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Parameter Estimation and Measures of Fit in A Global, General 
Equilibrium Model 

 
 

 

Abstract: 

Computable General Equilibrium (CGE) models have been widely used for quantitative analysis of global 
economic issues. However, CGE models are frequently criticized for resting on weak empirical 
foundations. This paper builds on recent work in macro-econometric estimation, developing an approach 
to parameter estimation for a widely employed global CGE model, the Global Trade Analysis Project 
(GTAP) model. An approximate likelihood function is developed and the set of optimum elasticity values 
is obtained by maximizing this approximate likelihood function in the context of a back casting exercise.  
 
In addition, two statistical tests are performed. The first of these tests compares the standard GTAP 
elasticity vector with the estimated trade elasticity vector. It rejects the null hypothesis of equality 
between the two sets of trade elasticities. The second test examines the widely maintained hypothesis 
known as the “rule of two”, by which the elasticity of substitution across imports by sources is set equal 
to twice the elasticity of substitution between domestic goods and imports. We fail to reject this common 
rule of thumb. We conclude that there is much to be gained by nesting CGE models within an estimation 
framework as this opens the way for formal evaluation of model performance and parameterization.   

 
JEL classifications: C3, D5, F1. 
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Parameter Estimation and Measures of Fit in A 
Global, General Equilibrium Model 

 
Jing Liu 

Channing Arndt 
Thomas W. Hertel 

 

I. INTRODUCTION 
Computable General Equilibrium (CGE) models have been widely used for quantitative analysis of global 
and regional economic issues. In the December, 2001 issue of the Journal of Economic Integration alone, 
there were three articles employing a multi-country CGE approach to examine trade related issues.   
Despite their popularity, CGE models are frequently criticized for resting on weak empirical foundations 
(e.g., Hansen and Heckman, 1996; Jorgenson, 1984; Singleton, 1988; Hoover, 1995; and McKitrick, 
1998). The use of apparently arbitrary values for behavioral parameters and a lack of model validation are 
two frequently criticized aspects. For example, CGE modelers frequently assume that commodities are 
differentiated by origin. (This “Armington assumption” is employed in all of the papers mentioned 
above). Elasticities of substitution must then be specified between imports and domestic goods. These 
Armington elasticities of substitution have been shown to be important determinants of model results, 
particularly for trade related applications (Arndt, Hertel, Dimaranan, Huff, and McDougall, 1997; 
Roberts, 1994). Despite (or perhaps because of) the importance of these parameters, debate over 
appropriate values remains contentious.  In addition, surprisingly little is known about the capacity of 
regional or global CGE models to reproduce the historical record.  

This paper presents a general approach to parameter estimation and develops goodness-of-fit measures for 
regional and global CGE models. The method is applied to estimation of Armington substitution elasticities 
in a relatively standard global model focused on East Asian trade. We pose, and attempt to answer, two 
questions. First: what are the most sensible values for these trade elasticities, given the calibrated structure 
of the model and the historical record?  Second: how well does the model track historical experience, 
particularly with respect to trade flows? To do this, the CGE model is linked to an econometric model 
wherein a stochastic error is introduced to motivate the goodness-of-fit measures. An approximate 
likelihood function is employed to measure the size of stochastic errors between selected predicted values 
from the model and the historical data. The set of optimum elasticity values is obtained by maximizing the 
approximate likelihood function in the context of a backcasting exercise. This approach enables us to 
discriminate among alternative sets of parameter values, as well as generating measures of model fit to the 
historical data.  

I. A  Literature Review 

I.A.1 Brief Review of CGE Model Parameter Estimation and Calibration 

A variety of approaches have been used to obtain parameters for CGE models. By far the most common 
approach is to specify fairly parsimonious functional forms, obtain necessary behavioral parameters from 
the micro-econometric literature (or other sources), and then calibrate the remaining parameters such that 
the model perfectly reproduces a base year data set.  This approach has the distinct advantage of not 
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requiring time series data and leaving estimation issues to the econometricians. Nevertheless, other, more 
ambitious, approaches to parameter estimation and/or model validation have been attempted.  

For example, direct econometric approaches to estimating the parameters of selected equations appearing in 
CGE models have been used (Jorgenson, 1984; Jorgenson and Slesnick, 1997; McKitrick, 1998). Typically, 
trade, demand, and supply parameters are estimated separately. While this approach is preferable to simple 
calibration based on the (invariably spotty) microeconometrics literature, Arndt, Robinson, and Tarp 
(forthcoming) point to a series of difficulties associated with the direct econometric approach. These 
include: 

• substantial data demands, 

• the length of run of the elasticities obtained (usually annual when CGE models typically consider 
longer adjustment time frames), 

• the strong likelihood of structural changes during the estimation period, which is difficult to account 
for without a structural model, and 

• failure to impose the full set of general equilibrium constraints.  

Given these drawbacks, other CGE researchers have expanded the calibration method to employ 
two points in time. In this approach, the researcher runs the model over an historical period and compares 
results for some variables with the historical record. These comparisons can provide an informal basis for 
revising estimates of some important parameters. Examples of this approach include Gehlhar (1994); 
Kehoe, Polo, and Sancho (1995); Dixon, Parmenter, and Rimmer (1997); and Abrego and Whalley (2002). 
This approach has the advantage of imposing the full set of general equilibrium constraints. On the other 
hand, it makes limited use of the historical record and provides no statistical basis for judging the robustness 
of estimated parameters.  

Arndt, Robinson, and Tarp (forthcoming) combine the two methods described above. They use an 
entropy-based metric to measure the capacity of the model to track relevant historical data over several 
points in time. By endogenizing key behavioral parameters, the parameter values that permit the model to 
best track the historical record can be estimated by minimizing the entropy distance of predicted values 
from historical targets. The entropy approach is motivated by information theory, which deals explicitly 
with cases where information is scattered, incomplete, or even inconsistent. This makes the approach 
attractive, particula rly in the context of developing countries.  

Arndt, Robinson, and Tarp point out a number of advantages of their approach. They also point out 
limitations. For example, while their approach permits hypothesis testing through an “entropy ratio” 
statistic, the statistic is known to have weak power.  In addition, Arndt, Robinson, and Tarp do not 
consider the extensive literature that has evolved associated with parameterizing real business cycle 
models. This literature, and some of the potential links to CGE model calibration, is discussed in 
Dawkins, Srinivasan and Whalley (2000). We now turn to a review of relevant aspects of the real 
business cycle literature to set the stage for our subsequent econometric specification. 

I.A.2 The Real Business Cycle Literature 

Macroeconomic, dynamic, stochastic general equilibrium (DSGE) models can be viewed as a species of 
the genus CGE model (Hoover, 1995).  Thus, it is useful to consider the empirical foundations of DSGE 
models in the search for ways to improve the empirical foundations of CGE models. DSGE models are 
well represented in the real-business-cycle literature. In the following, we review three studies in the 
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business-cycle literature. In particular, we consider the seminal work of Kydland and Prescott as well as 
later works by Altug and Watson.1  

 Kydland and Prescott present a competitive equilibrium growth model of cyclical variances for a set of 
quarterly economic data from 1950 to 1979 for the United States. The model is a one sector, calibrated, 
optimal-growth model where the only driving force in the economy is exogenous technological change. 
Shocks to technology are assumed to follow a stochastic process with a deterministic component and a 
random component. The variance of the random component is set to exactly match the variance of output 
in the postwar US economy. Most parameters in this model are preset with a view to both microeconomic 
studies and steady state values for key model outputs. Remaining free parameters are determined through 
a grid arch over the sensible domain of parameter values so that cyclical covariances in model outputs are 
near those observed.  No explicit metric is defined to formally judge the goodness of fit of the model 
(e.g., the exact definition of “near”).  Altug uses maximum likelihood methods to estimate some key 
parameters and test the assumptions underlying a revised Kydland-Prescott model. His model establishes 
the linkage between the parameters of interest, the innovation to the technology shock, and the laws of 
motion describing the evolution of equilibrium quantities. Quarterly data on five macro variables from 
1948-1985 are collected and used to construct a sample of observations on the stationary stochastic 
process, from which the likelihood function can be approximated. The discrepancies between observed 
and model-predicted values are regarded as measurement errors for each series. The errors are assumed 
uncorrelated over time but correlated among series. Multivariate normality is implicitly assumed for the 
error serie s. The variances of the random component of technology shocks are endogenously determined 
in his model. Basically, his study tries to answer the following questions: What is the optimum 
combination of a subset of the parameter alues in the model? And, what is the magnitude of random 
technology shocks required such that a joint measure of the second moments of measurement errors for 
those five variables is minimized?  

Watson suggests a new procedure for assessing the performance of the original Kydland-Prescott model. 
Unlike the maximum likelihood approach of Altug, Watson abandons the null hypothesis that his 
economic model is well specified. Rather, the model is treated as an approximation of reality where the 
“error represents the degree of abstraction of the model from the data” (p. 1012). With misspecification of 
the model assumed a priori, he resorts to devising a measure of goodness of fit for the model. This 
measure provides a more formalized means for judging “near” (a lacunae in the original work of Kydland 
and Prescott, 1982). Watson generates measures of fit for a DSGE with a given set of parameter values. 
He does not seek to estimate parameter values; however, he does point out that his proposed measure of 
fit could be used as a criterion for estimating parameters of interest. 

While quantitative studies in the dynamic macroeconomics literature provide a rich source of ideas, there 
are some important differences between macroeconomic models and multi-sector CGE models. First, 
typical real-business-cycle models like the Kydland-Prescott model are one-good, one-agent models and 
have far fewer parameters than typical CGE models (Hoover, 1995).  Second, the growth models in the 
real-business-cycle literature are based on time series while many CGE models remain fundamentally 
comparative static in nature. This has important implications for our paper. In the former case, 
information is mainly derived from time series data for evaluating model performance. In the latter case, 
information may be derived from multidimensional longitudinal data (e.g., a panel of results across 
commodities, regions, and/or time) for the same purpose. Third, many macroeconomic models are 
stochastic models where the driving forces of the economy contain random components and the series 
being tracked (such as GDP, consumption, investment) are non-stationary and co integrated. CGE 

                                                                 
1 We should also mention that the works by Sims and Singleton are additional useful sources to explore the ideas of evaluating the 
performance of CGE models. 
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models, on the other hand, are often static and deterministic. Despite these differences, we believe that it 
makes good sense to apply some of the ideas from the real business cycle literature to the estimation of 
parameters and the development of goodness of fit measures for CGE models. 

General Approach 

The method adopted by this study is similar to that employed by Altug who utilized a single likelihood 
index to estimate critical DSGE model parameter values. In this paper, we develop an approximate 
likelihood approach that focuses on discrepancies between model predictions and available data through 
time, across industries and across regions. Hypothesis tests can then be conducted based on the concept of 
the likelihood ratio. The estimation procedure is therefore established by linking the CGE model with an 
econometric model.  

Following Arndt, Robinson, and Tarp, the structure of our CGE model may be described as a nonlinear 
simultaneous square system of equations: 

 TtCZEF ttt ∈∀= 0),,,,( δβ  (1) 

where F is a function generating an I-dimensional vector of real values and t is the time subscript, tE  is 
an I-dimensional vector of endogenous variables such as prices and quantities, Zt is a vector of exogenous 
variables including factor endowments and policy instruments, C is the vector of coefficients either 
computed by a calibration exercise or preset, β  is the parameter vector of interest (e.g. substitution 

elasticities in trade), and tδ  is a vector of time-variant shift parameters.2 CGE analysis typically proceeds 
by changing the vector of exogenous variables Zt, and examining the resulting vector of endogenous 
variables, tE , which satisfies the above system. If the exogenous variables, Zt, are set to match values 
observed in historical time periods (for factor endowments and policy instruments for example), the 
solution to the CGE model could be viewed as a predicted historical time path for selected variables of 
interest (such as trade shares).  

The econometric approach proceeds by comparing the actual historic time paths for key variables with 
their predicted values in the following manner: 

 tttttt eCZEGY      ),,,,(   += δβ  (2) 

where tY  is an N dimensional vector of historical targets, Gt is a function producing the vector of model 

predicted values for the targets tŶ , and te  is an N dimensional vector representing the discrepancy 

between historical targets and predicted values. The vector of parameters of interest, β , is endogenous 
and is chosen subject to the estimation criterion presented in section 4.  Calibrated parameters, elements 
of C, are also endogenous with equations forcing perfect replication of the benchmark data for any 
economically coherent vector β . This endogenous calibration to the base year implies that te =0 in the 

base year. For years other than the base year, the elements of C are effectively exogenous and tŶ  will in 

general differ from the observed tY .  

                                                                 
2 In reality, Zt may be partitioned into two parts as {Zt} = }{}{ U

t
O
t ZZ ∪ where }{ O

tZ  are observable and }{ U
tZ are 

unobservable. For ease of notation, the unobserved variables }{ U
tZ are assumed constant over time henceforth except where 

explicitly noted. 
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The following sections provide more detail on the CGE model employed in our study as well as the 
underlying social accounting matrix, the historical data and the estimation approach. 

II. THE CGE MODEL 
We employ a modified version of a standard, global CGE model developed by Rutherford (1998) and 
nick-named "GTAP in GAMS."  As such, it is closely related to many of the global CGE studies reported 
in earlier volumes of this journal.  Modifications to the model structure focus on the Cobb-Douglas 
representations of preferences and technology. These are replaced with Linear Expenditure System (LES) 
preference structures, and Constant Elasticity of Substitution (CES) production functions. In addition, a 
time index is added to every variable in the model. The addition of the time subscript essentially creates a 
series of CGE models (one for every element of the time index) that are not linked in any way (no explicit 
dynamic elements). This permits the model to be simultaneously solved for a series of static equilibria --
each corresponding to a different period in time.  

The remaining features of this model are relatively standard. Investment, saving, and government 
expenditure are exogenous. Factor endowments are combined in a CES function to produce value added. 
Value added combines with intermediate inputs in a Leontief fashion to produce final goods. Products are 
differentiated by origin, and imported and domestic goods are combined in a nested CES function in the 
tradition of Armington (1969) to produce a composite good that is utilized domestically by firms, 
government and the single private household. At a lower nest, imports from different regions are 
aggregated to form a composite import commodity. The elasticity of substitution across sources of 
imports is labeled Mσ . In the upper level nest, composite imports and domestic production for each 

commodity are combined with elasticity of substitution Dσ .   

The final demands in each region are determined by a representative regional household, which is 
endowed with primary factors, tax revenue, and an exogenously specified net transfer from other regions. 
Total income is allocated to savings, public demand and private demand. Investment is exogenous while 
private and public demand for commodities is determined by utility maximizing behavior represented by 
a Linear Expenditure System (LES) and a Cobb-Douglas utility function, respectively. International 
transportation inputs are proportional to trade and are defined by a Cobb-Douglas aggregate of 
international transport inputs supplied by different countries. As with many global models, goods 
produced for exports substitute perfectly with goods produced for domestic consumption, but imperfectly 
with exports from other regions (e.g., Hertel or McKibbin and Wilcoxen). 

III. THE SOCIAL ACCOUNTING MATRIX AND THE HISTORICAL DATA  

III. A 1 The Social Accounting Matrix 

All variables in the model, tE , are initially calibrated to the version 4 GTAP database (McDougall, 
Elbehri, and Truong, 1998). GTAP version 4 provides a fully reconciled picture of the global economy in  
1995 broken into 45 sectors and 40 regions. Computational burdens prevent use of the fully disaggregated 
dataset. Therefore, we employ a 10-region by 10-sector aggregation strategy (shown in Table 1) that is 
quite similar to the aggregation strategy employed by Gehlhar (1994) in his earlier two-period calibration 
exercise using the GTAP model. The emphasis in the aggregation is on East Asia. These economies were 
among the most dynamic during the period of interest in this study. The strong shifts in trade and 
production structure over the estimation period should help to identify the underlying parameters of 
interest.  
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Table 1      Sectors and Regions in the Study 
 Sectors Regions 

AGR Agriculture USC USA and Canada 
PAG Processed Foods MEX Mexico 
FMN Fuels And Minerals JPN Japan 
CTX Clothing And Textiles KOR Korea 
OLT Other Light Manufacturers TWN Taiwan 
CHM Chemicals THA Thailand 
MEV Machinery-Equipment-Vehicles IDN Indonesia  
BAM Basic Manufacturers CHN China 
NSV Non-traded Services REA Other East Asia 
TSV Traded Services ROW Rest of World 
 

 

III.A.2 The Historical Data 

External data series may be classified into two categories. The first category includes all exogenous 
variables (elements of Zt), which are used to shock the model backward in time. This category includes 
investment, government expenditure, tariff equivalents, net capital inflow, and factor endowments in four 
categories3: agricultural land, skilled labor, unskilled labor, and capital stocks. The second category of 
data includes GDP, exports by commodity, and imports by commodity at the regional level. These data 
serve as historical targets ( tY ) for the endogenous variables in the model.   

As noted above, the base year for the GTAP v4 data is 1995. The years selected as historical targets are 
1986, 1989, and 1992. We adopt three-year intervals in recognition of the medium-term nature of this 
CGE model. Land, labor, capital and national accounts data were derived from a variety of sources. 
Details on the sources for these time series (as well as greater detail on the data discussed below) can be 
found in Liu (2001). Time-series trade data were prepared by Mark Gehlhar (1998). These data record 
reconciled bilateral merchandise trade at FOB values. Table 2 reports the ratios of 1986 to 1995 values for 
these key variables. Capital inflow data were obtained from the International Monetary Fund. The 
protection data used in this study were obtained from UNCTAD (Coyle et al.).  

There are many limitations in the time series protection data.  The most severe of these limitations is the 
problem posed by non-tariff barriers (NTBs).  The UNCTAD data provides us with a coverage ratio (CR) 
for NTBs and we combine this with the average tariff(TF) to obtain a composite tariff (CTF) using the 
following formula:  CTF = TF/(1-CR).  Thus, at very high levels of NTB coverage, the composite tariff 
becomes quite high.  Since we are primarily interested in the ratio of protection in two periods, it is 
changes in CR that will be most significant.  The most dramatic changes in NTBs over this period 
occurred in agriculture, between 1992 and 1995.  During this period, NTBs were converted to tariffs as a 
result of the Uruguay Round Agreement or structure.  Since the objective of this exercise was to estimate 
a tariff equivalent for the NTBs and then convert the NTB to a tariff equivalent, we have avoided using a 
formula for CTF in this case and instead we have simply assumed that agricultural protection, as 
measured by the composite tariff, was unchanged over this period. 

A summary of the estimated composite tariff ratios (1986/1995) is reported in Table 3.  Where the entry 
in this table is greater than one, some liberalization is presumed to have occurred.  Where it is less than 
                                                                 
3 Time series data set for natural resource (the fifth factor endowment in GTAP version 4) is not available and is assumed unchanged 
over time. 
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one protection is estimated to have increased. The most striking result in this Table is the increase in CTF 
for China's imports of manufacturers.  This does not appear to be representative of what happened in 
China during this period.  The discrepancy is likely due to the introduction of "duty drawbacks" in the 
1990's to promote manufacturing exports (Ianchovichina and Martin, 2001).  As a result, tariff collections 
are only a small fraction of that predicted by China's statutory tariffs. This is but one of many limitations 
in our protection data.  Another is the absence of bilateral tariffs and hence tariff preferences. This affects 
Mexico, in particular, which joined NAFTA over this period. Unfortunately, global time series for 
effectively applied tariffs are not currently available. 

 
 
TABLE 2: Summary for Key Variables in 1986 (1995=1) 
 Exogenous Variables Targets 
 Land Unskille

d 
Skilled Capital Investm

ent 
Gov. 
Esp. 

GDP Imports Exports 

USC 101% 94% 77% 80% 75% 94% 81% 71% 59% 

MEX 91% 78% 68% 82% 89% 95% 87% 40% 44% 

JPN 108% 97% 76% 66% 69% 85% 77% 48% 70% 
KOR 108% 87% 56% 39% 36% 58% 48% 33% 40% 

TWN 102% 89% 59% 46% 38% 62% 53% 29% 40% 

THA 98% 85% 71% 41% 26% 68% 43% 19% 26% 

IDN 96% 79% 71% 43% 32% 68% 52% 39% 46% 

CHN 101% 87% 80% 43% 43% 65% 42% 23% 17% 

REA 89% 83% 55% 57% 43% 60% 56% 30% 38% 

ROW 98% 88% 67% 83% 805 86% 82% 65% 65% 

 
 
Table 3 Composite Tariff Ratios of 1986 to 1995 

SECTOR USCa MEX JPN KOR/TWN CHN THA/IDN/REA ROWb 

AGR 1.07 0.74 0.94 1.77 1.22 1.18 1.14 

PAG 1.36 0.74 0.97 1.65 1.57 1.28 1.06 

FMN/BAM 1.78 1.12 1.06 1.75 0.80 0.98 1.35 

CTX 2.35 1.07 0.92 2.46 0.82 1.35 1.26 

OLT 1.08 2.02 1.25 2.48 0.46 0.93 1.81 

CHM/MEV 1.22 0.82 1.34 2.18 0.84 1.33 1.02 
aThese tariff ratios refer to the United States 
bThese tariff ratios refer to Western Europe 
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VI. THE ECONOMETRIC MODEL 

VI.A.1 Parameters to be Estimated 

The focus of most global or regional general equilibrium models is on international trade, and values for 
Armington parameters are key determinants of model predictions for trade flows. Estimation thus focuses 
on choosing values for Armington trade elasticities that allow the model to fit historical trade patterns as 
closely as possible (based on the metric presented below).  While the focus is on choosing Armington 
parameters that accurately predic t trade shares, other unobservable parameters must also be estimated in 
order to generate a viable representation of the global economy. In particular, rates of technical change by 
activity and the tendency for trade to constitute a larger share of economic activity must be accounted for. 
Before presenting the estimator, these two issues are discussed. 

Technological progress is relatively easy to account for. During the period of this study, economic growth 
(measured by GDP) in the East Asian region cannot be explained by factor accumulation or other 
observable sources of growth (such as policy shifts that enhance the efficiency with which existing 
resources are used). Technological change is viewed as the remaining source of growth. To implement 
this idea, Hicks-neutral technological progress variables are introduced into the model. These variables 
are time- and region-specific, but sector-generic. Accordingly, these variables allow the model to exactly 
hit the GDP targets for each region and time period.  

Accounting for the growth of trade as a share of GDP is more challenging. Since World War II, 
international trade has grown much more rapidly than global GDP. A number of factors, such as reduced 
tariffs, increased quality and timeliness of transport, and improved communications, have served to spur 
the growth of trade. However, particularly over the estimation period, these factors cannot explain the 
rapid growth in trade that has been observed (see Table 2). One explanation that has been proposed is the 
erosion of home preference biases, which McCallum (1995) and others have found to be very large, even 
between the United States and Canada.  Under this theory, importers have latent demand but little 
experience with many of the products available on international markets. Their preferences are thus 
biased towards home-produced goods with which they have previous experience. However, as experience 
with imported goods increases, these home preference biases (HPB) erode.  

In this analysis, we assume that erosion of HPB accounts for the residual growth in trade that cannot be 
accounted for through other factors (such as changes in tariffs and transport costs). To implement this, we 
add a new variable, δ , to the CES Armington import aggregator functions.  It is indexed over time as 

well as for two regional groupings—the developed countries (DC) and the less developed countries 
(LDC). This new variable acts a shifter of the CES import aggregator functions. So, looking backward in 

time, for any given price ratio between aggregate imports and domestic supplies (δ  enters the top nest 

that combines aggregate imports and domestic supplies), δ  shifts the indifference curves such that fewer 

imports are demanded. The values of the elements of the vector δ  are constrained such that the model 

predicted total trade volumes for DC and LDC hit the targets exactly. 

IV.A.2 Econometric Specification 

We now turn our attention to the econometric model. Let ),( ri
ty  = ( ),( ri

tm , ),( ri
tx )’ where ),( ri

tm and ),( ri
tx  

are imports and exports of sector i at region r at time t, we may view ),( riy = { ),( ri
ty } as stacked yN x tN  
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multivariate and we have rN x iN  observations, where: rN , iN , yN , and tN  are the number of 
regions, sectors, targets, and points in time, respectively. The econometric model has the form: 

 Log( ),( ri
ty / ),(

95
riy ) = Log( ),(ˆ ri

ty / ),(
95ˆ riy ) + ),( riy

tε   (3) 

where, ),(
95

riy = ),(
95ˆ riy  are the calibrated multivariate at the benchmark year 1995; ),( ri

ty , ),(ˆ ri
ty , and 

),( riy
tε  are the empirical sampled multivariate, model predicted multivariate, and multivariate residual, 

respectively. Denote ε~ ={ y
tε }=( x

t
m
t εε , )’= ( )',,,,, 868689899292

mxxmxm εεεεεε  as the stacked yN x tN  

multivariate residuals. Our estimation is carried out by assuming ε~  is multivariate normal with mean 
vector zero and variance-covariance matrix Ω . In this study, ε~  has yN x tN =2*3=6 dimension and total 

number of observation ),(~ riε  is iN x rN =10*8=80. Since, by construction, total predicted trade 
volumes are equal to actual trade volumes, equation 3 has an equivalent form in terms of shares: 

 Log( ),( riS y
t / ),(95 riS y ) = Log( ),(ˆ riS y

t / ),(95 riS y ) + ).,( riy
tε  (4) 

Equation 4 focuses on the share ratios while equation 3 focuses on the volume ratios. Therefore, ),( riy
tε  

= Log( ),( ri
ty / ),(ˆ ri

ty )  = Log( ),(ˆ/),( riSriS y
t

y
t ).   

Our objective is to select a transformation function f such that ),( riy
tε = f( ),( ri

ty / ),(ˆ ri
ty ) appears as 

independently and identically distributed (iid) for all industries i and regions r. Once this has been 
obtained, and given the variance and covariance matrix Ω  of the multivariate residuals ε~ , the 
approximate likelihood function is easy to derive by following Gallant and Holly (1980) and Altug 
(1989). The conditional density for y

tε  given Ω  has the form: 

 Pr( y
tε | Ω )= ].2/)(exp[)(det)2( 1'2/12/ y

t
y
t

tNrN

εεπ −− Ω−Ω
−

    (5) 

This applies, regardless of the exact linkage between the targets, the parameters of interest β , and the 

state parameters of HPB and technological progress: tδ ={ DC
tς , LDC

tς , r
ttech }.  In this study, Ω  needs to 

be estimated and the concentrated log-likelihood function for parameters β , tδ and Ω  can be expressed 

as a function of all observed y
tε and tz  

log EL { β , tδ , Ω }  = ∑ Ω
),(

)},),(log{Pr(
ri

tt
y
t   ,,|zri δβε  

= Constant–( rN iN /2) * log )(det Ω - }2/),(),({
,

1'∑ −Ω
ri

y
t

y
t riri εε  

 = Constant –( rN iN /2) * log )(det Ω - tr )( 1−Ω }.2/),(),({
,

'∑
ri

y
t

y
t riri εε  (6) 

Here )det(Ω  is the determinant of Ω , tr( 1−Ω ) the trace of matrix 1−Ω , and }2/),(),({
,

'∑
ri

y
t

y
t riri εε  is 

a positive scalar.  The likelihood ratio test is based on the statistic  

 T = -2 [log EL ( kσ~ , n
tβ

~
,Ω~ )- log EL ( kσ̂ , n

tβ̂ , Ω̂ )] (7) 
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where the first term inside the parentheses is the restricted log-likelihood and the second term the 
unrestricted log-likelihood.   

Our approach motivates two sets of valuable statistics. The log-likelihood ratio statistic in equation 7 can 
be used for hypothesis tests. In addition, the variance of the approximate errors in equations 3 and 4 can 
be used to construct pseudo 2R  measures for each variable of the multivariate in a manner similar to a 
standard regression model. The 2R  statistics may be used to compare the overall fits under alternative 
scenarios. 

To estimate Ω , we first restrict its structure in order to preserve degrees of freedom. Specifically, we 
adopt a “nested” correlation structure in which the correlation coefficients between import 
residuals ),( rim

tε  and export residuals ),( rix
tε  are assumed to be of the form:   tρ = ρ .  This is a 

sensible assumption since this correlation is largely determined by the model structure.  The veracity of 
this assumption is also confirmed by post-estimation residual analysis. Autocorrelation is assumed to be 
the same for exports and imports m

tjti _ρ = x
tjti _ρ  for all time pairs (ti, tj). Heteroscedasticity is assumed to 

be time-specific. This is a very reasonable assumption reflecting both the decreasing predictive power of 
the model and the reduction in data quality as one moves backward in time. 

We are now in a position to re-stack the multivariate as ε~ = },,{ 321 ttt εεε ={( x
t

m
t 11 ,εε ), ( x

t
m
t 22 ,εε ), 

( x
t

m
t 33 ,εε )} with pair-wise correlation tρ = ρ ≠1, autocorrelation m

tjti _ρ = x
tjti _ρ = tj

tjρ , and 

Heteroscedasticity )( m
tVar ε  = )( x

tVar ε  = 22)( σtA  while 92A  is normalized and fixed as unitary. In 

addition, )( m
tE ε = )( x

tE ε =0. These assumptions may be expressed using ⊗  to denote the Kronecker 

product as: Ω = 2σ ( t
t RA2 ) ⊗ XMR _   

 







=

1
1

_ ρ
ρ

XMR  ,
















=
1

1
1

89
86

92
86

89
86

92
89

92
86

92
89

pp
pp
pp

R t , and tA = .
00

00

001

86

89

















A
A           (8) 

  

The three matrices above represent: the pair-wise correlation matrix between imports and exports (Rm_x), 
the autocorrelation matrix (Rt), and the normalized heteroscedasticity matrix (At), respectively.  

 In this study, the relationships between the residuals and the elements of Ω  are implemented as a 
set of constraints. The whole CGE model is also converted into a set of constraints.  The approximate log-
likelihood function (equation 6) is the objective function of the resulting optimization problem.  The 
objective may be expressed as a real valued function of residuals and elements of Ω , which are 
ultimately related to the trade elasticities. 

 We now turn to the estimation of elements in Ω = 2σ ( t
t RA2 ) ⊗ XMR _ . Greene (1993, p365-369) 

presents a lengthy discussion of this issue. Due to space constraints, we appeal here to the reader's 
intuition. We first establish the linkages between the elements of Ω  and residuals by means of the linear 

transformation 'ε =ε . 2/1−Ω  where transformed residuals 'ε  are independent of each other (Greene, 
p362).  In so doing, we can either compute 2/1−Ω  or directly link the elements of Ω  with residuals. To 
reduce the computational burden, we use a step-by-step residual transformation approach. The 

heteroscedasticity across time tA  is straightforward to estimate as: 
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 tA = 92A *∑ +
ir

x
t

m
t irir

,

22 ])),(()),([( εε /∑ +
ir

xm irir
,

2
92

2
92 ].)),(()),([( εε  (9) 

Next, we obtain the transformed residual ),(1 ritε =( ),(),,( 11 riri x
t

m
t εε )= ),( ritε / tA which is free of 

heteroscedasticity. The next transformation involves correcting for the correlation between exports and 
imports: 

 ρ  = {∑
irt t

x
t

t

m
t

A
ir

A
ir

,,

)
),(

)(
),(

(
εε

}/ .)})
),(

((*))
),(

({(
,,

2/12

,,

2 ∑∑
irt t

x
t

irt t

m
t

A
ir

A
ir εε

     (10) 

Since the correlation matrix XMR _  is positive definite, P = 2/1
_ )( −

XMR is guaranteed to exist. 

Transforming the heteroscedasticity-free residual ),(1 ritε ) by pre-multiplying P , we have ),(' ritε = 

P . ),(1 ritε , which is correlation-free between m
t
'ε and x

t
'ε , with expected variance Var ( ),(' ritε )= 2σ .  

The same approach is applied for estimating autocorrelation tR .  Here, the coefficients 2
1
t
tρ  are estimated 

as: 

 2
1
t
tρ =∑ +

ir

x
t

x
t

m
t

m
t iriririr

,
2121 )),(').,('),(').,('( εεεε /( yN ir NN 2σ ).  (11) 

Transforming ),(' ritε  results in new residual ),(" ritε = 2/1)( −tR ),(' ritε , which is free of  correlation, 

autocorrelation, and heteroscedasticity. We have expected variance Var ( ),(" ritε )= 2σ . In addition, 

),(" ritε  is distributed normally since ),( rim
tε and ),( rix

tε are by assumption normally distributed and all 
transformations are linear.  

 Finally, the following relationship between the estimated 2σ and ),(" ritε may be established: 

 2σ =∑
rit

rityt NNNNri
,,

2" )/()],([ε . (12) 

Furthermore, it may be shown that ),(" ritε = 2/1−Ω ),( ritε  and the log-likelihood function corresponding 
to equation 7 is: 

  log EL = ∑−+−
t

tirirt ANNNNN 22 ln]ln)2[log( σπ + ),( ritε 2/)](|[log _ XMir RNN + 

 yN 2/|])(|[log tir RNN - 2"" /]}[]{[ σee t  (13) 

 

where "e  is the gathering of all stacked ),(" ritε . The objective function is -2log EL  and equations 8-11 

are imposed as constraints. The only practical difficulty is to set up the term 2"" /]}[]{[ σee t . At first 

glance, it seems that we need to compute the square roots of the inverses of 2/1
_ ][ −

XMR  and 2/1)( −tR . 

However, only 1
_ ][ −

XMR  and 1)( −tR  are required, since neither constraints: 8-12, nor the objective 

function involve either 2/1
_ ][ −

XMR  or 2/1)( −tR . 
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A final set of constraints imposed on the estimation procedure relates to the relative magnitudes of 
Armington elasticities in the upper and lower nests. Recall that the lower nest  (with associated elasticity 
parameter Mσ ) aggregates imports across sources for a given commodity while the upper nest (with 

associated elasticity parameter Dσ ) combines this import composite with domestic goods.  Global 

models commonly assume that Mσ = 2 Dσ .  This assumption dates back to the work of Jomini et.al 
(1991) undertaken in support of the SALTER model of global trade.  In their comprehensive review of 
economic research on trade ela sticities, Jomini et.al find that most studies focused on estimating the upper 
level obstruction elasticity, σ d, with relatively few estimates of σ m.  For this reason, they sought a "rule 
of thumb" linking these two parameters. Using earlier estimates of both σ D and σ m by Corado and de 
Melo (1983) as a justification, they adopted the "rule of two": σ m = 2 * σ D.  In this paper, we first 
impose this restriction and later test its validity.  

IV: RESULTS 

IV.A.1 Parameter Estimation 

Table 4 displays the estimated results. It is interesting to compare the estimated values to those parameter 
values associated with the GTAP version 4 global database, which are also presented in Table 4.4 Based 
on this comparison, the GTAP elasticities seem to be too small for processed food (PAG) and motor 
vehicles and electronic machinery (MEV), and too large for agriculture (AGR), Clothing and Textile 
products (CTX), Fuels and Minerals (FMN), and Basic Manufacturers (BAM). The GTAP elasticities are 
quite close to the estimated values for other light manufacturers (OLM), and Chemicals (CHM). 

 

Table 4 Current and Estimated Trade Elasticities 
Industry GTAP Estimated Industry GTAP Estimated 

AGR 2.44 1.05* OLT 2.15 2.23 
PAG 2.40 3.76 CHM 1.90 1.98 
FMN 2.41 1.08 MEV 3.10 3.66 
CTX 3.32 2.54 BAM 3.47 2.24 

The estimates LS2 are obtained from Table 5.5 of last chapter 
*This value is at its lower bound 
 

Table 5 displays the estimates of the home bias preference parameter values DC
tς  and LDC

tς .  This 
parameter has been scaled to indicate the proportional reduction in import volumes that would occur, at 
constant prices and incomes, as one moves backward in time from 1995 to 1992, 1989 and 1986. The 
erosion in home preference biases has been rapid, particularly in LDCs. The most rapid rate of HPB shift 
seems to occur in the period from 1986 to 1989 for both DC and LDC regions. 

 

Table 5 Home Preference Biases Shift Parameters  (1995=1) 
Developed Countries Less Developed Countries 

1992 1989 1986 1992 1989 1986 
1.030 0.940 0.837 0.922 0.828 0.561 

 

                                                                 
4 GTAP elasticity values have been employed by a large number (hundreds) of studies of global trade. In order to obtain a sampling 
of these studies, go to www.gtap.org and select Resource Center | Applications.   
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Table 6 displays the estimates of the parameters in the covariance matrix Ω .5  There is evidence of auto-
correlation, heteroscedasticity, and correlation between exports and imports. The error terms are 
especially highly correlated between 1989 and 1992. Existence of strong correlation between data series 
tends to discount the information content. In effect, we have less information than would be the case 

where all observations independent.  The high value of heteroscedasticity reflected in the value of 86A  
heavily discounts the 1986 targets in the penalty function, putting instead a larger weight on more recent 
data.  This probably makes good sense, given the difficulty involved in constructing the historical time 
series.  

 
Table 6 Estimated Covariance Matrix Ω  

ρ  92
89ρ  92

86ρ  89
86ρ  92Α  89Α  86Α  

0.344 0.848 0.493 0.543 1.000 1.497 2.107 
 
 
V.A.2 Measures of Fit 

 As noted above, our approach motivates two sets of descriptive statistics for the global CGE 
model. In this section, we focus on the pseudo R-square statistics to measure the goodness-of-fit for the 
CGE model. In a simple, linear regression model with a constant term, the R2  value based on least squares 
estimation is an important measure for evaluating the fit of the regression.  The R2 is calculated as 1-
SSR/SST where SSR is the sum of squared residuals and SST is the sum of squared deviations of the 
dependent variable.  In this case, the R2 value is interpreted as the proportion of variation explained by the 
independent variables.  If the regression does not contain a constant term, we can obtain an analogous, 
pseudo-R2 value, without computing the deviations from means (Greene, p155).   

The computation of a pseudo-R2 in our case is similar to that for a regression model without constant 
term. Consider the model defined in equation 4. 6  We define SSR and SST as: 

SSR = ∑
ri

y
t ri

,

2)],([ε      

 SST = ∑
ri

yy
t riSriS

,

2
95 ))],(/),([log(  (14) 

This definition has some meaningful implications in the CGE context. As we know, the R2 measures are 
initially intended to evaluate the contribution of independent variables in a linear regression model to 
reducing the variation of the dependent variable, measured as SST.  In a simple linear regression model 
with constant term jy  = α  + β jx , SST = ∑ −

j
j yy 2][ .  The term y  reflects a naïve guess for the 

value of jy  in the absence of the model; and SST is the sum of squared deviations of the dependent 
variable from this naïve guess.  Analogously, we may define in CGE context: 

                                                                 
5 We have conducted an analysis of the residuals to test the assumptions of normality as well as the randomness of y

tε , and the 

specification on Ω .  These results suggest that our econometric model is well-defined. 
 
6 Please note that R-Square values will change if we use another model (e.g. equation 3). 
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 SST = ∑ −
ri

yy
t

yy
t riSriSriSriS

,

2
9595 ))],(/),((Log)),(/),((Log[ &    (15) 

where, ),( riS y
t

&  denotes the best guess without the CGE model.  Arguably, the best naïve guess is to 

assume the share structure at time t remains the same as the benchmarked share structure, or ),( riS y
t

& = 

),(95 riS y . Therefore, )),(/),((Log 95 riSriS yy
t

& = 0 and we have equation 14.  

 Table 8 displays the Analysis of Variance (ANOVA) table for our model.  We find that our model 
explains about 30-65% of total variation. It is no surprise that these R-squares are relatively low. This is 
due to the nature of this study where cross sections of individual data are analyzed and the model is a 
dramatic simplification of reality.  We also note that the 2R  values for imports in 1992 and 1989 are 
lower than that for the year 1986 while the reverse is the case with respect to exports. Table 7 also 
presents results using the standard GTAP elasticity values. Calculation of the optimal elasticities 
primarily improves the fit of the model with respect to exports. Measures of fit with respect to imports 
change only marginally. 

 

Table 7 Analysis of Variance* 
 Imports   Exports   

 1992 1989 1986 1992 1989 1986 

 Optimum Trade Elasticities 

Total Variation 10.90 18.60 52.50 5.48 21.80 50.35 

Explained Variation 3.15 7.90 34.44 2.43 7.18 19.13 

Residual Variation 7.75 10.70 18.06 3.05 14.62 31.22 

Pseudo-R2 28.9% 42.5% 65.6% 44.3% 32.9% 38.0% 

 Current Trade Elasticities 

Total Variation 10.90 18.60 52.50 5.48 21.80 50.35 

Explained Variation 3.32 7.63 33.89 1.95 5.44 16.87 

Residual Variation 7.59 10.96 18.61 3.53 16.36 33.49 

Pseudo-R2 30.4% 41.0% 64.6% 35.6% 24.9% 33.5% 

* ),()),(/),(ˆ(),(/),(( 9595 ririSriSLogriSriSLog y
t

yy
t

yy
t ε+=  

 

V.A.3 Hypothesis Tests  

The second use of the descriptive statistics generated by our approach to estimation is hypothesis testing 
based on the likelihood ratio test using equation 7. The first test we consider involves exploring whether 

the optimum estimates of trade parameters kσ̂ , significantly improve the model’s performance with the 
current GTAP elasticities, k

0σ . The null hypothesis is: H0: kσ = k
0σ . Table 8 displays the results of the 

test.  The first two columns show the values of the log-likelihood, first unrestricted and then with the 
restrictions associated with the null hypothesis. The third column constructs the log-ratio statistic. 7  The 

                                                                 
7 In light of the fact that one of the estimated parameters reaches the lower bound in the unrestricted model (Table 4), hypothesis test 
is actually a conservative one, since the log-likelihood ratio without boundary restriction would be larger. 
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fourth column shows the probability of the null hypothesis given the statistic in column three. 
Accordingly, we reject the null hypothesis. Therefore, the current GTAP elasticities are associated with a 
significantly poorer fit of the historical trade shares, compared with the estimated elasticities.   

 
TABLE 8: Results of First Hypothesis:  GTAP Parameters Imposed 

Log-Ratio Metric  

)ˆlog(2 UL  )ˆlog(2 RL  )ˆ/ˆlog(2 uR LLC −=
 

)( 2
8 cP ≥λ  

-175.8 -202.9 27.1 0.005 
 
 

In the second hypothesis test, we examine the relationship Mσ =2 Dσ :  the so-called "rule of two."  So 

far, this has been a maintained hypothesis.  To test the restriction, we let  Mσ =ω Dσ  in the unrestricted 
model. The restricted model is the formerly unrestricted model shown in the first column of Table 8. The 
null hypothesis is H0: ω =2, and the probability of this null hypothesis, given the log ratio statistic in 
column three is 0.158.  Accordingly, the null hypothesis is not rejected.  

Table 9     Results of Second hypothesis: Rule of two 
Log-Ratio Metric  

2 )ˆlog( UL  2 )ˆlog( RL  C = -2 )ˆ/ˆlog( uR LL  )( 2
8 cP ≥λ  ω̂  

-173.8 -175.8 2 0.158 2.69 
 

VI. CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH 
Global CGE models are widely used for economic research and analysis of trade policy questions.  
However, these models are widely criticized for resting on weak empirical foundations.  Specifically, key 
parameters are often gleaned from unrelated economic studies, and CGE modelers rarely validate their 
models against the historical record.  In response to this deficiency, the present paper develops an 
econometrically based approach to parameter estimation for a variant of the widely used GTAP model of 
global trade.  This approach builds on an approximate likelihood function inspired by the recent literature 
or dynamic, macro-econometrics. The set of optimum trade elasticities is obtained by maximizing this 
likelihood function in the context of a model backcasting exercise over the period 1995 to 1986. 

The approximate likelihood function also permits us to develop a formal framework for hypothesis testing 
which is used to test two null hypotheses about the trade elasticities in our model.  The first of these is the 
hypothesis that the true elasticities are equal to the trade elasticities currently in the GTAP parameter file.  
This is rejected.  We find that the two sets of elasticities differ most for primary agriculture and fuels and 
mineral products (GTAP values are too large), whereas the GTAP estimates for processed food products, 
motor vehicles and electrical machinery are too small. 

The second null hypothesis tested is the widely employed "rule of two", whereby the elasticity of 
substitution among imports from different sources for a given product is set equal to twice the value of the 
domestic-import substitution elasticity.  We fail to reject this hypothesis, thereby lending additional 
credence to this rule of thumb.   

Finally, we develop a goodness of fit measure, which is analogous to the pseudo-R2 used in regression 
analysis.  This permits us to assess how well the fitted model predicts historical behavior, comparing the 
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"goodness-of-fit" of alternative model specifications within the same broad econometric model.  An 
interesting extension of this measure would be to use it to evaluate the individual contributions of the 
different exogenous shocks (e.g., tariff reductions, endowment shocks, etc.) in a manner analogous to 
factor decomposition analyses in regression models. 

In summary, we believe that there is much to be gained by following the lead of the dynamic macro-
ecometricians in nesting CGE models within an econometric framework that admits errors due to model 
specification and measurement problems.  While such efforts are extremely time-consuming - not least 
due to the challenge of obtaining historical time series for the model shocks and targets -- they also 
promise to bear considerable fruit.  It is only by predicting the past that CGE models will garner 
credibility for analysis of the future. 
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