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Background

Many studies documented negative impacts of extreme heat on
crop yields: e.g. Schlenker and Roberts (2009)

Only several studies focus on within-season temperature
variability: e.g. Ortiz-Bobea et al. (2018); Butler and Huybers
(2015); Tack et al. (2015)

We attempt to contribute to this literature by proposing
estimation approaches that are more suitable in the context of
high-dimensional data.
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Key Research Questions

Are detrimental heat impacts additive within growing season?

If not, what are the implications on the warming effects?

What are the implications on the cost of crop insurance?
e.g. Tack et al. (2018); Perry et al. (2017)
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Model Specifications

Table: Four alternative specifications (Dep. Var = ln yieldit)

Models Explanatory Variables

M1 Growing season avg. Growing Degree Days (GDD) and Heating Degree Days (HDD),
quadratic growing season avg. precipitation, quadratic state-specific time trends, and
county fixed effects

M2 Growing season avg. GDD and HDD, quadratic growing season avg. precipitation,
quadratic state-specific time trends, and county fixed effects + Interaction terms of
GDD and HDD with quadratic precipitation variables

M3 Monthly GDDs and HDDs, quadratic monthly precipitation, quadratic state-specific time
trends, and county fixed effects

M4 Monthly GDDs and HDDs, quadratic monthly precipitation, quadratic state-specific time
trends, and county fixed effects + Interaction terms of GDD and HDD with quadratic
precipitation variables (64 weather-related variables)
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High-dimensional Data
Penalized Regressions versus Bayesian Approaches

The OLS estimates often lead to poor estimation and prediction
accuracy with a large number of explanatory variables
(Tibshirani, 1996). M4 has 64 weather-related variables.

One of the alternatives is to use penalized least squares (PLS):
the determination of tuning parameters, which control the
degree of the sparsity, is a big challenge.

In a Bayesian framework, the tuning parameter selection problem
can be resolved by integrating out the tuning parameter through
Markov Chain Monte Carlo method (Narisetty and He, 2014).
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Bayesian Variable Selection and Bayesian Modeling Average

Let γ be one of the candidate models. Bayesian variable selection
(BVS) can be done by finding the highest posterior probability of γ:

p(γ|data) =
p(γ)

∫ ∫
f (y |βγ, σ2)p(βγ, σ

2)dβγdσ
2∑

γ p(γ)
∫ ∫

f (y |βγ, σ2)p(βγ, σ2)dβγdσ2
.

To address the uncertainty associated with the estimated model γ̂,
Bayesian model averaging (BMA) uses

p(β, σ2|data) =
∑
γ

p(β, σ2|data, γ)p(γ|data).

Dealing with computational issues: We use MC3.
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Data

We use the USDA NASS corn yield data from corn belt counties
in Iowa, Illinois, and Indiana for the period of 1989 - 2014.

We use the weather data from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM).

Similar to Schlenker and Roberts (2009), using the minimum
and maximum temperatures from the PRISM data, we
approximate a distribution of temperatures for each day based
on a sinusoidal curve of Snyder (1985).

And then, we calculate the growing degree days (GDDs) and the
heating degree days (HDDs) for each month.
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Recall that the candidate models are...

Table: Four alternative specifications (Dep. Var = ln yieldit)

Models Explanatory Variables

M1 Growing season avg. Growing Degree Days (GDD) and Heating Degree Days (HDD),
quadratic growing season avg. precipitation, quadratic state-specific time trends, and
county fixed effects

M2 Growing season avg. GDD and HDD, quadratic growing season avg. precipitation,
quadratic state-specific time trends, and county fixed effects + Interaction terms of
GDD and HDD with quadratic precipitation variables

M3 Monthly GDDs and HDDs, quadratic monthly precipitation, quadratic state-specific time
trends, and county fixed effects

M4 Monthly GDDs and HDDs, quadratic monthly precipitation, quadratic state-specific time
trends, and county fixed effects + Interaction terms of GDD and HDD with quadratic
precipitation variables (64 weather-related variables)
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Out-of-sample Prediction Performances
Table: Out-of-sample prediction performances

Specifications RMSE MAPE PCC

M1 - OLS 0.2481 0.0365 0.7480
(34.14) (32.41) (61.80)

M2 - OLS 0.2816 0.0426 0.7486
(25.24) (21.11) (61.93)

M3 - OLS 0.2136 0.0323 0.7850
(43.30) (40.19) (69.80)

M4 - OLS 0.1976 0.0286 0.7946
(47.54) (47.04) (71.88)

M4 - BVS 0.1911 0.0283 0.8100
(49.27) (47.59) (75.21)

M4 - BMA 0.1905 0.0282 0.8111
(49.43) (47.78) (75.45)

Note: Changes compared to the model without weather variables
(RMSE=0.3767, MAPE=0.0540, PCC=0.4623) are reported in parenthesis (%
reductions for RMSE and MAPE, % increases for PCC)
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Conditional Marginal Effects
M4 - BMA, Growing Degree Days
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Note: Blue represents the marginal effects at 75% percentile of precipitation and
Red represents the marginal effects at 25% percentile of precipitation.
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Conditional Marginal Effects
M4 - BMA, Degree Days above 29°C
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Note: Blue represents the marginal effects at 75% percentile of precipitation and
Red represents the marginal effects at 25% percentile of precipitation.
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Uniform Warming Effects
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Geographic Heterogeneity

M1 − OLS M2 − OLS
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Application to Crop Insurance Loss Ratios
M4 - BMA, Growing Degree Days
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Note: Blue represents the marginal effects at 75% percentile of precipitation and
Red represents the marginal effects at 25% percentile of precipitation.
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Application to Crop Insurance Loss Ratios
M4 - BMA, Degree Days above 29°C
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Note: Blue represents the marginal effects at 75% percentile of precipitation and
Red represents the marginal effects at 25% percentile of precipitation.
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Remaining Questions and Next Steps

What is the appropriate/efficient level of aggregation time
window?

What are the implications on climate change adaptation?

Spatial correlations

Warming impacts on the cost of crop insurance programs
(Analyze using Loss-cost ratios)
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