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How High the Hedge:
Relationships between Prices and Yields
in the Federal Crop Insurance Program

A. Ford Ramsey, Barry K. Goodwin, and Sujit K. Ghosh

The theory of the natural hedge states that agricultural yields and prices are inversely related.
Actuarial rules for U.S. crop revenue insurance assume that dependence between yield and price
is constant across all counties within a state and that dependence can be adequately described by
the Gaussian copula. We use nonlinear measures of association and a selection of bivariate copulas
to empirically characterize spatially-varying dependence between prices and yields and examine
premium rate sensitivity for all corn producing counties in the United States. A simulation analysis
across copula types and parameter values exposes hypothetical impacts of actuarial changes.

Key words: copulas, dependence, revenue insurance, risk management

Economic theory implies that agricultural yields and prices are inversely related; this relationship
is known as the natural hedge. Strength and form of dependence are not specified by theory and
must be empirically determined. The degree of inverse dependence between yields and prices is
of practical importance in the federal crop insurance program. Most of the liability in the program
derives from revenue insurance policies. Rating such policies requires a distribution function for
crop revenue that is constructed in the federal program as a joint distribution function across yield
and price. The joint distribution can be uniquely characterized by the marginal distributions of yield
and price and an associated copula function.

The U.S. Department of Agriculture’s Risk Management Agency (RMA) is charged with
ensuring the actuarial fairness of policies offered through the federal crop insurance program.
In pricing revenue insurance policies, the RMA assumes that correlation (and, implicitly, other
dependence measures) between yield and price is fixed across counties within a state. The RMA
also assumes that the dependence structure between yield and price can be adequately captured by
a Gaussian copula. In effect, the same copula model is used for all counties within a state. Both
assumptions constitute a priori beliefs about the natural hedge.

This work investigates the practical consequences of these assumptions on crop insurance
premium rates. Through a large-scale empirical study, we examine the sensitivity of premium rates
to choice of copula function and marginal distributions. Differences in premium rates are mapped
to current insured values at all coverage levels providing a consistent dollar value for collected
premiums under different actuarial schemes. Using simulation techniques, we simultaneously vary
aspects of the copula and the marginal distributions to ascertain their combined effects on the
distribution of crop revenue. While the form of the best-fitting copula varies across counties,
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the impact on premium rates and resulting subsidy is relatively modest. Our results support the
continued use of RMA assumptions in the pricing of revenue insurance.

Copulas have been applied to a number of problems in finance and economics, including
the rating and pricing of crop insurance policies.1 Bozic et al. (2014) addressed the impact of
copula choice on premium rates for dairy margin insurance. We deal with crop revenue insurance,
as in Goodwin and Hungerford (2015), but our empirical application is fundamentally different.
Goodwin and Hungerford fit multivariate copulas to yields from four counties and the Chicago
Mercantile Exchange price. Because they fit multivariate copulas, their models implicitly accounted
for dependence across county yields. While dependence across yields is important for examining
systemic risk and pricing reinsurance, it adds an additional complication that is not relevant to rating
individual policies as currently actualized in the federal crop insurance program. In contrast, we fit
bivariate copulas within each county, calculate rate differences at each coverage level, and map the
rate differences into the current value insured at each coverage level. We explicitly consider two
key assumptions made by RMA in the present rating environment, only one of which Goodwin and
Hungerford addressed.

An additional extension beyond earlier work in revenue insurance is a simulation study that
simultaneously modifies the marginal distributions and the copula. Because of the small samples
that are used in practice, differences in estimated dependence and assumed dependence may result
from a lack of precision in statistical estimation. Recognition of this limitation provides additional
impetus for the simulation exercise.

Rate Making in Federal Crop Insurance

The U.S. federal crop insurance program functions as a public–private partnership, where private
insurers service the policies offered through the program. As of the 2017 fiscal year, 16 insurers
were approved to provide insurance coverage under the U.S. Department of Agriculture’s Standard
Reinsurance Agreement. The RMA sets the parameters of the underlying policies and determines
which policies will be offered through the federal program. The public–private aspect of federal crop
insurance has been a component of the program since 1981 and is often cited as a major reason for
the growth of insurance uptake since that time (Glauber, 2004).

The federal program offers many types of insurance; the most popular policies are revenue
insurance policies, which pay out on lost revenue. Revenue is a function of prices and yields; in
federal crop insurance, pricing revenue policies is an actuarial problem of the design of a joint
distribution of prices and yields. The joint distribution maps to a distribution of revenue. If price and
yield have an inverse relationship, then revenue variance will be less than revenue variance under
independence of these components (Bohenstedt and Goldberger, 1969). The loss on the most basic
revenue insurance policy is given by

(1) Loss = max(0,YPPPλ − YHPH),

where YP and PP are expected (planting time) yields and prices and YH and PH are realized (harvest
time) yields and prices and λ is a coverage level between 0 and 1. At the time the policy is sold, the
only stochastic variables in equation (1) are YH and PH . The marginal distributions of these quantities
have been extensively studied (Nelson and Preckel, 1989; Goodwin and Ker, 1998; Finger, 2010;
Sherrick et al., 2014; Tolhurst and Ker, 2015).

A popular extension of basic revenue insurance is the harvest price option. The loss on such a
policy is

(2) Loss = max(0,YP max(PP,PH)λ − YHPH),

1 For an introduction to copulas, see the works of Nelsen (1993) and Joe (2015).
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with variables similarly defined. The harvest price option adds additional prices to the revenue
guarantee.2 Coble et al. (2010) offer a more extensive discussion of the actuarial methods behind
these policies.

One of the primary tasks in developing rates for revenue insurance is modeling the relationship
between crop yields and the normalized average price of a futures contract at the Chicago Mercantile
Exchange (CME). The normalized price is constructed by dividing a harvest price by a projected
price, determined before the growing season begins. This normalized price can be thought of
as a return over the growing season and is modeled with a normal distribution following Black
and Scholes (1973). According to the theory of the natural hedge, the normalized price should
be inversely related to yields. While most studies couch the natural hedge in terms of Pearson
correlation, there is little to suggest that dependence between these two quantities must be linear.

Two assumptions in the pricing of federal revenue insurance relate directly to the natural
hedge or, more generally, to the structure of dependence. Dependence between prices and yields
is assumed to be adequately described by a Gaussian copula, further implying that yields and prices
are (asymptotically) tail independent (Nelsen, 1993). The second assumption is that the correlation
matrix for the Gaussian copula is fixed within states. For instance, CME prices and corn yields
in Erie County, PA, have the same dependence relationship as CME prices and corn yields in
Bucks County, PA. In a majority of states, these assumptions jointly imply that the variables are
independent of one another.3 Because the underlying relationship between prices and yields does
not respect state boundaries but rather follows a smooth spatial process, such assumptions may
result in flawed pricing.

If a large amount of data were available for the estimation of county- or unit-level copulas and
yield distributions, a strong argument could be made for the use of entirely data-driven actuarial
methods. But at both levels of aggregation, historical information on crop yields may only be
available for a small number of years. Furthermore, older data may not be informative for estimating
loss distributions. One solution to improve rating efficiency is to pool data from surrounding counties
or units. Racine and Ker (2006) were among the first to suggest using data from other counties for
rating purposes. Zhu, Goodwin, and Ghosh (2014) used spatial autoregressive models to investigate
spatial correlation in yield distributions, while Feng and Hayes (2016) suggested that reinsurers can
effectively pool risk across international boundaries. Ker, Tolhurst, and Liu (2016) used Bayesian
mixture models to pool information from estimated densities, whereas Park, Brorsen, and Harri
(2018) pooled information prior to the estimation of the density. We do not consider pooling data in
this application, our intent being to isolate the effect of the copula, but note that efficiencies could
be gained if methods were extended to pool across copulas.

Our empirical approach to assessing the suitability of assumptions made by the RMA about the
dependence structure is straightforward. We calculate premium rates at various coverage levels under
three scenarios: a copula specification based on RMA practice, a Gaussian copula with correlation
specified by the RMA, and the form of the copula and dependence allowed to freely vary. In the
last scenario, the optimal copula is selected according to the Akaike Information Criterion, as is
standard in the copula literature (Joe, 2015). Given the liability at each coverage level in the last
year of the sample, we calculate how much additional premium and subsidy would be generated
under alternative copula specifications. This allows for regional differences in pricing to be clarified
and provides a measure of the aggregate economic impact of hypothetical changes to rating methods.

2 While additional prices are added to the revenue guarantee for the harvest price option, the joint distribution is the same
because the projected price is not a random variable. While Revenue Protection and Revenue Protection – Harvest Price
Exclusion are available for individual units, analogous policies called Area Risk Protection (ARP) exist at the county level.
At both unit levels and the county level, the vast majority of liability is in revenue policies with the harvest price option.

3 The correlation parameter in many states is assumed to be 0. If the correlation parameter of a Gaussian copula is 0, the
copula takes the form of the independence copula and the random variables are independent.
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Measures of Dependence and the Copula

In agricultural contexts, copulas have primarily been used to model spatial dependence in yields
or to model dependence between random variables in crop revenue insurance, margin insurance,
and whole-farm insurance (Bozic et al., 2014; Bulut and Collins, 2014; Ahmed and Serra, 2015;
Goodwin and Hungerford, 2015; Feng and Hayes, 2016). Although applications in these studies
have varied, the gist has been that the use of a Gaussian copula implies tail independence among
the variables. Most authors find evidence that the Gaussian copula is not a suitable model by either
selecting a different form based on fit criteria or rejecting a null hypothesis that the Gaussian is the
proper copula. However, Hungerford and Goodwin (2014) showed that the form of the copula and
its parameter values can be highly variable when using small samples. In spite of variability due to
sample size, if the impact of different copulas on premium and subsidy is small, this can be taken
as evidence that RMA assumptions about the structure of dependence may be justified. No previous
studies have mapped rates to collected premiums at all available coverage levels, providing measures
of economic impact across a wide range of copula functions.

Many nonlinear measures have been developed to measure association and dependence between
two or more variables. These measures vary in their ability to capture different types of dependence
and in their computational simplicity. Statistics of association are useful tools for exploring the
dependence structure without making assumptions on functional form. They can also be used
to parameterize copula models. Table 1 gives the forms of five measures of association and
dependence. Dependence between price and yield is often measured in terms of the Pearson
correlation coefficient, which captures the extent of linear association between variables. It is widely
known that Pearson correlation is only appropriate for measuring linear relationships. Furthermore,
it is fallacious to say that a joint distribution can always be defined from its marginal distributions
and Pearson correlation (Embrechts, McNeil, and Straumann, 2002). The notion is false, except in
some special cases such as when the joint distribution of the variables is Gaussian.

Other nonparametric measures of association can capture nonlinear and nonmonotonic
dependence relationships. Monotone dependence occurs when, if one variable increases, the other
variable tends to increase (or decrease) as well. Criteria for measures of monotone association, or
bivariate concordance, were discussed in Scarsini (1984). Spearman’s rank correlation and Kendall’s
tau satisfy these criteria, while Pearson correlation does not. From Table 1, it should be clear that
Spearman’s rank correlation has the same formula as Pearson correlation, but with the calculation
based on ranks instead of the levels of the variables. Because Spearman rank correlation is only a
function of ranks of the data, it is invariant to monotone transformations of the variables and does
not rely on an assumption of linearity.

Kendall’s tau measures the number of concordant and discordant pairs of observations in the
data. If all pairs are concordant, then the statistic in Table 1 will equal 1. This indicates perfect
concordance and positive dependence. If the pairs are perfectly discordant, then the value of
Kendall’s tau is −1, indicating negative dependence. The population versions of Kendall’s tau and
Spearman rank correlation have the same formula, which is essentially Nelsen’s (1993) concordance
function.

Hoeffding’s D dependence coefficient facilitates tests of independence even when the alternative
is nonmonotonic. Hoeffding’s D was developed from the definition of independence, which is that
two variables are independent when FXY = FX FY . Hoeffding (1948) considered the distance between
the joint distribution and the product of the marginals, which should be 0 when the variables are
independent. Hoeffding’s D is an unbiased estimator of this distance and thus can be used to test for
independence against a wide variety of alternatives.

The last measure we suggest for gauging dependence between yield and price is distance
correlation, as proposed by Szekely, Rizzo, and Bakirov (2007) and applied by Szekely and Rizzo
(2009). Distance correlation is a generalization of Pearson correlation, and for a bivariate normal
distribution, distance correlation is a deterministic function of Pearson correlation. Much like
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Spearman rank correlation, distance correlation can be computed on ranks of the data, leading to
a rank distance correlation statistic. Because distance correlation is capable of finding complicated
dependence structures, there is little gain in transforming the data to ranks. As demonstrated in
Szekely and Rizzo, distance correlation performs well in detecting nonlinear dependence even when
the sample size is relatively small. Simon and Tibshirani (2014) found distance correlation to have
more power compared to Pearson correlation and the maximal information coefficient.

Even though measures of association provide quantification of the magnitude and direction of
dependence, it is still the case that a joint distribution must be formed and evaluated for actuarial
purposes. One approach to forming the distribution and incorporating nonlinear dependence is
through the use of copula functions. Sklar’s (1959) theorem is the fundamental existence theorem
for copulas, although work on standardized distributions predates Sklar’s theorem. Let F be a joint
distribution function with univariate marginal distribution functions F1, . . . ,Fd . Then there exists a
copula function C : [0,1]d→ [0,1] such that

(3) F(x1, . . . ,xd) =C(F1(x1), . . . ,Fd(xd)),

where x1, . . . ,xd ∈R are random variables. Copulas provide a way of constructing joint distributions
and simultaneously describing scale-free or rank dependence.

By inversion of the joint distribution in equation (3), the copula function can be written as

(4) C(u1, . . . ,ud) = F(F−1
1 (u1), . . . ,F−1

d (ud)),

where F−1
1 , . . . ,F−1

d are 1-dimensional quantile functions and u1, . . . ,ud ∈ [0,1]. The copula is
parameterized by a vector ρ consisting of dependence parameters. Given that the copula is itself
a joint distribution function, it satisfies all of the criteria for a joint distribution function.

Copulas allow for a joint distribution function to be described in terms of the marginal behavior
of the underlying variables and their dependence structure. Several features of the dependence
structure may be of interest. Popular measures of dependence like the Pearson correlation coefficient
are often incapable of discriminating among differences in these features. From an empirical
perspective, the choice of a specific parametric copula function involves a priori assumptions
about the nature of dependence. Some of the most important properties relating to copulas are
symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, max-stability, and
tail dependence (Li and Genton, 2013).

A detailed discussion of symmetry concepts can be found in Nelsen (1993). A copula is radially
symmetric if

(5) C(u1,u2)−C(1− u1,1− u2) + 1− u1 − u2 = 0

for all (u1,u2)∈ [0,1]2. Radial symmetry is often called tail symmetry. Two points that are
equidistant from the middle of the unit square and lie on rays pointing in opposite directions from
the middle of the unit square will have the same copula density. Intuitively, the most interesting type
of symmetry is radial symmetry because radially asymmetric copulas have different dependence
relationships in the lower and upper tails of the distribution. These differences in dependence can
often be motivated by appeals to economic theory. From a practical standpoint, insurers and financial
analysts are usually interested in behavior in the lower tail, as this is where worst-case portfolio
losses occur.

An Archimedean copula is defined as a function C : [0,1]d→ [0,1] where

(6) C(u1, . . . ,ud) = θ(θ−1(u1) + · · ·+ θ
−1(ud))

and the function θ : [0,∞)→ [0,1] possesses several properties. Namely, θ(0) = 1, θ(∞) = 0, and
(−1)iθ (i) ≥ 0, for i = 1, . . . ,∞, where θ (i) denotes the ith derivative of θ . These conditions imply
that θ is a strictly decreasing differentiable function. This function is referred to as the generator of
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the copula. Many functions satisfy the requirements on the generator, and so there are many copulas
within this class. All Archimedean copulas are associative with

(7) C(C(u1,u2),u3) =C(u1,C(u2,u3))

for all (u1,u2,u3)∈ [0,1]3.
Copulas can also be distinguished by their tail dependence. The upper-tail dependence

coefficient is defined as

(8) λU = lim
u→1

Pr(U1 ≥ u|U2 ≥ u) = lim
u→1

1− 2u +C(u,u)
1− u

,

while the lower-tail dependence coefficient is defined as

(9) λL = lim
u→0

Pr(U1 ≤ u|U2 ≤ u) = lim
u→0

C(u,u)
u

.

A copula has tail dependence if and only if the respective coefficients in equations (8) and (9)
are nonzero. Tail dependence is an asymptotic concept, and when the tail dependence coefficient is
close to 1, large values of the variables occur together. For a given copula model, the tail dependence
coefficients are functions of the underlying dependence parameters. The choice of the copula family
is intrinsically a choice of theoretical tail dependence.

The five most popular parametric copulas are the Gaussian, t, Gumbel, Clayton, and Frank (Joe,
2015). With various rotations, these copulas can capture a wide range of dependence behavior.
Table 2 gives the forms of the copulas, parameter restrictions, and a summary of their properties.
Copula parameters can be estimated from observed data by calibration- or maximum-likelihood-
based approaches. With parametric marginal density functions f (xi|ρi), the density function of the
joint distribution F can then be given as

(10) f (x1, . . . ,xd) = c(F1(x1), . . . ,Fd(xd))
d

∏
i=1

fi(xi).

For an i.i.d. random sample of size n, the log-likelihood function is then

(11) L =
n

∑
j=1

log f (x j1, . . . ,x jd).

Substituting into equation (11) from equation (10) results in

(12) L =
n

∑
j=1

logc(F1(x j1), . . . ,Fd(x jd)) +
d

∑
i=1

n

∑
j=1

log fi(x ji).

The first term on the right of equation (12) is the contribution of the dependence structure to the log-
likelihood, and the second term is the contribution of the univariate marginal distributions. One could
estimate the joint distribution by maximizing the likelihood in equation (12) over the parameters of
the copula and the univariate marginal distributions. Joe and Xu (1996) suggested an alternative
procedure, now known as Inference for Margins (IFM), in which estimates of the parameters of
the marginal distributions are first obtained by maximum likelihood estimation. Then the copula
contribution to the likelihood is maximized, holding the univariate parameters fixed at their estimates
from the first stage. Both approaches result in estimators that are consistent and asymptotically
normal.

Because many functions meet the criteria of a copula, there are many choices for modeling
dependence. A general modeling approach is to compare several parametric copulas or to utilize a
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fully nonparametric copula. Consideration of strictly parametric copulas is often limited to a small
range of copulas that may or may not be capable of capturing important aspects of the dependence
structure. While several goodness-of-fit tests for parametric copulas exist, these tests rarely provide
any guidance as to the appropriate choice of copula if the proposed copula is rejected (Genest,
Remillard, and Beaudoin, 2009; Huang and Prokhorov, 2014; Kojadinovic, Yan, and Holmes, 2011).
Such tests may also require large samples when based on comparisons of the estimated copula with
empirical (nonparametric) copulas.

As noted in Joe (2015), the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) can be used to compare parametric copula models. Because the copula has tail
dependence and radial symmetry features, in addition to its general strength of dependence, AIC
and BIC provide measures of fit that consider all dependence aspects. However, they only provide
a ranking of proposed copulas. It could be the case that all of the models under consideration are
inadequate for a given problem. A related likelihood-based test from Vuong (1989) has been applied
to copulas. The Vuong test can be used to determine whether one of two copula models is a better
fit, but—like AIC and BIC—it does not assess the adequacy of the models under consideration.

Empirical Application

Our data come from the USDA National Agricultural Statistics Service and include annual yields in
all corn-producing counties between 1980 and 2015. In some counties, yields are either not reported
or 0, often to protect the identity of producers. Counties with less than 15 years of available yields
were dropped from the analysis.4 Raw yields in each county were detrended using robust regression
similar to RMA procedures.5 The robust regression technique we apply, M-estimation, is a more
general case of MM-estimation (Huber, 1973). Finger (2010) shows that errors from detrending are
likely to be small or moderate in size. Results using other detrending methods (linear regression and
locally weighted scatterplot smoothing) are shown in the online supplement (www.jareonline.org)
and indicate little aggregate sensitivity to the detrending procedure. Prices were obtained from the
CME and normalized as the logarithm of the October average price (PO) for a December corn futures
contract divided by the February average price (PF) for the same December futures contract. The
joint distribution was estimated over this normalized price ln(PO/PF), or return, and the detrended
county yield in each year.

The RMA makes two assumptions when rating revenue insurance policies. First, the correlation
between prices and yields within a state is assumed to be fixed across counties. Even though counties
vary in yields, each county is assumed to have the same yield–price correlation as all other counties
in that state. Second, the dependence structure in all counties is specified using a Gaussian copula.
We investigate the suitability of these assumptions with respect to the actuarial fairness of the federal
crop insurance program and provide estimates of insurance rates under a model that allows for
county variation and more general dependence structures.

The exercise of rating crop insurance policies in the federal program is a task of both inference
and prediction. Inference because the variables underlying such policies are economic in nature
and can be related to structural parameters of agricultural markets. Prediction because insurance
is always concerned with the assessment of future losses and their probabilities of occurrence.
We view these sometimes competing tasks through the lens of model selection. The number of

4 Both the length of the time series and the choice of threshold for inclusion in the analysis were motivated by practical
aspects of copula estimation. The models are difficult to estimate with any amount of precision below the threshold, and
we hesitate to utilize longer yield series due to possible structural change in relationships between prices and yields. Little
guidance is available on the optimal length of time series for estimating yield distributions, although ongoing research is
being directed toward this question (Liu and Ker, 2018). A useful future exercise would consider the optimal window size for
estimating the copula functions. We considered including counties with less than 15 years of available yield data and found
that results were robust to their inclusion.

5 For counties with less than 26 years of data, the RMA detrends using robust regression (L1) with a linear trend and no
knots, while those with more available yield data use a 1-knot spline model.
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possible dependence models for yield and price relationships is infinite. As in most analyses, the
set of alternative models results from a priori judgment. Current pricing methods make potentially
strict assumptions, motivated by the theory of the natural hedge, on the types of models allowed in
this set. As noted by Leamer (1983), researchers should not be overconfident in any single theory.
We also make a priori judgments since we only consider a restricted number of copula models.
However, our proposed models cover a wide range of dependence possibilities.

Figure 1 shows assumed correlations for two crops for which revenue insurance is currently
available through the federal program. The Pearson correlations used in constructing premium
rates for corn range from 0 in most states to −0.4 in Illinois and Iowa. The pattern of correlation
follows, very roughly, the total quantities of corn produced in different states. However, there are
some state boundaries with abrupt changes in assumed correlation. One instance is the boundary
between Michigan and Indiana. It seems unlikely that yields in northern Indiana are strongly related
to Chicago prices while those in southern Michigan are completely independent. Corn acreage,
production, and yields in these counties are similar. Figure 2 shows estimated Pearson correlations
between yield and price for all corn-producing counties in the sample. The estimated correlations are
similar to those assumed by the RMA in states like Iowa and Illinois, but there are large differences
in the South and along the Mississippi River. The RMA assumes 0 correlation in all counties in
Mississippi, while counties near the Gulf of Mexico have strong negative dependence.

Strong negative correlation is realized in counties around New York City. One possible
explanation, which also applies to the negative dependence observed in southern Texas and on
the Mississippi, is that these areas are close to major ports and shipping lanes. While this seems
plausible, it does not align with the weak dependence observed in the Carolinas. The ports of
Wilmington, Charleston, and Savannah have large enough capacity to handle outbound shipments.
One distinguishing feature for the Carolinas is that both states are grain-deficit and use most of their
corn production to feed hogs and other livestock. Note the distance correlations shown in Figure 2.
Distance correlation provides a powerful means of assessing dependence, which may be nonlinear.
According to this measure, strong dependence is observed in the major growing regions, particularly
Illinois, Missouri, and Iowa. There are also strong pockets of dependence in southern Texas, along
the Mississippi, in New Jersey, and in northern Wisconsin. In contrast, dependence as measured by
distance correlation is weak in Indiana and Ohio.

Positive Pearson correlation is estimated in many counties in eastern North Carolina, South
Carolina, Minnesota, and Wisconsin. Figure S1 provides scatterplots of normalized yields and prices
from selected counties with strong positive or negative correlation, and positive relationships hold
when dependence is measured using Spearman’s rho or Kendall’s tau (see Figures S2 and S3).
Findings of positive Pearson correlation may be spurious given small sample sizes. Tests based on
county-level data are subject to the modifiable areal unit problem, as explained in Gehlke and Biehl
(1934). Bias can be introduced because the boundaries of the counties are drawn arbitrarily (from
a statistical perspective). But as the policies are written at the county level, without any pooling, it
is the county results that are of interest. To investigate the variability of the correlation estimates,
we implemented Efron’s (1979) bootstrap. In every county, 1,000 bootstrap samples were drawn to
construct a sampling distribution of Pearson correlation.

We constructed a 90% confidence interval using the sampling distribution in each county and
recorded whether the correlation assumed by the RMA was within this interval. The correlation
assumed by the RMA fell outside of the interval in nearly 20% of the counties in the sample.
There are several noteworthy results. In general, the bootstrap results align with those from the
map of distance correlation (see Figure S5). It appears that findings of positive correlation in
North Carolina are indeed spurious, but there are still several counties in South Carolina where
the empirical estimates hold. Areas with counties that do not support the RMA’s assumptions
include northern Iowa, Minnesota, Wisconsin, Indiana, and Ohio. Most of the clusters occur along
or near state boundaries, highlighting the problems caused by imposing more or less arbitrary areal
unit definitions on underlying spatial processes. We do not take the bootstrap results as definitive
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(a) Corn

Correlation -0.40 -0.35 -0.30
-0.25 -0.20 0.00

(b) Soybeans

Correlation -0.40 -0.30 -0.25 -0.20
-0.15 -0.10 0.00

Figure 1. Pearson Correlation for Current Actuarial Methods
Source: Adapted from Goodwin et al. (2014).

evidence that RMA assumptions are flawed, because the sample size is small in any one county. We
simply note that, if assumptions on correlation are relaxed, empirically driven estimates will diverge
from what is currently imposed. Moreover, there is no theoretical or intuitive support for constant
correlation within states.

Copulas were fitted to the data from each county using semiparametric maximum pseudo-
likelihood techniques. Normalized prices and yields were first converted to the uniform scale using
the empirical distribution function. Then the copula portion of the likelihood was maximized over the
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(a) Pearson Correlation: Price vs. Yield

Pearson Correlation -0.8 to -0.6 -0.6 to -0.4 -0.4 to -0.2
-0.2 to 0 0 to 0.2 0.2 to 0.4
0.4 to 0.6

(b) Distance Correlation: Price vs. Yield

Distance Correlation 0.1 to 0.2 0.2 to 0.3 0.3 to 0.4
0.4 to 0.5 0.5 to 0.6 0.6 to 0.7
0.7 to 0.8

Figure 2. Measures of Association and Dependence

uniform data. We estimate normal, t, Gumbel, Clayton, Frank, 90-degree-rotated Gumbel, and 90-
degree-rotated Clayton copulas. The best-fitting copula was selected according to AIC. The selected
copula in each county is shown in Figure 3, with frequency of selection in Table S1. Selection based
on BIC was also considered, but we found that the optimal copula differed between the two criteria in
only 3%–4% of counties. The selected copula function was also largely consistent across detrending
methodologies.
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Figure 3. Best-Fitting Copula by County

Overall, there is a large amount of variation in the selected copula. In areas with negative
dependence, the best-fitting copula is usually either the Frank or normal copula. Areas with positive
dependence are often best described with a Clayton or t copula. As data determining the direction of
dependence also determine the strength of tail dependence and type of joint symmetry, geographic
clustering is to be expected. Frank and Gaussian copulas are similar in terms of joint symmetry
and tail dependence. However, an unrotated Clayton copula implies joint occurrence of low yields
and low prices. Simultaneously low yields and prices result in the largest losses under a revenue
insurance policy. We might expect that counties where the Clayton copula is selected will have
higher premium rates as a result of varying copula models.

We calculated premium rates in each county by assuming a February average price of $4/bushel
of corn and a coverage level of 80%. 1,000 draws were taken from each of a normal copula with
correlation given by Figure 1, a normal copula with correlation estimated by maximum likelihood,
and the best-fitting copula estimated by maximum likelihood. Each set of uniform yield draws was
then passed through the quantile function of a Weibull distribution and the uniform price draws
through the quantile function of a normal distribution. The parameters of the Weibull distribution
were estimated via maximum likelihood using detrended yields in each county.6 This procedure
results in 1,000 simulated yields and prices for each copula model in each county. Using these sets
of yields and prices, a distribution of revenue can be formed and losses under the artificial revenue
policy can be obtained.

Figure S6 maps the difference in rates between models based on a Gaussian copula with data-
driven correlation and a Gaussian copula with correlation set according to Figure 1. The difference
in rates resulting from misspecified correlation is small. A histogram and kernel density of the
differences is shown in Figure 4. Rate differences are grouped near 0, although there are a few
outliers. Even in the most extreme cases, differences in Pearson correlation only result in rate
differences of 1%–1.5%. In spite of the small difference in realized rates, Figure S6 shows evidence
of systematic variation across space. In counties where the estimated Pearson correlation is more

6 Sherrick et al. (2014) provide support for the use of a Weibull distribution. We also considered using a nonparametric
distribution for the marginals and found that rates differed substantially depending on the specified marginal distribution.
When viewed against the results from the varying copulas, it appears that the marginal distribution of yields is a more
important choice than the copula function when rating revenue insurance.
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(a) Normal Cop. Varying Corr. - Normal Cop. RMA Corr.
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Figure 4. Histogram and Kernel Density of Rate Differences

negative than the RMA correlation, the difference is usually positive. In locations where the assumed
correlation is more strongly negative, at least when compared to the estimated correlation, the
difference in rates is often negative.

The second panel of Figure S6 maps the difference in rates between the model based on the
best-fitting copula and the model with Gaussian copula and fixed correlation. The kernel density
in Figure 4 shows that when the copula is allowed to vary with strength of dependence, premium
rates in many counties are lower than the rates under fixed correlation and a normal copula. This
difference is largest in counties where there is evidence of negative dependence and the rotated
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Clayton copula is best fitting. Spatial patterns exhibited in the data suggest that randomness does
not entirely drive these results. There is a clear distinction between the shapes of the densities in
Figure 4a and Figure 4b. Figure 4b suggests a negatively skewed distribution of the difference in
rates.

We took the total value insured in each county in 2015 at each coverage level and multiplied
this amount by the premium rate implied by different copulas at the given coverage level. The
difference in this value was summed within counties to provide a measure of economic value
from rating changes and can be thought of as premium collected. Maps in Figure 5 show the
difference in premium collected when using a model with a flexible copula specification versus RMA
assumptions. If RMA allowed correlation to vary but maintained the use of a Gaussian copula, they
would collect roughly $9 million less in premiums. If the copula were allowed to vary, premiums
collected would decrease by around $64 million. While these numbers are not exact (because some
counties had insured value but not enough data to calculate rates), they provide a general sense of
the economic impact of rate changes. The estimates are robust to detrending method (see Table S2).
Both of these aggregate changes should be viewed as economically insignificant, as total premium
collected by RMA in 2015 for corn revenue protection policies exceeded $3.4 billion.

Simulation Analysis

While empirical applications illuminate many aspects of the crop insurance program, we are also
interested in determining the effects that different copulas can have on rates more generally. The
preceding section only considered revenue insurance policies for all corn-producing counties at
current levels of insured value. Simulation provides a means of drawing conclusions that can be
applied to a wider variety of crops. With the advent of the supplemental coverage option, which
essentially allows for increased coverage levels above 80%, a natural question is how rates respond to
changes in the copula model across the range of possible coverage levels. To this end, we simulated
insurance rates across a variety of copulas, strengths of dependence, and parameter values. Our basic
inquiry is to determine the conditions under which the chosen copula model has the greatest impact
on pricing.

A price of $5/bushel of corn is assumed for the Revenue Protection – Harvest Price Option
policies. To specify the dependence relationships, 10,000 draws are taken from each copula
model across 13 Pearson correlations from −0.6 to 0.6. The marginal distribution of yields is the
normalized beta with domain 0–300, and the first shape parameter is 2. The second shape parameter
takes values of either 4 or 8, which corresponds to a short or long right tail. The log-price distribution
is normal and parameterized by implied volatility of 20 and 40. Lastly, rates were evaluated at
coverage levels from 0.50 to 0.90. With variation in marginal parameters, dependence models, and
coverage levels, we price a total of 260 policies through the simulation.

Each of the surface plots is constructed by smoothing across 65 input points using a bivariate
spline (Meinguet, 1979). Figure S7 shows the rates obtained from each copula model across a range
of coverage levels and Pearson correlations. As expected, the minimum and maximum rates obtained
from the normal copula model are exceeded in both cases by the rates obtained from the t copula.
The maximum rate under the normal exceeds that of the 90-degree-rotated Archimedean copulas,
while the minimum rate is less than the minimum rates of the same copulas. The Frank and normal
copulas are similar in price, which results from the ability of these copulas to capture positive and
negative dependence and their lack of tail dependence. Across all of the models, rates at the 90%
coverage level are nearly double those at lower coverage levels.

Figure S8 shows differences in rates of various copula models compared to the Gaussian copula
currently in use in the federal crop insurance program. The differences between the t and Frank
copula are fairly small. The largest deviations occur between the Gumbel and Clayton copulas and
the normal. When the true direction of dependence is negative, the normal copula generates rates
that are higher than either of the Archimedean copulas. When dependence is positive, it underprices
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(a) Normal Cop. Varying Corr. - Normal Cop. RMA Corr.

(b) Optimal Cop. - Normal Cop. RMA Corr.

Figure 5. Difference in Premium Collected

the insurance. The rate differences are maximized when correlation is positive for the Archimedean
copulas and negative for the rotated Archimedean copulas.

We also considered varying the assumed price volatility and the form of the marginal distribution
of yields. Figure S9 contains plots of the same differences with a high price-volatility factor, while
Figure S10 shows the same with a long right tail in the marginal distribution of yields. In general,
increased price volatility retains the same pattern of rate differences, but extreme differences in rates
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are accentuated. For instance, the maximum difference between a rotated Clayton copula and the
normal copula at correlation −0.6 is nearly 100% larger under high price volatility. A long-right-
tailed distribution shifts the pattern of rate differences from high to lower coverage levels.

Clearly, the largest rate differences occur when the copula is the Gumbel or Clayton (or a
rotated variant) and the dependence parameter is exceptionally large in magnitude. The Gumbel
or Clayton is frequently selected according to fit criteria in the corn counties examined above, but
high or low strength of dependence is rarely observed. The vast majority of counties have Pearson
correlation between−0.4 and 0.4. The scenarios that generate large differences in rates are rare, and
the simulation supports the conclusion from the empirical analysis; that is, the economic impact of
allowing the dependence model to vary is simply not very large.

Conclusion

Revenue insurance has assumed a prominent place in the suite of insurance policies available through
the U.S. crop insurance program. Rating revenue insurance requires a joint distribution of price and
yield that can be uniquely specified by marginal distributions and a copula function. Current actuarial
rules assume that dependence between price and yield is adequately captured by a Gaussian copula
and that correlation is constant within states. These assumptions are imposed a priori, motivating
the question of whether, if such assumptions are not statistically justified, they have major impacts
on economic outcomes. Such questions are relevant for agricultural policy because any actuarial
changes directly impact insurance prices and indirectly impact subsidies paid out through the crop
insurance program.

We assess the sensitivity of premium rates to assumptions about the copula function and degree
of dependence both empirically and through a simulation analysis. Using common fit criteria for the
copula functions, we find that the form of the copula varies across counties and the magnitude of
correlation varies within states. Simulation results demonstrate that the form of the copula can have a
major impact on premium rates, but only in situations unlikely to occur in reality. For the majority of
counties, varying the copula results in relatively small changes in the amount of premium that would
be collected. This suggests that the effort necessary to deal with the expanded set of dependence
models, when balanced against costs to the Risk Management Agency of rating the policies, is not
large enough to economically justify departures from current practice.

Useful future research might be directed toward a method that borrows information across space
to inform the copula model. Because prices are obtained from the Chicago Mercantile Exchange,
this is analogous to the problem found in yield insurance as it is the yield that varies across counties.
However, it is not clear whether a best approach would smooth across the marginal distributions and
copula or simply smooth across a distribution of revenue. Results presented here indicate that the
effect on insurance pricing may be small in any case, but useful information about price formation
and the extent of markets might be obtained.

[First submitted March 2018; accepted for publication September 2018.]
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(c) Chesterfield County, SC (d) Marinette County, WI
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Figure S1. Scatterplots for Selected Counties



S2 May 2019 Journal of Agricultural and Resource Economics

Rho -0.8 to -0.6 -0.6 to -0.4 -0.4 to -0.2 -0.2 to 0
0 to 0.2 0.2 to 0.4 0.4 to 0.6

Figure S2. Spearman Correlation: Price vs. Yield
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Figure S3. Kendall’s Tau: Price vs. Yield
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D -0.1 to 0 0 to 0.1 0.1 to 0.2

Figure S4. Hoeffding’s D: Price vs. Yield

RMA Corr. within 90% Bootstrap CI Yes No

Figure S5. Bootstrap Results
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(a) Normal Cop. Varying Corr. - Normal Cop. RMA Corr.

Difference in Rates (   0.90%) - (   0.09%) (   0.09%) - (   0.05%)
(   0.05%) - (   0.03%) (   0.03%) - (   0.01%)
(   0.01%) - 0.00% 0.00% - 0.03%
0.03% - 0.10% 0.10% - 0.90%

(b) Optimal Cop. - Normal Cop. RMA Corr.

Difference in Rates (   2.02%) - (   0.45%) (   0.45%) - (   0.25%)
(   0.25%) - (   0.15%) (   0.15%) - (   0.09%)
(   0.09%) - (   0.05%) (   0.05%) - (   0.01%)
(   0.01%) - 0.05% 0.05% - 1.05%

Figure S6. Difference in Rates
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(a) Rates for Normal Copula (b) Rates for t Copula

(c) Rates for Gumbel Copula (d) Rates for Clayton Copula

(e) Rates for Frank Copula (f) Rates for Gumbel 90 Copula

Figure S7. Simulated Rates for Selected Copula Models
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(a) t Rate − Normal Rate (b) Gumbel Rate − Normal Rate

(c) Clayton Rate − Normal Rate (d) Frank Rate − Normal Rate

(e) Clayton 90 Rate − Normal Rate (f) Gumbel 90 Rate − Normal Rate

Figure S8. Simulated Differences in Rates for Selected Copula Models
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(a) t Rate − Normal Rate (b) Gumbel Rate − Normal Rate

(c) Clayton Rate − Normal Rate (d) Frank Rate − Normal Rate

(e) Clayton 90 Rate − Normal Rate (f) Gumbel 90 Rate − Normal Rate

Figure S9. Simulated Differences in Rates for Selected Copula Models with High Price
Volatility
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(a) t Rate − Normal Rate (b) Gumbel Rate − Normal Rate

(c) Clayton Rate − Normal Rate (d) Frank Rate − Normal Rate

(e) Clayton 90 Rate − Normal Rate (f) Gumbel 90 Rate − Normal Rate

Figure S10. Simulated Differences in Rates for Selected Copula Models with Long Tailed
Yields
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Table S1. Frequencies of Copulas
Number of Times Copula Is Selected

Copula Frequency Percentage
Normal 273 13.13
t 135 6.49
Gumbel 179 8.61
Clayton 204 9.81
Frank 388 18.65
Gumbel Rot. 340 16.35
Clayton Rot. 561 26.97

Table S2. Detrending Robustness Check
Difference in Premium under Different Detrending Methods

Method Diff. Normal − RMA Diff. Opt − RMA
Linear Regression −$9,081,656 −$62,982,398
Robust Regression −$9,114,890 −$64,651,449
LOESS −$7,863,085 −$64,532,124
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