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Probability
Yields, and

Distributions of Crop Prices,
Gross Revenue

Bernard V. Tew and Donald W. Reid

This study shows that the price-yield correlation is a major influence in determining the

skewness of revenue. Therefore, nornxdit y for revenue may not be rejected even if the price

and/or yield distributions are significantly skewed. Analysis of cotton revenue for Mississippi
shows that this can be the case empirically when the correlation between price and yield is

moderate] y negative and the relative variabilityy of yield and price is not too high. Hence, for

crops produced in their major production regions where negative correlations between prices

and yields are the greatest, revenue distributions may have a greater tendency toward normal.

Day’s pioneering research on the distribution of
crop yields gives a prim-i reasoning and evidence
for nonnormally distributed yields and Gallagher’s
recent investigation of national average corn yields
further supports this contention. Both of these stud-
ies were motivated mainly by the implications for
erroneously predicting crop yields. However, Day
alludes to the importance of farm planning impli-
cations of nonnormal yield distributions. He states,
‘, . . . decisions for maximizing profit and mini-
mizing risk must be based not only on expected
yields and variance but also upon skewness as well”
(p. 735). Day’s study is, at least in part, the impetus
for rejecting the expected value-variance (E-V) cri-
terion for risk analysis because normality of returns
is a sufficient condition for making the E-V cri-
terion consistent with expected utility maximiza-
tion.

Crop yields often are the only stochastic consid-
eration in forming return distributions for risk anal-
yses (e.g. Yassour et al.; Klemme; Collender and
Zilbem-tan; and Harris and Mapp). Perhaps this
perspective occurs because, as Grant points out,
there is a tendency to view yields and prices as
uncorrelated at the individual producer level in a
competitive market. However, when aggregate
output and price are correlated and yields at the
producer level are correlated, it follows from the
additivity of covariance that producer-level yield
and the market price do not have a zero covariance
(Grant, p. 630). Certainly the case for positive
correlation among producers and a negative co-
variance between aggregate output and market price
can be made for major producing regions. There-
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fore, while yield distribution in risk analysis is
important, perhaps the price distribution and the
relationship between price and yield are equally
important.

Little empirical research has been directed to-
ward analyzing the relationship between price and
yield distributions and the resulting revenue dis-
tribution. An exception is the recent work by Buc-
cola, which investigates the determinants of the
shape of the revenue distribution and analyzes two
empirical situations in oregon. Haldane’s equa-
tions for variance, skewness, and kurtosis are used
to investigate the influence on the shape of the
revenue distribution under conditions of normally
distributed price and yield. However, a Monte Carlo
technique is used for the skewed price-normal yield
case due to the unavailability of the expression for
the moments of returns for such conditions. Buc-
cola’s empirical investigation of irrigated alfalfa
and dryland wheat leads to the rejection of nor-
malit y for alfalfa revenue, but not for wheat rev-
enue. An interesting aspect of the wheat result in
that normality is not rejected for the revenue dis-
tribution, but is rejected for the price distribution.
Although the wheat result appears somewhat in-
consistent with the Monte Carlo results, Buccola
attributes the inconsistency to a more negative cor-
relation coefficient between price and yield ( – 0.287)
than for alfalfa, and a lower coefficient of variation
for price than for yield.

The research reported in this paper pursues two
major objectives. First, an expression for the skew-
ness of the product of two random variables is
developed to provide more insight into how the
price and yield component distributions influence
the resulting revenue distribution when a multi-
normal situation and price-yield independence are
not imposed. Second, data for price, yield, and the
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resulting revenue are analyzed for three crops to
test the hypothesis that the sample was drawn from
a normal population. The results of this analysis
show how composite distributions may differ from
the component distributions. This provides addi-
tional information on the prevalence of nonnormal
revenue distributions for crops and situations when
nonnormality of revenue is likely to occur.

Statistical Framework

Complete component expressions of gross revenue
variance and skewness are needed to better under-
stand and evaluate effects of price-yield interac-
tions in forming crop revenue distributions. The
equations presented in this section differ from those
presented by Buccola in that the price and yield
component distributions are not restricted to nor-
mality. Moreover, expressions for expected value
and variance of a product of two random variables
used in agricultural economics research previous
to Buccola’s work for the most part have assumed
normality and/or independence (e. g. Burt and Fin-
ley; Boggess et al,). Recent exceptions include Tew
and Boggess; and Alexander, Musser, and Mason
which foIlow Goodman; and Bohrnstedt and Gold-
berger.

The expression for the variance of gross revenue,
which is not restricted to an assumption of nor-
mality or independence for the price and yield dis-
tributions, can be established from Goodman or
Bohrnstedt and Goldberger as follows:

(1) V(PQ) = [E(P)12V(Q) + [E(Q) 12V(p)
+ E{[P – E(P)]2[Q – E(Q)]’}
+ 2E(P)E{[P – E(P)] [Q – E(Q)]*}
+ 2E(Q)E{[P – E(P)12[Q – E(~)l}
+ 2E(P)E(Q)C(PQ) – [C(PQ)]

where V(”), E(s), and C(o) are variance, expected
value, and covariance operators, respective y.

The general expression for the skewness of gross
revenue can be derived in a manner similar to that
used by Bohrnstedt and Goldberger in deriving the
variance expression. The resulting expression for
the skewness of gross revenue is:

(2) S(PQ) = SEE]’
+ S(Q)~E(P)]32 + E[(Ap)3 (AQ)31

+ 3 ~ ~ [E(P)li [E(Q)IJ
i=() j-o

i*j

“ E [(AP)3-i(AQ)3-J]
+ 6E(P)E(Q)E[(AP) 2(AQ)7
– 3E[(AP)2(AQ)7C(PQ)
– 3[E(Q)]’V(P)C(PQ)
– 3[E(P)J’V(Q)C(PQ)

- 6E(Q)E[(AP)’(A9)IC(PQ)
– 6E(P)E[(AP)(AQ) ]C(PQ)
– 6E(P)E(Q)[C(PQ)J2 + 2[C(PQ)]3

where AP = P – E(P) and AQ = Q – E(Q).
The effect on gross revenue skewness of the

various simplifying assumptions often used in the
agricultural economics literature can be seen by
examining equation (2), For example, consider the
assumption of independence between crop prices
and yields. This assumption causes all terms in the
equation that include covariance plus some other
terms to be zero. This may cause the skewness of
revenue to be grossly under or over stated. Another
common assumption often used in risk analysis is
nonstochastic prices which causes all of the terms
in the equation except the second term, S(Q) E(P)3,
to be equal to zero. Given these common assump-
tions and the conclusion from Day’s research, it is
easy to see why the use of analytical methods of
risk analysis that depend on an assumption of nor-
mality have been criticized. However, studying
equation (2) reveals that, when positive skewness
exists for P and Q, a negative correlation between
P and Q may have some dampening effects on
revenue skewness compared to the case with a pos-
itive correlation. Consider the term 3[E(P)]2
E[(AP)(AQ)3] that is implicit in the summation term
in (2). If P and Q are negatively correlated, then
Em] is negative. Furthermore, because (AQ)
is large relative to (AP), then this is a numerically
large negative number relative to other terms. Note
that as the correlation becomes more negative and
the numerically largest negative deviation occurs
for AQ, the numerically largest AP is more likely
to occur, causing the value of the term to become
even more negative. Thus, equation (2) helps ex-
plain why the wheat revenue in Buccola’s study
did not significantly depart from normality.

Analytical Procedure

Skew and kurtosis parameters are calculated di-
rectly from the data for price and yield as well as
the resulting revenue to gain insight into the char-
acteristics of empirical price and yield distributions
and the relationship between them in forming rev-
enue distributions, Equation (2) is not necessary
for such calculations, but is useful in explaining
the resulting shape of the empirical revenue dis-
tribution and conditions under which nonnormality
likely occurs. Characteristics of each component
distribution (price and yield) are compared to the
corresponding characteristics of the resulting rev-
enue distribution so the interaction of the compo-
nents can be assessed. The correlation coefficient
between price and yield is calculated and reported
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Table 1. Algebraic Definitions of the Statistical Tests Used to Evaluate the Normality
of a Distribution

Characteristic Test

Author Tested Statistic

Pearson Skewness’ fi = m31m,3’2

Pearson Kurtosis bz = m~lmlz

Shapiro
“/2

Generalb
,,

w = [ ~ an ,+1(Xn.,+l –x! )lz/ ~ (X, – X)2
and Wilk normality ,=, ,=,

‘The value m, is an estimate of the ith central moment.
The value (n/2) is the largest integer representing one-half the sample size, and an.,+, is a coefficient tabulated in Shapiro and
Wilk, 1965

because it helps in understanding the formation of
the shape of the revenue distribution.

Several tests are available for considering the
normality characteristics of a distribution. These
include the standardized third and fourth moment
tests used by Day (Pearson, 1928; 1930) and, the
Shapiro-Wilk test of complete samples (Shapiro
and Wilk, 1965). Table 1 presents test statistics for
skewness, kurtosis, and general normality. Shapiro
and Wilk (1964) discuss and evaluate the relative
merits of each test based upon results from Monte
Carlo experiments. Briefly, the Pearson standard-
ized third and fourth moment tests are sensitive to
departures from normality, although they are gen-
erally nonrobust when small samples are consid-
ered. The Shapiro- Wilk is a nonparametric test of
the null hypothesis of normality, considering sym-
metric versus asymmetric distributions, short-tailed
versus long-tailed distributions, and sample size.
The Shapiro-Wilk test is both scale and origin in-
variate and is more robust than a combined as-
sessment of the standardized third and fourth
moments (Shapiro and Wilk 1964; 1965). Each of
these tests is used in this study in describing and
analyzing distributional characteristics of each
variable. However, only the Shapiro-Wilk test is
used to determine statistically significant depar-
tures from normality because of its more general
and robust nature. Table 1 presents the algebraic
definitions of the Pearson test statistics for skew-
ness and kurtosis and the Shapiro-Wilk test statis-
tics for general norrnalit y.

Data

Yield data for this research are provided by Day’s
original research and his primary sources (Grissom;
Grissom and Spurgeon). Crop yields for cotton,
corn, and oats from field experiments conducted
by the Delta Branch of the Mississippi State Ex-
periment Station are used to form the yield distri-
butions. The cotton and corn experiments extend
from 1921 to 1957, while the oat experiments begin

in 1928 and continue through 1957. All of the
experiments are fertilizer tests. Yields are available
for seven different fertilizer input levels. Data for
a high, intermediate, and low amount of nitrogen
are chosen for this study. Although the data are
dated in terms of the production and technical ap-
proach, two compelling reasons exist for their use.
First, the yield data are a uniquely long series and,
based on Day’s analysis, reflects little evidence of
nonrandomness among yields (p. 719). Hence, no
detrending or other adjustments of the data are nec-
essary. Second, Day’s article is often cited in the
agricultural economics risk literature and serves as
a foundation reference for many studies.

Mississippi prices for the three crops are used
to form the various distributions of gross revenues
(Agricultural Statistics). Crop prices are deflated
by the index of prices paid by producers. Subse-
quently, the deflated prices are detrended by fitting
a cubic trend to the data, making an additional
prediction of a single observation, and adding the
residuals to the predicted value to form price dis-
tributions used to compute gross revenue. Detrend-
ing of prices is needed to remove effects of
technology and other secular influences in an effort
to provide price distribution stationarity. Although
the more common linear and quadratic detrending
were considered, recall that the data span the time
period before, during, and after the Great Depres-
sion. Hence, a cubic trend seems plausible for these
agricultural commodity prices and provides the best
fit of the temporal influences. All of the trend vari-
ables in the price trend regression equations for
these commodities are significant at the & = 0.01
level and all the equations have an adjusted R*
exceeding 0.70.

Results

Table 2 presents distributional characteristics of
prices and yields for each crop and each input level
considered. Yield distributions of corn and cotton
exhibit positive skewness with yields tending to
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Table 3. Correlation Coefficients of Crop Yields and Real Prices in Mississippi, 1921-57

Cotton Price Corn Price Oat Price

Cotton Yields
w/high N –0,411
wlmedium N –0.512
WION –0.360

Com Yields
w/high N
w/medium N
WION

Oat Yields
w/high N 0.125
w/medium N –0.091
WION – 0.008

–0.301
–0.351
– 0.323

become less positively skewed as fertilizer levels
increase. Alternatively, oat yields tend to be neg-
atively skewed, with higher levels of nitrogen pro-
ducing increasingly negatively skewed distributions.
These characteristics are consistent with Day’s
findings.

All distributions are tested under the null hy-
pothesis of normality using the Shapiro-Wilk sta-
tistic as discussed. All cotton yield distributions,
medium and no nitrogen com yield distributions,
and high nitrogen oat yield distributions test sig-
nificantly different from normal. The skewness
coefficient of the real detrended price distributions
of cotton and com indicates positive skewness.
However, the oat price distributions are slightly
negatively skewed. None of the price distributions
significantly departs from normality.

Table 3 presents the correlation coefficients be-
tween crop yields and real detrended prices. All of
these correlation coefficients are negative with the
exception of the high nitrogen oat case. As ex-
pected, cotton, which is the most regionally spe-
cific crop, has the strongest correlation coefficient.
Finally, Table 4 presents the descriptive statistics
of the various gross revenue distributions. Tests for
all of the cotton and oat gross revenue distributions
indicate that normality cannot be rejected. In con-
trast, two out of three corn gross revenue distri-
butions test significantly different from a normal
distribution. One apparent reason normality is re-
jected for com revenue is because the price distri-
bution skewness for com is the highest of all crops
considered and the yield skewness is relatively high
as well. Note that the one situation in which com
revenue does not test significantly different from
normal occurs when the correlation coefficient be-
tween price and yield is most negative and when
the yield skewness is least positive.

Summary and Conclusions

Agricultural economists often cite Day’s result that
nonnormal distributions best characterize crop yields
as partial justification for using risk efficiency
methods other than the expected value-variance cri-
terion. However, the general implication of Day’s
results on revenue distributions has been mislead-
ing because of the assumption of constant output
prices. As Grant points out, this assumption may
be invalid because price and yield may be cor-
related.

The skewness expression developed in this study
shows that the price-yield correlation is a major
influence in determining the skewness of revenue.
Therefore, normality for revenue may not be re-
jected even if the price and/or yield distributions
are significantly skewed. Analysis of cotton reve-
nue for Mississippi shows that this can be the case
empirically when the correlation between price and
yield is moderately negative and the relative var-
iabilityy of yield and price is not too high. Hence,
for crops produced in their major production re-
gions where negative correlations between prices
and yields are the greatest, forces generally are at
work to make revenue distributions tend toward
normal, However, depending on the coefficient of
variation of the yield and price, normality may not
be rejected for revenue even with a weak corre-
lation between price and yield. This was the case
for the oat revenue distribution. More research for
the various regions of the country and crops is
needed before the prevalence of nonnormal crop
revenues can be determined, Nevertheless, the as-
sumption of nonnormal distributions of revenue in
risk analysis appears to be much less serious when
prices are allowed to be stochastic than when a
constant price assumption is imposed.
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