

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

SysNet Tools: The Multiple Goal Linear Programming (MGLP) Model and MapLink

A.G. Laborte, R. Roetter, and C.T. Hoanh

The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today IRRI is one of 15 nonprofit international research centers supported by the Consultative Group on International Agricultural Research (CGIAR – www.cgiar.org).

IRRI receives support from several CGIAR members, including the World Bank, European Union, Asian Development Bank, International Fund for Agricultural Development, International Development Research Centre, Rockefeller Foundation, and agencies of the following governments: Australia, Belgium, Canada, People's Republic of China, Denmark, France, Germany, India, Islamic Republic of Iran, Japan, Republic of Korea, The Netherlands, Norway, Philippines, Spain, Sweden, Switzerland, Thailand, United Kingdom, United States, and Vietnam.

The responsibility for this publication rests with the International Rice Research Institute.

IRRI Technical Bulletins

The IRRI Technical Bulletin is a rapid means of presenting results of research on a specialized technical subject such as the development of experimental methods, specialized software, or other solutions to complex research problems.

Copyright International Rice Research Institute 1999

Mailing address: DAPO Box 7777, Metro Manila, Philippines Phone: +63 (2) 580-5600 Fax: +63 (2) 580-5699 Email: irri@cgiar.org Home page: www.cgiar.org.irri Riceweb: www.riceweb.org Rice Knowledge Bank: www.knowledgebank.irri.org Courier address: Suite 1009, Pacific Bank Building 6776 Ayala Avenue, Makati City, Philippines Tel. +63 (2) 891-1236, 891-1174, 891-1258, 891-1303

Suggested citation:

Laborte AG, Roetter R, Hoanh CT. 1999. SysNet Tools: the multiple goal linear programming (MGLP) model and MapLink. IRRI Technical Bulletin No. 6. Manila (Philippines): International Rice Research Institute. 31 p.

The multiple goal linear programming (MGLP) model

Introduction

The main purpose of the Systems Research Network for Ecoregional Land Use Planning in Tropical Asia (SysNet) is to develop and evaluate methodologies for exploring land use options at the subnational level. Case study regions include Haryana State (India), Kedah-Perlis Region (Malaysia), Ilocos Norte Province (Philippines), and Can Tho Province (Vietnam).

SysNet provides a mechanism for improving the scientific basis for land use planning in support of natural resource management. Systems methodologies are being operationalized into a land use planning and analysis system (LUPAS), which is a decision support system based on the interactive multiple goal linear programming (IMGLP) method and other analytical tools required for exploratory land use studies (Fig. 1). The three main methodology parts of LUPAS are (i) land evaluation including assessment of resource availability, land suitability, and yield estimation; (ii) scenario construction based on policy views; and (iii) land use optimization in the form of an MGLP model (Roetter et al 1998a).

In optimizing land use under different sets of multiple goals, different scenarios are analyzed based on land evaluation, quantified input-output relationships for current and alternative production activities, and formulation of constraints and policy views as mathematical functions. There

Fig. 1. Structure of the SysNet land use planning and analysis system (LUPAS): (i) land evaluation, (ii) scenario construction, and (iii) land use optimization.

are two types of optimization results: goal achievements and the corresponding land use allocations. (For a detailed diagram of the operational structure of LUPAS, see Annex 1.)

The method of IMGLP (De Wit et al 1988) is the concept underlying LUPAS. This method is currently applied in SysNet to deal with conflicting land use objectives of stakeholders at the regional level (target regions are provinces or states). Results for a given region reveal the extent to which various goals can be met given the technical and physical constraints and provide estimates for analyzing trade-offs between costs and benefits incurred in attaining the various goals.

The technical description of LUPAS will be presented under the MGLP model component. First, the IMGLP method will be characterized briefly. Then the technical details involved in the development of an MGLP model will be discussed for the Can Tho Province case study.

The IMGLP method

Interactive multiple goal linear programming (IMGLP) can be used to determine optimal options for agricultural development in a region. Land use options under various policy views are explored by using the linear programming technique — i.e., an objective is optimized while taking into account a set of given constraints. The method provides a way by which promising production activities and technologies in a region can be analyzed in view of their contribution to development goals, considering the limited resources available and the diverse and often conflicting objectives of different interest groups (stakeholders) regarding land use and regional development.

The participation and cooperation of stakeholders are important in this integrated approach. To have an impact, the type of questions asked, the type of results obtained, and the data required for analysis need to be discussed with those who have a stake in the development of

Fig. 2. Steps in developing a land use planning and analysis system (LUPAS).

the region (Van Ittersum et al 1998; Roetter and Hoanh 1999). This interaction with stakeholders will lead to various iterations in model building and formulation (Roetter et al 1998b) (Fig. 2).

The MGLP model consists of three components (Hijmans and Van Ittersum 1996): (i) inputoutput relations of production activities, (ii) a set of constraints, and (iii) objective functions derived from policy views for the region.

The target-oriented approach is adopted in quantifying input-output relations. In this approach, the combination of inputs (e.g., fertilizer, pesticides) required to achieve a particular output level is identified for a given production situation. Not only production activities currently applied in the region but also promising activities that are not yet applied by local farmers are taken into consideration.

The constraints in the model refer to resource limits, development targets, and other goal restrictions. The last two refer to the minimum and/or maximum values for some of the goals that need to be achieved. These values are derived from policy views in the region. As an example, consider the goal of maximizing income. When this goal is optimized, possible constraints to be included in the model are available land and labor supply in the region and the minimum required rice production to meet the needs of the population. The available land and labor supply are resource limits, and the minimum required rice production is a goal restriction. In addition, the development targets of the region — e.g., production targets for cereals and cash crops — may be included as additional constraints.

Objective functions are formulated by translating the prevailing policy views on agricultural development in the region into mathematical equations. For each optimization run, only one objective is optimized (maximized or minimized) and the others can be used as goal restrictions.

The initial run will be the zero round, where no goal restrictions are set. In successive runs, goal restrictions relating to the land use scenarios being considered are placed. The results of optimization runs are the goal achievements, which are the optimum values of the objective functions, and the corresponding land use allocation. The results of the different land use scenarios are analyzed to show trade-offs between costs and benefits of attaining different goals.

In SysNet, the MGLP model has been developed for each case study region using the mathematical programming software XPRESS-MP (Dash Associates 1997). The MGLP model is linked to the Microsoft Excel spreadsheets, where input data are retrieved and results of optimizations are saved.

The mapping of input and output of the optimization runs and the required data links will be described in Part 2 of this document.

MGLP model description: the Can Tho Province case study

Background

Can Tho Province is located in the central part of the Mekong Delta. It has a total land area of 0.3 million ha, 84% of which is under arable farming with rice-based cropping systems as the predominant land use type. Population in the region (currently 1.9 million) is growing at a rate of 2.1% per year.

There is a need to further intensify rice production in the province to meet the needs of the increasing population not just in the province but also in the whole country. At the same time, farmers in the area are starting to grow other crops to get higher income. To explore agricultural land use options for the region by taking into account the various objectives of the stakeholders, an MGLP model for Can Tho Province was developed.

Two groups of scenarios for the Can Tho case study were considered:

- Scenarios for 2000 (base scenarios): using current data on biophysical and socioeconomic resources and development targets for 2000
- Scenarios for 2010 (2010 scenarios): using current data adjusted to changed biophysical conditions (water control according to development plans) and taking into account production targets for 2010

For each group, four scenarios were considered:

- 1. Zero round. Neither goal restrictions nor production and area targets are imposed. This will show values of goal variables that can be achieved when only the resource limits (available land area, labor, and water) are used as constraints.
- 2. *First round*. In addition to the limits in the previous scenario, lower bounds on the goals

of rice production and total income are imposed.

- *3. Second round.* Production targets (lower limit of values for the different products) are imposed in addition to the bounds imposed in the first round.
- 4. *Third round*. This round imposes the same limits and bounds as in the second round. In addition to production targets, the minimum areas allotted for the different products are also set.

In this publication, only sample results pertaining to the zero round and the third round (optimizations with bounds, and production and area targets) for the base scenarios are presented. Both data and model structure refer to the MGLP version of February 1999 (Hoa and Hien 1999).

The general characteristics of the model for Can Tho are summarized in Table 1.

Objective functions

An objective is expressed by the goal variable and the associated optimization (e.g., maximize rice production, minimize fertilizer use). The 10 objectives (Table 2) were formulated based on land use plans provided by the provincial planning agency and in consultation with policymakers in the region.

An objective function is the term used for a linear equation formulated by specifying the decision variable(s) for achieving the goal (Dash Associates 1997). Table 3 shows the equations relating to the objective functions given in Table 2.

Input and output data

Land unit delineation. The seven districts (administrative units) in Can Tho Province are Chau Thanh (Ch), Long My (Lo), O Mon (OM), Phung Hiep (Ph), Thot Not (Th), Tp Can Tho (Tp), and Vi Thanh (Vi). Socioeconomic data are available at the district level, so administrative unit boundaries were used to reflect socio-

Table	1.	Codes	and	sizes	of	MGLP	model	variables
for Ca	an	Tho Pro	ovino	ce.				

No.	Item	Code	Size
1	District	NDist	7
2	Agroecological units	NAEU	18
	(AEU)		
3	Land use type (LUT)	NLUT	19
4	Product type	NProduct	28
5	Product group	NPGroup	11
6	Goal	NGoal	10
7	Technology level	NTech	2
8	Month	NMonth	12
9	Constraint	NConst	14
10	Combination of LUT,	NLUD	608
	AEU, and district		
11	Promising LUTs in each	NLpUDT	352
	AEU, district, and		
	technology level		
12	Land units (combination of	NUD	100
	AEU and district)		

Table 2. Objectives incorporated in the model.

No.	Goal variable	Optimization	Code
1	Total rice production	Maximize	PRice
	(t)		
2	Total nonrice	Maximize	PNonRice
	production $(t)^a$		
3	Total net regional	Maximize	TIncome
	farm income		
	$(10^{\circ} \text{ VN dong})$		
4	Equity income	Maximize	TEquity
	$(10^{\circ} \text{ VN dong})$		
5	Total employment	Maximize	TEmploy
	(labor-day)		
6	Total labor	Minimize	TLaborPro
	productivity		
_	(labor-day)		
7	Total water use (m [°])	Minimize	TWater
8	Total fertilizer use (t)	Minimize	TFertilizer
9	Total pesticide use	Minimize	TPesticide
	(t)		
10	Total N loss (t)	Minimize	TNLoss

^aAlthough this objective was proposed by stakeholders, it was recognized in the post-optimal and scenario analysis that this goal variable does not reflect properly their objective, since it will lead to a large area of heavy products such as sugarcane. In the new version of the MGLP model, this goal will be replaced by total income from nonrice production to reflect the objective of improving diversification in agriculture.

economic variations within the province.

The province was delineated into agroecological units (AEU) by overlaying information on soil and hydrology. The overlay resulted in 18 unique combinations. The different AEUs and associated characteristics are given in Table 4.

	Objective	Code	Formula
1	Rice production (Maximize)	PRice	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) Yield(lut,u,d,t,p) * ProductType("Rice",p) * LUA(t,u,lut,d)
2	Nonrice production (Maximize)	PNonRice	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) Yield(lut,u,d,t,p) * ProductType("NonRice",p) * LUA(t,u,lut,d)
3	Total income (Maximize)	TIncome	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) NetIncome(lut,u,d,t) * LUA(t,u,lut,d)
4	Income equity (Maximize)	TEquity	MaxDistIncome > 0 DistIncome(d=byDist): SUM(lut=byLUT,u=byLU,d,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) NetIncome(lut,u,d,t) * LUA(t,u,lut,d) < MaxDistIncome
5	Total employment (Maximize)	TEmploy	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech,m=byMonth AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) LaborNeed(lut,u,d,t,m)* LUA(t,u,lut,d)
6	Labor productivity (Maximize) = minimize employment with targets	TLaborPro	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech,m=byMonth AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) LaborNeed(lut,u,d,t,m)* LUA(t,u,lut,d)
7	Total water need (Minimize)	TWater	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech,m=byMonth AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) WaterNeed(lut,u,d,t,m)* LUA(t,u,lut,d)
8	Total fertilizer (Minimize)	TFertilizer	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) Fertilizer(lut,u,d,t) * LUA(t,u,lut,d)
9	Total pesticide (Minimize)	TPesticide	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) Pesticide(lut,u,d,t) * LUA(t,u,lut,d) > 0
10	Total N loss (Minimize)	TNLoss	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) NLoss(lut,u,d,t) * LUA(t,u,lut,d)

Table 3. Equations of the objectives in the Can Tho model.

S

Unit		Soil	Wat					
	Vietnan	nese classification	Equivalent USDA	Floo	ding	Irrigation	Area	(ha)
	Code	Description	classification	Depth Duration		condition	Current	Future
				(cm)				
AEU01	Pb	Alluvial with new sediment	Typic Tropaquents	<30	None	Irrigated	1,605	1,605
AEU02	Р	Alluvial without new sediment	Aeric Tropic Fluvaquents	<30	Oct	Irrigated	15,078	15,078
AEU03	$\mathbf{P}\mathbf{f}_{\mathbf{b}}$	Alluvial with yellow-reddish layer and new sediment	Fluventic Aeric Tropaquepts	30-60	Oct	Irrigated	35,010	76,952
AEU04	$\mathbf{P}\mathbf{f}_{\mathbf{b}}$	Alluvial with yellow-reddish layer and new sediment	Fluventic Aeric Tropaquepts	30-60	Sep-Nov	Irrigated	17,759	0
AEU05	Pf	Alluvial with yellow-reddish layer but no new sediment	Aeric Tropaquepts	<30	Oct	Irrigated	17,663	16,684
AEU06	Pf	Alluvial with yellow-reddish layer but no new sediment	Aeric Tropaquepts	30-60	Oct	Irrigated	6,609	43,371
AEU07	Pf	Alluvial with yellow-reddish layer but no new sediment	Aeric Tropaquepts	60-100	Sep-Nov	Irrigated	36,762	0
AEU08	Sp1	Strongly potential acid sulfate soils	Sulfaquepts	30-60	Oct	Irrigated	13,359	12,683
AEU09	Sj2M	Moderately active saline-acid sulfate soils	Sulfic Tropaquepts, Salic	30-60	Aug-Oct	Irrigated	28,799	28,799
AEU10	Sj3	Slightly active acid sulfate soils	Sulfic Tropaquepts	30-60	Aug-Oct	Rainfed	12,323	12,323
AEU11	Sp2	Moderately potential acid sulfate soils	Sulfic Fluvaquents	60-100	Sep-Nov	Irrigated	20,193	20,193
AEU12	Sj2	Moderately active acid sulfate soils	Pale Sulfic Tropaquepts	>100	Aug-Dec	Irrigated	5,510	5,510
AEU13	Sj1M	Strongly active saline-acid sulfate soils	Sulfaquents	30-60	Aug-Oct	Irrigated	3,790	3,790
AEU14	Sp2M	Moderately potential saline-acid sulfate soils	Sulfic Tropaquents, Salic	30-60	Aug-Oct	Rainfed	5,431	5,431
AEU15	Sp1M	Strongly potential saline-acid sulfate soils	Sulfaquents, Salic	60-100	Aug-Oct	Irrigated	4,766	4,766
AEU16	Sj1	Strongly active acid sulfate soils	Sulfaquepts	60-100	Aug-Oct	Rainfed	2,141	2,141
AEU17	Mi	Slightly saline soils	Tropaquepts, Salic	30-60	Aug-Oct	Irrigated	5,304	5,304
AEU18	Sj3M	Slightly active saline-acid sulfate soils	Tropaquepts, Salic	30-60	Aug-Oct	Rainfed	4,163	4,163

Table 4. Agroecological units in Can Tho Province.

Source: Lai et al (1998b).

6

The total available area for agriculture was determined by excluding areas such as built-up and protected areas. The overlay of the administrative units (districts) and the AEUs resulted in 100 land units (LU) that can be assumed to be homogeneous in both biophysical and socioeconomic characteristics.

Production activities. The agricultural production systems considered contain the following products: rice, corn, bean, soybean, mungbean, sugarcane, watermelon, cucumber, petchay, bittergourd, gourd, sweet potato, cabbage, pineapple, fruit, and fish.

The combination of these products in cropping/production systems resulted in 19 land use types (LUTs). The selection of promising LUTs is based on current inventory, development plans, and LUTs existing in other regions with similar agroecological conditions (Lai et al 1998b). These LUTs and the associated codes used are given in Table 5.

Two technology levels were considered: high (H) and low (L). These two technology levels refer to two levels of yield: the current level and

Table 5. Land use types used in the MGLP model.

No.	Land use type ^{a}	Code
1	Rice WS – rice SA	RR
2	Rice WS – rice SS – rice SA	RRR
3	Rice WS – soybean SS – rice SA	RSR
4	Rice WS – mungbean SS – rice SA	RMR
5	Sugarcane – bean	SB
6	Rice SA – transplanted rice –	RTS
	soybean SS	
7	Rice WS – watermelon SS – rice SA	RWR
8	Rice WS – rice SA – fish	RRF
9	Cucumber WS – cucumber SA	CC
10	Petchay WS – cucumber SS –	PCC
	cucumber SA	
11	Bitter gourd WS – gourd SA	BG
12	Rice WS – sweet potato SS –	ROR
	rice AW	
13	Rice WS – corn SS – rice SA	RCR
14	Cabbage SS – petchay SA	CP
15	Rice WS – petchay SS – rice SA	RPR
16	Sugarcane	S
17	Sugarcane – rice WS	SR
18	Pineapple	Р
19	Fruit	F

^aWS = winter-spring, SA = summer-autumn, SS = spring-summer.

an estimated farmer's maximum yield. Data for the current yield level were derived from surveys, whereas data for the latter were derived from expert knowledge (Lai et al 1998a).

With 19 LUTs, 100 LUs, and 2 technology levels, the total number of combinations was 3,800. However, not all LUTs combine with each of the LUs and technology levels. Some characteristics of the LUs at a given technology level will make them unsuitable for a particular LUT. For example, triple rice is considered unsuitable for strongly acid sulfate soils (AEU 8, 13, 15, and 16). When considering only the promising combinations, the number is reduced to just 352 combinations.

Table 6 shows the different cropping system elements and the corresponding codes used in the model.

Table 6. Cropping	system	elements	used	in	the
MGLP model.					

No.	Item	Code
1	Dire WC	D
1	KICE WS	KWS
2	KICE SA	Ksa
3	Rice SS	Rss
4	Soybean SS	Sss
5	Mungbean SS	Mss
6	Sugarcane 05 ^a	S05
7	Bean 05"	B05
8	Transplanted rice	TrR
9	Watermelon SS	Wss
10	Fish 08^{b}	Fis
11	Cucumber WS	Cws
12	Cucumber SA	Csa
13	Petchay WS	Pws
14	Cucumber SS	Css
15	Bitter gourd WS	Bws
16	Gourd SA	Gsa
17	Sweet potato SS	Oss
18	Rice AW	Raw
19	Corn SS	COR
20	Cabage SS	CAB
21	Petchay SA	Psa
22	Petchay SS	Pss
23	Sugarcane	S16
24	Sugarcane 17 ^c	S17
25	Pineapple	PIN
26	Rice \widetilde{WS} 08 ^b	Rw8
27	Rice SA 08^b	Rs8
28	Fruit	FRU

^aFor LUT 05. ^bFor LUT 08. ^cFor LUT 17.

Based on the main agricultural objectives, 11 product groups were formed: rice, nonrice, sugarcane, vegetable, beans, corn, fish, fruit, pineapple, export rice, and upland crops.

Input, intermediate, and output items. The various input-output relations for each production activity as well as the available resources (e.g., area and labor) are stored as a Microsoft Excel file with several worksheets. To simplify referencing of items, the Lookup functions of Excel are used (see Annex 2).

Each item is identified by a range name. Figure 3 shows the Excel file Ctda2010.xls, which contains the input data needed to run the model. The highlighted cells correspond to the *Yield* range. Other named ranges, such as *InputOutput* and *LaborNeed*, can be seen in the drop-down list located at the top left corner of the sheet. The various inputs stored in the Excel file and the corresponding dimensions and codes are shown in Table 7.

XPRESS-MP retrieves the data corresponding to each item with the use of the ODBC statement and SQL select statements. Below is the program excerpt that retrieves data on resource limits from the CtData2010.xls Excel file:

```
CONNECT ODBC, 'DSN=Excel Files;
DBQ=c:\ct\CtDa2010.xls'
```

DISKDATA -c

AvaiArea = `SELECT * FROM AvaiArea' AvaiLabor = `SELECT * FROM AvaiLabor' AvaiWater = `SELECT * FROM AvaiWater'

DISCONNECT

🗙 Microsoft Excel - Ctda2010																				
12) <u>F</u> ile <u>B</u>	Edit	⊻iew	In	sert F	<u>o</u> rmat	: <u>I</u>	ools	<u>D</u> ata	<u>W</u> indow <u>H</u> e	lp								_ 6	۶×
∥ Ľ) 🖻 (9	Ò.	₩BC ▼	% ⊑	b	i a	\$ •	n + 04 +	، کې	$\Sigma f_* \stackrel{\mathbb{A}}{\underset{\mathbb{Z}}{\downarrow}}$	Z↓ 🛍	9 🕹	100% 💌	2				
Med = = VLOOKUP(R4, 'C:\Alice\mglp\[INDICES.XLS]Indices'I\$S\$4:\$T\$31,2,TRUE)																				
Inpu	tOutput				Н	1		J	K	L	M	N	0	Р	Q	R	S	Т	U	
Labo	rNeed															Yield (t	on)			
	-											10^6 dong	10^6 dong	ton	ton	1	2	3	4	_ 11
Prom	isina				D	Т	L	.ut	U	Location	Techology	GrossIncome	TotalCost	Fertilizer	Pesticide	Rws	Rsa	Rss	Sss	Ms
UD					6		1 F	R	01	TpCanTho	High	25	7	0.82	0.012	9	6	0	0	
Yield				•	6		2 F	R	01	TpCanTho	Low	19	5	0.35	0.012	7	4	0	0	
-	8		1	2	3		1 F	R	02	OMon	High	25	7	0.82	0.012	9	6	0	0	
D	9		1	2	3		2 F	R	02	OMon	Low	19	5	0.35	0.012	7	4	0	0	
Б	10		1	2	5		1 F	R	02	ThotNot	High	25	7	0.82	0.012	9	6	0	0	
I	11		1	2	5		2 F	R	02	ThotNot	Low	19	5	0.35	0.012	7	4	0	0	
п	12		1	2	6		1 F	R	02	TpCanTho	High	25	7	0.82	0.012	9	6	0	0	
<u> </u>	13		1	2	6		2 F	R	02	TpCanTho	Low	19	5	0.35	0.012	7	4	0	0	
	14		1	3	1		1 F	R	03	ChauThanh	High	25	7	0.82	0.012	9	6	0	0	
	15		1	3	1		2 F	R	03	ChauThanh	Low	19	5	0.35	0.012	7	4	0	0	
=	16		1	3	4		1 F	R	03	PhungHiep	High	25	7	0.82	0.012	9	6	0	0	
=	17		1	3	4		2 F	R	03	PhungHiep	Low	19	5	0.35	0.012	7	4	0	0	
	18		1	3	6		1 F	R	03	TpCanTho	High	25	7	0.82	0.012	9	6	0	0	
H at	19		1	3	6		2 F	R	03	TpCanTho	Low	19	5	0.35	0.012	7	4	0	0	
æ	20		1	4	3		1 F	R	04	OMon	High	25	7	0.82	0.012	9	6	0	0	
Ф	21		1	4	3		2 F	R	04	OMon	Low	19	5	0.35	0.012	7	4	0	0	
%	22		1	4	5		1 F	R	04	ThotNot	High	25	7	0.82	0.012	9	6	0	0	
	23		1	4	5		2 F	R	04	ThotNot	Low	19	5	0.35	0.012	7	4	0	0	
,	24		1	5	1		1 F	R	05	ChauThanh	High	25	7	0.82	0.012	9	6	0	0	
+.0	25		1	5	1		2 F	R	05	ChauThanh	Low	19	5	0.35	0.012	7	4	0	0	
.00	26		1	5	4		1 F	R	05	PhungHiep	High	25	7	0.82	0.012	9	6	0	0	
+.0	27		1	5	4		2 F	R	05	PhungHiep	Low	19	5	0.35	0.012	7	4	0	0	
÷≣	28		1	5	7		1 F	R	05	ViThanh	High	25	7	0.82	0.012	9	6	0	0	
	29		1	5	7		2 F	R	05	ViThanh	Low	19	5	0.35	0.012	7	4	0	0	
1.	30		1	6	3		1 F	R	06	OMon	High	25	7	0.82	0.012	9	6	0	0	
	31	_	1	6	3		2 F	R	06	OMon	Low	19	5	0.35	0.012	7	4	0	0	
	× <u>32</u>		1	6	4		1 F	R	06	PhungHiep	High	25	7	0.82	0.012	9	6	0	0	
٢	- 33	_	1	6	4		2 F	R	06	PhungHiep	Low	19	5	0.35	0.012	7	4	0	0	
Α	34		1	6 יחווו	і 5 т / Те́	ne /	1 F	RR N / Lin	$\frac{06}{\sqrt{c^{2}}}$	ThotNot	High	25	7	0.82	0.012	9	6	0		

Fig. 3. An excerpt of the input file.

Table 7. Various inputs stored in the Excel file.

No.	Item	Code	Dimension
1	Available area of each AEU in each district	AvaiArea	byAEU, byDist
2	Available labor in each AEU and district	AvaiLabor	byAEU, byDist
3	Gross income in each LUT, AEU, district, and technology level	GrossIncome	byLUT, byAEU, byDist, byTech
4	Total cost in each LUT, AEU, district, and technology level	TotalCost	byLUT, byAEU, byDist, byTech
5	Fertilizer need in each LUT, AEU, district, and technology level	Fertilizer	byLUT, byAEU, byDist, byTech
6	Pesticide need in each LUT, AEU, district, and technology level	Pesticide	byLUT, byAEU, byDist, byTech
7	Nitrogen loss in each LUT, AEU, district, and technology level	NLoss	byLUT, byAEU, byDist, byTech
8	Labor need in each LUT, AEU, district, technology level, and month	LaborNeed	byLUT, byAEU, byDist, byTech, byMonth
9	Water need in each LUT, AEU, district, technology level, and month	WaterNeed	byLUT, byAEU, byDist, byTech, byMonth
10	Yield of each product in each LUT, AEU, district, and technology level	Yield	byLUT, byAEU, byDist, byTech, byProduct

From within XPRESS-MP, several intermediate calculations such as yield per product group are performed. Table 8 lists the intermediate variables and their dimensions and formulae.

Outputs are selected during the post-optimal analysis in XPRESS-MP and saved in an Excel file (i.e., CtOutput.xls). The formulae for grouping the outputs are given in Table 9.

Constraints

A constraint refers to

- (i) resource limits such as insufficient supply of land, labor, and/or water to meet the requirements for achieving goals, e.g., target yields of rice at a given technology
- (ii) development targets for nongoal variables, e.g., production and area targets for corn and fruits
- (iii) a goal restriction imposed by other objectives, e.g., goal to increase income in the region restricted by required minimum production of rice

The first three constraints (Table 10) refer to resource limits on available area, labor, and water, respectively. Goal restrictions were imposed to specify requirements identified from the prevailing policy views in the region. This includes target minimum income for the region (constraint 4) and rice production (constraint 5).

Constraints 6 to 18 are the development targets, which include production targets for corn, vegetables, bean, sugarcane, fruits, and pineapple and area to be allotted for export rice, sugarcane, pineapple, fruit trees, upland crops, and fishery.

Different sets of targets and resource limits are applied for the base and the 2010 scenarios (Table 11).

Table 12 shows the equation applied for each constraint.

Results from the MGLP model

The zero round refers to the optimization run where no targets or restrictions other than those pertaining to resource limits (such as available area, labor, and water) are imposed.

Table 13 shows the results of the zero round for the current scenario. Each column under "Objective" refers to an optimization run. The

Table 8. Intermediate variables.

No.	Variable	Code	Dimension	Formula	Formula
1	Yield of rice	YieldRice	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Rice",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Rice",p)
2	Yield of nonrice	YieldNonRice	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("NonRice",p)	yProduct) Yield (byLUT, byLU, byI ProductType("NonRice", _F
3	Yield of corn	YieldCorn	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Corn",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Corn",p)
4	Yield of vegetable	YieldVegetable	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Vegetable",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Vegetable"
5	Yield of beans	YieldBeans	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Beans",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Beans",p)
6	Yield of sugarcane	YieldSugarcane	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Sugarcane",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Sugarcane"
7	Yield of pineapple	YieldPineppple	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Pineapple",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Pineapple",
8	Yield of export rice	YieldExportRice	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("ExportRice",p)	yProduct) Yield (byLUT, byLU, byI ProductType("ExportRice
9	Yield of upland	YieldUpland	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Upland",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Upland",p)
10	Yield of fishery	YieldFish	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Fish",p)	yProduct) Yield (byLUT, byLU, byI ProductType("Fish",p)

No.	Variable	Code	Dimension	Formula
11	Yield of fruit	YieldFruit	byLUT, byLU, byDist, byTech	SUM(p=byProduct) Yield (byLUT, byLU, byDist, byTech, p) * ProductType("Fruit",p)
12	Total labor cost in each month	LaborCostMonth	byLUT, byLU, byDist, byTech, byMonth	<pre>If(LaborNeedMonth(byLUT,byLU,byDist,byTech,byMonth) - AvaiLabor(byLU,byDist,1)>0, LaborNeedMonth(byLUT, byLU,byDist,byTech,byMonth) * HiredLaborCost - AvaiLabor(byLU,byDist,1) * HiredLaborCost, LaborNeedMonth(byLUT, byLU,byDist,byTech,byMonth) * FamilyLaborCost)</pre>
13	Total labor cost in all year	LaborCost	byLUT, byLU, byDist, byTech	SUM(m=1:Nmonth) LaborCost(byLUT, byLU, byDist, byTech, m)
14	Total net regional farm income	NetIncome	byLUT, byLU, byDist, byTech	GrossIncome (byLUT, byLU, byDist, byTech) - TotalCost (byLUT, byLU, byDist, byTech) - LaborCost (byLUT, byLU, byDist, byTech)

Table	9.	Selected	outputs.

No.	Item	Code	Dimension	Formula
1	Area of each LUT in each district	AreaLD	byDist, byLUT	SUM(u=byLU,t= byTech AvaiArea(u,d,1)>0.AND.LUPromising(lut,u,d)=1) LUA (t, u, lut, d)
2	Production of each product type in each district	ProductionPD	byDist, byProduct	SUM (lut =byLUT, u =byLU, t =byTech AvaiArea (u, d,1) > 0) Yield (lut, u, d, t, p) * LUA (t, u, lut, d)
3	Income from land use type in each district	IncomeLD	byDist, byLUT	SUM (u = byLU, t = byTech, m = byMonth AvaiArea (u, d, 1) > 0 .AND. LUPromising (lut, u, d) = 1) NetIncome (lut, u, d, t) * LUA (t, u, lut, d)
4	Area of each land use type in each land unit in each district to GIS	AreaLUD	NUD, byLUT	SUM (u =1:NLU, d =1:Ndist, t =byTech AvaiArea (u, d, 1) > 0 .AND. LUPromising (lut, u, d) = 1 .AND. u = UD (ud, 1) .AND. d =UD(ud, 2)) UD(ud, 3) * LUA (t, u, lut, d)
5	Total net farm income in each district	DistIncome	byDist	SUM (lut = byLUT, u = byLU, d, t = byTech AvaiArea (u, d, 1) > 0 .AND. LUPromising (lut, u, d) = 1) NetIncome (lut, u, d, t) * LUA (t, u, lut, d)
6	Average of total net farm income in each district	AvgIncome		SUM (lut = byLUT, u = byLU, d = byDist, t = byTech AvaiArea (u, d, 1) > 0 .AND. LUPromising (lut, u, d) = 1) NetIncome (lut, u, d, t) / NDist* LUA (t, u, lut, d)
7	Average of the absolute deviation of net farm income between districts (10^6 VN dong)	DevIncome		EquityIncome = SUM(d=byDist) ABS(EdistIncome(d) - AvgIncome)/NDist !(EdistIncome(d) - AvgIncome)

Table 10. Constraints in the model.

No.	Item	Code
Resc	purce limits	
1	Total of all crop areas (ha) \leq total area available	Area
2	Total of labor needs (ha) \leq total labor available	Labor
3	Total of water needs $(1000 \text{ m}^3) \leq$ water available	Water
Goa	l restrictions	
4	Total net regional farm income $(10^6 \text{ VN dong}) \ge \text{target}$	T_Income
5	Total rice production $(t) \ge target$	P_Rice
Deve	elopment targets	
6	Total corn production $(t) \ge target$	PCorn
7	Total vegetable production $(t) \ge target$	PVegetable
8	Total bean production (t) \geq target	PBeans
9	Total sugarcane production (t) \geq target	PSugarcane
10	Total fruit production (t) \geq target	PFruit
11	Total pineapple production $(t) \ge target$	PPineapple
12	Total area of export rice $(ha) \ge target$	AExportRice
13	Total area of sugarcane $(ha) \ge target$	ASugarcane
14	Total area of pineapple (ha) \geq target	APineapple
15	Total area of fruit special $(ha) \ge target$	AFruitSpecia
16	Total area of upland $(ha) \ge target$	AUpland
17	Total area of fishery $(ha) \ge target$	AFishery
18	Fruit area in each district (ha) \geq target	AFruitArea

Table 11. Targets and resource limits for the base and 2010 scenarios.

No Code		** 1		Values		
No.	Code	Unit	Relation	Base	2010	
Reso	ource limits					
1	Area	ha	<	244,884	239,513	
2	Labor	10^3 manday mo ⁻¹	<	929,008	951,558	
3	Water	$10^3 \text{ m}^3 \text{ mo}^{-1}$	_ ≤	10,634,000	10,634,000	
Goa	l restrictions					
4	T_Income	10 ⁶ VN dong	≥	3,500,000	4,429,000	
5	P_Rice	t	≥	1,800,000	2,200,000	
Deve	elopment targets					
6	PCorn	t	≥	68,000	68,000	
7	PVegetable	t	≥	120,000	120,000	
8	PBeans	t	≥	15,000	15,000	
9	PSugarcane	t	≥	2,000,000	2,000,000	
10	PPineapple	t	≥	22,500	22,500	
11	PFruit	t	\geq	700,000	700,000	
12	ASugarcane	ha	\geq	30,000	30,000	
13	APineapple	ha	≥	5,000	5,000	
14	AExportRice	ha	≥	50,000	50,000	
15	AUpland	ha	≥	30,000	30,000	
16	AFishery	ha	≥	15,000	30,000	
17	AFruitSpecial	ha	≥	30,000	40,000	
18	AFruitArea	ha	>	31,100	31,100	

Table 12. Equations applied to constraints.

No.	Constraint	Code	Equation
1	Corn production	PCorn	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Corn",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PCorn") * PCornTarget
2	Vegetable production	PVegetable	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Vegetable",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PVegetable") * PVegetableTarget
3	Bean production	PBeans	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Beans",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PBeans") * PBeansTarget
4	Sugarcane production	PSugarcane	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Sugarcane",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PSugarcane") * PSugarcaneTarget
5	Pineapple production	PPineapple	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Pinneapple",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PPineapple") * PPineappleTarget
6	Exported rice production	PExportRice	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LuPromising(lut,u,d)=1 .AND. ProductType("ExportRice",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PExportRice ") * PExportRiceTarget
7	Upland production	PUpland	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Upland",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PUpland") * PUplandTarget
8	Fish production	PFish	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Fish",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PFish") * PFishTarget

No.	Constraint	Code	Equation
9	Fruit production	PFruit	SUM(lut=byLUT,u=byLU,d=byDist,p=byProduct,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductType("Fruit",p)=1) Yield(lut,u,d,t,p) * LUA(t,u,lut,d) > TargetValue("PFruit")* PfruitTarget
10	Area of corn	ACorn	SUM(lut=byLUT, u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0.AND.LUPromising(lut,u,d)=1.AND.ProductLUT("Corn",lut)=1) LUA(t,u,lut,d) > TargetValue("ACorn")* ACornTarget
11	Area of vegetables	AVegetable	SUM(lut=byLUT, u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0.AND.LUPromising(lut,u,d)=1.AND.ProductLUT("Vegetable",lut)=1) LUA(t,u,lut,d) > TargetValue("AVegetable")* AvegetableTarget
12	Area of beans	ABeans	SUM(lut=byLUT, u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0.AND.LUPromising(lut,u,d)=1.AND.ProductLUT("Corn",lut)=1) LUA(t,u,lut,d) > TargetValue("ABeans")* ABeansTarget
13	Area of sugarcane	ASugarcane	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductLUT("Sugarcane",lut)=1) LUA(t,u,lut,d) > TargetValue("ASugarcane")* ASugarcaneTarget
14	Area of pineapple	APineapple	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductLUT("Pinneapple",lut)=1) LUA(t,u,lut,d) > TargetValue("APinneapple")* ApineappleTarget
15	Area of exported rice	AExportRice	SUM(lut=byLUT, u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0.AND.LUPromising(lut,u,d)=1.AND.ProductLUT("ExportRice",lut)=1) LUA(t,u,lut,d) > TargetValue("AExportRice")* AExportRiceTarget
16	Area of upland crops	AUpland	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductLUT("Upland",lut)=1) LUA(t,u,lut,d) > TargetValue("AUpland")* AUplandTarget

Table 12. Equations applied to constraints (continued).

No.	Constraint	Code	Equation
17	Area of fisheries	AFish	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductLUT("Fish",lut)=1) FishPondRatio * LUA(t,u,lut,d) > TargetValue("AFish") * AFishTarget
18	Area of fruit tree	AFruit	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductLUT("Fruit",lut)=1) FishPondRatio * LUA(t,u,lut,d) > TargetValue("AFruit") * AFruitTarget
19	Area of fruit tree by district	DAreaFruit (d=byDist)	SUM(lut=byLUT,u=byLU,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1 .AND. ProductLUT("Fruit",lut)=1) LUA(t,u,lut,d) > DAFruit(d) * DAFruitTarget
20	Area by land unit by district	Area (u=byLU,d=byDist)	SUM(lut=byLUT,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) LUA(t,u,lut,d) < AvaiArea(u,d,1)
21	Labor by month	Labor (m=byMonth)	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) LaborNeedMonht(lut,u,d,t,m) * LUA(t,u,lut,d) < SUM(u=byLU,d=byDist) AvaiLabor(u,d,1)
22	Water by month	Water (m=byMonth)	SUM(lut=byLUT,u=byLU,d=byDist,t=byTech AvaiArea(u,d,1)>0 .AND. LUPromising(lut,u,d)=1) WaterNeedMonth(lut,u,d,t,m) * LUA(t,u,lut,d) < SUM(u=byLU,d=byDist) AvaiWater(u,d,1)

Table 12. Equations applied to constraints (continued).

	Objective		Objective					
No.	function	Unit	Max	Max	Max	Max		
			PRice	PNonRice	TIncome	TEmploy		
1	PRice	t	<u>3,372,710</u>	0	629,009	1,486,742		
2	PNonRice	t	0	<u>10,096,794</u>	2,774,505	7,576,250		
3	TIncome	10 ⁶ VN dong	3,215,742	2,527,369	<u>6,337,484</u>	1,468,130		
4	TEquity	10^6 VN dong	126,579	306,336	196,616	184,262		
5	TEmploy	10 ³ labor-day	42,853,993	78,270,681	34,712,905	107,138,677		
6	TLaborPro	10 ³ labor-day	42,853,993	78,270,681	34,712,905	107,138,677		
7	TWater	$10^3 \mathrm{m}^3$	28,351,800	23,904,000	28,351,800	28,351,800		
8	TFertilizer	t	238,129	266,778	233,957	371,891		
9	TPesticide	t	4,252	5,630	3,263	6,156		
10	TNLoss	t	4,252	5,630	3,263	6,156		
11	Equity by	%	0.6	1.7	0.4	1.8		
	deviation/average"	,0	0.0	1.7	0.1	1.0		

Table 13. Results of the zero round for the base scenario.

^aThis additional value is calculated to reflect the equity in income by district.

column header identifies the objective and the associated optimization (maximize or minimize). Underlined figures refer to the optimal value of the corresponding objective function.

Results of the zero round show that the maximum achievable rice production with the current resource base is 3.4 million t. This is almost twice the level of rice production in 1996 (1.8 million t). To achieve this production level, 28.35 billion m³ of water and 42.85 billion labor days are needed. Producing this much rice will result in a total income of 3.22 billion VN dong for the entire province.

When a goal is minimized (e.g., minimize fertilizer use) in the zero round, the resulting goal values will all be zero. Because no other goal restrictions are imposed (such as minimum production level), the model will just opt for a solution of not allocating any land to any LUT. Running an objective function that is being minimized will only have nonzero results when lower bounds on goals or constraints are imposed.

Tables 14 shows the land use allocation by district for the model run of maximizing rice production. Available land in the province would be allocated to three LUTs: 58% to triple rice crop, 38% to double rice crop, and 4% to double rice crop with fish.

In the third round, bounds of goals, production, and area targets are imposed (refer to Table 11 for target values). The optimizations in this round resulted in lower optimal values (Table 15 a, b) compared with those in the zero round. For instance, the value for rice production decreased by 29%; for nonrice production, the decrease was 68%; and total income declined by 45% compared with the zero round.

Conclusions and recommendations

The MGLP component of LUPAS is described in this technical document with the Can Tho Province model as an example.

Table	14.	Land	use	alloca	ation	(in	ha)	for	each	district
when	rice	proc	ducti	on is	max	imi	zed			

		La			
No.	District	Rice-rice Rice-		Rice- rice-fish	Total
			1100 1100	1100 11511	
1	Chau Thanh	8,172	16,515	0	24,687
2	Long My	33,925	0	0	33,925
3	O Mon	0	34,294	9,672	43,966
4	Phung Hiep	19,304	16,692	0	35,996
5	Thot Not	10,521	34,199	0	44,720
6	Tp Can Tho	0	26,671	0	26,671
7	Vi Thanh	18,675	7,625	0	26,300
	Province	90,597	135,996	9,672	236,265

No.	Objective function	Unit	Max PRice	Max PNonRice	Max TIncome	Max TEquity	Max TEmploy
1 2 3 4 5 6	PRice PNonRice TIncome TEquity TEmploy TLaborPro	t t 10^6 VN dong 10^6 VN dong 10^3 labor-day 10^3 labor-day	2.406,205 3,109,500 3,500,000 170,104 50,430,728 50,430,728	2,389,003 <u>3,200,836</u> 3,500,000 171,932 50,874,803 50,874,803	2,398,822 3,109,500 <u>3,515,636</u> 174,485 50,435,843 50,435,843	2,377,546 3,112,669 3,500,000 <u>145,468</u> 50,497,495 50,497,495	2,339,472 3,144,005 3,500,000 174,238 <u>51,878,821</u> 51,878,821
7 8	TWater TFertilizer	$10^{\circ} \text{ m}^{\circ}$ t	28,351,800 249,301	28,351,800 250,885	28,351,800 250,478	28,351,800 250,927	28,351,800 252,210
9 10 11	TPesticide TNLoss Equity by deviation/aver	t t % rage ^a	4,631 4,631 0.7	4,682 4,682 0.7	4,661 4,661 0.7	4,662 4,662 <u>0.6</u>	4,632 4,632 0.7

Table 15a. Results of optimizations (maximizations) when area and production targets are considered.

^aThis additional value is calculated to reflect the equity in income by district.

Table 15b. Results of optimizations (minimizations) when area and production targets are considered.

No	Objective	Unit	Min	Min	Min	Min	Min	
110.	function	Oint	TLaborPro	TWater	TFertilizer	TPesticide	TNLoss	
1	PRice	t	2,345,896	2,379,841	2,378,481	2,345,896	2,379,841	
2	PNonRice	t	3,109,500	3,109,500	3,109,500	3,109,500	3,109,500	
3	TIncome	10 ⁶ VN dong	3,500,000	3,500,000	3,500,000	3,500,000	3,500,000	
4	TEquity	10 ⁶ VN dong	162,910	171,932	160,106	162,910	171,932	
5	TEmploy	10 ³ labor-day	48,718,281	50,121,291	50,540,883	48,718,281	50,121,291	
6	TLaborPro	10 ³ labor-day	<u>48,718,281</u>	50,121,291	50,540,883	48,718,281	50,121,291	
7	TWater	10^{3} m^{3}	28,351,800	<u>28,158,775</u>	28,351,800	28,351,800	28,158,775	
8	TFertilizer	t	246,714	249,140	<u>243,111</u>	246,714	249,140	
9	TPesticide	t	4,533	4,641	4,666	4,533	4,641	
10	TNLoss	t	4,533	4,641	4,666	4,533	4,641	
11	Equity by	%	0.7	0.7	0.7	0.7	0.7	
	deviation/average ^a							

^aThis additional value is calculated to reflect the equity in income by district.

In addition to presenting results of optimizations in tabular form, goal values can also be presented graphically and land use allocations can also be shown in map form. This will facilitate comparison of goal values and land use allocations for the different scenarios considered. For purposes of interpretation, it is also useful to illustrate the trade-off between two objectives.

Part 2 of this technical document will describe the operational procedure for mapping results of optimizations.

Different land use allocations can result in similar objective values. In addition to analyzing optimal solutions, nearly optimal solutions can be examined to analyze land use allocations that will result in nonoptimal but only slightly different objective values. Makowski et al (1998) present a framework for studying nearly optimal solutions of linear programming models developed for exploring land use options for the agricultural sector.

References

- Dash Associates. 1997. XPRESS-MP User guide and reference manual. Blisworth House, Blisworth, Northants (UK): Dash Associates Ltd. 290 p.
- De Wit CT, Van Keulen H, Seligman SG, Spharim I. 1988. Application of interactive

multiple goal programming techniques for analysis and planning of regional agricultural development. Agric. Syst. 26: 211-230.

- Hijmans RJ, Van Ittersum MK. 1996. Aggregation of spatial units in linear programming models to explore and use options. Neth. J. Agric. Sci. 44:14-162.
- Hoa VTK, Hien BK. 1999. Attachment training: multiple goal linear programming (MGLP) for Can Tho case study. SysNet Project internal report, Los Baños, Philippines.
- Lai NX, Jansen DM, Hoanh CT, Luat NV, Loc NT, Tan PS, Hoa VTK, Quang MT, Tuan TQ, Huan TTN, Nghiep HV, Cuong NT, Hung PQ, Nga NTP. 1998a. SysNet methodology development in Vietnam. In: Roetter R, Hoanh CT, Luat NV, Van Ittersum MK, Van Laar HH, editors. Exchange of methodologies in land use planning. SysNet Res. Pap. Ser. 1, p 81-86.
- Lai NX, Luat NV, Jansen DM, Hoanh CT, Loc NT, Tan PS, Hoa VTK, Quang MT, Tuan TQ, Huan TTN, Nghiep HV, Cuong NT, Hung PQ, Nga NTP. 1998b. Application of the SysNet methodology in Vietnam: preliminary results. In: Roetter R, Hoanh CT, Luat NV, Van Ittersum MK, Van Laar HH, editors. Exchange of methodologies in land use planning. SysNet Res. Pap. Ser.1, p 111-116.
- Makowski D, Hendrix EMT, Van Ittersum MK, Rossing WAH. 1998. A framework to study

nearly optimal solutions of linear programming models developed for agricultural land use exploration. Technical Note 98-06. The Netherlands: Department of Agricultural, Environmental and Systems Technology, Wageningen Agricultural University. 16 p.

- Roetter R, Hoanh CT, Luat NV, Van Ittersum MK, Van Laar HH, editors. 1998a. Exchange of methodologies in land use planning. SysNet Res. Pap. Ser. 1, 53 p.
- Roetter R, Hoanh CT, Teng PS. 1998b. A systems approach to analyzing land use options for sustainable rural development in South and Southeast Asia. IRRI Discuss. Pap. Ser. 28. 110 p.
- Roetter R, Hoanh CT. 1999. Exploring land use options under multiple goals in support of natural resource management at sub-national level. In: Kinh NN, Teng PS, Hoanh CT, Castella JC, editors. Towards an ecoregional approach for natural resource management in the Red River Basin of Vietnam. Hanoi (Vietnam): Ministry of Agriculture and Rural Development, and Makati (Philippines): International Rice Research Institute. p 29-57.
- Van Ittersum, MK, Rabbinge R, Van Latesteijn HC. 1998. Exploratory land use studies and their role in strategic policy making. Agric. Syst. 58(3): 309-330.

MapLink: a tool for linking data in Excel file to GIS

Introduction

A geographic information system (GIS) is a computer-based system that enables the capture, modeling, manipulation, retrieval, analysis, and presentation of geographically referenced data (Worboys 1995). GIS has wide applications covering various fields.

In SysNet, GIS is used as a supporting tool for resource assessment, delineation of land units, and mapping of land use options and goal achievements (Fig. 1).

What has been lacking in LUPAS is an interface that can link the data in the input-output tables for the various agricultural production activities and the optimization results to GIS. During the SysNet Technical Review Workshop held in Bangkok, Thailand, in November 1998, it was pointed out that the mapping of key variables, such as crop yields at defined technology levels, fertilizer, or irrigation water requirements, will facilitate the examination of the spatial distribution of the input-output data, provide another way to cross-check the correctness of the data being used, and analyze spatially the results of optimization runs for the different scenarios. In response to these needs, a first interface, linking input-output data in Excel files to Idrisi maps, was developed in January 1999.

Various data are stored in Microsoft Excel files (see Part 1). Before these can be mapped, they need to be converted to a format that the GIS software can recognize — e.g., mdb or dbf format. Then, the file needs to be imported into the GIS and mapped following certain procedures. A solution to this problem was found in *MapLink*, a tool created for linking data in Excel files to a GIS.

The GIS software Idrisi (Eastman 1997) is used by various SysNet teams, but it can read data from xbase files and mdb files (Microsoft Access) only. Since the SysNet project uses Microsoft Excel to store input-output data and results of optimization runs, the data to be mapped need to be converted to either dbf or mdb format first. In Idrisi, the file is then opened using the "database workshop." The variable required is mapped by linking the database file to a base map and assigning field values to the image. After completing these steps, the resulting map is displayed. This procedure, though not too complicated, requires some steps and knowledge in the use of Idrisi. Because of the volume of data to be mapped resulting from the large number of variables being used in the different scenarios and optimization runs, a routine to facilitate this procedure becomes necessary.

MapLink creates a new map using a defined set of values and a base map. This system was developed using Excel and inovaGIS, which is a component-based program that was developed at the New University of Lisbon in Portugal. It consists of a library of routines for accessing existing Idrisi raster images and creating new images from within Windows-based applications, such as Excel (Goncalves 1998). *MapLink* makes use of this library to automate the mapping of data stored in Excel. The resulting files created by *MapLink* are in standard Idrisi format and can be accessed in Idrisi for further analysis. This part of the technical document describes *MapLink* and how it can be used to create Idrisi maps.

The file system, structure, and use of *MapLink*

MapLink consists of one Excel file with two types of worksheets: the map sheet (*Maps*) and the data sheets (*ByDistrict*, *ByAEU*, *ByLU*). There can be any number of data sheets and the name of the data sheets can be changed to suit specific needs. The name of the map sheet, however, should not be changed. Otherwise, an error message, "Subscript out of range", will be displayed because the program cannot locate the *Maps* sheet.

To activate *MapLink*, press Ctrl+M. This will activate the program that opens the user

menu. The routines to automate the mapping of the base map and the creation of new maps are stored as macros in MAPLINK.XLS. The base map can be an administrative map (showing district, municipal, or regional boundaries), a map of agroecological units, or a map of land units (combination of the two) in a region.

The user will be prompted to enter information, such as the filename of the base map, which is required to create maps (Fig. 4). A detailed description of the user interface is given in the next section.

The *ByLU*, *ByAEU*, and *ByDistrict* sheets are the data sheets from where the program will get the variables to map. Of current interest to SysNet are maps by administrative units, agroecological units, and land units (combination of administrative and agroecological units). The values in these sheets will be mapped by matching the codes with the identifiers (ids) in the base

MapLink Map files Text / I	egend Palette options	×
Filename of Base Map		Browse
New map Filename of New Map Column to map		Browse
Show base map	Create new map	Utilities

Fig. 4. The MapLink interface.

map, so care must be taken to ensure that the codes in the base map and in the data sheet refer to the same geographical area. New data sheets can be added as required and the names of these sheets can be changed without affecting the execution of the program.

Figure 5 shows a set of sample data by district, which is a preliminary output of the optimization runs for the Haryana model.

MapLink gets data from the *Values* and *ValuesHeader* ranges. To define a range in Excel, select *Insert* in the menu bar, then click on *Name*, then *Define*. This will open up a dialog box to identify the name to be created and the cell location of the values.

The *ValuesHeader* range contains the variable names to be mapped. It has one row and can have any number of columns, depending on the number of variables you need to map. Figure 6 shows the *ValuesHeader* range for the sample data shown in Figure 5.

The first column of the *Values* range contains the code to be mapped and should match with the code in the Idrisi file. This will ensure that the data will be mapped to the correct map polygon. The second column contains a description of the first column. The remaining columns are the values to be mapped. Figure 7 shows the *Values* range for the sample data shown in Figure 6.

When a new map is created, aside from creating the actual Idrisi file, the resulting map will be dumped into the *Maps* worksheet as a picture (Fig. 8). Similarly, the base map will be pasted to this worksheet. These pictures can be copied and pasted to Word documents for inclusion in reports and/or visual aids.

The user interface

MapLink's user interface consists of a pop-up screen. It has three tabs to group similar

-	File 8.6	e Vieni Insert F	Format Too	b Data W	dow Help					101.I		- M P	
41	1	. 10	i p	/ 11 11			+# #						
	A1	*	P D	strict Data		TT de ve	3 .00 *4	s or or -	M	17			
18	٨	8	C	D	E	F	G	н	1	1	K	L-	
1	By Dist	lict Data							_				
2	-		1	2	3	4	5	6	7	8	9	10	
3	Cede	Districts	CerealP	Income	Emp	Pump	NFert	Pindex	NLoss	PulsesP	CropP	Mil	
4	1	Ambala	1.19	4,251	25.88	291,100	56,814	20,534,864	2,581	84.38	1.79	- 45	
5	2	Bhiwani	0.84	4,627	26.48	224,875	45,941	21,599,114	2,913	119.46	1.71	- 61	
Б	3	Faridabad	1.00	6,453	33.89	272,616	54,345	45,830,520	3,252	75.65	3.29	51	
7	4	Gurgaon	0.82	5,382	32.51	252,700	44,133	43,877,605	4,208	44.03	3.08	- 54	
6	5	Hissar	2.63	8,890	78.45	728,020	89,788	34,115,947	4,190	188.81	3.29	123	
9	6	Jind	1.63	6,295	46.25	396,977	43,063	27,477,080	1,822	122.09	2.40	68	
10	7	Kathal	1.69	5,698	41.11	532,755	50,824	20,202,011	2,652	67.79	2.02	76	
11	8	Kamal	2.60	8,021	43.02	1,126,326	96,816	25,784,102	8,687	7.86	2.84	126	
12	9	Kurukshetra	1.65	4,603	31.95	558,909	64,212	15,307,909	4,232	18.95	1.69	77	
13	10	Mahendragarh	0.45	2,934	15.51	196,451	27,231	20,166,425	3,115	37.31	1.45	- 35	
14	11	Panipat	1.15	4,241	21.89	426,609	40,238	16,361,203	2,943	20.89	1.58	- 54	
15	12	Rewari	0.47	2,910	16.04	202,706	28,492	19,629,188	3,073	41.09	1.42	- 20	
16	13	Rohtak	1.45	8,505	45.50	366,243	68,768	50,780,497	3,702	131.45	3.81	- 80	
17	14	Sirsa	0.85	3,546	25.11	332,020	35,111	15,117,943	3,019	76.90	1.31	- 40	
18	15	Stripst	1.42	4,959	36.12	364,018	42,859	18,301,071	2,252	70.90	1.76	6	
19	16	Yamuhanagar	1.64	4,087	26.13	482,510	72,557	15,635,233	3,336	56.61	1.86	61	
21											_		
23													
24						_							

Fig. 5. A sample data sheet: data by district.

100.1		· 응명소 학교교수 · · · · · · · · · · · · · · · · · ·										
	the ga	it Yom Unsert f	gemat Look	Qata We	dow Help	E					- 3	- 10 2
A	rial	. 11	B /	U	= =	· * *	, 28 23	课课	3.4	-		
nθ	esHeade	<u> </u>	 Cereal 	P								
skue	10		C	D	E	- F - 1	6	H		1	K	17
	0,000											
Ζ.	1		1	2	3	4	5	6	1	8	9	10
3	Code	Districts	CerealP	Income	Emp	Pump	NFert	Pindex	NL ess	PulsesP	CropP	Mil
4	1	Ambala	1.19	4,251	25.88	291,100	56,814	20,534,864	2,581	84.38	1.79	- 41
6	2	Bhiwani	0.84	4,627	26.48	224,875	45,941	21,599,114	2,913	119.46	1.71	- 51
6	3	Faridabad	1.00	6,453	33.89	272,616	54,345	45,830,520	3,252	75.65	3.29	- 54
7	4	Gurgaon	0.82	5,382	32.51	252,700	44,133	43,877,605	4,208	44.03	3.08	- 54
6	5	Hissar	2.63	8,890	78.45	728,020	89,788	34,115,947	4,190	188.81	3.29	127
9	6	Jind	1.63	6,295	46.25	396,977	43,063	27,477,080	1,822	122.89	2.40	ER
10	7	Kaithal	1.69	5,698	41.11	532,755	50,824	20,202,011	2,652	67.79	2.02	71
11	8	Kamal	2.60	8,021	43.02	1,126,326	96,816	25,784,102	8,687	7.86	2.84	126
12	9	Kurukshetra	1.65	4,603	31.96	658,909	64,212	16,307,909	4,232	18.95	1.69	77
13	10	Mahendragarh	0.45	2,934	15.51	196,451	27,231	20,166,425	3,115	37.31	1.45	- 35
14	11	Panipat	1.15	4,241	21.89	426,609	40,238	16,361,203	2,943	20.89	1.58	- 5-
15	12	Rewari	0.47	2,910	16.04	202,706	28,492	19,629,188	3,073	41.09	1.42	- 20
16	13	Rohtak	1.45	8,585	45.50	386,243	68,768	50,780,497	3,702	131.45	3.81	- 80
17	14	Sirse	0.85	3,546	25.11	332,020	35,111	15,117,943	3,019	76.90	1.31	- 40
18	15	Scripst	1.42	4,959	36.12	384,018	42,859	18,301,071	2,252	70.90	1.76	6
19	16	Yamunanagar	1.64	4,087	26.13	482,510	72,557	15,635,233	3,335	56.61	1.86	61
20												
21												
22												
23	-											
24									C			

Fig. 6. The ValuesHeader range for the sample data.

A	Par Edit Verse Insert Format Tools Cata Window Help						- 101					
H	-	e Bon fusere i	Base Too	o Cars Th	- m i	-		the rise				- 10 1
			B	X U ==	8 8	H 8 %	1 30 47	t the the -	· @ · 0			
1058 •				-								
	ette acter		C	0	() E	• • • •	- 6	н	100	1	ĸ	
-												
-	Cada	Districts	CerealP	Incama	Emn	Pome	MEart	Pladar	Nieco	BulanaD	CronB	MI
1	1	Amhala	Contra da	4.251	25,531	201 1001	58,814	01-51-004	2.681	BASE	179	
5	2	Bhiwani	0.84	4.627	26.46	224.875	45,941	21.599.114	2,913	119.46	1.71	6
6	3	Faridabad	1.00	5,453	33.89	272,616	54 345	45,830,520	3 252	75.66	3.29	- 5
7	4	Gurgaon	0.82	5,382	32.51	252,700	44,133	43,877,605	4,208	44.03	3.08	- 5
8	5	Hissar	2.63	8,890	76.45	728,020	89,788	34,115,947	4,190	188.81	3.29	12
9	6	Jind	1.63	6,295	46.25	396,977	43,063	27,477,080	1,822	122.69	2.40	E.
tū	7	Kathal	1.69	5,698	41.11	532,755	50,824	20,202,011	2,652	67.79	2.02	7
11	8	Kamal	2.60	8,021	43.02	1,126,326	96,816	25,784,102	8,687	7.86	2.84	12
12	9	Kurukshetra	1.65	4,603	31.96	558,909	64,212	15,307,909	4,232	18.95	1.69	7
13	10	Mahandragarh	0.45	2,934	15.51	196,451	27,231	20,166,425	3,116	37.31	1.45	3
14	11	Panipat	1.16	4,241	21.89	426,609	40,238	16,361,203	2,943	20.89	1.58	- 5
15	12	Rewari	0.47	2,910	16.04	202,706	28,492	19,629,188	3,073	41.09	1.42	- 2
16	13	Rohtak	1.45	8,585	45.50	366,243	68,768	50,780,497	3,702	131.45	3.81	- 65
17	14	Sirsa	0.85	3,546	25.11	332,020	35,111	15,117,943	3,019	76.90	1.31	4
18	15	Scripst	1.42	4,959	36.12	384,018	42,859	18,301,071	2,252	70.90	1.76	6
19	16	Yamuhahagar	1.54	4.067	26.13	482.510	72.557	16.635.233	3,335	56.61	1.66	5
20												
21												_
<i>a</i> .												
23					_							
24	and so the	in dation da	-					lail -				-

Fig. 7. The Values range for the sample data.

Fig. 8. The base map and the new map will be dumped into the Maps worksheet.

information that requires user input: Map files, Text/legend, and Palette options.

Map files

The *Map files* tab (Figs. 4 and 9) prompts the user to enter the following required information:

Filename of base map. *MapLink* will only accept Idrisi raster images as base maps. The filename can be typed directly (include the file path, e.g., c:\haryana\maps\district.img) or the *Browse* button can be used to locate the file. An error message will appear if the file does not exist in the subdirectory you specified.

If you get an error message, "Compiler error: Can't find project or library," this means that you have not yet installed inovaGIS in your machine. Refer to the next section for the procedure for installing inovaGIS.

Filename of new map. The created map will be stored under this name. Be sure to include a logical file path to avoid an error in creating the map.

The *Browse* button can also be used to locate the correct subdirectory where you want to save the file. If another file with the same name exists in the subdirectory, the contents of the file will be overwritten.

Column to map. This field should contain the variable to be mapped. The variable can be typed or selected by clicking on the drop-down list. The items in this list are extracted from the *ValuesHeader* range. When a variable name other than those defined in the *ValuesHeader* range is typed, an error will occur.

Text/legend

This tab contains information pertaining to titles and legends of the map to be displayed. Initially, the *Base map* and the *New map* frames are inactive. When the filename for the corresponding map is indicated in the *Map files* tab, the frame will become active.

Stored information about the base map such as title, number of data labels, and unit will be shown in the base map frame. For the new map, default information will be displayed. Figure 9 shows the contents of the *Map files* and the *Text/legend* tabs for the maps shown in Figure 8.

Title of map. The default title for the base map is the title as saved in the actual Idrisi file. For the new map, the default title is the name of the variable. The title for the base map can be modified so that the pasted picture can show a different title. However, the changes will not be saved in the actual Idrisi file.

Categorize the data? Answering "no" will create a map of continuous values. Indicating "yes" will create a map of discrete values, i.e., the values of the new map will be categorized based on the range of values (maximum and minimum values) as well as the number of classes/categories required. The default is "yes."

Unit. For the new map, this information will be stored in the Idrisi image to be created and will be displayed in the legend of the pasted map. There is no default value so, when no information is indicated, the resulting pasted map will not have a unit in the legend.

Number of classes/data labels. If you answered "no" to the previous question, this refers to the number of data labels in the legend. Otherwise, this refers to the number of discrete classes to be placed in the legend.

Palette options

The colors to be used in mapping the different units can be specified using this option. Any of the seven predefined palettes can be used (Grey256, Grey16, Alt256, Composit, Idri256, Idri16, IBM16) or the user can specify a different set by selecting colors. A color box will be displayed when you click on a box and you can select from the basic colors or define custom colors. The color scheme can also be inverted and an option for creating gradients is also available. The default palette is Idri16.

At the bottom of the screen are three

Filename of	c'hayananasidatat.ng	Draves
Base Map	Second Lines and	
New mep		
Filename of	c than an alphapet, revealering	Drovese
new map		
Column te	CereaP	*

pilles Text/legend	Palette options			
Dass Map				
Title of map	Map of districts			
Categorize the date ?	yes Usit debits			
No. of classes/ data labels	16			
New Map				
Title of map	CereaP			
Categorize the data ?	no 💌 Usit 🖬 ton			
No. of classes/ data labels	S Constant per g			

Fig. 9. The *Map files* (top) and *Text/legend* tabs (bottom).

buttons: *Show base map*, *Create new map*, and *Utilities*.

Show base map

Initially, this button is inactive. It will become active when the filename for the base map is specified. Clicking on this button will display the base map in the *Maps* sheet, adopting the map settings indicated on the *Text/legend* and *Palette options* tabs.

Create new map

Like the previous button, this will become active only when the filename for the new map and the column to map field are specified. Clicking on this button will create a new Idrisi file and display the created map in the *Maps* sheet.

Utilities

This button has been added to include other utilities. In the current version of *MapLink*, this includes the point query facility. By pointing the cursor over the map, the cell value, the row and column, and the geo-referenced locations are displayed.

When this button is clicked, a new window appears. By clicking on *File*, then *Open*, and selecting the file, the map will be displayed (Fig. 10). Multiple files can be opened and tiled/ arranged as required.

This routine could not be implemented in Excel. The Visual Basic programming language was used instead and the executable file is called up from within Excel. Other features such as computation of areas and statistical summary of the values of the images will be added in the next version.

Getting started

- Copy the file MAPLINK.XLS and the base map(s) to the same subdirectory (e.g., C:\MAPLINK).
- MapLink requires that inovaGIS be installed on the computer you are using. To do this, copy inovaGIS.zip from the installation disk to a subdirectory in your computer (e.g., c:\inovaGIS). Extract the files by running WinZIP or PKUnzip. Run setup and

Fig. 10. The Utilities window.

several screens will guide you on the installation process. Be sure to click on "Yes, Launch program file" before ending the installation. Note that you need to install inovaGIS only once on a computer.

- 3. Open the Excel file MAPLINK.XLS. Put the variables and the data set you need to map on the appropriate data sheet (e.g., *ByDistrict*, *ByLU*, *ByAEU*). Define the *Values* and *ValuesHeader* ranges.
- 4. Press Ctrl+M to open the menu.
- 5. To view the base map, type the filename in the space provided. The saved title, number of classes, and unit will be displayed on the *Text/legend* tab. The title can be changed to a more suitable one, if necessary, but the changes will only be shown on the pasted map and will not be saved. The default palette is Idrisi 16. This can be changed to other saved palettes or a user-defined one. When all settings are finished, click on the *Show base map* button. The map will be pasted onto the *Maps* sheet.
- 6. To create a new map, enter the filename where the new map will be saved and the name of the variable to be mapped. A list of the available variables (which are taken from the *ValuesHeader* range) can be seen by clicking on the drop-down list in the *Column to map* field. The other map settings such as the titles, legend, and palette can be set by selecting the corresponding tab. Click on the *Create new map* button to map the variable you specified. The map will be pasted onto the *Maps* sheet.

References

- Goncalves PP. 1998. inovaGIS Freeware raster GIS. Accessed via the Internet on 12 January 1999 at URL http:// gasa.dcea.fct.unl.pt/inovagis/.
- Microsoft Corporation. Microsoft Excel 97.
- Eastman JR. 1997. Idrisi for Windows: user's guide version 2.0. Worcester: Clark University.
- Worboys MF. 1995. GIS: a computing perspective. London: Taylor and Francis. 376 p.

Annex 1. Operational structure of LUPAS (Land Use Planning and Analysis System).