

in that the sample sizes are relatively small and thus the power of the tests against economically

relevant alternatives are weakened. Our out-of-sample retain-cede rating game, which represents a

different loss function over only a subset of the density space, is consistent with our distributional

tests. That is, trimming does not increase estimation error in the rating process and is shown in

approximately half of the crop-state combinations considered to decrease estimation error. This

result is quite noteworthy suggesting that despite small sample sizes and the need to estimate tail

probabilities, the historical data appears to be sufficiently different such that trimming is justified.

Finally, our results across crops are fairly consistent with the research expenditures across crops

in that we find the biggest efficiency gains from trimming in corn which has experienced the most

innovation. While we caution against extrapolation, our results should give cause for consideration

when using historical yield data in other applications as well.
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