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Abstract

Mathematical measures of entropy as defined by Shannon (1948) and Kullback and
Leibler (1951) are currently in vogue in the field of econometrics, primarily due to the
comprehensive work by Golan, Judge, and Miller (1996). In this paper, an alternative
interpretation of the entropy measure as a penalty function over deviations is presented.

Using this interpretation, a number of parallels are drawn with least squares estimators,
and it is demonstrated that, with a minor modification of the traditional least squares estimator,
both approaches may be applied to the general linear model.  The advantages and disadvantages
of each approach are discussed, and a philosophical approach to the selection of estimation
technique is suggested.
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LEAST SQUARES AND ENTROPY AS
PENALTY FUNCTIONS

by
Paul V. Preckel

Introduction

Mathematical measures of entropy as defined by Shannon (1948) and Kullback and
Leibler (1951) are currently in vogue in the field of econometrics, primarily due to the
comprehensive work by Golan, Judge, and Miller (1996).  Despite the thoroughness of this work,
there remains confusion in the field of applied econometrics regarding when and how to use
entropy.  Much of this confusion seems to stem from the interpretation of the entropy measure,
which was originally designed as a measure of the “distance” between probability distributions.

In this paper, an alternative interpretation of the entropy measure as a penalty function
over deviations is presented.  Throughout, the model of interest is the general linear model:

Y = Xβ + ε

where Y is a vector of  n observations of a single dependent variable, X is an n by m matrix of
data where the rows correspond to observations, and the columns correspond to independent
variables, β  is a vector of m coefficients to be estimated, and ε is a vector of n independent,
identically distributed error terms.  Thus, we are concerned with the single-equation case of an
estimation problem with a simple error structure.

In the next section, the interpretation of the entropy function as a penalty function is
presented, and parallels with the “least squares penalty function” over deviations are discussed.
Examples are used to demonstrate that well-defined formulations for both entropy and least
squares exist for this problem, and that the results (estimated values for β) are quite similar.
Further, it is demonstrated that the preceding statement is true in the underdetermined case.  In
the third section, the properties of Generalized Maximum Entropy (GME) estimators are
discussed.  In the fourth section, a discussion of instances where it may be advantageous to use
entropy formulations is provided.  The fifth section draws a few conclusions and makes
suggestions regarding appropriate use of entropy estimators.

Entropy as a Penalty Function

Entropy of the sort used in econometrics (as opposed to the sort used in physics, which is
loosely related as described, for example, by Georgescu-Roegen, 1987) has its origins in the field
of information theory (Shannon, 1948).  One interpretation is that the mathematical entropy
measure indicates the distance (or, more accurately, discrepancy) between two distribution
functions.  In the case of Shannon’s measure of entropy, the measure reflects the degree to which
the particular distribution being measured is different from a uniform distribution.
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Shannon’s measure of entropy for a distribution is given by the following expressions for
the discrete and continuous cases:
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where pi is the probability associated with the i-th support point in the discrete case, and f(x) is
the density at x and Ω is the support for the distribution in the continuous case.  With Shannon’s
measure, the maximum possible value is bounded, and when the maximum is attained, the
distribution being measured is precisely uniform.  (That is, the distribution is uniform over the
support points in the discrete case and over Ω in the continuous case).

This is not the usual concept of a distance.  With vectors, we expect the distance between
two vectors to be non-negative, and that the distance between them will be at its minimum value
of zero if and only if they are identical.  Fortunately, there is another entropy measure that
behaves more like our intuitive concept of distance, namely the Kullback-Liebler measure of
cross-entropy.

Cross-entropy measures the distance from one distribution to another.  In the discrete and
continuous cases, cross-entropy is stated mathematically as
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where qi is the probability associated with the i-th point in what we will call the “reference
distribution,” i.e., the distribution to which distance is measured, in the discrete case, and g(x) is
the density associated with x for the reference distribution in the continuous case. In Golan,
Judge, and Miller (1996) – hereafter referred to as GJM – this distribution is often called the
prior distribution.  Here, this terminology is avoided to limit confusion with the more rigorous
definition of a prior in the literature on Bayesian estimation.

It is well known (e.g., see Kapur and Kesavan, 1992, pp.163-166) that when the reference
distribution is uniform, entropy and cross-entropy are equivalent in the sense that higher values
for entropy correspond exactly to lower values for cross-entropy.  For our comparisons with least
squares approaches to parameter estimation, it is convenient to focus on minimizing cross-
entropy rather than maximizing entropy. At this point, we merely note that, provided that the
reference distribution is uniform, these will produce the same results.

Cross-entropy behaves more like distance.  The measure is always non-negative and
attains a value of zero when pi equals qi for all i= 1,…,n in the discrete case, or f(x) equals g(x)
for all x∈Ω in the continuous case.  A detailed discussion of the properties of cross-entropy as a
measure of discrepancy is presented in Kapur and Kesavan (1992, pp. 151-161).  (Kapur and
Kesavan call cross-entropy a measure of discrepancy rather than distance because there are some
properties of standard distance measures that are not satisfied by cross-entropy.)
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For the balance of this paper, we will focus on cross-entropy based on a two-point
uniform distribution as the motivation for a penalty function over deviations.  The use of the
phrase penalty function is as a measure of undesirability of the sort that motivates the estimators
for a least squares problem.  That is, for an ordinary least squares problem, parameter values (β)
are chosen so as to minimize the sum of squares of the errors associated with the individual
observations (εi).  Thus, the least squares penalty for the fit of the estimated relationship for the i-
th observation is Pls(ε) = εi

2 .

Following Golan, Judge, and Miller (1996), the contribution of the i-th observation to the
objective to be minimized (using a cross-entropy framework with a uniform reference
distribution) is

pi ln(pi/0.5) + (1-pi) ln[(1-pi)/0.5],

where the estimated value of the i-th error is εi = pi (-K)  + (1-pi)K, and where the support for the
two-point uniform reference distribution places the points equally K units on either side of zero.
Solving the relationship for pi as a function of εi and substituting it into the objective contribution
yields

Pe(εi) = [1/2 - εi /(2K)] ln( 1 - εi/K) + [1/2 + εi /(2K)] ln( 1 + εi/K).

This entropy-based penalty over the error has a number of properties that are similar to
the quadratic penalty.  Both penalty functions attain their minimum at zero and are
monotonically increasing in the absolute value of their argument.  Both are symmetric about
zero, i.e., Pls(ε) = Pls(-ε) and Pe(ε) = Pe(-ε).  (Although these properties are presented here only
for the case of a two-point reference distribution, they also apply to entropy measures based on
more points provided that their support points are symmetrically located about zero and provided
that the associated reference weights are also symmetric.)

Further, if the entropy-based penalty is scaled by multiplying by a positive constant that
makes the two penalties equal at K/2, then the graphs of the two penalties become very close
with a maximum relative error of less than 4.5 percent over the range [-K/2,K/2].  Visually, these
penalties are nearly indistinguishable on a graph over the [-K/2,K/2] range.  Figure 1 displays the
entropy and quadratic penalty functions for a value of K=100 over the range [-10,10] for the case
where the entropy penalty function has been scaled so that the two penalties are equal at K/2.

Hence, we have the following two similar problems.  The standard least squares single-
equation problem:

Minimize  ∑
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Figure 1.  Quadratic and Entropy Penalty Functions Near Zero*
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* The entropy penalty function is based on a reference distribution that puts equal weight at
±100.

and the GME problem where the errors receive an entropy treatment, but reference distributions
are not specified for the parameters (hereafter denoted by GME-β):
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Based on our observations regarding the similarity between the least squares and entropy penalty
functions over errors, we expect that the parameter estimates β should be quite similar for these
two problems.
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Table 1.  Parameter Estimates OLS versus GME-β

Intercept Market Value of Firm Value of Plant and

 Equipment

OLS -9.9563 0.1517 0.0266

GME-β , K=75 -10.5720 0.1503 0.0277

GME-β , K=300 -9.9671 0.1516 0.0266

GME-β , K=300 -9.9569 0.1517 0.0266

GME-β , K=1000 -9.9563 0.1517 0.0266

To confirm this hypothesis, a well-known data set from Boot and DeWitt (1960) is used
to compare the results of these problems.  Using each of these formulations in turn, the level of
gross investment is regressed on (a) market value of the firm at the end of the previous period,
and (b) the value of the stock of plant and equipment at the end of the previous year.  All values
are for General Electric for the period 1935-1954.

Table 1 displays the results from regressions based on OLS and GME-β using support
values of K=75, K=300, K=1200 and K=4800.  With K=75, the estimates, particularly for the
intercept, are different from the OLS results.  Increasing K by a factor of four to 300, the results
are quite a bit closer to the OLS results.  Increasing K by another factor of four to 1200 results in
estimates that agree with the OLS results to four significant digits, and an additional factor of
four increase in K results in estimates that agree with the OLS results to five significant digits.
Hence, when the entropy measure is based on a broad support for the errors, the entropy results
are very similar to the OLS results.  (The rule of thumb suggested in GJM is to base K on an
estimate of the standard deviation of the errors. They cite Pukelsheim’s work as support for the
use of a K value based on three standard deviations.  This  “three sigma” rule yields a K value of
about 75 – the lowest value of K considered here.)

Of course GME was proposed by GJM not so much for the classic estimation problem
considered above, but rather for the “ill-posed,” or underdetermined case.  One instance of the
ill-posed case occurs if the number of observations is too low (or multicollinearity is too high),
such that X’X is only positive semi-definite (singular).  In this case, OLS cannot proceed.

GJM manage to proceed by “re-parameterizing” β to obtain a problem for which the β
values are uniquely determined.  This is done by defining a support for β and a set of weights
which are often incorrectly called probabilities over the support. Rather than cloud the issue by
referring to the support and weights of the reference distribution as a probability distribution,
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here we will view them as parameters of our penalty function over deviations from the mean of
our reference distribution.  This penalty function, again using our cross-entropy perspective, has
minimum value when the deviation is zero.  We refer to the mean of the reference distribution as
the target values for the parameters.

Following GJM, we formulate the GME minimum cross-entropy problem using the
following assumptions: two-point supports with uniform weights for each of the parameters as
well as for each error, and equal weighting of the cross-entropy penalty functions of the
parameters and errors.  If the target values for the coefficients, β, are denoted by β0, and the
support points for the individual parameters are L above and below βi

0, then the GME problem
may be written as:

Minimize +
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Using our penalty function interpretation for the entropy- and least squares-based
penalties on deviations, a similar problem can be formulated that could be viewed as a
“generalized ordinary least squares” (GOLS, not to be confused with generalized least squares or
GLS) problem.  This problem is similar to the GME problem above because it includes penalties
on deviations not only for the errors, but also for the parameters.  Because of the parameter
penalties, this estimation problem is also applicable to the ill-posed case.  The formulation is as
follows:

Minimize ( ) ∑∑
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This formulation is not new.  It is a special  case of the mixed estimation formulation due to
Theil and Goldberger (1961).  This type of formulation also arises with stochastic restrictions as
described in Kmenta (1986, pp. 497-500).

To demonstrate the similarity between these two problems, an ill-posed problem is
specified as follows.  To obtain target values for the coefficients, the first 18 observations (1935-
1952) are used to obtain OLS estimates.  These estimates are used as target values for both the
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Table 2.  OLS Results for the 1935-1952 Data Period, and GME versus GOLS Results for the
1953-1954 Period

Intercept Market Value of the
Firm

Value of  Plant and
Equipment

OLS -17.0335 0.1564 0.0296

GME -17.0320 0.5198 -0.0925

GOLS -17.0320 0.5198 -0.0925

GME and the GOLS problems, which are used to estimate the parameters based on only the last
two observations (1953-1954).  This might be the setup used if we believed that a structural
change occurred in 1953 that we suspect made a fundamental change in the relationship between
our dependent and independent variables.  Thus, our estimation problems take into account prior
knowledge about the former nature of the relationship (the means of the reference distributions
for the coefficients) and the observations since the structural change.

Table 2 displays the target values for the coefficients, which are the OLS estimates based
on 1935-1952 data, as well as the results for the GME and GOLS problems.  For the GME
problem, both K and L were set to 4800.  This value is sufficiently large that doubling K and L
has no effect on the parameter estimates.  While the coefficient estimates for the two ill-posed
problems are substantially different from the OLS target values, they are quite similar to each
other.  In fact, to the number of digits reported in the table, they are identical.

Hence, it appears that ill-posed problems are accessible not only from an entropy
perspective, but also from a least squares perspective.  The key in the ill-posed case is to apply
the penalty function to both the deviations of the errors from zero and deviations of the
parameters from their target values.  In both the entropy and least squares cases, it is necessary to
give explicit attention to the choice of weighting for the penalty over deviations of the errors
from zero versus the penalty over deviations of the coefficients from target values.  In the above
examples the weightings were arbitrarily selected to be equal.  The topic of weight selection is
addressed for the entropy case in Golan, Judge, and Miller (1996), and for the least squares case
in Theil and Goldberger (1961) and Theil (1963).

Properties of Entropy Estimators

Considerable effort has been directed towards developing the large and small sample
properties of entropy estimators.  (See e.g., Golan, Judge, and Miller, 1996; Mittlehammer, and
Cardell, 1998; and Marsh, Mittlehammer, and Cardell, 1998.)  When the entropy penalty
functions over errors are based on symmetric reference distributions, it can be shown that the
GME estimators are consistent and asymptotically normal.  Given the unifying penalty function
perspective presented in the previous section, one is led to speculate whether these asymptotic
properties are satisfied for any penalty function that is symmetric about zero and is
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monotonically increasing in its argument.  However, this investigation is beyond the scope of the
present paper.

In addition to these properties, it has been noted that by narrowing the support for the
coefficients or the errors it is possible to obtain lower variance estimates than the analogous least
squares estimates.   It is important to inject a note of caution on this point.  Lower variance with
GME estimators, as with other shrinkage estimators, may come at a cost of bias (Judge, et al.,
1985, pp. 82-90).

Consider an absurd case to make the point.  One could define an infinitesimally narrow
support for the coefficients and a wide support for the errors.  Clearly, the variance of the GME
estimator is small.  However, the resulting coefficient estimates will have nothing to do with the
data.

It is important to keep in mind the regularity conditions required to obtain the consistency
results.  (E.g., see Mittlehammer and Cardell, 1998.)  Among other requirements, they include
that the supports for the coefficients are sufficiently wide to contain their true values.  In
addition, the supports for the errors are required to be large enough to span the true support for
the errors.

Any restriction of the support for coefficients or errors should be based on strong empirical
evidence.  Further, in reporting GME results it is absolutely critical to document the support
selected and the motivation for the selection.  Finally, it will probably be in the researcher’s best
interest to investigate the sensitivity of the coefficient values to the support values.

When Should We Use Entropy?

Let us begin with the premise that least squares has been, and will likely continue to be, a
useful tool.  Entropy approaches to econometrics do not make our lives easier.  Unlike least
squares, computing coefficient estimates using entropy requires more than just a bit of linear
algebra.  Furthermore, there are additional parameters to be specified – namely the reference
distributions for errors and coefficients.  Even for ill-posed problems, the GOLS approach
suggested above eliminates the need to specify supports for the errors and coefficients. Hence,
one is left wondering why we would want to use entropy estimation. There are three reasons.

First, there are problems where the estimation of a distribution is germane to the problem.
For instance, Golan, Judge, and Perloff (1996) use entropy to estimate the size distribution of
firms using government summary statistics.  Similarly, Cranfield and Preckel (1997) use entropy
to simultaneously estimate the income distribution and the parameters of a non-homothetic
demand system.

The second obvious answer is in situations where it is desirable to have an asymmetric
penalty function.  For instance in the estimation of efficient frontier production functions (e.g.,
see Akridge, 1989), residual errors are either sign restricted, or negative and positive values are
weighted differently.  This is easily and elegantly accomplished in a cross-entropy framework by
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Figure 2. Asymmetric Entropy Penalty Function (Reference Distribution Puts Weight of ¾ on –
100 and ¼ on 300)
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using an asymmetric reference distribution.  For instance, by selecting a distribution that has a
reference weight of 3/4 on –100, and 1/4 on 300, we obtain the penalty function

Pe(ε) = (3/4-ε/400) ln(1-ε/300) + (1/4+ε/400) ln(1+ε/100),

which puts much higher weight on deviations below zero than above. (Also note that this penalty
function attains its minimum value of zero at ε=0.)  This cross-entropy penalty function is
displayed in Figure 2.  While the level of the penalty is higher at +300 than at –100, the penalty
is higher at –100 than at 100.  Thus, for deviations of equal magnitude, the penalty on the
negative side is higher than on the positive side. By adding more points to the reference
distribution and suitably selecting the weights, a wide class of penalty functions can be obtained.

The third answer is in situations where there exists a good, empirical basis for specifying
narrow supports or highly peaked reference distributions for the parameters.  It is important not
to confuse this case with basing the supports on theoretical restrictions on the parameters.  For
instance, just because Cobb-Douglas exponents must be bounded between zero and one does not
mean that a good reference distribution for the parameters of a two-input Cobb-Douglas puts
equal weight at zero and one.  (This substitutes a stochastic restriction for a deterministic
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restriction.)  The effect of such a support will be to bias the results towards values of one half for
both exponents.  There would also be a reduction in the variance of the estimators of the
exponents, but the variance reduction would have nothing to do with the data!  On the other
hand, prior knowledge that the expenditure shares are in the ranges [0.1,0.2] and [0.8,0.9] might
lead one to define an even more restrictive support that is appropriate because it incorporates
prior knowledge into the estimation process.

Concluding Remarks

Rather than focusing on the distribution estimation problems that form the basis of entropy
measures, perhaps we are better off looking at the entropy function as a penalty function over
deviations.  Re-examining the theory in the more general context of penalty functions may lead
to useful, unifying results as well as help to identify other classes of “good” penalty functions.

For the general linear problem with symmetric penalty, there appears to be little or no gain to
using GME over GOLS in the absence of strong prior knowledge (viz., justification for narrow
supports for errors and/or coefficients).  In the presence of such knowledge, efficiency gains will
likely result.  However, in the absence of strong prior knowledge, there is no strong justification
for employing entropy for the general linear problem, for it requires specification of additional
problem parameters (the reference distributions), thus opening the way for criticism for the
choices made.

On the other hand, there exist instances where entropy provides a simple and elegant
approach to problems that go beyond the general linear problem.  For instance, problems wherein
the estimation of a distribution is one of the fundamental goals are good candidates for an
entropy approach.  Likewise, cross-entropy is a mathematically elegant approach for formulating
problems with asymmetric penalty functions.  In this regard, there may be instances when it is
attractive to “mix our penalty functions” by using, for instance, a least squares approach for the
penalty function over errors combined with an entropy-based penalty function for deviations of
parameters.  Regardless of whether penalty functions are mixed or not, it is important to
appropriately weight the penalties for the error deviations from zero versus the coefficient
deviations from target whenever penalties are included for both.

As the applied economics profession proceeds forward with the application of entropy-based
econometrics and investigates the properties of these estimators, we need to spend careful
thought on developing the philosophy of this methodology.  The goal of this paper is to provide
focus and stimulation to the discussion.  The problem addressed here – the general linear model
– is narrow, but of sufficient importance to be worthy of analysis and discussion.  Entropy
provides a general and flexible approach to the construction of penalty functions, and as such,
will be a useful addition to the applied econometrician’s toolbox.
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