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Abstract 

This paper compares two estimation methods of a three-stage least squares (3SLS) 
system of equations, corrected for spatial autocorrelation. The modeling approach is novel in that 
it is an extension of Anselin’s (1988) seemingly unrelated regression (SUR) space-time spatial 
error model for panel data. An empirical comparison of the quasi-maximum likelihood (QML) 
estimation of the equation system, and Kelejian and Prucha’s general moments (GM) estimation 
approach is presented. The model and estimation procedures introduced in this study are easily 
extended to other economic, agronomic, or biological models that must incorporate spatial and 
temporal effects in the model specification, and overcome simultaneous equation bias. The 
empirical example used in this study falls in the realm of production economics: on-farm 
production data is used to optimize input rates across time and space. This data is the product of 
on-farm, site-specific manure management research at the University of Minnesota. 
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GENERAL MOMENT AND QUASI-MAXIMUM LIKELIHOOD 
ESTIMATION OF A SPATIALLY AUTOCORRELATED SYSTEM 
 OF EQUATIONS: AN EMPIRICAL EXAMPLE USING ON-FARM 

PRECISION  
AGRICULTURE DATA  

by 
Dayton M. Lambert 

Gary Malzer,  
and 

James Lowenberg-DeBoer 
 

 
Introduction 

 
Recently, much attention has been paid towards modeling spatial effects in applied 

economics. The estimation problems caused by spatial dependence have been well known for 
some time: assumptions about the independence of observations are often violated when data is 
spatial, much as they are in time series contexts. Along with the newly received understanding 
of, and sensitivity about the effects of spatial processes by economists, detection of and 
correction for spatial dependence in economic data is no longer the exception in applied 
economics. Geo-referenced data is now widely available for research purposes, and faster 
computers supporting data-visualizing GIS software provide researchers with new perspectives 
on data generating processes (DGP) by inclusion of spatial dimensions. For the applied 
economist, modeling spatial processes is also intuitively appealing since data used by economists 
is the by-product of micro-transactions between agents occupying definite locations in a 
continuum of time. Macro-level data, such as global trade patterns, national income, financial 
transactions, unemployment spells, and the like are no exception, since realization of these 
aggregate-level data are driven by a nexus of utility-maximizing agents and profit-maximizing 
firms at micro-levels.  
 

The econometric time series literature is rich and detailed, but the breadth and depth of 
applied spatial econometric literature available to econometricians is not so profound. Yet, since 
the last decade, spatial regression methods have been adapted to fit applied economic and agro-
economic research paradigms. The spatial regression tools currently available to economists 
were originally developed in the ecological sciences, urban and regional geography, agronomy, 
and the geological sciences. Needless to say, the methods developed in these disciplines were not 
designed for the kinds of regression models applied economists commonly employ (for example, 
estimation of demand systems, trade models and systems of supply-demand equations, panel 
data, discrete choice and proportional hazard models, and vector auto-regression (VAR), or other 
time-series related models). Accordingly, the application of spatial analysis developed in these 
other disciplines has been modified to varying degrees to fit economic theory and econometric 
methods, depending on the applied problem at hand.  

 
This paper proceeds as follows. The literature review summarizes some recent 

applications of spatial econometrics in applied economics, agricultural economics, and related 
fields. The problems associated with the inclusion of time-effects into spatial models (or vice-
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versa, as in the case of VAR models) are briefly discussed, along with some proposed solutions 
towards identification and estimation of space-time models. Next, two estimation methods are 
discussed in detail with which to estimate a system of equations in general, and 3SLS in 
particular – a quasi-maximum likelihood (QML, Anselin, 1988) and a general moments (GM, 
Kelejian and Prucha, 1999, 2004) approach. The section following describes the data and the 
model used to compare the results produced by the QML and GM estimation procedures. The 
production economic data used in the example are the results of a two-year on-farm, variable rate 
input trial. Results are presented, followed by a concluding section. 

 
Literature Review 

 
There are many approaches towards modeling spatial processes. Anselin’s (1988) Spatial 

Econometrics and Cressie’s (1993) Statistics for Spatial Data are arguably the most exhaustive 
reviews of the asymptotic properties of estimators, estimation procedures, and examples of 
spatial regression methods at work. Although many of the spatial models described by Cressie 
are easily modified into useful econometric models, Anselin’s review has direct applications in 
economics.  

 
In general, most of the recent economic studies applying spatial methods follow one of 

two models extensively detailed by Anselin (1988, 2002)1 – spatial lag or spatial error models. 
For spatial lag processes, the familiar regression model becomes y = ρWy + Xβ + ε; with ρ as the 
autoregressive moving average parameter for neighboring yj’s. The spatial autoregressive (SAR) 
error model is specified as y = Xβ + ε with ε = λWε + u, where u represents well-behaved, non-
heteroskedastic, uncorrelated errors. W is a positive definite, n x n matrix of spatial weights. 
Spatial structure is necessarily imposed on data. That is, the researcher chooses the elements of 
W. For example, W may be a matrix of economic distances (Conley, 1999; Conley and Topa, 
2002; Aten, 1997), zeros and ones identifying neighborhood contiguity (Anselin, Bongiovanni, 
and Lowenberg-DeBoer, 2004), inverse or Euclidean distances, or the proportion of shared 
boundaries between districts, counties, or states (Ord 1975). The required properties of W are 
that it is invertible, and each of its eigenvalues is positive and less than unity. Details about the 
properties of W are found in Anselin (1988) and Bell and Bockstael (2000).  

 
In the agricultural economic literature, one of the earlier applications of the single 

equation SAR model is found in Benirschka and Binkley (1994), where they modeled land price 
variations as a function of distance to markets. More recently, Roe, Irwin, and Sharp (2002) 
modeled the influence of spatial relations on economic agglomeration in the hog industry using a 
spatial error model. A natural extension of spatial econometrics is evaluation of on-farm 
experiments. Florax, Voortman, and Brouwer (2002) used a spatial lag model to capture local 
variations in soil characteristics, and their impact on millet yield in Niger. Anselin, Bongiovanni, 
and Lowenberg-DeBoer (2004) used a SAR model to evaluate yield monitor data for an on-farm 
variable rate nitrogen trial (VRT-N) in Argentina. Heermann et al. (2002) also used the SAR 
specification in their evaluation of precision irrigation systems on corn response in Colorado.   

                                                 
1 Recently, Conley (1999) introduced a non-parametric general method of moments (GMM) 
approach towards estimating spatial effects in economic data. But for exposition, this study 
focuses exclusively on estimation of SAR error models. 
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The common thread between these studies is the cross-sectional attributes of the data. 
The usual conceptual and computational problems associated with estimating spatial models are 
compounded with multiple periods and panel series data. As a conceptual example, in time series 
applications, the DGP is assumed to be unidirectional over time. On the other hand, spatial 
processes are multidirectional.  

 
In general, spatial processes are assumed to follow a Markov random field. Spatial effects 

might be modeled two dimensionally (like a “checkerboard”) in the case of the epidemiologist 
studying disease incidence between counties, or three-dimensionally in the case of the oil or 
mineral wildcatter. Adding the temporal dimension to spatial process requires one to imagine 
that a given tessellation (which is generally fixed over space) moves through time. The data 
observed by the economist (for example, transactions between individuals) is generated along 
these points. Not only are observational units connected to other units on a network; they are 
connected to themselves through period linkages. Immediate examples include interpretation of 
yield monitor data over several crop cycles; market transactions between economic agents; 
watersheds, land tenure, and other ecosystem-related studies; changes in biological populations 
over space and time; and international trade flows. Computationally, the problem is compounded 
by (possible) inclusion of extra parameters that must be estimated (as in the case of Pace et al., 
2000), an increase in the size of spatial weighting matrices (Lence and Mishra, 2003; Druska and 
Horrace, 2004; Hardie et al., 2001), or linkage of spatial and temporal effects through a system 
of equations or temporal effects through random error components (Anselin, 1988).  

 
Recently, these conceptual and computational challenges have been addressed in several 

applied economic studies. In general, there are four approaches available to applied economists 
to concomitantly model spatial and temporal effects; (i) error component models (ECM; Elhorst, 
2001; Baltagi, Song, and Koh, 2003), especially for panel data and discrete choice spatial models 
(Munroe, Southworth, and Tucker, 2002; Swinton, 2002; Pinske and Slade, 1998; Holloway, 
Shankar, and Rahman, 2002), (ii) seemingly unrelated regression (SUR, Anselin, 1988), (iii) 
direct estimation of spatial and temporal autoregressive (AR) parameters in model specifications, 
and (iv) inclusion of spatial weights matrices vis-à-vis parameter restrictions in VAR models 
(LeSage and Pan, 1995; Chen and Conley, 2001; Leonard and Somy, 1997; Kamarianakis, 2003; 
Giacomini and Granger, 2004).  

 
Empirical applications using a system of equations or SUR approach are less frequent in 

the literature. Benirschka and Binkley (1995) used an instrumental variable approach to model 
space-time effects in their study of optimal storage and marketing of grain over space and time. 
However, cross-equation covariance was not explicitly modeled in that study. The SUR approach 
taken in this study follows Anselin’s program: each equation corresponds to a specific time 
period. This allows spatial processes to be different in every period: it is assumed that temporal 
effects interacting over a fixed spatial arrangement may have different effects every period. The 
asymptotic properties of the QML estimators of the spatial SUR are given in Anselin (1988), 
along with an empirical example. Kelejian and Prucha (2004) established the asymptotic 
properties of GM estimators for systems of equations, but there are no empirical examples in the 
economic literature comparing SUR-QML and GM estimators. Additionally, the GM-systems 
approach in Kelejian and Prucha only considers cross-section systems of equations. Their model 
is extended here to include equations representing time blocks in this study. Like the SUR 
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approach in Anselin, and the Kelejian-Prucha GM method, a spatial AR term (λ) is estimated for 
each equation.  

 
Pace et al. (2000), Hardie et al. (2002), Silveira-Neto and Azzoni (2003), and Lence and 

Mishra (2003) provide recent examples of inclusion of spatial AR terms into conventional panel 
data models. However, unlike the system approach taken here, these studies restricted λ to be 
identical across all periods. Druska and Horrace (2004) used Kelejian and Prucha’s GM 
procedure to estimate a panel data series, but they included a spatial AR term for each period. 
However, they did not link inter-temporal (t) effects through the AR terms vis-à-vis a cross-
equation covariance matrix. With the SUR approach, inter-period linkage is achieved through the 
cross-equation covariance matrix as a function of λt’s, Σ(Λ), where Λ is a T x T block diagonal 
matrix of spatial AR terms for each time period equation (Anselin, 1988, page 143). 

 
The remainder of this paper builds specifically upon the Cliff-Ord-type, single equation 

SAR model, and its modification into a system of equations for estimation of space-time 
interactions with endogenous and instrumental variables. Since the model includes endogenous 
variables on the right hand side of the estimating equations, 3SLS must be used in estimating the 
system. Two estimation methods already available to researchers are further developed and 
compared: the quasi-maximum likelihood (QML) approach (Anselin, 1988), and Kelejian and 
Prucha’s GM procedure. The GM procedure presented by Kelejian and Prucha (1999, 2004) is 
modified by iterating over the cross-equation covariance matrix, Σ. Likewise; this iterative 
approach is used in QML computations. 
 

Specification of a Linear System Space-Time System of Equations Model 
 
This section specifies the system of equations used to estimate profitability of variable 

rate input management in Minnesota. As is well known in the econometric literature, single-
equation estimators are not asymptotically efficient if the structural errors are correlated across 
equations. Kelejian and Prucha (2004) consider a general spatial model that includes spatial lag 
and error processes. In their approach, the normality assumption required by QML estimation is 
relaxed. Like the spatial SUR described in Anselin (1988, page 143), the model developed below 
only considers spatial error processes.  
 
Quasi-maximum likelihood estimation of the 3SLS space-time model 

 
Consider extending the Cliff-Ord single equation SAR model as the following 

simultaneous system of p = 1,…,P equations, each with n observations, occurring in t = 1,…,T 
cross-sectional units (or periods):  

 
(1) Ypt = Y(pt)γpt + X(pt)βpt + ept, ept = λptWn ept + upt   
       = M(pt)δpt + ept, ept = λptWnept + upt 
 
In vector notation 
 
(2) Yv = Mδ + ev, ev = λvWnev + uv  
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(3) [ ]qsptE uu ′  = σpt,qsIn  

where ( )′′′′= PTv YYYY ,...,, 2111 , ( )′′′′= PTδδδδ ,...,, 2111 , and ( )′′′′= PTv eeee ,...,, 2111 , and the block 

diagonal matrix M, wherein each M(pt) may contain one or more endogenous variables 
(Mittelhammer, Judge, and Miller, 2000). In this system, the errors follow a spatial 
autoregressive process in each equation, and are correlated across equations and time blocks. 
Each of the P equations has an AR term in each period t, λt. Re-writing the ept errors as ept = (In – 
λptWn)

-1upt , it follows that 
 

(4)  [ ] ( )nptnptptptqsptqsptE WIGGGee λσ −=



 ′=′

−

:
1

,  

 
For the full system model, the error covariance matrix (Ω) can be expressed as 

( ) 11 −− ′⊗= GIΣGΩ n , where G is an nPT x nPT block diagonal matrix. In simpler 

notation, ( )nnPT WΛIG ⊗−= , where Λ is a PT x PT block diagonal matrix of AR terms for the 

p-th equation in the t-th period. 
 
 QML estimators derived under the normal approximation may have all the desired 
statistical properties (for example, consistency and asymptotic normality), even if the 
approximation is incorrect (Gourieroux, Monfort, and Trognon, 1984). Under quasi-likelihood 
theory, the normal likelihood function is used as an approximation to the true (but unknown) 
likelihood function when the errors may be distinctively non-normal, even in very large sample 
sizes (Mittelhammer, Judge, and Miller, 2000). The information in the data and model can be 
summarized by the following log likelihood objective function (following Anselin, 1988, page 
143; Mittelhammer, Judge, and Miller, 2000, page 465): 
 

(5)  
( )

( ) [ ] ( )MδYGIΣGMδY

WIΣXYΣΛδ

−⊗′′−−

−+





−=

−

= =∑ ∑

vnv

T

t

P

p nptnv

n

1

1 1

2

1

lnln
2

,;,,ln λl

 

 
The error variance is a function of λ and σ (the upper triangular elements of the PT x PT 
covariance matrix, Σ). That is, ( ) ZZΛΣΣ ′=≡ −1n , where Z is a PT vector of transformed 

residuals; Z = [z11, z12,…,zPT], ( ) ptnptnpt uWIz λ−= ; and ptptptptptpt βxγyyu −−= .  

 
The estimates of Λ are found as a solution to the system of PT nonlinear equations:  

 

(6) ( )( ) ( )[ ]{ } 0
1 1

11 =−′′−− ∑ ∑= =
−− P

q

T

s qsnpsnnptpsnptnntr uWIWuWIW λσλ  

 
where σp,t is the p,t-th element of Σ(Λ). This relation between the necessary conditions for λpt 
demonstrates that estimation of one spatial AR term in the p-th equation and t-th period is 
conditional upon the values of the other AR terms. Temporal and spatial autocorrelation between 
equations and periods is thereby linked through the matrices Λ and Σ. The steps for maximizing 
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(5) and solving the system of non-linear equations in (6) follow Anselin (1988, page 183, 184). 

Noting that ( )( )MXXXXIM 1 ′′⊗= −
n

ˆ  (Mittelhammer, Judge, and Miller, 2000), the 3SLS 

estimator that solves (5) is: 
 

(7) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ) vnn YΛGIΛΣΛGMMΛGIΛΣΛGMδ
))))

⊗′′⊗′′=
−−− 111 ˆˆˆˆˆˆˆˆ  

 

When the λpt’s are recovered from equation 6, along with the final estimate of Σ(Λ), δ̂ is 
estimated. At this point, the information matrix can be constructed (Anselin, 1988, page 161), 
and standard errors of the parameters are estimated.  

 
General Moments (GM) Estimation of the 3SLS model 

 
Maximum likelihood estimation of the spatial autoregression error model may not always 

be computationally feasible with larger spatially referenced data sets, systems of equations, or 
regression models incorporating time and space. The main obstacle presents itself during 
maximization of the log likelihood function where the determinant of the n x n matrix 

( )nn WI λ−ln  must be calculated in every iteration. Ord (1975) showed that computational time 

could be reduced by rewriting this term as ( )∑ =
−n

i iabs
1

1ln λω , where ωi is the i-th eigenvalue of 

Wn. Since the eigenvalues of Wn only have to be found once, computation time is reduced for 
QML estimation. However, even in larger samples, re-writing the problem this way may not 
decrease estimation time, and estimates of the eigenvalues may not be accurate (for example, see 
Bell and Bockstael, 2000). This may be especially true with larger panel data sets, or data 
modeled using systems of equations.  

 
Kelejian and Prucha (1999) proposed an alternative method for estimating the SAR 

model that does not require estimation of eigenvalues of Wn or the log determinant, 
( )nn WI λ−ln . Recent empirical applications using the GM approach towards estimation of SAR 

models include Druska and Horrace (2004), and Bell and Bockstael (2000). Using the above 
notation, the following system of general moment equations solves for λpt for a single equation in 
period t:  

(8)  

( )
( ) ( ) ( )

[ ] ( ) 

















′−




 ′+′

′−′

′−′

=

0

2

2
1

22

222
,

2

ptnptnptnptnptnpt

nptnptnptntpn

ptnptnptnpt

pt tr

n

n
uWuWuWuWuWu

WuWuWuWuW

uWuWuWu

Γ  

 

(9)  [ ]′= 22 ,, ptptptpt σλλΞ  

 

(10)  ( )
′




 ′′′= ptnptptnptnptptpt n

uWuuWuWuuγ ,,
1
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(11)  ( ) ( ) [ ]{ }0,1,1:minarg 2 ≥−∈−′− ptptptptptptptpt
pt

σλγΞΓγΞΓ
θ

 

 
 One approach is to use a two-step estimation procedure: the elements in Λ are estimated 
for each equation and every time block. Once λpt is recovered, Σ(Λ) and then δ can be estimated 
using the identity in (7). An alternative approach would entail an iterative procedure, taking 
similar steps outlined to estimate the parameters in (5) (see Anselin. 1988, page 144). For 
example: 
 

(i) Two-stage least squares estimates of upt are obtained from (2); 
(ii) Ξpt’s are estimated solving the system of moment equations, and a new set of 

residuals ( *
ptu ) are constructed using (2) and (7); 

(iii) Σ is re-estimated as Σ(Λ); 
(iv) δ’s are recovered using equation 7, conditional upon Σ(Λ); 
(v) A new set of residuals is estimated; 
(vi) Steps (ii) – (v) are repeated until a specified convergence criterion is achieved. 

 
Once the convergence criterion is obtained, the information matrix for the system is constructed, 
conditional upon Λ̂ , and standard errors of the estimates are recovered. 

 
An Empirical Example 

 
The purpose of this section is to use the estimators described in section 3 to estimate 

actual site-specific crop response functions (SSCRF, Bullock, Lowenberg-DeBoer, and Swinton, 
2002) using real spatial-temporal observations that are representative of the kind of data 
commonly used by agricultural researchers. An on-farm trial was established near Sleepy Eye, 
Minnesota to determine if variable rate manure (VRM) could be used to increase agronomic 
profit and reduce the potential for non-point source environmental problems. The objectives of 
this trial are to compare the returns to VRM with returns from a whole-field manure management 
strategy. Each manure management strategy is complemented by a one of two soil management 
strategies: do nothing, or use soil test information to adjust K, P, or lime site-specifically. In all, 
there are four scenarios compared.  

 
The variable rate manure experiment was conducted in cooperation with Christensen 

farms, near Sleepy Eye MN. Corn grown during the 1999 season was followed by soybean. Four 
rates of liquid swine manure, including a check strip (0, 2000, 4000, 6000, and 8000 gal acre-1) 
were applied over a 10-acre field in constant rate strips. Manure was only applied before the 
corn-growing season. No manure was applied prior to planting soybean. Manure was applied via 
surface broadcast, then immediately incorporated with double discs attached to the applicator. 
Yield data was collected in 15-m segments for corn and soybean crops. Grain yield was 
measured from the center row of each treatment strip using a Massey Ferguson plot combine 
equipped with a ground distance monitor and computerized Harvest Master weigh-all (Harvest 
Master, Logon UT). Every 15-m, the combine was stopped and the grain weighed. For more 
details, see Lambert, Malzer, and Lowenberg-DeBoer, 2003. 
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Estimating Equations for Crop Production Function 

 
A second-degree polynomial response function (Dillon and Anderson, 1990) is assumed 

to describe corn and soybean response to manure. This particular functional has the advantage in 
that it can be interpreted as second order approximations of any crop response function. For crop 
production analyses, quadratic functions are useful since they are concave functions 
with 0>′f and 0<′′f . This allows diminishing marginal returns to inputs applied, and allows 
for the possibility that crop growth can be thwarted by input applications above biophysically 
optimal levels. The estimation of economically optimal input rates (EOR’s) is also possible since 
a closed-form solution to f ′ exists.  

 
The notation used to describe the system of corn and soybean production functions is 

listed in Table 1. The following equations model site-specific crop response of corn and soybean 
to manure as a system of production functions: 
 

(12) y = XA + γĈ  + e, e =λatWe + u       
 
(13) C = HΦ + ε, ε = λbtWε + ζ 

 
Equation 12 is a SSCRF: it identifies yield responses in discrete candidate management 

zones to input xk,t, while equation 13 is a whole field response function with input by continuous 
soil test variable interactions. A includes site-location dummy variables, δs. The 0=∑s sδ  

restriction on the site-specific indicator variables is useful for testing the SSM hypotheses 
(Whelan and McBratney, 2000): the t-statistic of the estimated coefficient for a given set of 
dummy variables indicates whether the intercept, linear, and non-linear terms are significantly 
different from the average response of the whole field for each of these parameters, and in which 
direction. The γs’s partition the whole field continuous response to inputs and latent soil 
characteristics (equation 13) into smaller response surfaces corresponding to a given site. In this 
study, management zones delineated based on phosphorous (P) soil test values. For management 
purposes, P levels are generally classified into five categories: 0—5 ppm, 6-10 ppm,…,>20 ppm. 
Dummy variables indicating these zones are included in the X matrix. The γs coefficient is the 
marginal effect of the predicted value of the yield for site s conditioned on input xk,t , soil test 
information, and input by soil test information interactions. It is a site-specific weight for the soil 
test, input, and soil test by input interaction coefficients estimated in (13). This arrangement 
allows soil test information to enter into EOR input rates an information-based partial budget 
analysis with respect to site-specific management (SSM).  

 

The matrix Ĉ  accounts for the latent soil characteristics while avoiding potential 

multicollinearity problems that may arise in a model that includes data on soil features. Ĉ  can 
also be interpreted as a soil fertility index, conditional upon soil test levels, applied inputs, and 
the interaction between inputs and background soil characteristic levels when included in (12).  
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System Regression Diagnostics 
  

Baseline regression included estimating the production function using 3SLS and iterated 
3SLS (IT3SLS). The null hypothesis that the covariance between equations was zero was 
rejected using the Breusch-Pagan (1984) Lagrange multiplier test (LM = 2043 and 2042, df = 6, 
3SLS and IT3SLS, respectively). To test for the presence of spatial autocorrelation in the least 
squares residuals, a modified Lagrange multiplier (LM) test for the null hypothesis of no spatial 
error autocorrelation in the system of equations was conducted (Anselin, 1988, page 147). The 
system LM (error) statistic is: 
 

(14) ( ) ( )[ ] ( ) ( )
211121 ~LM PTnnPTnn trtr χιuWuΣΣΣWIWWuWuΣι ′′⊕⊕+′′⊕′= −−−−  

 
where ι is a PT x 1 vector of ones, ⊕  is the Hadamard product, and u is an n x PT matrix of the 
least squares residuals. The null hypothesis of no spatial error dependence was rejected at the 1% 
level for the 3SLS and IT3SLS residuals (LM = 13.14 and 14.93, df = 4, respectively). Based on 
these results, the equation system was re-estimated using the quasi-ML and GM approaches.  
 
 The magnitude of the cross-equation covariance estimates increased when the system was 
estimated with SAR-QML and GM approaches, however, the magnitude of the cross-equation 
correlation remained roughly the same between the least squares and SAR estimates (Table 2). 
The equation-specific squared correlation coefficients were quite high when the system was 
estimated with the least squares methods (Table 3). Of particular interest for site-specific 
management is the interaction between inputs and production management zones. The 
interaction between the dummy variables in equation 12 are significant in four of the five 
management zones identified in this field, as estimated with IT3SLS (Table 4). The standard 
errors of the estimates in equation 13 where high, leading to fewer significant parameters (Table 
5).  

 
The multicollinearity associated with equation 13 for both periods was mitigated to some 

extent with the addition of the spatial AR terms, and information about spatial dependence 
through W. The frequency of significant parameter estimates for the soil test variables, their 
interactions with the input variable, and their quadratic terms increased. However, this came at a 
cost: the predictability of equation 13 appreciably decreased for the soybean equation, dropping 
from R2 = 0.58 to 0.22 and 0.18 for the SAR-QML and GM approaches, respectively (pseudo-R2, 
as calculated by regressing the predicted values of the dependent variables against the actual 
values). However, the drop in the R2 is not surprising: coefficients of determination are usually 
overstated when errors (time series or otherwise) are positively correlated.  

 
The AR terms in the SAR-QML model were highly significant (Tables 4, 5). The 

magnitude of the AR terms was greatest for the equation estimating soybean response to soil 
characteristics and interactions with manure (λ = 0.77). Estimates for the GM AR terms were 
similar in magnitude to the SAR-QML λ estimates (Tables 3, 4). Since significance levels for 
these moment-based AR terms are not identified (Kelejian and Prucha, 1999), standard errors of 
the GM AR terms are not provided. However, λ are generally considered nuisance parameters, 
requiring that they only be bounded between -1 and 1.  

 



 

 10 

It is worth noting that the positive sign of the quadratic phosphorous coefficient in the 
IT3SLS estimate was reversed when the system was re-estimated with SAR-QML or GM. This 
sign switch has important consequences in the empirical application that follows. 
 

Application of Regression Results 
 
Marginal Analysis and Partial Budget 
 

Fitted crop response functions are often used to make economic comparisons. The 
following is an example of this application. Whole-field and SSM profitability is determined 
using a partial budget analysis (Boehlje and Eidman, 1984), and marginal analysis is used to 
estimate net returns from applied manure (Beattie and Taylor, 1980). That is, profit is maximized 
when the value of the increased yield from added manure equals the cost of applying an 
additional gallon; or when the marginal value product equals the marginal factor cost.  

 
For explicit details of the partial budget set-up, corn and soybean prices, input costs, and 

quasi-fixed costs of information (for example, soil tests), see Lambert, Malzer, and Lowenberg-
DeBoer, 2003. Net present value (NPV) of returns to WF and SSM management strategies is 
estimated as: 

(15) ( )∑∑∑ ∑
= = = =
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),(,),(
;max

,,,,,,,,,

νββ  

 
where ( )⋅f is a locally concave yield response function; y is output in period t; x is a vector of 
managed variable inputs, w is a vector of unmanageable stochastic inputs (e.g. weather); p and r 
are output and variable input prices; o is a vector of unmanageable, non-stochastic site 
characteristics (for example, soil depth, soil type, slope and elevation); Ni ∈ and Mj ∈  are site 
locations; k are variable inputs; g are quasi-fixed costs for information collection (soil test costs); 

ν are quasi-fixed costs for variable rate application (VRA) technology; ( ) tt −+= ρβ 1 , ρ is a 
discount rate (ρ = 7.5%), and p is the price of the crop grown in period t. The discount rate is the 
estimated return on common stocks over a twenty-year period (1980 – 2000; Chiarella et al., 
2002), and F are fixed costs. Solving the first order condition of (15) for xNPV* gives the NPV-
EOR for site s. Substituting xNPV* into ( )⋅f  gives the SSM optimal yield, which is then used to 
find the net present value of SSM. Equation (15) is adjusted accordingly for WF response 
analysis.  
 

1. VRM (Variable rate manure): In the first strategy, the producer has site-specific 
knowledge about corn and soybean yield respond to manure. The producer applies 
manure at economically optimal rates for each site z. It is assumed that the producer has 
purchased soil test information to identify management zones, but chooses not to use the 
information with respect to changing P and K levels, or adjusting pH.   

 
2. VRM-VRF (Variable rate manure – variable rate fertilizer): This scenario considers a 

producer who simultaneously uses VRA and VRM. Manure and P, K, and lime are 
applied at EOR levels according to each management zone. The producer is charged a 
VRA fee (v) for variable application of P, K, and lime, and g for the soil test information.  
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3. WFM: In this scenario, the producer applies manure uniformly across the WF. An 

extension agent recommends the rate used. (The recommended rate used here is 3500 gal 
acre-1).  

 
4. WFM-VRF (Whole-field manure – variable rate fertilizer): The last strategy considers a 

producer who follows extension recommendations and applies manure at a uniform rate, 
but manages P, K, and pH using VRA. The producer is charged v and g. Management 
zones are developed using soil test information.  

 
The second and last scenarios entail maximization of equation 15, changing the levels of P, 

K, and lime. The remaining scenarios are evaluated at the base soil sample readings for P, K, and 
lime, and optimal manure rates (as in the case of VRM, solved through the first order conditions 
of equation 15), or the extension rate of 3500 gal acre-1 (as in the case of WFM). 

 
The NPV for the producer using a VRF strategy (2 and 4) is based on the solution to the 

optimization problem [ ] NPV
zkzkzk sss ,,, ,,

max
K∈

. The soil characteristics in management area (sk,z) are 

bounded between the average of the soil test value for a given characteristic in zone z ( zks , ), and 

the recommended level corresponding to a target yield level given by Rehm et al., 1994 ( zks , ). 

This assumes the producer cannot remove nutrient from a given site. 

Partial Budget Results 
 
 Net present value rankings of the management strategies were identical for the SAR-
QML and GM approaches. The rankings of the IT3SLS partial budget results differ from the 
SAR-QML and GM approaches. Additionally, the IT3SLS NPV estimates for VRM-VRF and 
WFM-VRF trials were unrealistic, at $1064 and $1072 acre-1. These are the scenarios where 
EOR input levels are updated, conditional upon optimization of equation 15, changing the levels 
of P, K, and lime. In this scenario based on the IT3SLS estimates, P was binding at the upper 
level constraint for P. This is expected since the sign of IT3SLS P-quadratic term is positive. On 
the other hand, if the baseline VRM and WFM strategies can be interpreted as “controls” in this 
comparison (that is, they are evaluated at the baseline, non-optimized soil test values), then the 
SAR-QML and GM NPV estimates of VRM-VRF and WFM-VRF are much more believable. 
 

Conclusions 
  

Recently Kelejian and Prucha introduced an approach whereby cross-sectional data 
modeled as a system of equations could be estimated for spatial error and lag specifications. 
Earlier, Anselin proposed estimating space-time, or panel data using a SUR approach. This study 
combines both of these approaches, addressing the space-time nature of panel data, and the 
endogeneity/simultaneity problems sometimes associated with systems of equations. To estimate 
the system, Kelejian and Prucha’s GM approach was compared with a QML approach.  

 
To compare the performance of the SAR-QML and GM estimators with the conventional 

3SLS estimator, data from an on-farm agronomic trial was used. Based on the results, the 3SLS 
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estimators perform poorly in the presence of spatial dependence, while the SAR-QML and GM 
estimators provide good but very similar results. By modeling space-time effects with the SAR 
models, multicollinearity problems were mitigated, but at the cost of predictability for one of the 
estimating equations. This loss of predictability is, however, outweighed by the sign-switches 
observed in some variables, which directly translated into better, more realistic economic 
analysis. The methodology taken here is easily extended to estimation of panel data sets and 
simultaneous equations, or other repeated measures data studied in a systems framework. 
However, a major difference between the GM and QML approaches was computational time: the 
computational time of the GM approach was about one-eights that of the QML procedure. For 
larger systems of equations, the GM approach may be more practical. 
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Table 1. Notation used to identify corn and soybean response functions (equations 12, 13). 
 

y is a geo-referenced n x 1 vector of yield unit-1 for the crops in each study; 

X is an n x k matrix of fixed effects: input levels unit-1, their squares, and location 

dummy variables for field sites s, [ ]Ss ,1,K∈  sites; 

Ĉ  is an n x s vector of predicted yield values; 

H is an n x (q + k - s) matrix of instruments including the q-th soil test 

characteristic and k input by soil characteristic interactions;  

W is an n x n matrix of spatial or temporal relations between observations 

following the queen contiguity criterion;  

A is a k x 1 vector of fixed effects parameters to be estimated, including location 

dummy variables (δs) to identify site-specific response constrained as 0=∑s sδ ; 

Φ is a (q + k - s) x 1 matrix of linear and quadratic coefficients for a continuous 

yield response function; 

j-th soil characteristic managed as an input (for example, K and P); 

γ is a s x 1 matrix of site locations;  

λat and λbt are spatial AR parameters for the a-th and b-th equation, a = 1, 2, b = 1, 

2, t = 1, 2; 

ε and  ζ are n x 1 vectors of (possibly) autocorrelated disturbances; 

u and e are n x 1 vectors of i.i.d. disturbances ~ N(0, σ2I). 
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Table 2. Covariance and correlation matrices estimated with least squares, SAR-QML, and SAR-
GM.  

 Covariance Matrix, Σ(Λ) Cross-equation correlation 
 

3SLS 

Corn, 
Eq. 1 

Corn, 
Eq. 2 

Soybean, 
Eq. 1 

Soybean, 
Eq. 2 

Corn, 
Eq. 2 

Soybean, 
Eq. 1 

Soybean, 
Eq. 2 

Corn, Eq. 1 68.57 -67.03 9.73 -9.63 -0.52 0.91 -0.27 
Corn, Eq. 2 -67.03 240.27 -9.42 28.22 1.00 -0.47 0.42 
Soybean, Eq. 1 9.73 -9.42 1.68 -2.11  1.00 -0.37 
Soybean, Eq. 2 -9.63 28.22 -2.11 19.16   1.00 
        

IT3SLS 
       

Corn, Eq. 1 99.89 -68.81 16.60 -10.17 -0.44 0.93 -0.23 
Corn, Eq. 2 -68.81 241.30 -13.76 28.56 1.00 -0.50 0.42 
Soybean, Eq. 1 16.60 -13.76 3.17 -3.14  1.00 -0.40 
Soybean, Eq. 2 -10.17 28.56 -3.14 19.38   1.00 
        

SAR-QML 
       

Corn, Eq. 1 102.27 -71.62 16.54 -10.44 -0.45 0.93 -0.22 
Corn, Eq. 2 -71.62 244.30 -13.83 32.10 1.00 -0.50 0.44 
Soybean, Eq. 1 16.54 -13.83 3.08 -3.13  1.00 -0.39 
Soybean, Eq. 2 -10.44 32.10 -3.13 21.41   1.00 
        

SAR-GM 
       

Corn, Eq. 1 104.88 -75.25 17.03 -10.70 -0.47 0.92 -0.22 
Corn, Eq. 2 -75.25 244.27 -14.36 32.84 1.00 -0.51 0.44 
Soybean, Eq. 1 17.03 -14.36 3.24 -3.45  1.00 -0.41 
Soybean, Eq. 2 -10.70 32.84 -3.45 22.34   1.00 
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Table 3. Model fit statistics for each equation estimated with least squares, SAR-QML, and 
SAR-Gm approaches. 

 Corn, Eq. 1 Corn, Eq. 2 Soybean, Eq. 1 Soybean, Eq. 2 
3SLS 0.95* 0.84 0.95 0.58 
IT3SLS 0.95 0.84 0.95 0.58 
SAR-QML 0.95 0.84 0.95 0.22 
SAR-GM 0.94 0.84 0.95 0.18 
*Squared correlation coefficient. 
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Table 6. Comparison of NPV estimated with IT3SLS, SAR-QML, and SAR-GM. 
 Rank Estimate 

IT3SLS  ------------------$ acre-1--------------- 
VRM‡ 3 576.68 
VRM-VRF** 2 1064.26 
WFM†

 4 569.39 
WFM-VRF 1 1071.67 
   
SAR-QML   
VRM 3 582.50 
VRM-VRF 1 600.95 
WFM 4 574.74 
WFM-VRF 2 597.36 
   
SAR-GM   
VRM 3 582.80 
VRM-VRF 1 597.47 
WFM 4 575.21 
WFM-VRF 2 592.56 
†WF is evaluated at the uniform (recommended) rate of 3500 gal acre-1.  
‡ Variable rate manure is evaluated at the baseline soil test readings, and the economically 
optimal input rate from the solution of equation 15. 
**VRF scenarios entail optimization of equation 15, with the choice variables as the soil 
characteristics, P, K, and lime (as pH).    


