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Graphical analysis of agricultural research spillover potential  

This paper introduces two important extensions to the uncentered correlation metric, the 

commonly used metric proposed by Jaffe (1986) for analyzing research spillovers across firms or 

countries. First, it is shown that the Jaffe metric can be displayed graphically using the biplot, a 

graphical display of a two-dimensional approximation to any multidimensional matrix. Second, it 

is illustrated that since the data used to produce the Jaffe metric is constrained within the simplex 

(i.e. shares add up to one), then a theoretically superior metric satisfying the basic axioms of 

technological proximity measures in this sample space is the Aitchison distance measure, a metric 

based on log-ratios of shares. The findings of the paper using agricultural research and 

development spillover potential for Southern African countries show that the Jaffe metric 

overestimates the technological proximity across countries as compared to the proposed Aitchison 

measure. 

Keywords: Africa; Biplot; Compositional data; Cosine similarity. 

1. Introduction 

Research and Development (R&D) spillovers are prevalent and important both in the 

innovation processes and economic development (Griliches 1992). They have thus been a major 

topic in the growth, productivity and industrial organization literatures for many decades (Bloom, 

Schankerman, and Reenen 2013).  Despite the popularity, the measurement of spillovers still 

remains a challenge. This challenge is exacerbated by the lack of a clear definition.  There are 

three main types of spillovers that have been studied in the literature. These are; knowledge-related 

spillovers, technology related spillovers and price related spillovers. These types of spillovers are 

not easily identifiable in practice (Byerlee and Traxler 2001) and are difficult to distinguish using 

existing empirical strategies. In terms of measurement, Zvi Griliches who was the first to recognize 

the importance of measuring spillovers in his seminal paper (Griliches 1979) subsequently 

summarized the future of R&D spillover analyses as follows,  “progress here (in measuring 

spillovers) awaits appearance of better data and the development of better econometric techniques 

for tracing the interaction between firms (countries)  and industries(regional blocs)  over time in 

an ill-defined and  changing multi-dimensional space of technological opportunities”. (Griliches 

1992, 44).  In other words, measuring spillovers is not only an econometric or statistical problem; 

it is more to do with understanding the mechanism through which spillovers occur and the kind of 

precise data that can be collected to measure them.  

In most cases, researchers circumvent the challenge of measuring spillovers by 

constructing proxy statistics. Such proxies essentially provide estimates of the spillover potential 

where potential refers to the physical, economic or biological performance of introduced 

technologies. According to Byerlee and Traxler (2001), actual spillovers are bounded by spillover 

potential but usually are smaller because of institutional and policy barriers that govern the transfer 
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of technologies across political boundaries or firms.  The literature on research spillover employs 

simple to overly complex approaches to estimate R&D spillovers. Most of these measures 

originate from what Jaffe(1986) suggested to be the measure of “technological” similarity which 

is based on a vector space model of cosine similarity. This measure as used by Jaffe is essentially 

an un-centered correlation between different firm’s shares of patents in different clusters of 

patents. The key logic in its use is that firms innovating in the same cluster are more likely to share 

knowledge and thus inter-firm research spillover are expected to be higher than firms innovating 

in disparate clusters.  The list of papers and books in various fields employing the cosine similarity 

formula in measuring research spillovers is long and growing. The contributions to this literature 

include; Jaffe(1989a), Jaffe (1989b), Adams (1990), Branstetter (2000), Cincera (2006), Parent 

and LeSage (2008), Alston et al. (2010), Chyi et al. (2012) and Bloom, Schankerman, and Reenen 

(2013). Jaffe’s insights have been developed extensively in various fields including industrial 

organization, manufacturing and services innovation (Kaiser 2002) and agricultural research 

(Byerlee and Traxler 2001; Alston et al. 2010; Ros-Freixedes and Estany 2013; Johnson et al. 

2011). Coincidentally, this measure is also the mostly used distance measure in data mining and 

information retrieval.  

The Jaffe measure has several limitations which are discussed throughout the paper. The 

two limitations this paper is concerned with are: (i) it is difficult to detect the pattern when there 

is a huge number of technological categories and firms/countries; (ii)it lacks a clear economic and 

statistical justification (Bloom, Schankerman, and Reenen 2013). Based on a review of most of 

the literature in the Jaffe tradition, there is an apparent presentational challenge that researchers 

face when reporting R&D spillover matrices. In most cases, a substantial number of pages are 

wasted to reporting these matrices, whereas in some cases the researchers aggregate at a higher 

level or report selected results. Even Jaffe himself limited the number of firms to only a sample of 

10 to demonstrate the use of the similarity measures in his publications. In addition, he aggregated 

all the patent shares from 1969-79 in his paper (Jaffe 1989a). Other examples include Alston et 

al.(2010) and Johnson et al.( 2014). Specifically, Alston et al.(2010) analyzed the inter-state 

spillover potential for the 49 states in United States of America using the Jaffe measure calculated 

using agricultural output value shares in each of the states. In their analyses they considered 

agricultural output shares from 1949 to 2002 and generated 1128 spillover values for each of these 

years. Because of space limitations, temporal average indices covering eight pages of spillover 

matrices were reported in the book.  Johnson et al.( 2014) provides a further proof of this challenge 

as they used the Jaffe measure to study the agricultural spillover potential in the Southern African 

Development Community (SADC) consisting of 15 member countries (analyzed only for 13 of the 

countries) with tables covering about 17 pages of the paper. This is a lot of pages wasted and 

deterrence to understanding details of spatial spillover potential.  

 The main objective of this paper is to explore two extensions of the Jaffe metric that 

address these two limitations. The two extensions are; graphically displaying Jaffe metric using 

the biplot and proposing a new technological proximity based on the Aitchison distance that 
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recognizes the unity-constrained sample space for datasets used in constructing the proximity 

measures.  This paper makes two main contributions in line with these extensions. First, we show 

that a multidimensional matrix of Jaffe indices can be presented in a two-dimensional graphical 

display, the biplot.  This paper is first to suggest such a theoretical equivalence. Biplot graphical 

analysis has been extensively used by breeders and agronomists to evaluate environmental 

similarity in terms of crop variety (genotype) performance using genotype by environment 

matrices (Yan and Kang 2003). This study shows that the Jaffe measure can be presented in a 

particular type of a biplot called environment preserving biplot. Therefore, economists working in 

this area can leverage this equivalence by visualizing their indices using biplots. Second, we 

propose extensions to the Jaffe measure based on this equivalence. In particular, we propose that 

compositional data analysis tools particularly, the Aitchison distance, should be considered in 

analyzing spillovers since in all cases the data used to calculate the cosine indices are 

compositional (have a constant sum) in nature. We place the Aitchison measure within an 

axiomatic analysis suggested by Bloom, Schankerman, and Reenen (2013) and demonstrate that it 

strictly dominates any other distance measure. This paper is again the first to establish the 

compositional nature of the datasets used in constructing spillovers and thus a pointer to a large 

body of literature that researchers working on R&D can leverage. 

The remainder of the paper is organized as follows. Section 2 presents the Jaffe measure 

as used in the agricultural R&D spillover measurement and the subsequent Jaffe-Griliches 

knowledge production function. Section 3 links biplot analysis to the Jaffe measure. Section 4 

presents the data and software used to demonstrate the equivalence. In section 5, the results and 

discussion are presented. The various spillover measures and Aitchison distance measure that this 

paper proposes are summarized in section 6. Finally, section 7 presents the concluding remarks.  

2. Cosine Similarity in Economic Analysis of Spill overs 

Jaffe(1986) proposed a measure that reflects the similarity of research focus of firms to 

measure closeness among firms in the technological space. The measure is simply the angular 

separation of the vectors- equal to the cosine of the angle between them- defining the 

“technological proximity” of any two firms. According to Jaffe (1989a), if spillovers are important 

then firms doing research in areas where much work is done by other firms should be more 

successful, all else equal.  We use the adaptation of Jaffe’s measure to international agricultural 

R&D as suggested by Alston et al. (2010). The Jaffe measure of technology spill over potential 

between country 𝑖 and 𝑗 is defined as an uncentered correlation between 𝑦𝑖 and 𝑦𝑗 

 
𝜔𝑖𝑗 =

∑ 𝑦𝑖𝑛𝑦𝑗𝑛
𝑁
𝑛=1

(∑ 𝑦𝑖𝑛
2𝑁

𝑛=1 )0.5(∑ 𝑦𝑗𝑛
2𝑁

𝑛=1 )
0.5 = cos 𝜃𝑖𝑗  

  

(1) 

where 𝑦𝑖𝑛 is the value of production of output n as a share of the total values of agricultural output 

(traded volume) in country i, such that these shares fall between zero and one. Just as a correlation, 
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this measure is symmetric (Jaffe 1989a). According to Alston et al.(2010), the measure can be 

interpreted as follows; (i) 𝜔𝑖𝑗 measures the degree of overlap of 𝑦𝑖 and 𝑦𝑗,  (ii) the numerator will 

be large when country i and j have very similar output mixes and (iii) the denominator normalizes 

the measure to be one when  𝑦𝑖 and 𝑦𝑗 are identical. Clearly, 𝜔𝑖𝑗 = 1 if output values-up to a factor 

of proportionality- are identical and will approach zero the more dissimilar the output mix is 

between any regions. If the output bundles of two countries are dominated by maize, for example, 

then the research portfolios of both countries will be similarly biased toward maize. In this case, 

the spillover potential would be higher than if the comparison were between a predominantly 

maize-producing country and say, coconut-producing country (Alston, Norton and Pardey 1998). 

Several economic analyses are done incorporating this measure as the point of departure.  

The dominant and workhorse economic model for estimating R&D spillovers is the Jaffe-Griliches 

knowledge production function after pioneering development by  Griliches (1979) and (Jaffe 

1986). It is traditonally presented in modified Cobb-Douglas form as 

 log 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 log(𝑅𝑖𝑡) + 𝛽2 log(𝑆𝑖𝑡) + 𝛽3 log(𝑋𝑖𝑡) + 𝜀𝑖𝑡 

  
(2) 

where 𝑖 indexes unit of observation (countries in this case) and 𝑡 indexes time. 𝑌 is any proxy for 

economically useful knowledge (this may include: patents, registered varieties, profits et.c), 𝑅 is 

the R&D performed by each country in each technological area and time period, 𝑆 is the R&D 

performed by other countries, 𝑋 is a vector of all attributes that need to be controlled for in 

estimating the knowledge production function including the level of economic activity, labor e.t.c.. 

𝜀𝑖𝑛𝑡 is the error term that is assumed to be identically and independently distributed.  

The Jaffe’s cosine similarity measure is used as a weight  in constructing 𝑆𝑖𝑡  

 𝑆𝑖𝑡 = ∑ 𝜔𝑖𝑗

𝑗≠𝑖

𝑅𝑗𝑡 

 

(3) 

According to Jaffe (1986), 𝑆𝑖𝑡 formulated in this way has significant power in explaining variations 

to “innovative success” across firms/countries.  Alston, Norton and Pardey (1998) observed that 

this approach is not fruitful instead suggested that 𝑆𝑖𝑡 should be calculated as,  𝑆𝑖𝑡 = ∏ (𝑅𝑗𝑡𝑖≠𝑗 )𝜔𝑖𝑗. 

They argued that Jaffe’s approach does not address the question of how to decide what constitutes 

relevant research, and in so doing, Jaffe’s approach inappropriately treats all research done by 

other countries or firms as being equally relevant from the perspective of its spill-in.  There are 

several specifications that have appeared in literature to incorporate several other attributes of 

interest to 𝑆𝑖𝑡. For instance, those more concerned with spatial externalities combine the Jaffe 

measure with the spatial contiguity matrix in a spatial econometric framework. Those interested 

in a simple model also only use the linear version of this model. In addition, due to the  

simultaneous nature of R&D, researchers have used equation 2 with other equations including one 

that has R&D perfomed as the dependent variable (e.g. Jaffe 1989b; Alene and Coulibaly 2009). 
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Both Bayesian and frequentist specifications have also been tried out in practice depending on 

context. 

The underlying aspect in each of these specifications is that the Jaffe’s index acts as a proxy 

for determining the levels of spillovers. In this study, we investigate how researchers using the 

measure can graphically visualize the spillover potential. We will demonstrate the different 

extensions that may be considered in this exploratory analysis and the suggested modifications 

required to this index consistent with the nature of the datasets used in practice to construct it.  It 

suffices to mention some of the limitations of the Jaffe measure. It is an unconditional such that 

such issues as geographical proximity are ignored. In terms of presentation, the major disadvantage 

of this measure is that it is difficult for one to see the pattern overtime and across the 

countries/firms. In addition, it is impossible to use the measure if there are huge disparities in the 

commodities the countries or firms produce or if there is huge heterogeneity among the countries 

or firms. In this paper we do not try to address many of these limitations of the Jaffe measure but 

rather show how those who use it may gain more through the use of graphics. The biplot analysis 

provides a comprehensive and theoretically equivalent solution to the problem of presentation.  

3. Biplot-Jaffe Measure Equivalence  

There are several advantages to establishing the equivalence between Biplot and Jaffe 

measure. Firstly, the biplot allows us to extend the use of Jaffe measure to considering more than 

two countries or firms at a single point in time (year) or over a long period of time. With the biplot, 

we can also assess the stability of the spillover potential and identify a research policy integration 

zone for a particular commodity.  The biplot was introduced by Gabriel (1971) as a visual display 

of a rank-two approximation matrix of any two-way table through plotting its two component 

matrices while also showing the inner product property as in equation 4 below. It thus allows 

visualization from all perspectives. Assume we have 𝑁 commodities/output values and 𝑃 

countries. If we consider the share of each output value to the total value and denote it as 𝑌, we 

will have a measure of relative importance of each output value to that country and thus a measure 

of agricultural technology spillover potential.  It can be shown using trigonometric identities that 

each element of 𝒀, 𝒀𝒏𝒑 is given by the product of a row of a row matrix(𝑵), column of a column 

matrix (𝑷) and the cosine of the angle separating the two vectors. Thus; 

 𝑌𝑛𝑝 = |𝑁𝑛||𝑃𝑝| cos 𝜃𝑛𝑝 (4) 

 

where |𝑵𝒏| is the vector length for row 𝑛, |𝑷𝒑| is the vector length for column 𝑝,  𝜃𝑛𝑝 is the angle 

between the vectors of row 𝑛 and column 𝑝 . This equation is referred to as the inner-product 

property of the biplot. It is this property that allows us to estimate the elements of 𝒀, visualize the 

patterns in the matrix 𝒀 , and compare any two columns (countries) relative to rows (output 

categories).  We need to develop a general approach for identifying the row and column matrices 

that will demonstrate the inner product property.  The process of decomposing a two-way matrix 
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𝑌 into two component matrices 𝑼 and 𝑽  is called singular value decomposition (SVD)  as 

developed by Eckart and Young (1939) which is essentially the reverse process of matrix 

multiplication (Yan and Kang 2003). The biplot uses a least-squares approximation and relies 

analytically on SVD (Gower, Lubbe, and Roux 2011; Greenacre 2012) as below; 

 𝑌: 𝑁 ×  𝑃 = 𝑈Σ𝑉′ (5) 

 

where, 𝑈 is an 𝑵 × 𝒁 orthogonal matrix with columns known as the left singular vectors of 𝒀, the 

matrix 𝑉′ is an 𝒁 × 𝑷 orthogonal matrix with columns known as the right singular vectors of 𝒀, 

and matrix ∑  is a 𝒁 × 𝒁  diagonal matrix containing Z singular values with 𝒁 ≤ 𝑚𝑖𝑛  (𝑵, 𝑷). In 

summation notation, SVD decomposes 𝒀 into 𝒁 principal components, each containing a set of 

row or output share vectors (𝜉𝑛) and column or country vectors (𝜂𝑝) and a singular value (𝜆). 

Thus;  

 

𝑌𝑛𝑝 = ∑ 𝜆𝑧𝜉𝑛𝑧 𝜂𝑧𝑝

𝑍

𝑧=1

 (6) 

   

where 𝑛 =  1. . . 𝑁  (output categories),  𝑝 = 1. . . 𝑃  (Countries),  𝒀𝒏𝒑 is the output share for output 

category 𝑛 in country 𝑝,   𝑧 is the rank of a principal component, 𝑧 = 1. . . 𝑍,  𝜆𝑧  is the singular 

value of the zth principal component, with 𝜆1>𝜆2 > ⋯ > 𝜆𝑍. The square of 𝜆𝑧 is the sum of squares 

explained by the zth principal component. Only the first two principal components are mostly used 

in biplot analysis. Additionally,  𝜂𝑧𝑝 is the eigenvector or singular vector of country 𝑝 for the zth 

principal component, and 𝜉𝑛𝑧 is the eigenvector or singular vector of output 𝑛 for the zth principal 

component. All 𝑍 principal components are orthogonal and orthonormal to one another for both 

the rows (output shares) and the columns (countries) thus satisfying the following restrictions; 

 

∑ 𝜉𝑛𝑧 𝜉𝑛𝑧′

𝑁

𝑛=1

= 0 

∑ 𝜂𝑧𝑝𝜂𝑧𝑝′

𝑃

𝑝=1

= 0 

∑ 𝜉𝑛𝑧 

𝑁

𝑛=1

= 1 

∑ 𝜂𝑧𝑝

𝑃

𝑝=1

= 1 

(7) 

In addition to these restrictions, Gabriel (1971) showed that the singular value, singular 

column and singular row should be chosen to satisfy basic rules of eigen values and eigenvectors.  

The singular values must be partitioned into the row (output categories) and column (country) 
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scores before a biplot can be constructed to approximate the two-way data (Yan and Tinker 2006). 

This singular partitioning is given by; 

 

𝑌𝑛𝑝 = ∑(𝜉𝑛𝑧

𝑍

𝑧=1

𝜆𝑓
𝑧) (𝜆𝑧

1−𝑓𝜂𝑧𝑝 ) 

                                 

(8) 

where 𝑓 is the partitioning factor and can be anything between 0 and 1 resulting in unlimited 

number of ways of singular value partitioning. The main ones are; column-metric preserving (f=0), 

row-metric preserving (f = 1) and symmetrical partitioning (f = 0.5).  For the purposes of 

studying the relations among columns (countries) say 𝑖, 𝑗𝜖 𝑃, the column metric preserving is the 

most appropriate in which case 𝑓 = 0 as it allows one to visualize similarity or dissimilarity among 

countries.  Since the Pearson correlation between two columns (countries) is estimated by: 

 
𝜔∗

𝑖𝑗 =
∑ (𝑦𝑛𝑖 − ȳ𝑖)(𝑦𝑛𝑗 − ȳj

𝑁
𝑛=1 )

(∑ (𝑦𝑛𝑖 − ȳ𝑖)2𝑁
𝑛=1 )0.5(∑ (𝑦𝑛𝑗 − ȳj)2𝑁

𝑛=1 )
0.5 (9) 

 

Kroonenberg(1995) showed that when two way data are column (country) centered i.e. 

when 𝑦
𝑗

=  𝑦
𝑖

= 0, then the cosine of 𝜃𝑖𝑗, the angle between two columns (countries) is equal to 

their correlation, that is: 

 
𝜔∗

𝑖𝑗 = cos 𝜃𝑖𝑗  =
∑ 𝑦𝑛𝑖  𝑦𝑛𝑗

𝑁
𝑛=1

(∑ 𝑦𝑛𝑖
2𝑁

𝑛=1 )0.5(∑ 𝑦𝑛𝑗
2𝑁

𝑛=1 )
0.5 =

∑ 𝑦𝑛𝑖𝑦𝑛𝑗
𝑁
𝑛=1

|𝑃𝑖||𝑃𝑗|
 (10) 

   

 

∑ 𝑦𝑛𝑖𝑦𝑛𝑗

𝑁

𝑖=1

= |𝑃𝑖||𝑃𝑗| cos 𝜃𝑖𝑗   

                                                 

(11) 

 

It is apparent that equation (11) has the same principle as equation (4) with the difference 

that in equation 11 the approximated correlation is between columns while in equation (4), the 

approximated correlation is between a particular row and column. This establishes the relationship 

between Pearson correlation and cosine similarity within the context of biplot analysis. 

Furthermore, equations (1) and (10) are the same. These equivalences are important in showing 

that the Jaffe measure and environment or country preserving biplot are equivalent.  Thus, the Jaffe 

measure can be conceived as a particular distance measure in biplot analysis in which the inner 

products are over the columns.   

Nevertheless, we need to add a disclaimer to this comparison. The cosine of the angle 

between the vectors of two columns, 𝑖, 𝑗 is determined solely by the values in matrix 𝑽 and has 

nothing to do with the values in matrix 𝑼, whereas the correlation coefficient calculated based on 

matrix 𝒀 is dependent on both 𝑼 and 𝑽. Consequently, angles between columns of 𝑼 in the biplot 

should be somewhat related to the correlation coefficients among the columns in 𝒀 but no strict 
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correspondence should be expected. Closer or near perfect correspondence is expected if matrix 𝑼 

has many rows and the rows are randomly scattered on the biplot (Yan and Kang 2003). In the 

context of column environment or country comparisons, the cosine similarity as developed by Jaffe 

is exactly the same as cosine similarity in environment preserving biplot. Most importantly they 

take values from 0 to 1, have the same interpretations and approximate the Pearson correlation 

(Yan 2014).  

The column or country preserving biplot has the following basic properties, the first which 

is essentially similar to Jaffe measure; (i) the cosine of the angle between any two columns 

(countries) approximates their correlation, with equality if the fit is perfect; (ii) the lengths of the 

country vectors are approximately proportional to their standard deviations, with exact 

proportionality if the fit is perfect; and (iii) the inner product between two countries approximates 

their covariance, with equality if the fit is perfect (Yan and Tinker 2006; Greenacre 2010). The 

other important assumption that is implicitly made in using the Jaffe measure or country-centered 

biplot is that countries are homogenous in the way they can utilize spill-ins. This is not in any way 

true as we know that there is variation across countries in important factors that may affect its 

technology use including population, level of development and other social-cultural factors. It is 

an impossible task to incorporate all these in the approximation of the spillover potential measure. 

We can incorporate this heterogeneity by using a country standard deviation 

weighted/standardized measure when constructing the biplot. This standardization also helps in 

the posititioning of the different vectors and points in the biplot for easy visualization.  

4. Data and Software 

The paper uses the Food and Agriculture Organization of the United Nations (FAOSTAT) 

production estimates data (http://faostat3.fao.org/home/E). The production data were collected for 

all member countries of the Southern Africa Development Community (SADC). The countries 

included; Angola, Botswana, Democratic Republic of Congo, Lesotho, Madagascar, Malawi, 

Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, 

Zimbabwe. The data consisted of production values for 141 commodities from 1961 to 2011. In 

the analyses we aggregated the commodities into 13 groups for expository purposes. The 

commodity groups are; cereals, roots and tubers, sugarcane, pulses, nuts, oil crops, vegetables, 

fruits, fibres, spices, stimulants, tobacco, and livestock.  In terms of software, there are several 

commercial and non-commercial software that can implement the various versions of the biplot 

that have been proposed in this paper.  All the biplots in the paper were done in R (R Core Team 

2014), a free statistical computing environment. Specifically, the biplot and canonical variate 

analysis (CVA) biplots were drawn using the UBbipl package (Roux and Lubbe 2013). The robust 

compositional biplots were drawn using Robcompositions package (Templ, Hron, and Filzmoser 

2011). The pseudo R code in the appendix provides the key functions for the interested reader. 

Other software especially known to social scientists and economists that can also be used for the 

graphical approach includes, Matlab and Stata. 

http://faostat3.fao.org/home/E
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5. Results and Discussion 

5.1 Spatial agricultural R&D spill over potential  

In this expository analysis we have considered the Jaffe measure for the latest data (2011) 

as we assume that the latest output mix clearly reflects a resultant effect of past R&D effects in the 

performing countries as well as R&D spillovers. The Table 1 shows the Jaffe’s similarity measures 

across the different countries calculated using 141 commodity shares. It is apparent that Seychelles 

and Mauritius are the least similar to all other countries with a similarity index to the average 

SADC region of 0.36 and 0.49 respectively.  In terms of country to country comparisons; Mauritius 

has the least similarity (0.03) to Angola and Botswana implying that the potential for spillovers is 

minimal. On the other hand, Namibia and Botswana have the highest similarity index. 

Table 2 shows the Jaffe measure calculated using aggregated commodity groups. It is 

apparent that the cosine similarity figures are higher in Table 2 than Table 1. This is because of an 

important property of correlation based measures. The correlation of aggregates is always higher 

than the correlation of individual elements. This is the case because the numerator (covariance) is 

the same for aggregates and individual elements yet the denominator (square of the variances) is 

smaller for aggregates (since the variability is lower) than for individual elements. The challenge 

of using highly disaggregated shares is that there is a high chance of having zero shares which 

again distorts the index. The use of Jaffe measure can therefore be ambiguous because the optimal 

way of constructing the classes is subjective. In the biplot comparisons we use the aggregated 

shares for expository purposes but disaggregated shares would also be used depending on one’s 

preference. 

 



 

11 

 

Table 1: Agricultural spill over potential (using 141 commodities) across countries in SADC region, 2011 

 
AN

G 

BT D.R.C LES MD MW MAU MOZ NAM SEY RSA SWA TZ ZA ZIM All 

ANG 1.00 0.16 0.87 0.21 0.34 0.59 0.03 0.88 0.16 0.17 0.18 0.07 0.60 0.37 0.24 0.61 

BT 
 

1.00 0.07 0.83 0.33 0.11 0.03 0.06 0.91 0.06 0.62 0.24 0.45 0.39 0.63 0.63 

D.R.

C 

  
1.00 0.09 0.34 0.56 0.04 0.91 0.07 0.05 0.08 0.06 0.41 0.38 0.17 0.53 

LES 
   

1.00 0.32 0.47 0.04 0.15 0.78 0.12 0.69 0.22 0.56 0.51 0.67 0.68 

MD 
    

1.00 0.26 0.09 0.36 0.32 0.09 0.28 0.17 0.63 0.28 0.29 0.53 

MW 
     

1.00 0.11 0.67 0.15 0.11 0.38 0.16 0.61 0.70 0.53 0.63 

MA

U 

      
1.00 0.12 0.03 0.33 0.40 0.88 0.08 0.25 0.30 0.49 

MO

Z 

       
1.00 0.09 0.14 0.21 0.13 0.51 0.53 0.32 0.63 

NA

M 

        
1.00 0.08 0.64 0.25 0.44 0.38 0.59 0.62 

SEY 
         

1.00 0.48 0.04 0.23 0.18 0.23 0.36 

RSA 
          

1.00 0.35 0.51 0.64 0.75 0.76 

SWA 
           

1.00 0.19 0.35 0.41 0.57 

TZ 
            

1.00 0.59 0.61 0.74 

ZA 
             

1.00 0.82 0.75 

ZIM 
              

1.00 0.78 

All 
               

1.00 

Notes: Country codes; ANG=Angola, BT=Botswana, Les=Lesotho, Md=Madagascar, Mw=Malawi, Mau=Mauritius, 

Moz=Mozambique, Nam=Namibia, Sey=Seychelles, RSA=South Africa, SWA=Swaziland, TZ=Tanzania, ZA=Zambia, 

ZIM=Zimbabwe, All= All countries. 
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Table 2: Agricultural spill over potential (using 13 commodity groups) across countries in SADC region, 2011 

 
 

ANG  

 BT   D.R.C   LES   MD   MW   MAU   MOZ   NAM   SEY   RSA   SWA   TZ   ZA   ZIM   All  

 ANG                         

1.00  

                          

0.32  

              

0.99  

              

0.50  

                          

0.61  

              

0.88  

              

0.21  

              

0.90  

                

0.48  

                

0.39  

                

0.45  

               

0.27  

              

0.72  

              

0.45  

                

0.36  

                                        

0.67  

 BT  
 

                          
1.00  

              
0.29  

              
0.97  

                          
0.56  

              
0.30  

              
0.51  

              
0.35  

                
0.98  

                
0.95  

                
0.92  

               
0.38  

              
0.57  

              
0.66  

                
0.87  

                                        
0.85  

 

D.R.

C  

  
              

1.00  

              

0.47  

                          

0.62  

              

0.90  

              

0.19  

              

0.93  

                

0.45  

                

0.35  

                

0.42  

               

0.25  

              

0.73  

              

0.49  

                

0.35  

                                        

0.66  

 LES  
   

              

1.00  

                          

0.72  

              

0.51  

              

0.50  

              

0.55  

                

0.99  

                

0.92  

                

0.94  

               

0.40  

              

0.72  

              

0.77  

                

0.91  

                                        

0.93  

 MD  
    

                          

1.00  

              

0.77  

              

0.35  

              

0.71  

                

0.65  

                

0.58  

                

0.77  

               

0.37  

              

0.89  

              

0.91  

                

0.75  

                                        

0.83  

 MW  
     

              
1.00  

              
0.21  

              
0.97  

                
0.45  

                
0.31  

                
0.45  

               
0.27  

              
0.82  

              
0.70  

                
0.50  

                                        
0.70  

 MAU  
      

              

1.00  

              

0.25  

                

0.51  

                

0.51  

                

0.55  

               

0.98  

              

0.36  

              

0.47  

                

0.57  

                                        

0.63  

 MOZ  
       

              

1.00  

                

0.50  

                

0.34  

                

0.45  

               

0.28  

              

0.78  

              

0.66  

                

0.48  

                                        

0.71  

 NAM  
        

                
1.00  

                
0.94  

                
0.94  

               
0.40  

              
0.67  

              
0.71  

                
0.88  

                                        
0.91  

 SEY  
         

                

1.00  

                

0.96  

               

0.40  

              

0.67  

              

0.64  

                

0.86  

                                        

0.86  

 RSA  
          

                

1.00  

               

0.48  

              

0.79  

              

0.80  

                

0.93  

                                        

0.93  

 SWA  
           

               

1.00  

              

0.39  

              

0.45  

                

0.49  

                                        

0.59  

 TZ  
            

              
1.00  

              
0.86  

                
0.76  

                                        
0.86  

 ZA  
             

              

1.00  

                

0.89  

                                        

0.85  

 ZIM  
              

                

1.00  

                                        

0.90  

 All  
               

                                        
1.00  

Notes: Country codes;  ANG=Angola, BT=Botswana, Les=Lesotho, Md=Madagascar, Mw=Malawi, Mau=Mauritius, 

Moz=Mozambique, Nam=Namibia, Sey=Seychelles, RSA=South Africa, SWA=Swaziland, TZ=Tanzania, ZA=Zambia, 

ZIM=Zimbabwe, All= All countries. 
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An equivalent presentation of the Table 2 is shown by the biplot in Figure 1.  In the figure, the 

lengths of the country vectors indicate how well the countries are represented by the graph with a 

perfect fit all vectors have equal lengths.  If the country vector is close to the origin, it means that 

the country has little variability or does not fit well in two dimensions. The inner product between 

two countries (and the cosine of the angle between them) approximates their correlation with 

equality if the fit is perfect (Kroonenberg 1995). The smaller the angle, the greater the positive 

correlation between the two countries. It is apparent in the Figure 1 that the estimation for 

Mauritius, Swaziland and Madagascar is almost imperfect with respect to the lengths of the other 

countries. With a matrix of Jaffe measures, it is impossible to discern the quality of estimations. 

In the case of the biplot in Figure 1; the two principal components explained about 63% of the 

variation. These characteristics of a biplot provide a better assessment than the matrix of Jaffe 

measure.  

 

Figure 1: Biplot of output value shares and Southern African countries-2011 
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In order to understand the similarity among all the countries studied, we can simply check 

the different axis sides of the biplot. The countries on the same axis side have the smallest angle 

(i.e. high similarity) between themselves as compared to countries on the other axis side. For 

instance; Malawi, Mozambique, Democratic Republic of Congo and Angola are all on the left axis 

implying that they are agro-ecologically similar. Similarly, Madagascar, Tanzania and Zambia 

form their own group on the top. In the right axis, countries with large spillover potential include; 

Lesotho, Namibia, Botswana, South Africa, Swaziland, Zimbabwe, Swaziland, Seychelles and 

Mauritius. For this group, one striking factor is also the geographical proximity among them 

implying that neighborhood spatial effects may be important and can be further investigated. In 

general, these groupings can be verified in the Jaffe measure tables. Within each group, the 

countries have similarity indices above 0.5 and it is below this threshold against countries in the 

other groups. These groups can then be used in investigating further the potential for agricultural 

R&D policy integration zones. With matrices of Jaffe measures, it would have been difficult to 

discover these groups of countries. 

In addition to the advantages already mentioned, a biplot also helps in visualizing the 

spillover potential for specific types of crops. For instance, though we have bundled up all cereals 

in the Figure 1, we may have a disaggregated plot that shows the similarity of the countries with 

respect to disaggregated values of cereals and other commodity groups (Figure 2). It is noticeable 

that this change has slightly affected the nature of the plot just as aggregating commodity groups 

affected the Jaffe measures in Table 1 and Table 2. This may be attributed to sub-composition 

incoherence though we can argue that the changes have not affected the groups of countries evident 

in Figure 1.   

Though the purpose of this paper was to make a methodological contribution, the findings 

from the biplot analysis in Figure 1 and Figure 2 are consistent with empirical findings in the 

literature regarding the spillover potential among these countries. The interpretation of relationship 

between country vectors and commodity points is that, country vectors with a projection closer to 

a particular commodity are more similar in that commodity. And commodities closer to the center 

of the biplot are common among all the countries. Firstly, consider livestock which clearly 

discriminates over countries. It is apparent that countries with high R&D spillover potential in 

livestock include; Lesotho, Namibia, South Africa, Seychelles, Zimbabwe, Botswana and 

Swaziland. Johnson et al. (2014) reported that livestock R&D spillover potential is evident for 

Botswana, South Africa, Namibia and Swaziland. Sugarcane seems to the key commodity for 

Mauritius. Countries similar in roots and tubers include Mozambique, Malawi, Angola and 

Democratic Republic of Congo. These R&D policy relevant results can be discerned in a single 

biplot and one can easily change different aspects of the biplot to visualize the patterns of interest. 

 



 

15 

 

 

Figure 2: Biplot of output value shares (with disaggregated cereals)- 2011 

 

5.2 Spatio-temporal patterns of spillover potential 

 Parent and LeSage (2008) observed that the structural assumption of symmetry in 

technological distance between two regions is untrue and argued that model based indices that are 

able to account for differences in economic activity and other variables of interest are the most 

appropriate in modelling spill overs. A graphical representation of model based indices can be 

accomplished using a multivariate extension to the biplot called the Canonical Variate Analysis 

(CVA) biplot. CVA is a useful method for describing and assessing the differences between means 

of groups or classes using the Mahalanobis Distance (formula shown in Table 4) to define inter-

group distance (Gower, Roux, and Gardner-Lubbe 2014).  CVA is simply a two stage rotation. 

The first stage involves an eigen analysis of the original variables. The second stage involves an 

eigen analysis of the variation between the group means for the variables from the first stage 

principal component analysis (Campbell and Atchley 1981). The reader is referred to Gower, 

Lubbe, and Roux (2011) for details.  

An important aspect to characterizing spill overs is the temporal evolution of the spill over 

potential. The spill over matrix with temporally aggregated data or multiple spill over matrices can 
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be created to understand this temporal aspect. Evidently, it would be difficult to discern the patterns 

of spill overs in such matrices. The CVA biplot instead can be used to discern these temporal 

patterns of spill over potential as in Figure 3.  

 

Figure 3: CVA biplot for output shares in nine countries, 1961-2011. 

Notes: The numbers represent the crop categories from 1 to 13 for 1961-70 (red), 14-26 for 1971-80 (blue), 27-39 

for 1981-90 (green), 40-52 for 1991-2000 (brown) and 53-65 for 2001-2011(black). Each category of crops 

corresponds to a corresponding list of commodities (1=Cereals, 2=Roots and tubers, 3=Sugarcane, 4=Pulses, 

5=Nuts, 6=Oil crops, 7=Vegetables, 8=Fruits, 9=Fibres, 10=Spices, 11=Stimulants, 12=Tobacco, 13= Livestock).  

Figure 3 is however not comparable to Figures 1 and 2 because only 2011 data were used 

for Figures 1 and 2. The focus in Figure 3 should not be on the country vectors but the groups of 

95% alpha bags of output shares shown for each decade. It’s apparent that during the 1961-1970 

period, the countries were quite specialized in the commodities that were produced. This was the 

period when most of these countries were gaining independence from colonial governments and 

the commodities grown in each country were dependent on the preferences of the colonial 

governments. There is evidence of convergence in 1970s to 2000s with the alpha bags shrinking 

which means that the composition of commodities was getting similar. In 2000-2011, it is apparent 

that there is a slight divergence again which can be further investigated using formal econometric 

tools. The shapes of the alpha bags are different implying that the changes are heterogeneous across 

years and countries.   
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5.3 Compositional analysis of spatial R&D spillover potential  

The cosine similarity has desirable properties in most spillover analyses  as will be 

summarized in section 6. There is however a subtle property that is often ignored when this 

measure is used as a proxy for spillover potential. It is that, output or patent shares are 

compositional data. Compositional datasets have constant  sums and only positive values e.g. row 

proportions of contingency tables and shares of patents. The standard data analysis techniques 

when used on compositional data usually tend to be misleading i.e. standard covariances and 

correlations are wrong (Kohler and Luniak 2005) .   

McNamee (2013) also argued that the fundamental problem with Jaffe measure is that it 

assumes that groupings at an aggregation level chosen are unrelated and independent of one 

another.  This may not usually be the case. The concept of a subcomposition, and the requirement 

that any form of analysis should have what is called subcompositional coherence (Aitchison and 

Greenacre 2002) is violated by most conventional technological proximity measures like Jaffe 

metric, Euclidean distance and Mahalanobis distance. Subcompositional coherence states that 

inferences about subcompositions should be consistent, regardless of whether the inference is 

based on the subcomposition or the full composition (Aitchison 1992). This property is illustrated 

using a simple example below. In addition, the results should be scale invariant, that is, the 

information in a composition should not depend on the particular units in which the composition 

is expressed (Hron and Filzmoser 2015). The Jaffe measure satisfies scale invariance but fails on 

subcompositional coherence (Aitchison 1992).  

With compositional data, the concern should be on relative rather than absolute 

magnitudes. Thus, we should be concerned with ratios of the R&D/ output shares rather than the 

absolute shares themselves. One common transformation relevant for such data is the log-

transformation. This is important because the variance of samples i and j, var (
yi

yj
⁄ ) is not 

precisely related to var (
yj

yi
⁄ ) such that one would need a large number of such descriptive 

summaries. With logarithms of ratios, a simple property that, ln(1
a⁄ ) = − ln a is utilized, so that 

E {ln (
yj

yi
⁄ )} = −E{ln(

yi
yj

⁄ )} and var {ln (
yj

yi
⁄ )} = var {ln(

yi
yj

⁄ )}  ( Aitchison 1990). 

According to Aitchison (1990), the first requirement for any analysis of compositional 

variability must be the provision of a simple and effective way of summarizing the relative 

variability of components within a compositional dataset. The plotting should also be within the 

simplex and follow what is called Atchision Geometry since the simplex is only a part of the 

Euclidian Space that is normally used in standard statistical analyses. The other advantage to using 

compositional data analysis methods is, unlike Jaffe measure, the statistical distribution of 

compositional measures are well proven. With Jaffe measure, it is difficult to make any inferential 

statements. For instance, there is no any literature to our knowledge that explains how one may do 

formal hypothesis testing with the Jaffe measure. Though, we can speculate that bootsrapping can 

be considered for this purpose, the other limitations make it worthwhile to consider compositional 
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statistical methods. For the sake of brevity, the reader is refered to Aitchison and Greenacre (2002) 

for details on the derivations of the compositional biplot.  

The distance measure corresponding to the Jaffe measure is the Aitchison distance, 

𝑑𝑖𝑗 = √
1

2𝑁
∑ ∑ (ln

𝑦𝑖𝑛

𝑦𝑖𝑛′

𝑁

𝑛′=1

𝑁

𝑛=1

− ln
𝑦𝑗𝑛

𝑦𝑗𝑛′
 )2  

where, 𝑦𝑖𝑛and 𝑦𝑖𝑛′ are elements of the vector of technology categories representing the share of a 

particular technology in a country 𝑖and 𝑁 is the number of technology categories as before. The 

technology proximity measures are then constructed following Aldieri and Cincera (2009) for 

geographic proximity measures as the negative exponential function of 𝑑𝑖𝑗  so if the technological 

Aitchison distance is zero, the technological Aitchison proximity is 1, i.e. the maximum possible 

value: 

𝑤𝑖𝑗
𝐴 =

1

𝑒𝑑𝑖𝑗
 

This transformation allows the comparison between the Jaffe measure and the proposed Aitchison 

proximity measure. Precisely, 𝑤𝑖𝑗
𝐴 = 1 whenever 𝑖 = 𝑗 just as the jaffe measure and 𝑤𝑖𝑗

𝐴 ≈ 0  

whenever the distance measure approaches infinity. Therefore  𝑤𝑖𝑗
𝐴 can be used instead of 𝑤𝑖𝑗 in 

the equation (3) and the analysis would proceed as traditionally done with the Jaffe metric. In order 

to expound on the theoretical superiority of the Aitchison measure, we demonstrate using simple 

examples the consequences of using this measure instead of the Jaffe measure. A more complete 

comparison would require an analytical and mathematical analysis of the two measures or a Monte 

Carlo experiment to analyze the numerical properties of the two measures. This has never been 

shown in the literature to the knowledge of the author and is beyond the objectives of this paper 

but is an object for future research. It is however shown using the data for this paper that the Jaffe 

measure overestimates the technological proximity measures and whenever there are nonessential 

classes, the measure changes.  

The key distinguishing factor for the superiority for the Aitchison proximity measure is the 

property of subcompositional coherence. We can illustrate this property with a simple example. 

Consider, two hypothetical firms or countries (𝐴 and 𝐵) patenting or producing some technologies 

in three technological classes. Let the shares for 𝐴 in each of the classes be 𝐴 = (
2

4
,

1

4
,

1

4
) and for 𝐵 

be 𝐵 = (
1

4
,

2

4
,

1

4
). Now assume that the researcher analyzing technological proximity measures has 

access to data only for the two technological classes and reconstitutes the shares to add to one as 

before as follows: 𝐴′ = (
2

3
,

1

3
) and 𝐵′ = (

1

3
,

2

3
). Since the share of patenting in the third 

technological class was the same one would expect that the technological proximity measure 
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between 𝐴 and 𝐵 would not change when we consider 𝐴′ and 𝐵′. When we calculate the Jaffe 

metric for 𝐴 and 𝐵, it is found that 𝑤𝐴𝐵 = 0.833 while for 𝐴′ and 𝐵′ it is 𝑤𝐴′𝐵′ = 0.8. When we 

use the Aitchison technological proximity measure, using  the two subcomposions is coherent with 

using the full composition and we get the same value of 𝑤𝐴𝐵
𝐴 = 𝑤𝐴′𝐵′

𝐴 = 0.375. The reason for the 

coherence in the Aitchison proximity measure is that the ratios between the two classes are 

maintained i.e. 
2

4
÷

1

4
= 2 =

2

3
÷

1

3
 when the third class is removed. Similar examples are shown by 

Aitchison (1992).  According to Simon and Sick (2016), the cosine/Jaffe measure increases with 

increasing number of irrelevant patent classes even though there is no change in the overlap. It is 

apparent from this example that the Aitchison distance measure is lower than the Jaffe measure. 

This is confirmed using the agricultural R&D spillover for Southern African countries as shown 

in the figure 4. 

 

Figure 4: Scatterplot of Jaffe proximity and Aitchison proximity measures for Southern African 

countries [2011] 

 

The figure 4 shows the scatterplot of 91 observations of Jaffe and Aitchison proximity 

measures corresponding to the upper triangular matrix of these measures for 14 countries.  It is 
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apparent in the figure that the Jaffe measure is always higher than the Aitchison proximity measure. 

The correlation between the two measures is about 0.56. The differences in the two measures for 

the same underlying data are due to the differences in the way the measures are calculated. While 

the Jaffe measure increases with increasing covariation in the absolute shares of any particular pair 

of countries, the Aitchison measure increases on the basis of the differences in the log-ratios of 

shares. Therefore, the Jaffe measure will be high whenever the distribution of shares is similar 

across a pair of countries (i.e.there is concordance in the ordering of the classes) and higher than 

the Aitchison measure if some of the shares are very small or large relative to the other shares. 

Conversely, the Aitchison measure will be high whenever the distribution of the shares is similar 

and most importantly the distribution of the ratios of the respective shares is similar. The Aitchison 

measure is therefore more stringent than the Jaffe measure and is likely to be lower than the Jaffe 

measure.  

The figure 4 illustrates the contrasts for some of the country pairs. The table 3 shows the 

distribution of the underlying shares data for each of the highlighted countries. In the table, the 

classes with the highest and lowest shares are highlighted to illustrate what drives the differences 

observed in figure 4. The countries with high Jaffe and high Aitchison measure (i.e. Malawi: 

Mozambique and Angola: Democratic Republic of Congo) have similar data structure with each 

having the same classes with highest (roots) and lowest shares (vegetables for 

Malawi:Mozambique and stimulants for Angola: Democratic Republic of Congo). In addition, the 

ordering of the other shares is also the same.  The countries with high Jaffe and low Aitchison 

measure (i.e. Swaziland:Mauritius and Botswana:Lesotho) have data structures in which the class 

with the highest share is the same but is greater than 0.5 (for example, livestock share is 0.8654 

for Botswana and 0.5763 for Lesotho) thereby having the other shares with very small shares. 

Therefore, though the share distributions co-vary implying a higher Jaffe measure, the differences 

in the log-ratios are huge implying lower Aitchison proximity measure. A similar reason explains 

the low Jaffe and low Aitchison measures for the pairs- Botswana:Malawi and Botswana: 

Democratic Republic of Congo.  

Table 3: Underlying shares data [year 2011] for highlighted countries in figure 4 

Share classes Countries 

ANG BT    D.R.C    LES MW MAU MOZ SWA 

Cereals 0.0497 0.0329 0.0707 0.1132 0.1832 0.0005 0.1438 0.0410 

Roots 0.4385 0.0516 0.4386 0.1413 0.3102 0.0150 0.3606 0.0377 

Sugar & Pulses 0.0925 0.0187 0.1165 0.0329 0.1697 0.5480 0.2110 0.5736 

Vegetables 0.0187 0.0236 0.0292 0.0435 0.0245 0.0680 0.0396 0.0109 

Fruits 0.2452 0.0069 0.2011 0.0399 0.1027 0.0310 0.0649 0.1041 

Stimulants & Tobacco 0.0161 0.0010 0.0291 0.0529 0.1159 0.0123 0.0609 0.0034 

Livestock 0.1393 0.8654 0.1148 0.5763 0.0937 0.3251 0.1193 0.2293 

Notes: ANG=Angola, BT=Botswana, D.R.C=Democratic Republic of Congo, LES=Lesotho, 

MW=Malawi, MAU=Mauritius, MOZ=Mozambique, SWA=Swaziland.  
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The resulting biplot from using the proposed distance measure is called the relative 

variation biplot because it represents variation in all the component ratios.  A robust version of 

compositional biplot proposed by (Boogaart and Tolosana-Delgado 2013)  allows angles and 

distances in the simplex to be associated with angles and distances in real space.   The problem 

with log ratio transformations in compositional data analysis is the preponderance of zeros due to 

measurement error or a structural missing category in one of the countries/ firms. For instance, 

with output shares; it is likely that some commodities are country specific and not produced by 

some countries. The log of zero is undefined such that a dilemma arises when using these methods. 

This is the key limitation of using the Aitchison distance measure and empirical economists need 

to consider the tradeoff between theoretical superiority of the Aitchison distance measure and the 

computational convenience of the Jaffe measure. The challenge of zero shares can however be 

dealt with by following several zero  imputation algorithms proposed by Fry, Fry, and McLaren 

(2000) or calculate the distance measures using the positive shares across any two countries (i.e. 

depend on the independence of irrelevant technological classes property of the Aitchison distance)   

Among the proposed zero value imputation algorithms, almagamation is the simplest and  involves 

just reducing the number of components by grouping them in such a way that zero shares 

disappear. This inevitably leads to informational losses. In the analysis, we eliminated zeros 

through almagamation of components with most zeros and deletion of one country (Seychelles) 

which had zeros for most of the commodities.   

The interpretation of a resulting compositional biplot in Figure 5 is slightly different from 

the interpretation of the conventional biplots in Figure 1 and Figure 2. Firstly, the distances 

between row points approximate the technological/agro-ecological distance between countries in 

the Figure 5. For instance, Angola (1) and Democratic Republic of Congo (3) are closer in 

agricultural R&D potential than Angola (1) and Botswana (2). Secondly, the distances between 

column points are approximations of the standard deviation of the corresponding log-ratios 

(Aitchison and Greenacre  2002). There is therefore high relative variation between fibres and 

livestock as shown by the long distance between them. Finally, the cosine of the angles 

approximates the correlation of log-ratios. It is apparent that there are correlations among 

commodity groups that can distort the way similarities among countries can be interpreted when 

one ignores inter-technology/commodity group distances. This is exacerbated by the fact that in 

all applications, aggregations of technology areas are rather arbitrary and subjective.  
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Figure 54: Robust compositional biplot with amalgamated commodity shares 

Notes: Numbers represent countries. 1= Angola, 2=Botswana, 3=Democratic Republic of Congo, 4=Lesotho, 

5=Madagascar, 6=Malawi, 7=Mauritius, 8=Mozambique, 9=Namibia, 10=South Africa, 11= Swaziland, 

12=Tanzania, 13=Zambia, 14=Zimbabwe. 

6.  Summary of axioms for comparing spill over measures 

Bloom, Schankerman, and Reenen (2013) proposed the first ever series of desirable properties 

(axioms) of distance measures that can be used to decide which measure to use based on the 

research question.  The axioms are shown in the first column of Table 4 below. Table X in Bloom, 

Schankerman, and Reenen (2013) also had economic microfoundations as one of the axioms. This 

remains the most important axiom but for which all the distance measures considered fail to satisfy. 

They concluded from a list of distance measures that , Jaffe’s measure and the Mahalanobis 

distance satisfy the most axioms. Nevertheless, the Jaffe measure, which has been the benchmark 

for empirical spillover research for almost two decades, is strictly dominated by the Mahalanobis 

measure. Precisely, the Mahalanobis measure allows for inter-group distance, which is important 

due to the arbitrary groupings of the technology classes and the fact that crop management research 

may apply across the different commodity groups. Both Mahalanobis and Jaffe measure fail to 

satisfy the non-overlapping fields property which requires that the index be invariant to the 

allocation of R&D by country 𝑖 in fields/technology classes where country 𝑗 does no R&D and 

which are not technology related to those in which country 𝑗 is active. This property says that 

technological proximity between two countries should depend only on the extent to which their 

R&D overlaps. This axiom is related to the subcompositional coherence in compositional data 
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analysis and the well known axiom in economics-the independence of irrelevant alternatives (IIA). 

Bar and Leiponen (2012) argued that the independence of irrelevant (patent) classes is a desired 

property of technological measures in that technological distance between two firms/countries 

should depend on the shares of patents these firms/countries have in classes in which they both 

actively patent, but should not depend on how patents for one firm/country are distributed between 

classes in which the other firm does not patent at all.  

 The proposed Aitchison distance/proximity measure strictly dominates the Jaffe measure 

and Mahalanobis distance measure as it satisfies the non-overlapping fields axiom. There is 

therefore a case for the R&D spillover literature to consider Aitchison measure as a better 

alternative to Jaffe measure. The seminal monograph (Aitchison 1986) on this distance measure 

and the other compositional data analysis literature following it means that Aitchison distance 

measure is on a better footing interms of its theoretical properties than the Jaffe measure. For 

instance, the Aitchison distance measure has well defined statistical distributions, inferential 

apparatus, and thus can allow a complete characterization of parameter uncertainty  of the weights 

into the economic analysis of R&D spillovers.  

Table 4:  

Desirable properties and axioms of distance measures 

Properties Jaffe Mahalanobis Aitchison 

Definition/ Formula 𝑌𝑖′𝑌𝑗

√𝑌𝑖√𝑌𝑗

 
𝑌𝑖′Ω𝑌𝑗

√𝑌𝑖√𝑌𝑗

 
√

1

2𝑁
∑ ∑ (ln

𝑦𝑖𝑛

𝑦𝑖𝑛′

𝑁

𝑛′=1

𝑁

𝑛=1

− ln
𝑦𝑗𝑛

𝑦𝑗𝑛′
 )2 

Biplot type Column 

centered 

CVA biplot Compositional biplot 

Scale invariance X X X 

Within Group Overlap X X X 

Between Group Overlap  X X 

Non overlapping fields 

(Sub-compositional 

coherence/ Independence 

of irrelevant classes ) 

  X 

Invariance to aggregation 

over non-active 

fields/crops 

X X X 

Robustness to aggregation 

of active fields/crops 

X X X 

Source: adapted from Bloom, Schankerman, and Reenen (2013). 

Notes: 𝑌𝑖 denotes the vector of output shares of country 𝑖 in different crop categories, 𝑦𝑖𝑛 and 𝑦𝑖𝑛′ are elements of the vector, 𝑁 is 

the number of technology categories,  and Ω is the mahalanobis matrix summarizing the co-location of crop categories.  An “X” 

denotes that the distance measure has the indicated property, whereas a blank indicates that it does not.  
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7. Conclusions and implications 

This paper has introduced two important extensions to the literature on technological 

proximity measures. These are:  the biplot, as a graphical display of technological proximity 

measures and the Aitchison proximity measure, as a numerical metric that captures the adding up 

constraint of the sample space for calculating technological proximity measures.  The analysis 

presented in the paper is an attempt to offer the richness of a graphical approach in R&D spillover 

exploratory analysis.  In terms of agricultural R&D policy, there are several interesting findings 

that are elucidated by a graphical analysis. The first is that, the findings from the graphical analysis 

are consistent with the literature on agricultural R&D spillovers in sub-Saharan Africa. Second, 

the spatial and temporal convergence in the spill over potential based the findings of this study 

reflects the emerging globalization trends across all Africa and developing countries.  The 

convergence results can be explained by the fact that spill over potential of crop varietal 

technologies has increased overtime because environments have been “homogenized” owing to 

the widespread adoption of modern technology such as irrigation and fertilizer and because tastes 

and preferences have begun to converge (Byerlee and Traxler 2001). Further research is needed to 

explain the slight divergence in the period from 2001 to 2011.  Though regional agricultural 

research institutions like Forum for Agricultural Research in Africa (FARA) and Centre for 

Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) were 

developed on the basis of geopolitical reasons; the graphical analysis has shown that further 

assessment of whether there is research policy integration potential within these regions is 

required. This study has shown that even within a regional group like CCARDESA, there are 

similarities and dissimilarities that suggest country groupings in terms of agricultural R&D policy.  

In terms of the numerical metric, the paper has shown that it is important to recognize the 

sample space of the data that is mostly used to calculate the technological proximity measures. 

Almost all studies using the technological proximity measures use shares of patents or citations 

etc. that add up to a constant number, 1. In this sample space, Aitchison (1986) and the 

compositonal data analysis literature have proved that proximity measures should satisfy certain 

properties including: scale invariance and subcompositional coherence. It has been shown in this 

paper and also in the compositional data literature e.g. Aitchison (1992), that the Jaffe measure 

fails on the subcompositional coherence property. This property is equivalent to the non-

overlapping fields axiom and the independence of irrelevant patent classes property introduced in 

the economics of innovation literature by Bloom, Schankerman, and Reenen (2013) and Bar and 

Leiponen (2012) respectively, who both showed that the Jaffe measure fails on this axiom. The 

Aitchison proximity measure satisfies all the axioms suggested in the literature. The limitation of 

using this measure is that it cannot be used when the data has zero shares. In that scenario, 

researchers can almagamate shares to eliminate zero shares or use positive shares for overlapping 

classes only and rely on subcompositional coherence.  

It follows then from study’s findings that biplot analysis can be a visualization tool for 

exploratory analysis of R&D spillovers. The data transformation and software requirements are 
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also currently available in many traditional statistical computing environments. In addition, biplot 

analysis can be extended to multivariate cases as demonstrated in the paper thereby providing a 

good exploratory data analysis approach that can help explore the variables to include in the 

knowledge production function. The realization that Jaffe’s measure is constructed using 

compositional data can also open much deeper analysis of spillovers using the well-developed 

compositional data analysis methods like the Aitchison distance measure. In particular, the 

Aitchison distance measure has well defined statistical distributions, inferential apparatus and thus 

can allow a complete characterization of the parameter uncertainty  of the weights into the 

economic analysis of R&D spillovers. These extensions can therefore help researchers analyzing 

R&D spillover potential to consider multiple dimensions of visualizing and understanding 

spillovers.   
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Appendix: Pseudo R code for the tables and graphs 
 
# Table 1 
vshares2011=read.table("sadc_value_shares.csv",sep=",", header=TRUE) 
attach(vshares2011) 
vshares=vshares2011 
# Cosine similarity/Jaffe Omega Function 
jaffem=function (d, w = rep(1, nrow(d))/nrow(d))  
{ 
  s <- sum(w) 
  m1 <- sum(d[, i] * w)/s      
  m2 <- sum(d[, j] * w)/s 
  (sum(d[, i] * d[, j] * w)/s)/sqrt((sum(d[, i]^2 *  
                                             w)/s) * (sum(d[, j]^2 * w)/s)) 
} 
nr = ncol(vshares) 
nc = ncol(vshares) 
r=array(0,dim=c(nr,nc)) 
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for (i in 1:nr) { 
  for (j in 1:nc){ 
r[i,j]=jaffem(vshares)}} 
 
# Table 2 
shares=read.table("shares.txt") 
jaffem=function (d, w = rep(1, nrow(d))/nrow(d))  
{ 
  s <- sum(w) 
  m1 <- sum(d[, i] * w)/s      
  m2 <- sum(d[, j] * w)/s 
  (sum(d[, i] * d[, j] * w)/s)/sqrt((sum(d[, i]^2 *  
                                             w)/s) * (sum(d[, j]^2 * w)/s)) 
} 
nr = ncol(shares) 
nc = ncol(shares) 
r=array(0,dim=c(nr,nc)) 
for (i in 1:nr) { 
  for (j in 1:nc){ 
r[i,j]=jaffem(shares)}} 
 
# Figure 1 
library(UBbipl) 
shares=read.table("shares.txt") 
figure1=PCAbipl(shares,scaled.mat = TRUE, colours = "black", pch.samples = 
15,pch.samples.size=1,rotate.degrees=70,offset = c(-0.2, 4, 0.1, 0),ax.name.size=0.6) 
 
# Figure 2 
sharesd=read.table("sharesd.txt") 
b=PCAbipl(sharesd ,scaled.mat = TRUE,colours = "black", pch.samples = 
15,pch.samples.size=1,rotate.degrees=-100,offset = c(-0.2, 4, 0.1, 0),ax.name.size=0.6) 
 
# Figure 3 
decadeshares=read.table("decadeshares.txt",header=TRUE) 
CVAbipl(decadeshares[,3:11], G = indmat(decadeshares[,2]),colours = 
c("red","blue","green","brown","black"),density.plot = "groups", legend.type = 
c(TRUE,TRUE,TRUE,TRUE,TRUE),line.width = 2,alpha = 0.95, specify.bags = 1:5) 
 
# Figure 5 
amalgamatedsharet=read.table("amalgamatedsharet.txt",header=TRUE) 
library(dplyr) 
amalgamatedsharet=rename(amalgamatedsharet,sugar=SugarPulsesNutsOil) 
amalgamatedsharet=rename(amalgamatedsharet,Fibre=FibreSpicesStimulantTobacco) 
attach(amalgamatedsharet) 
library(compositions) 
library(robCompositions) 
PrinCompRob <- pcaCoDa(amalgamatedsharet, method="robust") 
plot(PrinCompRob,col="black") 
 
# Subcompositional coherence example 
library(compositions) 
library(robCompositions) 
A=c(2/4,1/4,1/4) 
B=c(1/4,2/4,1/4) 
shares=cbind(A,B) 
dij=aDist(A,B) 
wijA=1/exp(dij) 
wijA 
cor(A,B) 
 
jaffem=function (d, w = rep(1, nrow(d))/nrow(d)) 
{ 
 s <- sum(w) 
 m1 <- sum(d[, i] * w)/s 
 m2 <- sum(d[, j] * w)/s 
 (sum(d[, i] * d[, j] * w)/s)/sqrt((sum(d[, i]^2 * 
 w)/s) * (sum(d[, j]^2 * w)/s)) 
} 
nr = ncol(shares) 
nc = ncol(shares) 
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r=array(0,dim=c(nr,nc)) 
for (i in 1:nr) { 
 for (j in 1:nc){ 
r[i,j]=jaffem(shares)}} 
r 
 
C=c(2/3,1/3) 
D=c(1/3,2/3) 
sharesub=cbind(C,D) 
dij=aDist(C,D) 
wijA=1/exp(dij) 
wijA 
cor(C,D) 
 
jaffem=function (d, w = rep(1, nrow(d))/nrow(d)) 
{ 
 s <- sum(w) 
 m1 <- sum(d[, i] * w)/s 
 m2 <- sum(d[, j] * w)/s 
 (sum(d[, i] * d[, j] * w)/s)/sqrt((sum(d[, i]^2 * 
 w)/s) * (sum(d[, j]^2 * w)/s)) 
} 
nr = ncol(shares) 
nc = ncol(shares) 
r=array(0,dim=c(nr,nc)) 
for (i in 1:nr) { 
 for (j in 1:nc){ 
r[i,j]=jaffem(sharesub)}} 
r 


