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Overview of RC Concept 
Consider the model: 
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where restrictions (1-b) must be satisfied but up to an 
endogenously identified proportion of constraints 

(1-c) can be violated or relaxed.  



Overview of RC Concept 
Variations of RC models can involve 

(1) Stochastic problems like portfolio optimization 
subject to  𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 or probability of loss constraints 

or 
(2) Non-stochastic problems like quantile DEA where 

a model maximizes an efficiency metric while 
allowing a proportion of the DMU data to lie 

external to the DEA estimated technology hull. 
  



Overview of RC Concept 

Insurance Companies or Banks 
Regulatory Restrictions on 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 or 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 Exposure 

Producer Level 
Production or Operating Decisions Subject to 

Probabilistic Environmental Regulatory 
Restrictions (Europe) 

 
Self Imposed Restrictions on Probability of 

Default or Failing to Meet Income Objectives 
  



Binary (BRC) Example 
𝐕𝐕𝐕𝐕𝐑𝐑𝐪𝐪 Constrained Portfolio Application 
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where 𝒚𝒚𝒊𝒊,𝒋𝒋 = per unit returns for asset j in state i = 1, …n, (1/n) is a 
vector, and 𝒙𝒙𝒊𝒊 = 𝒚𝒚𝒊𝒊 ∙ 𝒛𝒛 is the portfolio return in state i. 



BRC Example 
In System (2) we model joint possible returns as 

finitely discrete with Y an n x m matrix of n 
potential joint returns for m assets. 

• Potential returns Y historical, simulated or generated with 
combined process. 

• Marginal distributions (columns in Y) can be independently 
estimated or simulated and bound together with copulas. 

• n must be "large" relative to m to avoid "data mining bias" 
• n must be larger as q decreases if we desire to reasonably 

estimate multivariate tail risk. 
 



Motivation of Continuous Relaxed 
Constraint (CRC) Concept 

𝐕𝐕𝐕𝐕𝐑𝐑𝐪𝐪 constrained problems are usually "NP-hard" 
problems that are solved with MILP or BLP 

programming methods. 
Mansini, R. W. Ogryczak, and M. Speranza. 2015 

 
Often (as is demonstrated later) not practical to 

solve large MILP problems in reasonable amount of 
time. 



Motivation of Continuous Relaxed 
Constraint (CRC) Concept 

Note: system (1) is nested in system (2). 

If < 𝟏𝟏
𝒏𝒏
 , system (2) reverts to system (1) 

 
CRC approach constructs an alternative system that 

also nests system (1) but is a continuous LP. 
 

Utilizes partial moment stochastic inequality 
≤ ≤Prob(x g) q(Atwood-1985) that guarantees . 



 

Theory-Methodology 
Lower Partial Moment 
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Theory-Methodology 
Partial Moments have long been viewed as 

alternatives to variance as a measure of risk. 
(Bawa; Fishburn) 

 
Consistent with varying degrees of    stochastic 

dominance (Fishburn) 
 

Semi-variance a special case (t = 𝝁𝝁,𝜸𝜸 = 𝟐𝟐) 
 

Linear LPM (𝜸𝜸 = 𝟏𝟏) used in Tauer's Target 
MOTAD Model 



 

Theory-Methodology 
Partial Moments utilized in stochastic inequalities 
presented by Berck and Hihn(1982) and Atwood 

(1985). 
 

Berck-Hihn used semivariance. 
 

Atwood generalized for partial moments of 
any order and for all t levels. 

 



Theory-Methodology 
Atwood (1985) demonstrated that1: 
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Similar manipulations with UPM give: 
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Theory-Methodology 
Lower Partial Moment (LPM) Probability Bounds 

 



Theory-Methodology 
Linear Lower Partial Moment Results: 
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Theory-Methodology 
Linear Upper Partial Moment Results 
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Theory-Methodology 
Atwood, Watts, Helmers, and Held (AWHH) (1988) 

presented the following continuous LP model: 
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Theory-Methodology 
AWHH (1988) and others noted: 

 
The optimal solution aggregate returns vector 
𝒙𝒙� = 𝒀𝒀𝒛𝒛�  from system (9) satisfied the 
probability constraint Prob�𝒙𝒙� ≤ 𝒈𝒈𝟎𝟎� ≤ 𝒒𝒒  
 
The solutions were often quite conservative in 
that Prob�𝒙𝒙� ≤ 𝒈𝒈𝟎𝟎� was often much less than q. 

  



Theory-Methodology 
The reason for the conservative solutions in system (9) 
is easily demonstrated using results presented in the 
heavily cited paper by Rockafellar and Urysev (RU) 

(2000). 
 

RU presented LP procedures for minimizing the 
conditional Value at Risk or 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 of an upside risk 

model. 

 



Theory-Methodology 
RU (2000) model equivalent to an UPM variant 

of AWHH (1988) model. 
The 𝒈𝒈𝟎𝟎 in system (9) is actually the 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒(𝒙𝒙�). 

The optimal 𝒕𝒕� in system (9) is 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒(𝒙𝒙�) ⇒ 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝒙𝒙� ≤ 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒(𝒙𝒙�)) < 𝒒𝒒 and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷�𝒙𝒙� ≤ 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒(𝒙𝒙�)� = 𝒒𝒒 

  



Theory-Methodology 
The results that: 
𝒈𝒈𝟎𝟎 = 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒(𝒙𝒙�) 

and 
𝒕𝒕� = 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒(𝒙𝒙�) 

when system (9) is optimized can be easily shown 
using the definitions (7-a) or (8-a), the probability 

limits in (7-b) or (8-b), and assuming the constraints 
in (7-c) or (8-c) are binding. 

 
 



Theory-Methodology 
Results at this point: 

We can use AWHH(1988) or RU(2000) models and 
LP to solve high dimension 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 problems. 
• Coherency of cVaR risk metrics attractive. 
• However, the result solutions are commonly 
excessively conservative as approximations to a 

𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 constrained problem. 

   

 



Theory-Methodology 
 

Question:  Can we get less conservative 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 
constrained solutions using continuous LP since 

we usually cannot use MILP procedures with 
high dimension problems. 

 
Answer:   Yes.  If we use two insights.  Which we 

use depends upon our objective. 
 



Theory-Methodology 

If we wish to maintain coherency in portfolio risk 
model 

• Exploit the 𝒕𝒕� = 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 and 𝒈𝒈 = 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 result in the 
𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 restriction 𝒕𝒕� − 𝟏𝟏

𝒒𝒒
 𝝆𝝆𝑳𝑳(𝒕𝒕�) ≥  𝒈𝒈 

• Reduce g until 𝒕𝒕� = 𝒈𝒈𝟎𝟎 i.e. the original 𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 target. 
• Usually requires only two additional LP runs 

• The solution remains 𝒄𝒄𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 constrained thus maintaining coherency by 

considering all outcomes below 𝒕𝒕�  
• The solutions will still tend to be conservative relative to the optimal   

𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 constrained solution.  



Theory-Methodology 

If we wish to find the "best" constraints to relax to 
more closely approximate the original 

𝑽𝑽𝒂𝒂𝒂𝒂𝒒𝒒 constrained problem's optimal solution 
 

Let's examine what the CRC approach is doing to the 
nested LP problem. 

 



Theory-Methodology 
CRC Model 
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CRC Theory-Methodology 

 



CRC Theory-Methodology 
• The positive 𝒅𝒅𝒊𝒊 values in the partial moment model 
indicate constraints that the LP model has "stretched" 

 
• Indicate potential constraints to be "relaxed" in original 

nested problem. 
 

• When row restrictions on original problem  are relaxed 
the resulting solutions may need to be iterated on 

several times to find nested solutions with q constraints 
actually being violated (i.e. qDEA) 

  



EXAMPLE 
(Example designed to illustrate concept) 

 
• Invest a lump sum amount in a four asset portfolio 25 

years prior to retirement. 
• Plan to purchase a 30-year fixed income annuity at 

retirement.  Interest rate r = 0.04. 
• Investment assets assumed to follow a correlated log-

normal stochastic diffusion process. 
• 𝝁𝝁 = (𝟎𝟎.𝟏𝟏𝟏𝟏,𝟎𝟎.𝟏𝟏𝟐𝟐,𝟎𝟎.𝟏𝟏𝟎𝟎,𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏) 
• 𝝈𝝈 = (𝟎𝟎.𝟐𝟐𝟏𝟏,𝟎𝟎.𝟐𝟐𝟎𝟎,𝟎𝟎.𝟏𝟏𝟏𝟏,𝟎𝟎.𝟎𝟎𝟏𝟏) 
• 𝝆𝝆𝒊𝒊,𝒋𝒋 = 𝟎𝟎.𝟏𝟏 𝒇𝒇𝑷𝑷𝑷𝑷 𝒊𝒊, 𝒋𝒋 =  𝟏𝟏,𝟐𝟐,𝟑𝟑 
• 𝝆𝝆𝒊𝒊,𝟒𝟒 = 𝟎𝟎 𝒇𝒇𝑷𝑷𝑷𝑷 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,𝟑𝟑 



 

EXAMPLE 
 

The investor would like to estimate an optimal asset 
portfolio (with no rebalancing) and the minimal 

amount they would need to invest at time 0 to have no 
more than a 10% chance of their final retirement 

annuity falling below $45,000 per year. 
 

 



Results 
Results for Which Binary Solutions Could Be Found 

 

rnames nobs g1 T1 BM1 pvalM1 g2 T2 BM2 pvalM2 BM22 pvalM22 BB timeM timeM2 timeGB timeLNDO
Min 100 45000 47438 105936 0.030 34146 45000 89591 0.080 87279 0.080 71357 0.00 0.00 0.13 0.68
Q25 100 45000 49843 143100 0.040 38817 45000 126058 0.090 122913 0.090 117089 0.01 0.03 0.24 3.86

Median 100 45000 50974 147444 0.050 39726 45000 131221 0.090 127725 0.090 123021 0.01 0.03 0.30 4.82
Mean 100 45000 51280 147711 0.048 39556 45000 129849 0.092 127219 0.095 121441 0.01 0.03 0.34 4.73
Q75 100 45000 52168 154737 0.060 40627 45000 134994 0.100 133223 0.100 128212 0.02 0.03 0.38 5.76
Max 100 45000 59305 169018 0.070 42687 45000 150042 0.100 150042 0.100 143443 0.09 0.12 2.16 7.82

Min 250 45000 49216 140148 0.032 37368 45000 121067 0.092 115988 0.084 114145 0.01 0.03 0.84 8.78
Q25 250 45000 50651 148470 0.040 38773 45000 129134 0.096 127963 0.096 124112 0.02 0.05 3.77 14.42

Median 250 45000 51371 152173 0.044 39419 45000 133337 0.096 131253 0.096 127659 0.03 0.06 5.33 19.32
Mean 250 45000 51409 151850 0.045 39408 45000 132961 0.096 131627 0.097 127521 0.03 0.06 7.17 19.86
Q75 250 45000 52228 155286 0.048 39980 45000 136512 0.096 135284 0.100 131179 0.03 0.07 8.08 23.21
Max 250 45000 54190 165357 0.060 41145 45000 145915 0.100 145493 0.100 140196 0.10 0.13 47.88 46.25

Min 500 45000 49770 145661 0.034 37390 45000 125351 0.096 125083 0.090 116940 0.05 0.10 70.89 45.89
Q25 500 45000 50977 150323 0.040 38806 45000 131234 0.098 131006 0.098 127761 0.06 0.12 182.92 146.96

Median 500 45000 51690 153335 0.044 39176 45000 133574 0.098 133034 0.098 129505 0.07 0.14 260.09 211.61
Mean 500 45000 51618 153209 0.043 39243 45000 133588 0.098 133064 0.098 129809 0.07 0.16 391.80 310.18
Q75 500 45000 52183 155452 0.046 39724 45000 135595 0.098 135376 0.100 132702 0.08 0.22 455.70 377.47
Max 500 45000 54158 166736 0.054 40688 45000 144168 0.100 144080 0.100 138197 0.20 0.28 3599.99 1793.61



Results 
Results for Which Binary Solutions Could Not Be Found 

 

rnames nobs g1 T1 BM1 pvalM1 g2 T2 BM2 pvalM2 BM22 pvalM22 timeM timeM2
Min 1000 45000 50209 146141 0.036 38085 45000 128427 0.098 128040 0.096 0.12 0.24
Q25 1000 45000 51154 151832 0.041 38966 45000 132351 0.099 131663 0.099 0.15 0.30

Median 1000 45000 51488 153465 0.043 39329 45000 133967 0.099 133687 0.099 0.17 0.31
Mean 1000 45000 51575 153347 0.043 39268 45000 133804 0.099 133351 0.099 0.17 0.32
Q75 1000 45000 51968 154951 0.045 39586 45000 135422 0.099 135166 0.100 0.17 0.33
Max 1000 45000 53171 159709 0.050 40332 45000 140682 0.100 140661 0.100 0.21 0.36

Min 5000 45000 51030 150878 0.039 38754 45000 131025 0.100 131005 0.099 5.19 9.39
Q25 5000 45000 51390 153025 0.042 39117 45000 133434 0.100 133328 0.100 6.04 10.34

Median 5000 45000 51604 153926 0.043 39241 45000 134326 0.100 134245 0.100 6.46 10.82
Mean 5000 45000 51592 153953 0.043 39251 45000 134285 0.100 134218 0.100 6.47 10.79
Q75 5000 45000 51768 154827 0.044 39404 45000 134997 0.100 134984 0.100 6.85 11.15
Max 5000 45000 52253 157231 0.045 39682 45000 136811 0.100 136797 0.100 8.57 12.81

Min 10000 45000 51118 151450 0.041 38897 45000 132261 0.100 132127 0.099 13.13 18.18
Q25 10000 45000 51440 153494 0.042 39186 45000 133948 0.100 133926 0.100 16.18 21.11

Median 10000 45000 51559 154108 0.042 39275 45000 134500 0.100 134414 0.100 17.26 22.00
Mean 10000 45000 51564 154027 0.042 39272 45000 134420 0.100 134372 0.100 17.37 22.06
Q75 10000 45000 51676 154613 0.043 39366 45000 134970 0.100 134954 0.100 18.32 22.90
Max 10000 45000 52060 156290 0.045 39614 45000 136395 0.100 136346 0.100 22.58 27.53



CONCLUSIONS 
• Continuous CRC approach to relaxed constraint 

problems useful in portfolio optimization models. 
 

• CRC has proven useful in CVaR problems 
 

• Iterated CRC can give improved solutions to 
problems with VaR objectives or constraints. 
 

• Two stage CRC approach has already proven use in 
quantile DEA applications. 

 



 
NOTES: 

1The LPM stochastic inequality is derived via: 
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NOTES 

The preceding results use Fishburn's lower partial moment but 
can easily be modified to the use of upper partial moments 
(UPM) when computing limits on the probability of upside 
events. With the UPM and setting g > t, similar manipulations 
give:  

0γ
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−

UPMProb  for all g( ,t)(x g) t and
(g t) . 
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