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Abstract
This paper tracks the consequences of individuals’ desire to align their location with their
social preferences. The social preference studied in the paper is distaste for relative
deprivation, measured in a cardinal manner. Location is conceived as social space, with
individuals choosing to relocate if, as a result, their relative deprivation will be reduced,
holding their incomes constant. Conditions are provided under which the associated
dynamics reaches a spatial steady state, the number of periods it takes to reach a steady
state is specified, and light is shed on the robustness of the steady state outcome. By way
of simulation it is shown that for large populations, a steady state of the relocation
dynamics is almost always reached, typically in one period, and that cycles are more

likely to occur when the populations’ income distributions are more equal.

Keywords: Social preferences; Distaste for low relative income; A cardinal measure of
income relative deprivation; Interregional locational choices; Relocation dynamics;
Steady-state spatial distribution
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1. INTRODUCTION

By now there is widespread recognition, based on mounting evidence, that comparisons
with others impinge significantly on wellbeing, and elicit substantial behavioral
responses. The received literature reveals that the comparisons which matter for an
individual’s sense of wellbeing are those made by looking “up” the income hierarchy,
rather than by looking “down.” A large literature that supports the “upward comparison”
hypothesis is reviewed in Frey and Stutzer (2002), Walker and Smith (2002), and Stark
(2013), for example. Engaging in interpersonal comparisons affects the individuals’ sense
of wellbeing and influences their behavior, including in relation to where to locate. Yet
there has been no systematic inquiry into how the pure effect of social comparisons
determines locational outcomes. This paper takes a step towards filling this lacuna.

The paper characterizes the steady state distribution of a population of n
individuals who are homogeneous in preferences and heterogeneous in incomes. The
individuals who to begin with are in region A can relocate at no cost to themselves
between region A and region B. We make two main assumptions: that the individuals
exhibit strong social preferences, and that their incomes are held constant. The reason for
making the first assumption is given in the preceding paragraph. The reason for making
the second assumption is to allow us to concentrate on essentials, namely to facilitate a
study of the pure effect of location-specific dissatisfaction that arises from falling behind
others in the income distribution. Social preferences take the form of distaste for falling
behind others with respect to income; in other words, social preferences represent the
negative influence of unfavorable income comparisons on the individuals’ sense of

wellbeing.



We model social preferences as distaste for relative deprivation (defined later on
in this paragraph). Because incomes are held constant, the wellbeing of an individual is
solely a function of the extent to which that individual’s location aligns with his social
preferences. To begin with we assume that across the income hierarchy, the income
differences between any two adjacent individuals are the same. We obtain three
interesting results. First, the process of relocation reaches a spatial steady state (namely
the movement between locations ceases, with no individual being able to improve his
wellbeing by engaging in further movement). Second, under relative deprivation, the
steady state outcome is a sharp bifurcation, with the individual whose income is the
highest staying in region A, and all the other individuals relocating to and staying in
region B. Third, regardless of how relative deprivation is measured, whether as the
aggregate of the income excesses divided by the size of the population or as the distance
from below the mean income, the result is a spatial steady state. However, when incomes
differ but are not equally spaced, a spatial steady state distribution may or may not be
achieved. We show that for n=3 (and trivially for n=2) a spatial steady state
distribution will always be achieved. When n=4 and n=35, we specify conditions under
which a spatial steady state will not be reached, and complementary conditions under
which the process of relocation reaches a spatial steady state. We comment on the
difficulty of obtaining predictions for the case of n>6, and we then resort to a
simulation procedure that enables us to gain insights from analyzing this case. Quite
remarkably, we find that the outcome to which the simplified model (where the income
differences between any two adjacent individuals are the same) gives rise is a generic

outcome of the dynamics of locational choices for a large number of individuals with an



arbitrary distribution of incomes. When the size of the population increases, the
probability of reaching a spatial steady state, as well as the average number of periods
needed to reach that state, tend to 1. We also find that regardless of the size of the
population, a spatial steady state is more likely to be reached in the case of populations
with less equal income distributions.

Considerable empirical evidence finds that relative deprivation is a statistically
significant explanatory variable of a notable case of locational moves, namely of
migration behavior. Stark and Taylor (1991) show that relative deprivation increases the
probability that the labor time of household members will migrate from rural Mexico to
the US to work. The significance of relative deprivation as an explanatory variable of
labor migration received additional support in several more recent studies. Quinn (2006)
reports that relative deprivation is a significant motivating factor in domestic migration
decisions in Mexico. Stark et al. (2009) explore the relationship between aggregate
relative poverty, which is functionally related to aggregate relative deprivation, and
migration. Drawing on Polish regional data, they demonstrate that migration from a
region is positively correlated with the aggregate relative deprivation in the region.
Czaika (2012) finds that, in India, relative deprivation is an important factor in deciding
whether a household member should migrate, especially for migration over a short
distance. Basarir (2012) observes that people in Indonesia are willing to bear a loss of
absolute wealth if there is a relative wealth gain from migration. Jagger et al. (2012)
report that relative deprivation is a significant explanatory variable of circular migration
in Uganda. Vernazza (2013) concludes that, even though interstate migration in the US

confers substantial increases in absolute income, the trigger for migration is relative



deprivation (low relative income), not low absolute income. Drawing on data from the
2000 US census, Flippen (2013) shows that both blacks and whites who migrate from the
North to the South generally have average lower absolute incomes than their stationary
northern peers, yet enjoy significantly lower relative deprivation, and that the relative
deprivation gains for blacks are substantially larger than those for whites. Hyll and
Schneider (2014) use a data set collected in the German Democratic Republic in 1990 to
show that aversion to relative deprivation enhanced the propensity to migrate to western
Germany. Kafle et al. (2018) use comparable longitudinal data from integrated household
and agriculture surveys from Tanzania, Ethiopia, Malawi, Nigeria, and Uganda, and find
that wealth relative deprivation is positively associated with migration.

The remainder of this paper is organized as follows. In Section 2 we present the
assumptions of our analytical framework. In Section 3 we analyze a model of choice of
location between two regions under the assumption that the income differences between
any two adjacent individuals are equal to 1. In Sections 4 and 5 we analyze the
consequences of relaxing several of the model’s assumptions: in Section 4 we relax the
assumptions about the number of individuals of each income, and about the size of the
equal income difference between adjacent individuals being equal to 1. We find that the
results of Section 3 are not contingent on these assumptions. In Section 5 we revoke the
assumption that the income differences between two adjacent individuals are the same.
We establish conditions for the existence of a spatial steady state of the location
dynamics in this case. We accomplish this analytically for populations of size n <5, and
for larger populations - by means of simulation. Proofs of the claims made in Section 5

are in Appendix A. In Section 6 we comment on an adjustment of the models to the



possibility that incomes can change. In Section 7 we discuss the possibilities that to begin
with not all the individuals might be in region A, and that there might be more than one

new region available for the individuals to move to. In Section 8 we conclude.

2. CHARACTERIZING THE INDIVIDUALS

Let there be a population of n individuals, where n is a natural number. The income of
individual i is i, i=1,2,...,n (namely the individual’s income is the individual’s name).
To begin with all the individuals are in region A. Let (empty) region B come into being
or become accessible such that moving between the two regions is possible, and is cost
free. In all relevant respects, the two regions are identical. This implies that there is no
reason, arising from a difference in the regions’ amenities, for an individual to prefer one
region to the other. The individuals want to be in the region that better aligns with their
social preferences. When, in terms of the outcome of social comparisons, the regions are
equally attractive (a tie), the individuals do not relocate. Once the individuals are in a
region, the region becomes instantaneously their exclusive sphere of comparison.
However, in response to the actual distribution of people between the two regions, the
individuals can relocate as many times as they wish, at no cost to themselves. Put
differently, the individuals base their location decisions on the observed current state,
without simultaneously forming expectations how other individuals will behave. For ease
of exposition, we refer to the steps in the process of selecting location as periods, with the

initial period being referred to as zero.



3. MEASURES OF SOCIAL PREFERENCES

3.1 Indices of relative deprivation (RD)

3.1.1 Relative deprivation measured as the aggregate of the income excesses divided by
the size of the population

Let (X,,X,,...,X,) be an ordered vector of incomes of a given population of n
individuals, namely X, is the income of individual i, and X, <X, <...<X,. Then, we

measure the relative deprivation of individual i as follows.

Definition 1: RD(i) _1L D" max{x, — X0} for i=12,..,n—1; RD(n)=0.

k=i+1
A rationale underlying this measure is provided in Appendix B. Under the assumption of

Section 2 that x; =i, we obtain that

Definition 2: RD(i) 1 > max{k —i,0} for i=12,..,n-1; RD(n)=0.

k=i+1
To begin with in period zero the n individuals are in region A. In the subsequent
period, all the individuals who experience relative deprivation and believe that they will

experience none upon relocating to region B move to region B. Namely:




Claim 1: Under relative deprivation measured as per Definition 2, the division in which n
is in region A and the remainder of the population is in region B constitutes the spatial
steady state distribution.

Proof: We consider individual k, k=1,2,...,n—1 who in period 1 weighs whether to stay
in region B or whether to move back to region A. If he stays in region B:

n—k_n—k—l
2 n-1 -

RD(k)|keB:ﬁ[(k+1)—k+(k+2)—k+...+(n—1)—k]:

If he were to return to region A:

n-k
RD(k)|k6A =

Because n <1, individual k will prefer to stay in region B. And because this holds

n-1
true for any k =1,2,....,n—1, none of the n individuals will have an incentive to relocate
and, thus, the observed state, as depicted in the box diagram above, is the spatial steady
state. Q.E.D.
3.1.2 Relative deprivation measured as the distance from below the mean income
The relative deprivation of an individual can also be measured by how much the
individual needs to increase his income in order to obtain the average income of the
region in which he is located.
Definition 3: RD(i) = max{X—x;,0} where X is the average income in the region in
which individual i is located.

Under the assumption of Section 2 that X, =i, we formulate the following

definition.

Definition 4: RD(i) = max {x—1,0} .



We show that the dynamics of movement between the two regions driven by relative
deprivation, measured as per Definition 3, differs only slightly from the dynamics of
movement driven by relative deprivation measured as per Definition 1.

Claim 2: Under relative deprivation measured as per Definition 4, the division in which n
is in region A and the remainder of the population is in region B constitutes the spatial
steady state distribution.

Proof: To begin with in period zero the n individuals are in region A. In the subsequent
period, all the individuals who are relatively deprived - in this case, the individuals whose
incomes are lower than the average income in region A - will move to region B, while the

other individuals will remain in region A. Thus, individuals n,n—1,...m where

n+1

m :g+l if n is even, and individuals n,n—1,....m where m= if n is odd, will

remain in region A, whereas individuals m—1,...,2,1 will move to region B. But now the
average income in region A becomes higher, so in the subsequent period the individuals
whose income is below the average income of those remaining in region A become
relatively deprived and they will, thus, be better off moving to region B. This process will
continue until only individual n remains in region A.

We note that none of the individuals who have relocated to region B will find it
attractive to return to region A even after the subsequent arrivals in region B of the higher
income individuals. Thus, again, a spatial distribution such that individual n is in region
A while individuals 1,2, ..,n—1 are in region B constitutes the steady state spatial

distribution. To see this, consider individual k, k=1,2,...n—1. The average income in

. . o .. N . n+k
region B in the “alleged” steady state distribution is > and this is lower than , the



average income that individual k will experience if he were to return to region A. Thus,

if k> > then individual k does not have an incentive to move back to region A because
he is not relatively deprived in region B. And if k < > namely if individual K is relatively

deprived in region B, then his relative deprivation there is 5 k, and this is lower than

n+Kk

his relative deprivation will be in region A, which is —k. Hence, no further

movement between the regions will occur. Q.E.D.

Comment: in this case, reaching the spatial steady state will take Llogz(n - l)J +1
periods, where the symbol | x | denotes the biggest integer that is not greater than x. For
example, when n =8, the number of periods it takes to reach the steady state will be
L10g2(8—1)J+1:2+1 =3.

From now on, unless explicitly stated otherwise, we use Definition 1 as our

“default” measure of the relative deprivation of individual i .

4. ROBUSTNESS

Claim 3: Having more than one individual of each income does not change the spatial
steady state distribution.

Proof: We assume that there are | individuals of each income (where | is a natural

number). This means that the income of individuals 1,2,...,1 is 1, the income of
individuals 1+1,1+2,...,21 is 2 and, in general, the income of individuals

(kK=-DI+L(kk-=DI+2,...,klI is k for k=1,2,...,n. Take the case of Section 3.1.1. We



have | individuals whose income is n staying in region A, and the rest of the individuals
moving to region B. It is easy to verify that for k =1,2,..,n—1 and any K such that

(k—=1)l <k <kl (meaning that we consider individual Kk whose income is k),

, namely that the relative deprivation experienced by any

~ n-k n-k-1
RO, , ==~

n—-1

individual whose income is k, k=1,2,....,n—1, is the same as the relative deprivation
already calculated in Section 3.1.1. If one of the | individuals whose income is k (namely
individual k such that (k —1) <k <kl ) were to move back to region A, then his relative

deprivation there will be:
~ I
RD(k =——(n-k).
(K, 1 (n-k)

n-k n-k n-k-1
> .
2 2 n-1

: I o .
Because | is a natural number, ﬁ(n -k)> , SO staying in region
+

B will be preferable to returning to region A. By similar reasoning it follows that having |
individuals of each income does not change the results obtained for different indices of
social preferences: the mean income defined in Section 3.1.2 does not change in such a
setting and, therefore, the location decisions of the individuals will be the same. Q.E.D.
Claim 4: Affine transformation of the vector of incomes does not change the spatial
steady state distribution.

Proof: Instead of the vector of incomes (1,2,...,n) we consider the vector
(- 1+ p,a-2+p,...,aa-n+ f), with >0 and f>-a. Relative deprivation can be

viewed as a function of the incomes of all the individuals.! Then, we can see that the
relative deprivation function is homogeneous of degree one, namely that the relative

deprivation of individual k, which here and only here we now denote as RD, , observes

10



RD, (a-1+ B,a-2+f,...,a-n+ B)=aRD,(1,2,...,n). Therefore, when comparing the

relative deprivation for a given individual between the two regions, we note that an affine
transformation of all the incomes results in rescaling relative deprivation by the same

factor in both regions which, thus, does not change the obtained results. Q.E.D.

5. GENERALIZATION: THE CASE OF ARBITRARY INCOME DIFFERENCES
We now ask about the consequences of revoking the assumption that the income
differences between all pairs of adjacent individuals are the same. When incomes are not
equally spaced, the process of selection of location may or may not reach a spatial steady
state.

Consider the following two examples. First, suppose that there are four
individuals with incomes 12, 11, 8, and 5 who to begin with are all in region A. Let
empty region B come into being or become accessible. The evolving dynamics is

depicted by the following sequence:

A B A B
12 12
11 N 11

Because none of the individuals now has an incentive to move, we conclude that a spatial
steady state is reached in just one period, with individual 12 in region A, and individuals

11, 8, and 5 in region B.

11



Second, suppose that the income of the poorest individual is 1 rather than 5, so

that we now have four individuals with incomes 12, 11, 8, and 1. Such a change alters the

calculus as reported above of the lowest income individual and influences his region of

choice which, in turn, affects the calculus of individual 8 and his location decision; the

change in the income of the lowest income individual inflicts a “location externality” on

the second lowest income individual. To see this, let all four individuals again begin in

region A. Now empty region B comes into being. The evolving dynamics is depicted by

the following sequence:

A A B A B
12 12 12
11 11 11
8 8 8
1 1 1
A B A B
12 12
N 11 N 11
8 8
1 1
A B A B
12 12
11 N 11 N
8 8
1 1

We see that in this case the process repeats itself ad infinitum, and a steady state is not

reached. The perpetual movement in this example (in which individual 8 will always

12



want to be located where individual 1 is located, and individual 1 will always want to be
located where individual 8 is absent) emanates from the fact that the behavior of
individual 8 is “tied” to the presence of individual 1 in that this presence reduces the
agony from looking up at individual 11 or at individual 12.

This second example can be generalized. We formulate conditions under which
the process of selecting a location will reach or fail to reach a spatial steady state by
stating and proving three Lemmas.

Let the income of individual i be X, i=12,..,n, and let X <X, <...<X,.

Assume that the social preferences of the individuals are measured by their relative
deprivation defined as the aggregate of income excesses divided by the size of the
population. Because an analysis based on relative deprivation defined as the distance
from below the mean income is analogous, it will be skipped.? Then:

Lemma 1. When n =3, a spatial steady state will always be reached: individual 3
will be in region A, and individuals 2 and 1 will be in region B.

Lemma 2. When n=4, the distribution of the individuals between the two
regions will perpetually change and a spatial steady state will not be reached iff

2X, + X, <3X, and 3X, + X, <2(X, +X,). Otherwise, a spatial steady state will be reached.

Lemma 3. When n=35, the distribution of the individuals between the two
regions will perpetually change and a steady state will not be obtained iff
2%+ X, <X, + X, +X, and X, +X, <X, +X; and X + X, <2X,. Otherwise, a spatial steady
state will be reached.

The proofs of the lemmas are tedious, and are thus relegated to Appendix A.

13



Although it would be possible to construct similar criteria for any n>5, the
respective formulas become increasingly longer and more complicated when n increases
beyond 5. In particular, as shown in Appendix A, the three lemmas are proved by
considering the step-by-step behavior of the individuals in each period. For n<5, we
establish that individuals move in only one direction in a period. This may not be the
case, however, when n>6. Then, we can have two individuals moving in opposite
directions in the very same period. To see this, consider an example of six individuals
with incomes 5.3, 5.2, 5.1, 5, 4, and 1. In period one, as usual, everyone except the
highest income individual 5.3 will migrate to region B. Then, in period two, as can be
easily checked, only the two individuals with the lowest incomes will have an incentive
to move back to region A, which they do. Hence, in period three, individuals 5.3, 4, and 1
are in region A, and the other individuals, namely individuals 5.2, 5.1, and 5 are in region
B. In this setting, only individual 5 will want to move in period three, which leads to the

following distribution of the individuals:

A B
5.3
5.2
5.1
5
4
1

Now both individuals 1 and 5.1 will want to change their location: the relative

deprivation of individual 1 is % = % in region A, which is higher than 83—3 = % ,

14



his relative deprivation if he were to locate to region B. (For ease of reference, we mix
decimal notation with fraction notation, the non-elegance of such a blending

notwithstanding.) Analogously, the relative deprivation of individual 5.1 is % = % in

region B, which is higher than 0?2 = ?—(? , his relative deprivation if he were to locate in

region A. Because both these individuals will indeed move, we have a simultaneous two-
way movement.

In sum, in order to determine the outcome of the relocation dynamics for n>6,
we will need to distinguish in each period not only between reaching a steady state and a
move of exactly one individual, but also between patterns of behavior that involve either
a one-way or a simultaneous two-way movement of many individuals. For n<5, this
distinction could be obtained by means of a single inequality, whereas for n>6, more
than one inequality will be needed.

Given this difficulty, we investigated the case of N> 6 by means of simulations.

We proceeded as follows. First, for a given population size taking one of eight particular

values ne {6, 10,15,25,40,60,80,100}, chosen so as to allow analysis of population sizes

ranging from quite small to fairly large, we drew the incomes of the members of the
population from a normal distribution characterized by a mean equal to 10 and a standard
deviation equal to 3. We then allowed the individuals to move between region A and
region B (incorporating the relative deprivation measure defined in section 3.1.1) until
either a steady state distribution was reached, or a loop was encountered. This procedure
was repeated 10,000 times with different incomes drawn from the same normal

distribution. In Figure 1 we present the rate at which infinite loop cases were encountered

15



during the 10,000 simulations for each chosen value of the eight population sizes.

Although for small populations the rate of infinite loops was relatively low, an increase

of population size yielded an increase in the rate of occurrence of infinite loops. For large

populations this rate was close to 0.5. We revisited this observation later on (consult

Claim 5). Similar results were obtained for other non-skewed distributions such as, for

example, a uniform distribution, but for the sake of brevity we do not report them here.

FIGURE 1: The rate of occurrence of infinite loops: A normal distribution of incomes
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A review of the case of a normal distribution of incomes leaves the impression

that the dynamics of the movements between the two regions is more complicated than

what appears to be in the case of the model presented in Section 3.1, in that a significant

share of the initial income distributions does not lead to steady state at all. However, a

normal distribution of incomes is not typical for real-world populations: real-world

16



income distributions typically have positive skewness with long tails (Neal and Rosen,
2000). Intriguingly, for such distributions we obtain simple population dynamics: when
the population is large, a steady state is typically reached after a single period (just as in
the model of Section 3.1). To this end, we conducted simulations similar to the one for
the normal distribution, employing instead the gamma distribution. We have chosen the
gamma distribution partly because it has been frequently used for parametric analysis of
income data (consult, for example, Salem and Mount, 1974), and partly because doing so

enables us to ascertain simply and clearly what drives our results.* We considered again

cases with ne{6,10,15,25,40,60,80,100}, and with parameters of the gamma

distribution such that the expected value was always equal to 2, and the variance took the
values of 4, 2, 1, 0.5, and 0.1. Keeping the expected value constant made it possible for
us to investigate the pure effect of increased (or decreased) dispersion of incomes on the
pattern of location choices. We obtained several illuminating results. In Figure 2 we
present the rate at which infinite loop cases were encountered during the 10,000
simulations for each chosen value of population size and for each distribution variance.
We see, first, that although initially an increase in the size of the population leads to an
increase in the number of loop cases, after some threshold of population size is reached,
the incidence of loop cases starts to decline, and it converges to zero. Second, in all cases
loops are more likely to occur when the variance of the income distribution from which

incomes are drawn is lower.

17



FIGURE 2: The rate of occurrence of infinite loop cases: A gamma distribution of

incomes
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That infinite loops occur more frequently when the incomes of a population are
drawn from a gamma distribution with a lower variance suggests that it might be the case
that loops are more likely in populations characterized by higher income equality. To
further investigate this possibility, we compared the degree of income inequality in cases
of steady states with the degree of income inequality in cases of infinite loops. To this
end, we used the Gini index.* Specifically, we calculated the Gini index for each of the
10,000 simulations, and for all the analyzed population sizes and distribution variances.
Then, the values of the index were averaged over the simulations in which a steady state
distribution was achieved, and separately over the simulations in which an infinite loop

was encountered. The results are summed up in Table 1.

18



TABLE 1: Averaged Gini indices for loop cases, and for steady state cases

Variance = 4 6 10 15 25 40 60 80 100
Steady state 04206 04510 0.4682 04805 04877 04917 04935 0.4954
Loop 02635 02932 02981  0.2950 ; - ; ;
Variance = 2 6 10 15 25 40 60 80 100
Steady state  0.3152  0.3404 03506 03606 03661 03689 03700 03718
Loop 02243 02448 02592 02738 02718 - ; ;
Variance = 1 6 10 15 25 40 60 80 100
Steady state 02303 0.2499 02573 02636 02669 02686 02700 0.2708
Loop 0.1798  0.1966 02077 02203 02278 02374 02335 ;
X;‘mnce - 6 10 15 25 40 60 80 100
Steady state  0.1650  0.1789  0.1856 0.1900 0.1922 0.1933 0.1943  0.1946
Loop 0.1385 0.1536  0.1618 0.1682 0.1753 0.1791 0.1787 0.1794
X‘flance - 6 10 15 25 40 60 80 100
Steady state ~ 0.0742  0.0808 0.0837 0.0862 0.0872 0.0877 0.0880 0.0883
Loop 0.0681 0.0747 0.0795 0.0826 0.0846 0.0857 0.0866 0.0866

Note: For some infinite loop cases, no average Gini indices are displayed. This is so

because for large populations, loops were not encountered at all (consult Figure 2).

From Table 1 we can infer that, indeed, on average cases in which infinite loops
occur are characterized by smaller Gini indices than cases in which a steady state is
reached. This is particularly visible for cases of a higher variance of the gamma
distribution.

Looking at the average number of periods it takes to reach a steady state
distribution (obviously in the cases in which a steady state is indeed reached) presented in
Figure 3, we ask how much this number diverges from the result obtained in Section
3.1.1, namely convergence to a spatial steady state distribution in just one period. As can

be seen in Figure 3, the lower the variance of the distribution, the higher the average
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number of periods it takes to reach a steady state, yet in all cases this number is not much
greater than 1. Moreover, with a large population size, the average number of periods
converges to 1. This finding is particularly revealing because in conjunction with the
conclusions derived from Figure 2, it suggests that the results obtained from the highly
simplified model of Section 3.1.1, namely that there always exists a steady state
distribution of incomes which is achieved after one period of movement, are not too far

removed from what happens in more complicated or more elaborate cases.

FIGURE 3: The average number of periods required to reach a steady state distribution:

A gamma distribution of incomes
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In addition, we have simulated distributions with properties that are similar to
those of the gamma distribution, such as log-normal and inverse-Gaussian. These

simulations yielded results that are nearly identical to the ones delivered by simulating
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the gamma distribution. We hasten to add that given Claim 5 below, this congruence is
not surprising.

Why do the simulations yield the result that in large populations the number of
periods it takes to reach a spatial steady state converges to 1, and no infinite loops occur?

Claim 5: Let X be a random variable with support over [0,0), such that its expected
value E(X) exists and is finite, and such that P(X >2E(X))>0. Let (X;,X,,...,X,) be

an ordered vector of incomes drawn from a probability distribution characterizing X . If

we denote the outcome of reaching spatial steady state in one period by C, then P(C)
tends to 1 when n tends to infinity: namely for any & >0 there exists n, >0 such that if
n>n,,then P(C)>1-¢.

Proof: Consider a population of n individuals with different incomes. As always, in the
first period of moving we will have the following distribution of the individuals between

the two regions:

Movement between the regions will cease if the relative deprivation of individual 1 (as he
is the most relatively deprived individual) when in region B is lower than his possible

relative deprivation in region A. When the income of individual i is X;, this condition can

be written as
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n-2
Xa =X > =l (Xnii _Xl)

2 n-1

The right hand side of this inequality can be rewritten as

2 n-1 n
X . —X X . —X —X X:
.:1( i %) ; A | ) ~" n  x+x, n-2
— — X1: — bl X.
n-1 n-1 n-1 n n-1 n-1 n-1

n—

Inserting this result into the inequality above and conducting several transformations

leads to the inequality

n

X;
l(x1 X+ % X, —ﬁ) >l
2 n n n
Therefore:
1 X —X X X
P(C)=P| =(x +x, + L _-Ty> 0=l
2 n n n

Let £>0 be fixed. There exists o >0 such that P(X >2E(X)+a)>0. Let

P(X>2E(X)+a)=£>0. Then, for any n>10g17ﬂ§,
P(x, <2E(X)+a)=(1-pB)" <§. Consequently, as X >0,

1 a, &
P(E(Xl +X,) < E(X)+E)<§'
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Simultaneously, following the weak law of large numbers, there exists n, such

anxi

that for n>n, P|12—> E(X)+% <§. Additionally, let n, el be where for n>n,
n

P(ﬁ > %) <§ (such n, always exists because E(X) is finite and P(x, < E(X))>0).
n

n

X;
5% T CEx)+ % and 2(x +x)> E(X)+ %, then:
n 4  n 4 2 2
1 X —X X 1 %
— (94 (04 (24 :
—(X X, +"—L-DSEX)+—+0-—=>E(X)+—>"1=—
2(1 ) (X) 5 55 > E ) 27

Consequently, for n>n, =max{n,n,,log, , g} :

X.

1 X, =X X ; I

P(C)=P| =(x, +X, + ——)> =
2 n n n

n

X.

X, a “~=' a 1 a
>P| A< A —<E(X)+=A=(X +X)>E(X)+=
<7 " (X) 1 2(1 ) > E(X) 5

: ' (04 1 (24
>SI-PlAaA>ZVvEL_SE(X)+Z=Vv=(X +X)<E(X)+=
n 4 n () 4 2(1 n) () 2

. 1 a
>1-P|2>Z |_p| 2 _>Ex)+ & —P(—x+x SEX+—)
(529 )-p| 220042 |- S0 rx)sEC0 42
&
>1—3-§:1—5.Q.E.D.
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If the conditions assumed in Claim 5 are satisfied, then for large populations, moving will
almost always cease after the first period, and there will be no (infinite) loops. These
conditions are clearly not satisfied for every possible distribution. Nevertheless, they are
satisfied for the gamma distribution that we have chosen, as well as for other distributions
that share similar properties and characterize typical distribution of incomes in real-world
populations, namely distributions having a long right tail. In particular, the condition

P(X >2E(X))>0 is not unrealistic as it states that there is a positive share of

individuals who are more than twice as rich as the average individual.

From this discussion we can conclude that in large populations, the number of
periods it takes to reach a steady state converges to one, because then the highest income
in the population will be large, which will render it appealing for the lowest income
individual to stay in region B. In region B, the distance between the second highest
income and the lowest income will also be substantial, but the relative deprivation of the
lowest income individual will be mitigated by the presence of many other individuals
whose incomes are closer to his, albeit higher. Small populations are more likely to be
more equal (consult Table 1), because with distributions such as gamma, the probability
that there are no individuals whose income is twice the average income decreases with
the size of the population. Therefore, it is more likely that individual 1 will move again
after the first period, which will trigger a complex pattern of moves, leading possibly to

an infinite loop.
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6. ALLOWING INCOMES TO CHANGE

Up to now we have not allowed for the possibility that incomes, as such, can change.
This has enabled us to concentrate on analyzing the pure effect of relative deprivation on
the choice of location. When incomes can change, incorporating in the individuals’ utility
functions concern for low relative income together with a preference for (absolute)
income can yield results that, in the absence of a preference for a better stance in social
comparisons, could be considered somewhat counterintuitive. Consider the following

example. An individual whose income is Yy, where y>2, is in region A, where the
income of the only other individual is 3y. The individual can, alternatively, move to
region B where the income awaiting him there will be y—2, and where no one has
income higher than y—2. (Similarly, we can assume that moving to region B entails a

cost of two units of income.) As assumed throughout this paper, the region where an
individual is located constitutes the individual’s region of social comparison. The
individual likes absolute income and dislikes relative deprivation (which, again, we
measure by the aggregate of income excesses divided by the size of the population), and

assigns to these two terms in his utility function the weights of ¢ and —(1-«),
respectively, where « € (0,1).

Definition 5: u(x,RD)=ax—-(1-a)RD.

In this setting X denotes the individual’s income, and RD denotes his relative

y
y+2

deprivation, as per Definition 1. Then, if « < , the individual will prefer to move to

region B.

Claim 6: For y — oo the individual will always prefer to move to region B.
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de,

Proof: Defining =q,, it follows that > (0 : as incomes rise, the constraint on «

y+2 dy

(a < a,) for the individual’s preference to move to region B becomes weaker. Because

y

a, = - we have that lime, =1, so it follows that when incomes are fairly
y+2 .2 y—

y

high, the constraint is not binding anymore. Q.E.D.
This result is intuitive because the higher is y, the less meaningful the difference

between y and y—2, so leaving region A for region B involves an increasingly smaller

relative loss of income, along with a significant (complete) reduction in relative
deprivation.

The result reported above is robust to an alternative measure of relative
deprivation. Suppose that instead of measuring RD as the sum of the income excesses

divided by the size of the population, that it is measured as max{X — X,0}, namely as the
distance from below the mean. When the incomes in region A are y and 3y, the mean

income in the region is 2y, and the income distance of the region A’s individual whose

income is Y from this mean income is Y. This is the same RD as the RD obtained when
measured by the income excesses divided by the size of the population: %(3y -y)=Y.

Finally in this section, and as an informative example, we show how the model
presented in Section 3 can be adjusted when moving from region A to region B involves
a cost, ¢>0. We retain the assumption that the individuals base their location decisions
on the observed current state, without simultaneously forming expectations how other

individuals will behave, and we follow the utility specification of Definition 5. In the
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general case in which to begin with (meaning in period 0) the individuals are in region A,

is satisfied. This

an individual will move to region B only if the condition « < 5
+C

condition follows from comparison of the utilities in the two regions
U (i), =ai—(1-a)RD<a(i-c)=U()| .

Thus, and aligned with intuition, from an inspection of the condition we infer that
an individual is more likely to move if he assigns a relatively low weight to income, if his
relative deprivation in region A is high, and if the cost of moving is relatively low. If the
cost of moving is relatively high, then some individuals from the bottom of the income
hierarchy will not be able to afford to move, their high relative deprivation
notwithstanding. We consider an example in which there are six individuals, o =0.25,

and c=1. The general case of n individuals, « €(0,1), and ¢ >0 happens to be too

complex to yield analytical solutions, although later on we comment on how different
parameters impact on the results.

The sequence of movements leading to the steady state is depicted below. In
period 0, the six individuals are in region A. It is clear that individual 6 has nothing to
gain from moving to region B. With regard to individual 5, we calculate and compare his
utilities in the two regions:

1 312,
8

U@, =
Dar=377%

4=1=U6m$.

We infer that because the utility of individual 5 when in region A is higher than his utility
would be if he were to move to region B, he will stay in region A. However, individuals

1, 2, 3, and 4 will move to region B. The reason is that for each of them, the relative
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deprivation experienced in region A burdens more than bearing the cost of moving to
region B where the consequent relative deprivation relief counts heavily.

After the first period, no individual who is in region B has an incentive to move
back to region A: individual 4 has nothing to gain from moving back; individuals 3 and 2
will not only have to bear a cost of moving back, but will also have their relative
deprivation increasing, so they will stay; and individual 1 cannot afford to move. On the

other hand, now that individuals 1, 2, 3, and 4 left region A, individual 5 is more

relatively deprived staying there. The condition « <

is satisfied for him and,
D+c

therefore, he will elect to move. In period 2 we reach then the same distribution as in the
main model of Section 3, with one individual staying in region A, and the rest of the
individuals in region B. This distribution constitutes a steady state: with individual 6 in
region A and the remainder of the population in region B, no individual in region B has
an incentive to move back, because if any of them were to do so, the resulting relative
deprivation will be higher. Thus, in this example the result of a steady state outcome with
a sharp bifurcation continues to hold, although the number of periods it takes to reach the
steady state is bigger than one. Here it is two periods: because of the positive cost of
moving, relocating is less attractive to individual 5 who is initially not much relatively
deprived. However, in the wake of the departure of individuals 1, 2, 3, and 4, the
increased relative deprivation of individual 5 overrides the cost of moving, so he ends up
moving too. We hasten to add that in the general case, the outcome can differ from the
one reported here, especially so if the cost of movement is higher and / or if the

individuals attach a higher weight to income in their utility function.
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A B A B A B
6 6 6

5 5
4 - 4 N 4
3 3 3
2 2 2
1 1 1

7. DISCUSSION

7.1 An alternative initial distribution

Until now we have assumed that to begin with all the individuals are in region A, and that
region B is empty. It is tempting to inquire what happens if, instead, we assume that the

initial ~distribution between the two regions of individuals 1,2,...,n with,
correspondingly, incomes X, i=1,2,...n, such that X, <X, <...<X_, is arbitrary. In
particular, does Claim 5 still hold? As it turns out, it does not. In the case of a larger set

of income vectors X=(X,X,,...,X,), the dynamics is more complicated than in the case

in which to begin with all the individuals are in region A, with the outcome depending on
the initial distribution of the individuals, not only on their incomes.

From the proof of Claim 5 we know that movement between the regions will
cease after just one period and will stabilize at a steady state in which all the individuals
but n are in region B, and that this outcome obtains when to begin with all the individuals

n
1 X —X X Z %
are in region A and E(Xl +X, +————-—)>-"=—=X, in particular when Xx, >2X,
n n n

which is essential for Claim 5 to hold (the assumption P(X >2E(X))>0 practically
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guarantees that for sufficiently large n, X >2X). Thus, we know that if, for example,
n=4, x =1, x,=2, X, =15, and X, =20, and to begin with these four individuals are

in region A, then X, =20> 2-§=27, and the evolving dynamics is depicted by the

sequence:
A B A B
20 20
15 N 15
2 2
1

However, this is not the only possibility. For example, when to begin with

individual 3 (X, =15) is in region B, the evolving dynamics results in a different steady

state:
A B
20
15
2
1

In addition, it is possible that the dynamics for the same vector of incomes will
not converge to a steady state at all. If to begin with individuals 4 and 3 are in different
regions and individuals 2 and 1 are in different regions, then the process repeats itself ad

infinitum, and a steady state is not reached:

30



A B A B A B
20 20 20

15 N 15 N 15
2 2 2

1 1 1

A B

20
- 15 -

2
1

This example reveals that, when to begin with not all the individuals are in the

same region, the condition X, >2X no longer guarantees convergence of the evolving

dynamics, and even if convergence obtains, there can be multiple steady states. Thus, the
potential sufficient condition for convergence to obtain will need to take into account not
only the income vectors, but also the initial distribution of the individuals between the
two regions.

When the income differences between all pairs of adjacent individuals are the
same, sometimes it is not difficult to accommodate a constellation in which not all the
individuals are initially in region A, but sometimes it can lead to different outcomes than
the one presented in Claims 1 and 2. For example, suppose that there are two regions, A
and B, and that to begin with individuals 5, 4, and 3 are in region A, and individuals 2
and 1 are in region B. Once movement between the regions is allowed, individuals 4 and
3 will move to region B, and the steady state distribution will be for individual 5 to be in
region A, with the remainder of the individuals in region B. This outcome obtains

because there was no incentive for individuals 2 and 1 to move, neither when individuals
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4 and 3 were in region A, nor after individuals 4 and 3 moved to region B. However, if to
begin with individuals 5, 2, and 1 are in region A, and individuals 4 and 3 are in region B,
then no individual has an incentive to move, and this distribution in and by itself
constitutes a steady state. This steady state differs from the steady state in which
individual 5 is in region A, and the other individuals are in region B. Thus, Claim 1 also
need not hold for arbitrary initial distributions of the individuals between the regions.
These examples help informing us as follows. For n <4, we will always obtain a steady
state as per Claims 1 and 2. For n =5, we will always obtain a steady state, but the steady
state may not be as per Claims 1 and 2. For n>6, we can obtain a steady state as per
Claims 1 and 2, or we may not obtain a steady state at all as when, for example, to begin
with individuals 6, 4, 3, and 1 are in region A, and individuals 5 and 2 are in region B. An
analysis for n <20 of all possible initial distributions of the individuals between the two
regions reveals that only for n=35 there is one initial distribution which leads to a
different steady state than the steady state obtained as per Claims 1 and 2. For 6<n<12,
there are initial distributions that do not lead to a steady state at all. For 13 <n <20, all
the initial distributions lead to the same steady state as per Claims 1 and 2.

While it is beyond the scope of this paper, a more thorough analysis of the
dynamics of movement for any initial distribution of the individuals between the two

regions would be an intriguing topic for follow-up research.

7.2 More than two regions
Hitherto we have studied a setting in which there are two regions. What happens if there

are more than two regions?
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Consider again the case of n individuals. Let the income of individual i be X,
i=12,..,n,and let X <X, <...<X,. Let there be k regions: A,A,,...,A and to begin
with let all the individuals be in a region A . It is quite obvious that if there are at least as
many (identical) regions as there are individuals, then each individual will be able to
experience zero relative deprivation, occupying his own region all by himself. Therefore,
we assume next that 2 <k <n.

To understand the dynamics of movement between K regions, we need to
establish how individuals choose to move to one of a number of equally attractive

regions. During the first period of movement we only know that individual n staysin A,

and that the other individuals move, but we do not know where to because from their
point of view, regions A,, A,,..., A, are identical.

If the individuals choose randomly between moving to equally attractive regions,
then we cannot determine the outcome of such dynamics. As an example, we consider the

case of three regions: A, B, and C, and of n=35 individuals such that x =1, x,=2,
X, =15, X, =20, and X, =100. In the first period, individual 5 stays in region A, and

individuals 1, 2, 3, and 4 randomly move to region B or to region C. In the subsequent
periods, individual 5 always remains in region A, no other individual ever goes back to
region A (because the relative deprivation arising from a comparison with 5 is too high),
and the dynamics of movement of individuals 1 to 4 between regions B and C is exactly
the same as the one considered in Subsection 7.1 where the random allocation in period 1
generates the initial condition. In particular, if in the first period individuals 1, 2, 3, and 4

move to region B, then the dynamics converges to the steady state:
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100
20
15

and if in the first period individuals 1, 2, and 4 move to region B while individual 3

moves to region C, then the system stays in the steady state:

A B C
100
20
15
2
1

Finally, if in the first period individuals 2 and 4 move to region B and individuals 1 and 3
move to region C, then a steady state is never reached.

Thus, a deterministic rule is needed in order to decide between equally attractive
destinations. However, there are many possible rules, and each of them leads to dynamics
which yields an outcome that is at least as complex as the one presented in Section 5.
Therefore, we consider only a simple generalization of the dynamics of Section 3.

Assume that for every i1, X

=1, and that when choosing between two equally

attractive regions A and A, the individuals choose the one with the lowest index,
namely A if | <m and A, otherwise. This assumption is reasonable when regions with

lower indices are more accessible than regions with higher indices, for example when for
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I,m such that 1 <l <m an individual needs to go through region A when moving from
A to A,. Then, the dynamics is analogous to the one portrayed in Subsection 3.1.1: in
the first period individual n stays in region A and the other individuals move to region
A, . In the second period, individual n stays in region A, individual n—1 stays in region
A, , and the other of individuals move to region A,. Repeating the procedure, after k —1
periods, the dynamics converges to a steady state where for j<k only individual
n+1-j stays in region A;, and the other individuals stay in region A, . The reasoning

behind this process is analogous to that of the proof of Claim 1. For example, when n=35

and k =3, then after two periods the following steady state is reached:

A A A
5
4
3
2
1

8. CONCLUSION

We have shown how dissatisfaction arising from having low relative income can
influence the choice of location. The ensuing dynamics can take a variety of forms. For
any N when incomes are equally spaced, a steady state spatial distribution will be reached
under alternative indices of cardinally measured relative deprivation, with the end
distribution being the same, even though the dynamic paths leading to the end
distribution differ. When incomes are not equally spaced, we formulated conditions such

that, under relative deprivation, a steady state spatial distribution will be reached for any
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n<5. Given the difficulty in analyzing directly cases of n>6, we resorted to
simulations. We obtained several results: first, the probability of reaching a steady state
spatial distribution approaches 1 as the size of the population increases. Second, the
average number of periods it takes to reach a steady state also converges to 1. Third, the
incidence of cyclical moves (with a steady state not reached) is more likely in populations
with lower income inequality, as measured by both the Gini index and by the variance of
the distribution of incomes.” This result suggests a particular testable hypothesis: a more
stable pattern of movement between regions exists when the interregional income

variation is larger.
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FOOTNOTES

! Hitherto, in order to simplify the notation, we did not represent the relative deprivation
function as a function of the incomes of all the individuals.

2 By “analogous” we mean that the equivalent of Lemmas 1, 2, and 3, as well as the
analysis for any natural number n for the case of relative deprivation defined as the

income distance from below the mean income, are also of the form: “For any natural
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number n>3, if some set of inequalities is satisfied then the distribution of the
individuals between the two regions will perpetually change. Otherwise, a spatial steady
state will be reached.” The proofs of the equivalent lemmas are also similar. Naturally,
the number and the exact form of the inequalities may differ between the two definitions
of relative deprivation.

3 More sophisticated distributions were proposed, inter alia, by McDonald (1984), and
more recently by Chatterjee et al. (2007).

* Mathematically, the Gini index is equivalent to total relative deprivation divided by total
income. This forges a link with the measure of the distaste for low relative income.

3 This implication is valid for distributions similar to the gamma distribution, namely for
distributions that have positive skewness with long tail. It does not hold for other

distributions such as the uniform distribution.
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APPENDIX A: PROOFS

Lemma 1. When n=3, a spatial steady state with individual 3 in region A, and
individuals 1 and 2 in region B will always be reached.

Proof.

1st period: Individual 1 (whose income is X;) and individual 2 (whose income is X,)

move to region B so as to shed off their relative deprivation, while individual 3 (whose

income is X, ) remains in region A:

A B
3
2
1

2nd period: Because individuals 2 and 3 are not relatively deprived, they will not have an
incentive to move, and they are thus of no further “interest” to us. The only individual to

consider then is individual 1. For this individual when he is in region B:
1
RD()| , = E(x2 ~X).
If individual 1 were to return to region A:

1
RD()| _, = 506 =x%).

Because X, <X,, individual 1 will prefer to stay in region B. Thus, after the first period

no individual has an incentive to move, so the distribution reached in the first period is

the spatial steady state distribution. Q.E.D.
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Lemma 2. When n =4, the distribution of the individuals between the two regions will
perpetually change and a spatial steady state will not be reached iff 2x, +X, <3X, and
3X, + X <2(X; +X,).

Proof.

1st period: Individuals 1, 2, and 3 move to region B to get rid of their relative

deprivation, and individual 4 remains in region A:

A B
4
3
2
1

2nd period: Individuals 3 and 4 are not relatively deprived, and therefore they will not

relocate. For individual 1 when he is in region B:
1
RD()|_, = g(x3 +X, —2X).
If individual 1 were to return to region A:
1
RD(D),., =5 (% —%,).
We have that RD(1)|_, 2RD(I)|_, < 3%, +X 22(X;+X,). Therefore, if the

inequality 3X, + X, > 2(X, +X,) is satisfied, individual 1 will prefer to stay in region B.

For individual 2 when he is in region B:
1
RD(2)|,, = §(x3 -X,).

If individual 2 were to return to region A:
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1
RD(2)|2€A = E(X4 —-X).

Because X, < X,, individual 2 will prefer to stay in region B.
Therefore, if 3x, +X, > 2(X, +X,) the spatial distribution reached after the first

period is a steady state distribution, as no individual has an incentive to move. However,

if the condition 3X, +X, =2(X; +X,) does not hold, then the dynamics of locational

choices is not brought to a halt because individual 1 has an incentive to move to region A.

Thus, assuming that 3X, + X, <2(X; +X,), the distribution of the individuals between the

two regions in the second period is

A B
4
3
2
1

3rd period: From now on, we assume that 3X,+X <2(X;+X,) because when the

individuals’ incomes do not observe this inequality, period three will not occur at all, and
the location dynamics will come to a halt after the first period.

Individuals 3 and 4 are not relatively deprived, so they will not move. From the
calculations in the preceding step we know that individual 1 prefers his current location
in region A over returning to region B. Then the only possible mover in this period is

individual 2. If individual 2 remains in region B:

1
RD(),., =50 —%,).
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If individual 2 were to return to region A:
1
RD(2)|2EA = g(xat —X,).

We have that RD(2)|, , 2RD(2)|, , < 2X,+X, 23,. Therefore, if the inequality

2X, + X, 23X, 1s satisfied, individual 2 will prefer to stay in his current location, namely

in region B. Then, the distribution reached in the second period (with individuals 1 and 4
in region A, and individuals 2 and 3 in region B) constitutes a steady state.

However, if 2X, +X, <3X,, individual 2 will prefer to move to region A, and the

individuals will be distributed between the two regions as follows:

A B
4

3
2
1

4th period: From now on, we assume that 2x, + X, <3X, and that 3X, + X, <2(X; +X,).

Otherwise, the dynamics of moves between locations will come to a halt earlier, and the
fourth period will not occur at all. Analogically to the preceding steps, we can infer that

the only possible mover in this period is individual 1. If individual 1 remains in region A:
1
RD()| _, = §(x4 +X,—2X,).
If individual 1 were to return to region B:

1
RD()| _, = 506 =x%).
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We have that 3x, +X, <2(X, +X,), thus =2X, + X, <-3X, +2X, (because X, >X,) which

can  be  rearranged  as 3%, —3X, <2X,+2X,—4%, and  finally as
%(X3 — %)< %(x4 +X,—2x). This last inequality implies that RD(D)|_, <RD()|_,.

Therefore, individual 1 moves again to region B, and the distribution of the individuals

between the two regions is:

A B
4

3
2

1

5th period: Analogically to the preceding steps, we can infer that the only possible mover

in this period is individual 2. If individual 2 remains in region A:
1
RD(2)|2€A = E(X4 —X%).
If individual 2 were to return to region B:
1
RD(2),. =3 (% —%,).

Because X, < X,, individual 2 will prefer to move to region B. Now, the process reverts

back to the configuration that prevailed after the relocation moves in the first period. If

2X, +X, <3X, and 3X,+X <2(X;+X,), this loop repeats itself ad infinitum. As we

concluded at the end of the analysis of the 2nd and 3rd periods, if any of these

inequalities is not satisfied, the system reaches a spatial steady state. Q.E.D.
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Lemma 3. When n =35, the distribution of the individuals between the two regions will
perpetually change and a spatial steady state will not obtain iff 2x, + X, <X, + X, + X, and
Xs + X, <X, +X; and X+ X; <2X,.

Proof.

1st period: Individuals 1, 2, 3, and 4 move to region B to get rid of their relative

deprivation, and individual 5 remains in region A.

A B
5
4
3
2
1

2nd period: Individuals 5 and 4 are not relatively deprived. Therefore, they will not

move. For individual 3 when he is in region B:
1
RD(3)|3EB = Z(X4 - X3) .
If individual 3 were to return to region A:
1
RD(3)|3EA = E(XS - X3) :

Because X, < X;, individual 3 will prefer to stay in region B.

For individual 2 when he is in region B:
1
RD(2)|,, = Z(x4 +X, —2X,).

If individual 2 were to return to region A:
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1
RD),., =5 (6 —%,).
Because X, +X,<2X,, we have that X;+X,—2X,<2X,—-2X, or that
1 1 e . . .
Z(X4 +X,—2X,) < E(XS —X,) . Therefore, individual 2 will prefer to stay in region B.
For individual 1 when he is in region B:
1
RD()| _, = 70X % =3%).
If individual 1 were to return to region A:
1
RD(D)|_, = S0 =%).

We have that RD(1)|1EA > RD(1)|]eB & 2Xs+ X = X, + X; + X, . Therefore, if the inequality

2Xs + X, = X, + X, + X, 1s satisfied, individual 1 will prefer to stay in region B, and then the

distribution reached after period one is a steady state distribution because no individual
has an incentive to move.

However, when 2X; + X, < X, + X, +X,, individual 1 moves to region A, and the

distribution of the individuals between the two regions is:

A B
5
4
3
2
1

3rd period: From now on, we assume that 2X, + X, < X, + X, + X, . Individuals 5 and 4 will

not move. From the calculations in the preceding step we know that individual 1 prefers
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his current location in region A over returning to region B. The only possible movers in

this period are individuals 2 and 3. If individual 3 remains in region B:
1
RD(3)|,, = 3% =%).
If individual 3 were to return to region A:

1
RD@),, =506 %)

Because X, <X, individual 3 will prefer to stay in region B. If individual 2 remains in

region B:
1
RD(2)|,., = §(x4 +X,—2X,).
If individual 2 were to return to region A:
1
RD(2)|2EA = E(XS - X2) .

We have that RD(2)|2eB < RD(2)|26 A S X+ X <X+ X, . Therefore, if the inequality

X, +X; <X, +X, is satisfied, individual 2 will prefer to stay in region B. Then, the

distribution reached in the second period (with individuals 1 and 5 in region A, and
individuals 2, 3, and 4 in region B) constitutes a steady state distribution.

However, if X, +X; > X, + X, , individual 2 moves to region A, and we obtain the

following distribution of the individuals between the two regions:
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A B
5
4
3
2
1

4th period: From now on, we assume that 2X,+X <X,+X,+X, and that
X, +X; > X, +X,. Individuals 5 and 4 will not move. From the calculations in the

preceding step we know that individual 2 prefers his current location in region A over
returning to region B. The only possible movers in this period are individuals 1 and 3. If

individual 1 remains in region A:
1
RD()| _, = g(xs +X, —2X,).
If individual 1 were to move to region B:
1
RD()| , = §(x4 +X,—2X,) .

Because X, +X; > X, + X, , individual 1 will prefer to stay in region A.

If individual 3 remains in region B:
1
RD(3)|3EB = E(X4 —X).
If individual 3 were to return to region A:

1
RD(3)|3EA =Z(X5 - X3) N

We have that RD(3)|36 = RD(3)‘3 LXK X2 2X,. Therefore, if the inequality

Xs+ X, 22X, is satisfied, individual 3 will prefer to stay in region B. Then, the
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distribution reached in period 3 (with individuals 1, 2, and 5 in region A, and individuals
3 and 4 in region B) constitutes a steady state distribution.

However, when the opposite holds, namely when X+ X, <2X,, individual 3

moves to region A. In this case, the distribution of the individuals between the two

regions is:

A B
5

4
3
2
1

5th period: From now on, we assume that 2X+ X, <X, +X; +X,, that X, + X; <Xs + X, ,
and that X, + X, <2X,. Individuals 5 and 4 will not move. From the calculations in the

preceding step we know that individual 3 prefers his current location in region A over
returning to region B. The only possible movers in this period are individuals 1 and 2.

If individual 2 remains in region A:
1
RD(2),_, = 7% =2%).
If individual 2 were to move to region B:

1
RD(2)|2€B = E(X4 —X%,).
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We have that X;+X;<2X,, thus X, +X,—2X,<2X,—2X, and finally

2¢B?

%(xs +X,—2X,) < %(x4 —X,). This last inequality implies that RD(2)|,_, <RD(2)|,_,, so

individual 2 will prefer to stay in region A.

If individual 1 remains in region A:
1
RD()|_, = 706X HX =3%).
If individual 1 were to move to region B:
1
RD(l)LeB = E(X4 - Xl) .

We have that 2X,+X <X,+X +X, and X;>X,, thus 2X,+X <X, +X;+X,. After

subtracting 3%, from both sides of the last inequality, we get that
1 1 .
2X, —2X <Xs+ X, +X, =3X,, and finally E(X“ -X)< Z(XS +X; +X,—3X). This last

condition implies that RD(1)|leB < RD(1)|le .» 80 individual 1 will prefer to move to region

B. Consequently, the distribution of the individuals between the regions becomes:

A B
5

4
3
2

1

6th period: Individuals 5 and 4 will not move. From the calculations in the preceding step
we know that individual 1 prefers his current location in region B over returning to region

A. The only possible movers in this period are individuals 3 and 2.
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If individual 3 remains in region A:
1
RD(),, =5 (6 =)
If individual 3 were to move to region B:
1
RD(3)|3EB = §(X4 - X3) .
Because X, < X;, individual 3 will prefer to move to region B.
If individual 2 remains in region A:
1
RD(2)|,_, = §(X5 + X, —2X,).
If individual 2 were to move to region B:
1
RD(2)|2€B = g(xat —X%,).
We have that X, <X, and X, <X,, thus X, + X, <X+ X, . Upon subtracting 2X, from both
sides of the last inequality, we get that X,—X, <X;+X,—2X,, implying that

RD(2)| bop < RD(2)| ,.p» 80 individual 2 will prefer to move to region B.

With both individuals 3 and 2 moving to region B, the distribution of the

individuals between the two regions in this period is given by:

A B
5
4
3
2
1
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This distribution replicates the distribution reached in period 1. And the loop repeats
itself ad infinitum, assuming that the individuals’ incomes are such that the three

following conditions hold: 2X, +X <X, +X; +X,, X, +X; > X+ X,, and X, +X; <2X,. If

any of these conditions is not satisfied, the spatial distribution of the individuals between

the two regions will reach a steady state. Q.E.D.
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APPENDIX B: CONSTRUCTION OF THE MEASURE OF RELATIVE
DEPRIVATION PRESENTED IN DEFINITION 1

For the purpose of constructing a measure, a natural starting point is the work of
Runciman (1966), who argued that an individual has an unpleasant sense of being
relatively deprived when he lacks a desired good and perceives that others with whom he
naturally compares himself possess that good. Runciman (1966, p. 19) writes as follows:
“The more people a man sees promoted when he is not promoted himself, the more
people he may compare himself with in a situation where the comparison will make him
feel deprived,” implying that the deprivation from not having, say, income Yy is an
increasing function of the fraction of people in the individual’s reference group who have
y. To aid intuition and for the sake of concreteness, we resort to income-based
comparisons, meaning that an individual feels relatively deprived when others in his
reference group earn more than he does. It is assumed implicitly here that the earnings of
others are publicly known. Alternatively, we can think of consumption, which might be
more publicly visible than income, although these two variables can reasonably be
assumed to be closely related.

As an illustration of the relationship between the fraction of people possessing
income Y and the deprivation of an individual lacking y, consider a population (reference
group) of six individuals with incomes {1,2,6,6,6,8}. Imagine a furniture store that in
three distinct departments sells chairs, armchairs, and sofas. An income of 2 allows you
to buy a chair. To be able to buy an armchair, you need an income that is a little bit
higher than 2. To buy any sofa, you need an income that is a little bit higher than 6. Thus,

when you go to the store and your income is 2, what are you “deprived of?” The answer
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is “of armchairs” and “of sofas.” Mathematically, this deprivation can be represented by

P(Y >2)(6-2)+P(Y >6)(8—-6), where P(Y >y,) stands for the fraction of those in the
population whose income is higher than y,, for y,=2,6. The reason for this

representation is that when you have an income of 2, you cannot afford anything in the
department that sells armchairs, and you cannot afford anything in the department that
sells sofas. Because not all those who are to your right in the ascendingly ordered income
distribution can afford to buy a sofa, but they can all afford to buy armchairs, a
breakdown into the two (weighted) terms P(Y >2)(6—-2) and P(Y > 6)(8—6) is needed.
This way, we get to the very essence of the measure of RD presented in this paper: we
take into account the fraction of the reference group (population) who possess some good
which you do not, and we weigh this fraction by the “excess value” of that good. Because
income enables an individual to afford the consumption of certain goods, we refer to
comparisons based on income.

Formally, let y=(y,,...,Y,,) be the vector of incomes in population N of size n
with relative incidences p(y)=(p(Y,)-.., P(¥,)), where m<n is the number of distinct
income levels in Yy, where n and m are natural numbers. The RD of an individual earning
y, 1s defined as the weighted sum of the excesses of incomes higher than y, such that

each excess is weighted by its relative incidence, namely

RDy(Y;) = Z PCY (Y — Yi) - (B1)

Ye>Yi
In the example given above with income distribution {1,2,6,6,6,8}, we have that the

vector of incomes is y=(1,2,6,8), and that the corresponding relative incidences are

p(y)=(1/6,1/6,3/6,1/6). Therefore, the RD of the individual earning 2 is
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Z P(Y )Y, —Y;) = p6)(6—-2)+ p(8)(8-2) = % 4+ é -6=3. By similar calculations,

Yi>Yi

we have that the RD of the individual earning 1 is higher at 3% , and that the RD of each

of the individuals earning 6 is lower at % .

We expand the vector y to include incomes with their possible respective
repetitions, that is, we include each Yy, as many times as its incidence dictates, and we
assume that the incomes are ordered, that is, y =(Y,,...,Y,) suchthat y, <y, <..<y .In
this case, the relative incidence of each y,, p(y,), is 1/n, and (B1l), defined for

i=1,..,n—1, becomes
1 n
RDN(yi)EHZ(yk_yi)‘ (B2)

k=i+1

This (B2) expression is the basis of Definition 1.
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