%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Information Cascades:
Evidence from a Field Experiment with
Financial Market Professionals

by
Jonathan E. Alevy, Michael S. Haigh,
and John A. List

WP 03-15

Department of Agricultural and Resource Economics

The University of Maryland, College Park



Information Cascades:
Evidence from a Field Experiment with Financial Market Professionals

Jonathan E. Alevy, Michadl S. Haigh, and John A. List
University of Maryland, CFTC, and NBER

Abstract:

In settings characterized by imperfect information about an underlying state of nature, but where
inferences are made sequentially and are publicly observable, decisions may yield a “cascade’ in which
everyone herds on a single choice. While cascades potentially play arole in a variety of settings, from
technology adoption to social processes such as mate selection, understanding cascade phenomena is
imperative for financial markets. Previous empirica efforts studying cascade formation have used both
naturally occurring data and laboratory experiments. In this paper, we combine one of the attractive
elements of each line of research—observation of market professionals in a controlled environment—to
push the investigation of cascade behavior into several new directions. Numerous empirical insights are
obtained; perhaps most importantly, we find that market professionals behave quite differently than a
control group of student subjects. In particular, market professionals, more so than students, base their
decisions on the “quality” of the public signal, leading them to be more likely to disregard “bad” signals.
And, unlike in the case with students, for market professionals, the propensity to be Bayesian does not
differ significantly across the gain and loss domains. These results have important implications in both a
positive and normative sense.
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1. Introduction

In economic environments where decision makers have imperfect information about the
true state of the world, it @n be rationa to ignore one's own private information and make
decisions based on what are believed to be more informative public signals. In particular, if
decisions are made sequentially and the earlier decisions become public information, herding
behavior or “information cascades’ can result. Information cascades arise when individuals
rationally choose identical actions despite having different private information. They may arise
in a myriad of settings, including technology adoption, medical treatment choices, responses to
environmental hazards, as well as decisions in financial markets, where bubbles and crashes may
be examples of cascade behavior.*

Herding can be suboptimal, since the private information of herd followers is not
reveadled. As a result, a small amount of information revealed early in a sequence has a large
impact. Cascades are thus idiosyncratic, with their welfare effects depending on chance
revelation of information in early periods. One consequence is that cascades are often fragile as
well, with abrupt shifts or reversals in direction when new information becomes available
(Banerjee, 1992; Bikhchandani et al., 1992). Indeed, some argue that volatility induced by
herding behavior can increase the fragility of financial markets and destabilize the broader

market system (Eichengreen et al., 1998; Bikhchandani and Sharma, 2000).?

1 |t has been argued, also, that information cascades can explain alarge variety of social behaviors such as fashion,
customs, and rapid changes in political organization. Anderson (1994), Banerjee (1992), Bikhchandani et al. (1992;
1998), Kuran and Sunstein (1999), and Welch (1992) discuss a variety of examples.

2 The distinction between technical and fundamental approaches to trading illustrates one avenue through which
herding behavior may be introduced into financial markets. Technicians ignore underlying supply and demand
conditions and assume that more informed traders’ signal their understanding through price changes. Herding may
also arise from agency problems, such as those associated with the management of pension or mutual funds when
compensation derives from relative investment performance or from payoff externalities, such as those arising in
bank runs (Bikhchandani and Sharma, 2000).



Empirical approaches to test for cascade behavior can be divided into two classes:
regressionbased tests using naturally occurring data and laboratory experiments using student
subjects. Bikhchandani and Sharma (2000) review the extant regressiontbased results for
herding in financial markets but note the difficulty of controlling for underlying fundamentals.
A result of this difficulty, they argue, is that there is often “a lack of a direct link between the
theoretical discussion of herding behavior and the empirical specifications used to test for

herding.”®

The laboratory environment allows for better control of public and private
information and so explicit tests of theory are made more easily. Yet an important debate exists
about the relevance of experimental findings from student subjects for understanding phenomera
in the field. For example, Holt and Villamil (1986) provide numerous reasons to suspect that
professional behavior may differ from nonprofessional behavior (training, regulation, etc.).
Locke and Mann (2003) take the argument a step further by suggesting that any research that
ignores the use of professiona traders is likely to be received passively because “ordinary”
individuals, as opposed to professional traders, are unlikely to have any substantial impact on
market price because they are too far removed from the price discovery process. Bikhchandani
and Sharma (2000, p. 13) argue similarly that “To examine herd behavior, one needs to find a
group of participants that trade actively and act similarly.”

This study combines perhaps the most attractive aspects of the two classes of empirical
research—observation of professionals n a controlled environment—to extend the literature in
several new directions. First, the behavior of the market professionals from the floor of the
Chicago Board of Trade (CBOT) is compared with that of college students in imperfect

information environments. Second, considering the vast normative implications of recent work

that has established the importance of domain (Kahneman and Tversky 1979; Shefrin and

3 Fama (1998) discusses the interpretation of empirical results as evidence of irrational behavior.
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Statman 1985; Tversky and Kahneman 1992; Odean 1998), we examine behavior of each group
in both the gain and loss domains. Third, we examine whether, and to what extent, behavior is
influenced by both private signal strength and the quality of previous public signals.

Empirical findings, gained from an examination of more than 1500 individua decisions,
lend some interesting insights into cascade behavior. Most important, we find economically
significant and robust differences in behavior across subject pools. Whereas both groups exhibit
a considerable amount of Bayesian decision making across the various treatments, market
professionals are much less apt to be influenced by the relevant domain. This finding is
consonant with Locke and Mann (2003), Genesove and Mayer (2001), and List (2003; 2004),
who find, in much different environments, that market experience is important in reducing
deviations from utility theory that are associated with reference-dependent preferences. In
addition, we find that market professionals base their decisions on the “quality” of the public
signa to a greater extent than do students, leading them to enter fewer reverse cascades. We
believe this result is novel to the literature and has important implications for financial markets.*

The remainder of the study is crafted as follows. Section 2 discusses our theory and
experimental design. Section 3 describes our empirical results. Section 4 concludes.

2. Theory and Experimental Design

The cascade phenomenon has been discussed in various circles for several years (see

Banerjee, 1992, for an economics-based model of herd behavior).®> The underlying argument in

the formal economic models is that cascade formation can be rational for Bayesian decision

* Evidence that professional traders exhibit non-rational behavior would increase support for behavioral approaches
to asset pricing (Locke and Mann, 2003). See for example the model of Barberis et al. (1998) and Daniel et al.
(2002).

® In 1841 Charles MacK ay authored Extraordinary Popular Delusions and the Madness of Crowds, which provides
interesting reading on financial market bubbles and crashes, as well as fads and fashions— what we would now call
social learning.



makers. The cascade phenomenon, however, raises interesting questions beyond whether
humans update information in a manner that is consistent with Bayes rule.® The formation of
informational cascades also forces one to address the question of how people think about the
rationality of others, and specifically, how people respond to uncertainty about the quality of
information that arises due to potential deviations from Bayesian rationality by others.

Anderson and Holt (1997) presented an interesting experimental study to investigate
these issues, using a subject pool of undergraduate students. In their experiments each individual
receives a private but noisy signa regarding the underlying state of nature in an exogenously
determined order. After receiving their signal each subject publicly announces his or her belief
about the state of nature in a sequentiadl manner. Subsequent decision makers have the
opportunity to observe the announcements of players who preceded them. Rational herding can
develop when public announcements provide evidence for a specific state that overwhelms the
informational content of the private draw. ’

To ensure comparability of our results to the extant literature, we use experimental
protocols that are closely related to the original work of Anderson and Holt (1997). Briefly, in
our experimental investigation, we examine a situation in whichtwo potential states of the world

exist and are represented by two urns, Urn A and Urn B. The urns differ in their composition,

® The ability of humans to reason in a Bayesian manner seems to depend strongly on how new information is
represented. Studies that present base rates as percentages often imply that we are poor “intuitive statisticians.”

Decisions tend to be more consistent with Bayesian rationality when individuals experience probability distributions
through repeated exposure (see, e.g., Gigerenzer and Murray, 1987). Our experiment is consistent with protocols
that have been shown to give Bayesian decision making its best chance.

" Anderson and Holt (1997) found that cascades formed in roughly 70 percent of the periods in which they were
possible. Deviations from Bayesian cascade formation occurred most often when a simple counting rule gave a
different indication of the underlying state than that of the Bayesian posterior. In these cases subjects tended to use
the simpler counting rule. Extensions to the literature have introduced relevant complications to the cascade
process, such as costly information, endogenous sequencing of choice order, and collective decision making (Hung
and Plott, 2001; Kraemer et al., 2000; Kubler and Weizsacker, 2002). In general, as complications are introduced,
more significant deviations from normative rationality are observed.



containing different numbers of balls of type a and typeb.® The unobserved “ state of the world”
in each period of play is the urn selected by a random process, the roll of adie. Each urn has a
50 percent chance of being selected. Subjects gain information about the state of the world by
drawing a single ball out of an unmarked bag into which the contents of the selected urn have
been transferred. This draw is made while the subject is isolated from the other experimental
subjects so that the outcome of the draw remains private information. The subject then decides
which urn he or she believes was selected by the random process and his or her decision is
announced to the other subjects by the experimental monitor. Each subject’s inference,
therefore, becomes public information for those who make decisions later in the period. The
experimental sessions include 15 periods of this game in which each of the participants draws a
ball and announces his or her urn choice. Sessions consist of either five or six players who
participate in all 15 periods, but whose choice order in each period — either first, second, third,
...., SIXth? isdetermined by arandom draw.

To provide exogenous variation in the informational content of the private signal across
treatments, we use two urn types. In the symmetric treatment, Urn A contained two type a balls
and one type b ball, while Urn B contained two of type b and one of type a. In the asymmetric
treatment four a balls are added to each urn so that Urn A contains six of type a and one of type
b, while Urn B contains five of type a and two of type b. Asaresult, the a signal is weakened in
the asymmetric treatment. The variation in signal strength is implemented in order to
differentiate between Bayesian decision making and the use of a counting heuristic, in which the

signal observed most often would indicate the most probable urn. In the symmetric treatment the

8 The balls were golf balls of two types. Type a was a golf ball with visible stripes. Type b had a graphic of the
University of Maryland terrapin mascot “ Testudo” clearly visible.



counting heuristic and Bayesian decisions yield the same predictions;, in the asymmetric
condition they do not.

To provide exogenous variation in the relevant choice domain, we randomly placed
subjects in either a gain or loss domain for al 15 periods. The treatment condition over gains
and losses was implemented so that in gain (loss) space a correct (incorrect) inference about the
underlying state resulted in positive (negative) earnings of $1 for students and $4 for the market
professionals.® An incorrect (correct) choice in gain (loss) space resulted in no earnings. To
provide similar monetary outcomes across treatments, in the loss treatments, students and market
professionals were endowed with $6.25 and $25.00.1° We bdlieve this is the first study to vary
the domain in cascade games.

Our fina comparative static treatment variable concerns subject pools. Experimental
subjects in a particular session consisted entirely of one of two subject types. students or market
professionals. The experimental sessions with market professionals were conducted at the
Chicago Board of Trade (CBOT) and the student data were gathered from undergraduates at the
University of Maryland in College Park. The CBOT (student) subject pool included 55 (54)
subjects recruited from the floor of CBOT (the university).**

Each experimental session consisted of a group of either five or six participants making

decisions within the same treatment type over 15 periods. Table 1 summarizes the experimental

 CBOT officials suggested that designing a 30-minute game with an expected average payout of approximately $30
was more than a reasonable approximation of an average trader’s earnings for an equivalent amount of time on the
floor. In our experiments the median earnings for the market professionals were slightly in excess of this amount and
therefore likely to be salient.

19 To ensure that subjects departed with positive money balances we had both subject pools participate in other

unrelated games during the experimental session.

M |n practice, the 55 subjects recruited from the floor of CBOT consisted of locals, brokers, clerks, and an exchange
employee. We found no statistical difference among the types of floor participants with regard to Bayesian behavior
and cascade formation and collectively call them the “market professionals.” Homogeneity among the floor

personnel is intuitively sensible since the average non-trader had accumulated approximately 9 years of floor

experience and many reported experience as either brokers or local traders.



sessions that were conducted. The experimental design is a 2x2x2 factorial across urn type,
either symmetric (S) or asymmetric (A); over gains (G) or losses (L); and with either college
students (C) or market professionals (M).*2
Theoretical Predictions

The formal examination of cascade behavior presented by Bikhchandani et al. (1992)
assumes that individuals are Bayesian in their update of beliefs about underlying states of nature.
Consider an environment in which there are two possible underlying states, A and B. Each
individual receives a private signa, either a or b, indicating the probability of a state where
p(Ala)> p(B|a)and p(A|b)< p(B|b). Signal strength in the symmetric treatments implies
that p(Ala)=p(B|b). To understand the mechanics of cascade formation, we consider an
example parameterized in accordance with our symmetric experimental treatment discussed
above and presented in Figure 1. For the initial decision maker, p(a|A) = p(b|B)=2/3, ad
therefore p(b| A) = p(a|B) =1/3. Suppose, in fact, that the first draw is a. According to

Bayes rule, the probability that the wunderlying state is A is given by

p(Ala) = p@l A p(A) = (2/3)(1/2) =2 An expected utility
p(al A)p(A)+p(a|B)p(B) (2/3)(1/2) +(1/3)(1/2) 3

maximizer would, therefore, choose A as the state of nature since expected profits for
announcing A, p ,, exceed those for announcing B, p ;.** Suppose that the second subject also

draws signd a from the wurn. Updating according to Bayes rule yieds

12 Experimental instructions for the symmetric gain treatment for students are included inthe appendix.

B pa-Ps :? in the gain treatments, after an initial a signal, where $W is the win amount, either $1 for

students or $4 for professionals. Note also that treatments over gains and losses yield identical predictions (i.e.,
expected losses are minimized by picking the most probable urn).



(AlAg = P@IAT (@I
T p@IAT+p@lB) (237 + W

2151. Thus, two consecutive identical

announcements yield a posterior probability of 0.80 in favor of the urn announced. As a result,
the third decision maker should “follow the herd” and announce “A” regardless of his or her own
private draw. This can be seen by examining the case where an opposing b signal is the private
draw of the third player after two consecutive A announcements, yielding the posterior

probability

pal A’ pb|A) _ (213)*/3)

P(AlAAb) = > 2 - 2 2
p(al A p(b| A+ p@lB)"pb|B) (2/3)°A/3)+(1/3"(2/3

:g. We
3

denote a decision of this type—consistent with Bayesian rationality but in which one's own
private signd is ignored—a cascade decision.

Naturally the cascade decision may result in either a correct or incorrect inference about
the underlying state. It isentirely possible, in the example above, that the true underlying state is
B. Following the literature, we denote a cascade decision in which the wrong underlying state is
announced a reverse cascade. Regardless of the underlying state, the theoretica analysis of
cascade formation in the symmetric treatment implies that private information is uninformative
whenever the number of public signals of one type exceeds the other by two or more.*

In our asymmetric treatment, presented in Figure 2, there are 6 (5) a signalsand 1 (2) b
signal in A (B). The intuition behind formulation of Bayesian updating is similar to the

symmetric treatment. Table 2 provides posterior probabilities for all possible sequences of draws

14 The analysis of equilibrium behavior depends on the tie-breaking rule invoked when the posterior probability of
an urn is 1/2. We follow Anderson and Holt (1997) in assuming that individuals who are indifferent announce their
own signal. Thisis sensible if there is a nonzero probability of error in announcements. In our treatments this rule
is followed 81 percent of the time. The type of tie-breaking rule chosen has no effect in the asymmetric treatment
since a posterior probability of one-half is not possible. We point the reader to Koessler and Ziegelmeyer (2000) for
further discussion of the impact of tie-breaking rules on equilibrium predictions.



for both the symmetric and asymmetric treatments. As an example, the two-thirds probability of
urn A that arises after a single a draw in the symmetric treatment is matched in the asymmetric
case only by 4 consecutive a draws.®™ One consequence of the change in signal strength is that
herding on the B state should take place after a single b signal even with either one or two a
signalsin the game's history.

This difference presents an opportunity to distinguish, across treatments, Bayesian
updating from a smpler choice heuristic. The main difference between the symmetric and
asymmetric treatments is that the optima Bayesian decision in the symmetric treatment
corresponds to a simple counting rule: choosing the event with the most signals maximizes
expected earnings. In the asymmetric case a number of sequences violate this counting rule in
that it is optimal to choose B even when there are fewer b signals than a signals. The
asymmetric treatment, therefore, allows us to distinguish Bayesian behavior from heuristics that
may mimic Bayesian behavior in simple settings. The signal histories that are of interest in
making this determination are (a,b) 1 {(2,1), (32),(32), (4,2)} and are underlined in Table 2.

The treatments over gains and losses also raise questions that can be addressed by
examining decision error. While expected utility impliesthat it is rationa to always choose the
most probable urn, previous experimental results suggest that there are deviations from this
strategy. One explanation for this behavior derives from theories that incorporate decision costs
into the choice of urns (Anderson and Holt, 1997). Consider the case where the posterior
probability is only dlightly in favor of one urn. Here the expected return from choosing the most
probable urn is positive but small. Deviations from the Bayesian predictions may be rationd if

the cost of optimizing is greater than the expected benefits. Thus, we expect more Bayesian

15 Another measure of the change in signal strength is that an initial a signal yields Pr(urn=A)=54.5 percent in the
asymmetric treatment and Pr(urn=A)=67 percent in the symmetric treatment.
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decisions when the posteriors move further away from one-half, and the expected utility of a
correct choice increases. In this setting, we can investigate indirectly a prediction of prospect
theory, by examining whether decisions are more or less Bayesian over gains than over losses of
equal magnitude. The notion that losses loom larger than gains suggests more Bayesian decision
making in the loss domain, if decision costs across the domains are assumed to be constant
within a subject pool.*
3. Experimental Results

Table 3a presents descriptive statistics on Bayesian decision making and on the aggregate
rate of cascade formation in our data. The experimental sessions yielded a total of 1,647
decisions, 1,293 (79 percent) of which were consistent with Bayesian rationality. Cascade
decisions, defined as those that were Bayesian but in which the private signal was ignored, took
place in 16 percent of the cases. In addition, one quarter of the cascades formed were reverse
cascades, resulting in the wrong inferences about the underlying state. More revealing than the
aggregate number of cascades is the proportion of cascade decisions made when it was possible
to make one. Recall that a cascade decision is possible only when the private draw is
inconsistent with the probability weight of the previous signals. In our data, cascade formation
was possible in 466 decisions, representing 28 percent of the total. Cascades were redlized in
262, or 56 percent, of the cases. These last two results are presented in the potential and realized
cascades columns of Table 3a

To shed further light on the experimental behavior we adopt a variety of parametric and

nonparametric techniques and group our core results into five categories. Four of the categories

18 To investigate properly this hypothesis we must control for the posterior probability, or rather the difference
between the posterior and one-half, where expected utility maximizers are indifferent between urn types. We control
for the posterior probability in the probit model below.
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are associated with subject pool effects, and the fifth relates to a quality of decision making in
which the student and market professionals behave similarly. With regard to subject pool effects
we consider (1) differences in Bayesian decision making, (2) differences in cascade formation,
(3) differences across the domains of gains and losses, and (4) differences within the market
professional subject pool that are associated with individual trading experience. The fifth
category of results relates to the exogenous ateration of signal strength through the use of the
symmetric and asymmetric urns. The treatment effects provide insight into the descriptive
validity of Bayesian rationality.

Result 1. Market professionals are less Bayesian than students. Despite this behavioral
discrepancy, earnings are not significantly different across subject pools.

Table 3b reports similar statistics to those presented in Table 3A, but Table 3B disaggregates the
data by treatment and subject type. In aggregate, 82 percent (76 percent) of the students’ (market
professionals'’) decisions are consistent with Bayesian decision making. Irdividual subjects
ranged from 38 percent to 100 percent Bayesian, and of the seventeen subjects perfectly
consistent with Bayesian rationality, twelve were students.!’” To investigate whether these
differences in Bayesian behavior are statistically significant, we employ both unconditional and
conditional tests. When using unconditional tests, we recognize the dependence among
individual observations by using session level aggregates whenever possible to yield the most
conservative estimates of treatment effects. Our unconditional test used to support Result 1 isa
non-parametric Mann-Whitney U test, which suggests that the rate of Bayesian decision making
differs across subject pools at alevel of significance of p=.052.

To supplement the non-parametric test results, we estimate the following random effects

probit model:

17 Sixteen of the seventeen were in the symmetric urn treatment.
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Baye: = b Xit + e, et ~N[0,1], (@)
where Baye; equals unity if agent i was a Bayesian in period t, and equals zero otherwise; and Xi;
includes variables predicted to influence play: order_x (where x=2,..,6), which is a categorical

variable indicating where in the period of play the decision was made. The posterior probability
is incorporated in the variable diff which is calculated as |prob (urn= A)- 5, where the

prob (urn = A) is the posterior probability arising from the combination of public and private
information at the disposal of each decision maker. The absolute value of the difference of the
posterior probability from one-half is an indication of the nagnitude of the accrued public and
private information. The diff variable thus varies from zero to one-half, increasing with the
evidence for a specific urn type. Theories of noisy decision predict that the parameter on this
variable is positive, with decisions more Bayesian as the posterior probability of a specific urn
type increases. The variables gain, sym, and trader are dichotomous and distinguish the
experimental treatments, with gain equal to one for treatments over gains and zero over |osses,
and sym equal to one for the symmetric treatment and zero for the asymmetric treatment. In the
specification pooling subject types, trader is equal to one for the market professionals and zero
for the students. The variable heurist is a dummy variable equal to one for counting rule
sequences and zero for al others. We specify e = u; + a;, where the two components are
independent and normally distributed with mean zero; thus, Var(e;) = s.® + sa°>. We estimate
equation (1) using the maximum likelihood approach derived in Butler and Moffitt (1982).'2

Estimation of this particular model is quite complex, but is amenable to Hermite integration. To

18 Thelikelihood function can be succinctly written as
¥

L=0ili= @) (20™ Orexp(-e)” f (gich),
-¥

where gi; = 2nci; — 1; and gi¢ = b"X;, + [corT (i, &)/ (1- corr (i, &)1 %€

13



estimate the model, we use an eight-point quadrature and follow Berndt et al. (1974) to compute
the covariance matrix.*°

Empirical results are presented in Table 4. Results from both a likelihood-ratio test and
the trader dummy variable in the pooled regression model panel g indicate that there are
differences in Bayesian behavior across subject pools: market professionas are less Bayesian
than students.’® An estimated coefficient of -0.201 suggests that traders are 4.8 percent less
likely to be Bayesian compared to students. Considering the results from all three panels, it is
clear that posterior probability (diff variable) also has important influences on Bayesian choice,
as the larger is the divergence from a posterior of one-half, the more likely the choice will be
consistent with Bayesian rationality.

Regressions based on subject type, presented in Table 4, panels b and c, revea that
students are more sensitive to some treatment effects than are the market professionals. Student
subjects respond more dramatically to the urn symmetry. In addition, empirical results by
subject pool indicate a decline in Bayesian behavior among market professionals who choose in
the third through sixth position (students show no such effect). The magnitude of the effect is
rather large, having from one-third to more than one-half of the effect of the posterior probability
as represented in the diff variable (Table 4, panel ¢).

Oveadll, the maximum likelihood results confirm the results from the non-parametric
tests. Despite their less Bayesian environment, market professionals do not perform significantly

worse than the students with respect to the rate at which they choose the correct underlying state

19 Results are robust to inclusion of atime trend for period or time dummies (categorical time dummy variables for
each period of play). Below we discuss further our evidence of learning.
20 A Chow test rejects the null hypothesis of no differences across the subject pools at the p = 0.01 level.

14



(Mann-Whitney U-test on win percentage p= 0.29), a point we take up again in our discussion of
Result 2 on cascade formation.

In our third, and final, empirical technique to examine the extent of Bayesian decision
making, we applied a version of the quantal response equilibrium (QRE), which incorporates
boundedly rational decision making into game theoretic equilibrium consideratiors, to the data
from the symmetric gain treatment. This approach, developed by Palfrey and McKelvey (1995),
was first applied to the cascade setting by Anderson and Holt (1997) in a framework that
assumes individuals have correct beliefs about the errors of others. The QRE results provide
perhaps the clearest picture of the noisier environment that the market professionals face in the
experimental setting due to the greater number of deviations from Bayesian rationality.

The QRE derives from the following logic: the probability of announcing an urn depends
on the expected payment associated with choosing it. This logic is consistent with the results of
our probit model, which reveals that as the posterior probability gets closer to one-haf, decisions
ae less Bayesian. Alternatively, error-free Bayesian decisions require that the urn with a
posterior probability greater than one-half would be chosen with probability 1. We calculate two
probabilities associated with the QRE. The first reflects the posterior probability of an urn type.
In what follows we discuss and report the probability that the type is Urn A. The QRE
estimation yields a parameter that indicates the degree of departure from pure Bayesian decision
making. The posterior and the estimated parameter allow us to calculate the second probability:
the probability for a given history of play that the announcement by a subject is Urn A.

We implement the QRE by assuming alogistic choice rule:

expp b, _ 1
expp*b, +expp*b, 1+explpgy-pa)b,

pr(D =A) = 2

15



where p* = pr(A)* W +(1- pr(A))*0,
p°=(L- pr(A)*$W+ pr(A)*0,
andso pf-p=(L- 2pr(A)*SW.

Notice in equation (2) that the estimated beta captures the extent of the noise in the decision
making process. As beta approaches zero, the probability of choosing Urn A approaches one-

half, reflecting random choice. As beta grows large, the probability of choosing Urn A
approaches1when p*>pP®, il 1..6. Thus, b =¥ implies perfect Bayesian rationality.
Contributions to the likelihood function from the first two decisions of the cascade game

ae

Decision 1:

LogL = é D In F(X,b,) +({1- D,)InL- F(X;b,))

i=1
Decision 2:

Log = & D,In F(X,(B.)b.) + (- D)inft- F(x,(B)o.)

i=n+1

A
P -

where Dj is an urn A announcement and X is p.° - p/*. F assumes that errors follow a logistic

distribution, and a scale parameter for the distribution, b, , is estimated from the data. The
parameter derived from the first choice is used to calculate the probability D= A for all signa
and announcement possibilities.” Note that for i = 2 the independent \eriable, the difference in
profits, is a function of the first period estimation through the parameter b,. Thisis because the
QRE assumes that decision makers incorporate the possibility of error in decison 1 into their

estimate of the posterior probability of the urn type.

2 Inthefirst period there are four possibilities — ana or b signal can be followed by either an A announcement or a
B announcement. In general thereare 2’ + possibilities where j represents the choice order.
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Parameter estimates and the implications for decision probabilities and posterior
probabilities are presented in Tables 5 and 6. Estimation is conducted with the payments
normalized to $1 for both students and traders. Table 5 presents the parameters estimated for
each choice order, and we again find significant differences between subject pools. In choice
positions 1, 2, and 5, the students' parameters are larger, reflecting more Bayesian choices. In
fact, in position 2 the students’ decisions are all consistent with Bayesian updating, and we see a
relatively large increase in the estimated beta as a result. Further, in all choice positions the
parameters are significantly different from zero, indicating that urn choices differ significantly
from what pure random choice would produce.

The posterior probabilities that result from incorporating decison error yield an
indication of how cascade formation can fail. Table 6 presents the posterior probabilities and
decision probabilities that reflect the adjustment for decision error. For comparison, the Bayesian
posteriors and choice probabilities are also presented. The QRE results emphasize the fact that
not only the numbers of each signal, but the order in which they are both reveded have an
important impact on behavior. Note the posterior probability for order choice 3, the first choice
where a cascade may form in the symmetric treatment, when the signal history is AAb (or
BBa).?? In this case the posterior has dropped dramatically from 0.67 for the most likely urn to
0.51 (0.59) for the market professionas (students). Thus, while cascade formation is still
optimal for both groups, the noise in prior decisions dilutes the strength of the signals, with the
market professionals facing essentially a random choice. Compare this to the ABa sequence,

which has an identical Bayesian posterior probability. In this case, when one’'s own draw is

22 gince the AAb and BBa are symmetric, Table 6 reports the results from these sequences as one choice history.
The history reported isthat of the AAb sequence. All other symmetric choice sequences are treated similarly.
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consistent with the most likely urn, the posterior is 0.64, and the optimal decision is made almost
uniformly by both subject pools.

While the evidence suggests that students are more Bayesian, we find that in fact the
proportion of correct decisions, and thus earnings, are not significantly different across the
subject pools.?® This result is surprising since Bayesian rationality is predicated on maximizing
earnings. To clarify thisissue we delve deeper into the data and find the following:

Result 2 In aggregate, the rate of cascade formation is not significantly different for

market professionals and students, but market professionals enter into significantly fewer

reverse cascades in the asymmetric treatments. This result follows from the ability of

mar ket professionals to gauge the quality of the signal.
Aggregate differences in individual rates of cascade formation across subject types in the
symmetric treatment are only marginally significant, with the Mann-Whitney statistic yielding
significance at the p = 0.10 level. We find an interesting difference between the subject pools,
however, in the asymmetric treatments, after accounting for predictions in the underlying state.
In particular, there are significant differences with regards to reverse cascade formation. Market
professionals enter reverse cascades at a rate 29 percent below that of students, a difference that
is statistically significant at the p = 0.01 level.?* We find no significant differences, however, in
the rate at which the two groups enter cascades in which the correct underlying state is chosen (p
= 0.31). This result cannot be explained by our simple model of Bayesian decision making.
Instead, we use a probit model to investigate the hypothesis that market professionas use
information that the students ignore in order to avoid reverse cascades.

Summary empirical results from the random effects probit model that investigates

cascade formation are reported in Table 7. The dependent variable is dichotomous and equal to

2 A Mann-Whitney U test across subject pools of the rate at which individuals announce the correct state yields p =
0.30.
24 This result remains significant when observations are aggregated more conservatively at the session level.
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one when a cascade forms and zero when it does not. The dataset is restricted to the
observations in which cascade formation is possible: those in which the posterior implies it is
optimal to ignore one's own private signal. Failure of cascade formation thus implies that one
relies on the private signal despite public evidence. Cascade formation varies significantly over
the urn symmetry, with 81 percent of possible cascades realized in the symmetric treatment and
only 48 percent realized in the asymmetric treatment (Table 3b). In the probit model, we focus
on the asymmetric treatment, because the lower rate of cascade formation and Bayesian decision
making in general allows us to test the hypothesis that traders are more successful at updating
their play by observing the quality of decisions of othersin previous periods. Empirical results
of the symmetric treatment provide insufficient variability in decision quality.

As shown in Table 7, we include a variable, othbys, that indicates the aggregate
performance of other subjects in terms of the proportion of Bayesian decisions they have made.
This variable includes only observable information since the proportion of correct inferences
includes only those that occurred in preceding periods. The measures for al relevant individuals,
that is, those choosing prior to the particular observation in a period, are aggregated, giving a
measure of the Bayesian rationality of individuals who precede each subject’s choice. The
variables diff, heurist, and gain are also included and are defined identically as in the previous
model.

Empirical results are sharp. Although othbys is insignificant in the pooled specification,
this model masks a large difference in how the two subject pools respond to others.®
Specifically, in the asymmetric treatments, cascade formation for the market professionals is

significantly associated with the quality of preceding decision makers, as hypothesized. What is

2 The likelihood-ratio test suggests structural differences between the pooled and disaggregated nodels at the p =
0.04 level.
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unexpected is that student subjects respond in the opposite manner (hence the negative sign on
the othbys parameter), becoming less willing to join a cascade when previous decision makers
have been reliable.®® Alternatively, the market professionals make much better use of available
information on others rationality.?” One may wonder whether this result is due to market
professionals having a greater level of previous interaction with one another than students have
had, or if there is evidence of learning in the experiment. To explore this issue, we examined
temporal behavioral patterns across the 15 periods of the experiment. The evidence is consistent
with the view that market professionals learn over the 15 periods. comparing behavior from the
first and last three rounds of a session, we find that market professionals significantly reduce the
rate at which they join reverse cascades and increase the rate at which they join cascades with
good outcomes (p < .01 and p < 0.01), respectively. In contrast, there are no significant changes
in the rate of cascade for the students for either type of cascade (p = 0.80 and p = 0.50).

Result 3 Bayesian behavior of the student population is affected by gain/loss domain,
while market professionals are unaffected by the domain. We find evidence, however, that
students are unaffected by the domain of earnings during latter experimental periods.

Aggregate figures on gains and losses reported in Table 3 are roughly equivaent, with 80
percent of Bayesian decisions over gains and 77 percent over losses. Restricting attention to the
asymmetric (A) treatments (see Table 8), however, shows that college students are less Bayesian
in the gain treatment than in the loss treatment, while market professionals are unaffected by the

domain of earnings (AGC v. ALC p=0.08; AGM v. ALM p=0.61).8

26 A specification of the probit model on Bayesian behavior was estimated that included the othbys variable (detailed
results omitted); othbys was not significant in this model, indicating that the quality of others’ decisions &fects the
decisions of market professionals only in the relevant case where cascade formation is possible.

27 support for the significant differences between subject pools found in the parametric results is also found in non-
parametric (Mann-Whitney) tests.

28 p-values reported for the treatment level test found in Table 8 use observations aggregated at the individual
participant level. As reported in Table 8, rates of cascade formation and reverse cascade formation do not differ
over the domain of earnings.
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Referring to Table 5, we find that the probit model yields results that are consistent with
findings from the nonparametric tests. In the pooled data, the dummy variable gain is not
significant at conventional levels, and remains so for the market professionals. For students,
however, the parameter estimate is both significant (p = 0.04) and negative p = -0.289),
indicating that Bayesian behavior is increased in the loss domain. This result is consistent with
the notion that, for the student population, losses loom larger than gains.

Students, however, are less affected by the earnings domain in later experimental periods.
We investigate this insight by estimating separate probit models for the early and late periods in
each session. In periods one through ten, students are roughly 8 percent less Bayesian in the gain
treatments and the difference is statistically significant (p = 0.02). In periods eleven through
sixteen there is no significant difference in the rate of Bayesian behavior across the domains (p =
0.94).

Result 4. For market professionals, the reported intensity of their professional trading activity
correlates positively with Bayesian decision making.

Recdll that we found no dtatistical differences among CBOT personnel with regard to the rate of
Bayesian decision making or cascade formation, regardless of their exchange-trading role
(broker, local, clerk, etc.). In this section we use additiona survey data collected at the time of
the experiments to determine if the underlying cause of Bayesian behavior differs across the
trading subgroups. We find that trading intensity, defined as the number of contracts traded per
day, is positively correlated with Bayesian behavior, although the effect is small.

The result is again based on arandom effects probit specification and is reported in Table
9. We find that trading intensity (intensity) along with the counting rule sequences (heurist) have
explanatory power. Other individual characteristics that included income and education are not

significant for this group (results excluded to conserve space), nor are the treatment variables or
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the posterior probability as represented by diff. By contrast, the trading support personnel (e.g.,
clerks) that supplied information on the intensity of their work yield results more similar to the
student population. Aswith the students, diff, heurist, and sym are al significantly different than
zero, athough as with the traders, intensity is aso significant, but small in magnitude. Our link
between trading intensity and Bayesian rationality is consonant with the results of Locke and
Mann (2003), Genesove and Mayer (2001), and List (2003, 2004), who find, in much different
environments, that market experience is important in reducing deviations from utility theory that
are associated with reference-dependent preferences.

Result 5 Deviations from Bayesian norms are strongest when a counting rule makes a
different prediction than Bayesian rationality.

Table 3 shows that Bayesian decision making was dramatically reduced in the asymmetric
treatment, with only 70 percent of decisions consistent with Bayes rule. In the symmetric
treatment, 91 percent of the decisions were Bayesian. In addition cascade formation, when
measured as the proportion of possible cascades, was significantly different across the symmetric
and asymmetric urn types. These figures are presented in Table 3b in the column Realized
Cascades, which shows that 81 percent of potential cascades were realized in the symmetric
treatment but only 48 percent in the asymmetric case.?

In the discussion of some of the preceding results we have restricted attention to the
asymmetric trestments. This was due to the fact that the high level of behavior consistent with
Bayesian rationdlity in the symmetric treatments, 91 percent in aggregate, yielded little
variability in the data. In the symmetric case, however, Bayesian rationality was consistent with

following a smple counting rule: by choosing the urn with the most signals one followed Bayes

29 Because of the dependence among individual observations we use session level aggregates whenever possible to
yield the most conservative estimates of treatment effects. The statistical test used is the Mann-Whitney U test.
Significant differencesin Bayesian behavior exist at p<.001 across urn types.
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rule. Alternatively, in the asymmetric treatment there are four sequences of draws in which the
number of a signals is greater than the number of b signals but the Bayesian posterior implies urn
B isthe most likely state.

The counting heuristic suggests that individuals will choose the urn with the most signals,
not necessarily that in which the posterior probability is greatest. This conjecture is investigated
in Table 10, which presents all the available choice patterns in the asymmetric treatments. Those
in which the counting rule and posteriors yield different predictions are highlighted in bold, and
we call these counting rule sequences. The top number in the table represents the posterior
probability and the bottom figure is the proportion of Bayesian decisions for each choice history.
Statistical tests confirm what a visual scan of the data suggests: Bayesian behavior is
significantly reduced in the counting rule sequences.® In fact, the four counting rule sequences
have lower rates of Bayesian decision making than any of the other sequences, despite the fact
that others have similar or smaller diff values. In aggregate, Bayesian behavior occurs at a rate of
41 percent in the “counting rule” choice histories and 81 percent in the remaining asymmetric
treatments. This finding suggests that Bayesian updating is a poor approximation of the decision
making process used in the asymmetric treatment. Figure 3 illustrates this finding by presenting
the proportion of Bayesian decisions for all observed histories of play as a function of the
posterior probability. The counting rule sequences (lighter entries) are uniformly lower than the

other choice histories, represented as black diamonds.

30 We use a Wilcoxon matched pairs test with the proportion of Bayesian decisions the variable of interest,
aggregated at the session level. The diff variable for the counting rule sequences are in the range from 0.0 to 0.2, and
all other sequences with diff variables in this range are included for the paired comparison. Using data from the
twelve asymmetric sessions we find that the counting rule sequences reflect less Bayesian decision making despite
roughly equivalent diff scores at p<.01.
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4. Concluding Comments

The potential for herding behavior arising from informational cascades has been
discussed in a wide variety of economic and social settings ranging from medical treatment
choices to mate selection (Bikhchandani et a. 1998). Of particular interest is the potentia that
herding behavior has to destabilize financial markets. In this study we introduce market
professionals from the CBOT floor to a controlled experimental environment in which cascade
formation can be carefully studied. All previous empirical investigations of cascade behavior
either examine data from naturally occurring markets where the researcher has no control over
the data- generation process or use data from controlled laboratory studies with student subjects.

Our combination provides severa interesting insights. Perhaps most importantly, we find
that market professionals and student subjects behave differently in important and systematic
ways. behavioral differences are found over the gain/loss domain and the rates of cascade
formation. In genera, our data suggest that traders do a better job of taking variability in the
quality of others decisions into account when choosing to rely on the information disclosed by
others actions. As a result, the market professionals end up in significantly fewer reverse
cascades than the student population. In the CBOT group, we also find evidence that Bayesian
behavior increases with an individual’s trading activity. Overal, our findings highlight that there
is much potentially useful behavioral economic and financial research to be done by

implementing experimental protocols with nonstandard subject pools.
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Appendix: Experimental Instructions for Symmetric, Gain, Student (SGS) Treatment

Instructions:

In this experiment, you will be asked to decide from which of two urns balls are being drawn. We will
begin by rolling asx-sded die. If thedieroll yieldsa 1,2, or 3, we will draw from Urn A. If theroll of
the dieyieldsa 4,5, or 6, we will draw from Urn B. However, theroll of the die will be done behind a
screen o that you will not know which urn has been chosen.

The urns differ in the following way:

urn A Urn B
(used if dieis 1,2,0r 3) (used if dieis4,5,0r 6)
2 Striped Bdlls 1 Striped Ball
1 Terp Ball 2 Terp Balls

Once an urn is determined by the roll of the die we will empty the contents of that urn into a container.
(The container is always the same, regardless of which urn is being used.)

After the urn has been chosen each of you will come behind the screen one at atime and draw aball from
the container. The order in which you will draw has been determined randomly.
The result of your draw is your private information and MUST NOT be shared with other participants.

After each draw, we will return the ball to the container before making the next private draw. Each
person will have one private draw, with the ball being replaced after each draw.

After each person has seen the results of their own draw, we will ask them to record the letter of the urn
(A or B) that they think is more likely to have been used. When the first person to draw has indicated a
letter, we will display that letter. After displaying the first person’s decision, we will call out the next
registration number, and the person with that number will draw a ball and record aletter (A or B). Again,
their decision will be displayed on the overhead projector. This process will be repeated until everyone
has made a draw and made a decision about which urn they believe is being used. After everyone has
made a decision, the monitor will announce which of the urns was actually used. Everyone who chose the
correct urn earns $1. All others earn nothing.

This session will consist of 15 periods of the procedure just described.

Now | will describe the use of the record sheet, which is at the back of these instructions.

The results for each period are recorded on a separate row on the record sheet. Period numbers are listed
on the left side of each row. Next to the period number record your draw (Sor T) in column “Own
Draw”. In columns“choicel” through “choicel0” record each participants decisions (A or B) asthey are
displayed. (If there are less than 10 players the last choice columns remain blank.) This means that when
you are asked to make a decision about which Urn is being used the decisions of participants who have
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drawn before you will be available. Write your decision in the appropriate column depending on the
order in which you draw, and circle your decision to distinguish it from other’ s decisions.

When al participants have made their choices, the monitor will announce the letter of the Urn that was
actually used. Record this letter in the column headed “Urn” for that period. If your circled decision
matches the letter of the urn used, record your earnings of $1 in the “Payoff” column. If your choice does
not match the urn used record your earnings of $0. Y ou should keep track of your cumulative earningsin
column “Total Payoff”.

Before we begin we will conduct a demonstration. During the demonstration, the roll of the die and the
draw of the ball from the container will be publicly visble. When we move to Period 1 the roll of the die
will be visible only to the monitor, and the draw will be visible only to the monitor and the person called
behind the screen. Remember that urn A contains 2 striped balls and 1 terp ball. It is used if the throw of
thedieis 1,2, or 3. Urn B contains 1 striped ball and 2 terp balls, and is used if the throw of the dieis 4,5,
or 6.

Before we begin, be sure that your registration number is on the Record Sheet.

Hereis an overview of the procedure that will be followed in each period:

1. The monitor rolls the die to determine which urn is used and transfers balls from that urn to the
container.

2. Themonitor calls on a participant.

3. The participant goes behind the screen: (Be sure to bring your record sheet)
a) Makesadraw from the container
b) records the draw on record sheet in “Own Draw’ column
c) records urn choiceand circlestheir choice

4. The monitor displays the participant’ s choice and the other participants record the urn choice on their
record form.

5. Repesat steps 2 —4 until al participants have made their choice.
6. The monitor reveals the urn used in that period by displaying the balls in the container.
7. Subjects record the urn used in that period and record their earnings, and their cumulative earnings.

Please refrain from conversation during all periods of play, and keep the information on your record
sheet confidential.
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Figure 3: Counting Rule Heuristic
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Table1l. Experimental Design
Panel A: Ten Market Professional Sessions

Symmetric Urn Asymmetric Urn
Gans L osses Gans Losses
Number of Sessions 3 1 3 3
Participants in Session 5 5 One with 5, two with 6 6
Total number of 225 75 255 270
Decisions
Average Earnings of $43.20 -$20.80 $39.06 -$22.89
Participants
Panel B: Ten Student Sessions
Symmetric Urn Asymmetric Urn
Gans Losses Gans L osses
Number of Sessions 3 1 3 3
Participants in Session | One with 5, two with 6 5 One with 5, two with 6 5
Total number of 267 75 255 225
Decisions
Average Earnings of $11.61 -$2.80 $11.00 -$6.40
Participants

Panel A (B) shows that Market Professionals (Students) were exposed to either the Symmetric or Asymmetric urn and played the gamein
either again or loss domain. The symmetric urn consisted of 3 balls — two aand one b in Urn A, and one b and two ain Urn B. The
Asymmetric urn consisted of 7 balls — six a and oneb in Urn A, and five a and two b in Urn B. The number of decisonsis a function of
the number of players, the number of games, and the number of periods in each game.



Table 2. Posterior Probabilities: Symmetric (upper) and Asymmetric (lower, and italic) Urns

b 0 1 2 3 4 5 6
a
0 0.500 0.330 0.200 0.110 0.060 0.030 0.020
0.500 0.333 0.200 0.111 0.059 0.030 0.015
1 0.670 0.500 0.330 0.200 0.110 0.060
0.545 0.375 0.231 0.130 0.070 0.036
2 0.800 0.670 0.500 0.330 0.200
0.590 0.419 0.265 0.153 0.083
3 0.890 0.800 0.670 0.500
0.633 0.464 0.302 0.178
4 0.940 0.890 0.800
0.633 0.509 0.341
5 0.970 0.940
0.713 0.554
6 0.980
0.749

Entries represent the posterior probabilities for al possible sequences of draws for both symmetric (upper) and asymmetric (lower, and
italic) treatments based on choice histories (g, b). The prior probability of an urn is 0.5 in (0,0). Underlined entries in the asymmetric
urn are those consistent with counting heuristic sequences that will yield different predictions from the posterior prior probability.

Table 3a. Aggregate Decision Making

Panel A: Aggregate Decision Making (Combining Market Professional (M) and College Student (C) Treatments)

Cand M
n= 1647

Bayesian Cascades Reverse Potential Redlized
(total) Cascades Cascades Cascades

Proportion 0.79 0.16 0.04 0.28 0.56
Number 1293 262 62 466 262/466

The Bayesian column represents the total number of decisions (and proportion

that were consistent with Bayesian updating. Cascade
decisions (those which are Bayesian but private information ignored) and reverse cascades (same as cascades but the wrong inference of
the underlying state takes place) occupy the next two columns. The potential cascades category represents the proportion (and number) of
cascades that could have occurred when it was possible to make one, and the realized cascades category representsthe proportion of those
potential cascades that were actually realized. “n” = number of decisions.




Table 3b. Disaggregated Decision Making acr oss Treatments

1. College Student Treatments (C)

Bayesian Cascades Reverse Potential Realized
(total) Cascades Cascades Cascades
C Proportion .82 18 .05 .30 .61
n=3822 Number 670 150 39 247 150/247
SGC Proportion .95 A7 .05 19 .90
n= 267 Number 254 46 13 51 46/51
SLC Proportion .96 .07 .01 .08 .83
n=75 Number 72 6 1 6 5/6
AGC Proportion .68 25 .05 46 .55
n=255 Number 172 64 13 117 64/117
ALC Proportion .78 .16 .05 32 48
n=225 Number 172 35 12 73 35/73
2. Market Professional Treatments (M)
M Proportion .76 A4 .03 27 51
n=3825 Number 623 112 23 219 112/219
SGM Proportion .86 14 .04 19 75
n=225 Number 193 32 10 43 32/43
SIM Proportion .89 A7 .07 24 72
n=75 Number 67 13 5 18 13/18
AGM Proportion 71 A3 .01 .28 A7
n =255 Number 180 34 2 72 34/72
ALM Proportion .68 A2 .02 32 .38
n=270 Number 183 33 6 86 33/36

The Bayesian column represents the total number of decisions (and proportion) that were consistent with Bayesian updating. Cascade
decisions (those which are Bayesian but private information ignored) and reverse cascades (same as cascades but the wrong inference of
the underlying state takes place) occupy the next two columns. The potential cascades category represents the proportion (and number) of
cascades that could have occurred when it was possible to make one, and the realized cascades category representsthe proportion of those
potential cascades that were actually realized. “n” = number of decisions. Treatment codes are S = symmetric, A = asymmetric, G = gain,
L = loss, C = college student, M = market professional.




Table 4. Bayesian Decisions: Probit Model

Dependent | 4a Pooled Model (combining market 4b. Student Model 4c. Market Professionals Model
variable: professionals and students) n=822 n= 825

baye n= 1647

Ind. Coefficient z dat P>z Coefficient z stat P>z Coefficient z stat P>l
Variables:

Diff 1.172 3.260 0.001 1.406 2.440 0.015 1.043 2.230 0.026
Heurist -0.840 -6.580 0.000 -0.793 -3.970 0.000 -0.888 -5.330 0.000
Gain -0.121 -1.180 0.237 -0.289 -2.050 0.040 0.046 0.330 0.740
Sym 0.515 4.600 0.000 0.902 5.820 0.000 0.190 1.240 0.215
Trader -0.201 -2.050 0.040 - - - - - -
order_2 -0.065 -0.510 0.608 0.125 0.690 0.491 -0.249 -1.410 0.157
order_3 -0.070 -0.510 0.608 0.204 1.000 0.316 -0.314 -1.690 0.091
order_4 -0.384 -2.880 0.004 -0.187 -0.940 0.347 -0.591 -3.220 0.001
order 5 -0.159 -1.130 0.258 0.032 0.150 0.882 -0.3%4 -1.870 0.062
order_6 -0.364 -2.080 0.037 -0.431 -1.560 0.118 -0.432 -1.870 0.062

Log Likelihood: -774.054, Wald ¢
= 137.79, Prob> ¢, = 0.000

Log Likelihood: -339.236, Wald ¢,
= 84.33,Prob> ¢/, = 0.000

Log Likelihood: -427.283, Wald ¢
= 68.91, Prob> ¢, = 0.000

The dichotomous dependent variable in all three probit models (pooled, student, and market professiond) is coded one for a decision consistent
with the Bayesian posterior and zero otherwise. Independent variables include diff, which is | prob (urn = A) - 5| , Where the prob (urn = A) is

the posterior probability arising from the combination of public and private information at the disposal of each decison maker. The variables
gain, sym, and trader (in the case of the pooled model) are dichotomous and distinguish the treatments. Heurist is a dummy variable equal to one
for the counting rule sequences and zero for all others. order_x (where x=2,..6) is a categorical variable indicating where in the period of play the
decision was made. The Wald statistic tests the null hypothesis that all coefficients are zero. A Chow test testing the pooled versus segregated

modelsyields ¢ 92 = 20.98, which suggests significant differences between subject pools at the p = .0127 level.




Table 5. Quantal Response Equilibrium Parameter Estimates and Standard Errors: Symmetric Gain Treatment

Subject Pool bl b2 b, b4 b b
Market 4.594* 4.561** 8.670 3.898 2.481***

Professionals (1.170) (1.2712) (2.818) (1.099) (0.784)

College 7.125 27.754 8.622 4.994 6.228 1.722
Students (1.568) (10.018) (2.425) (1.305) (1.773) (0.675)

For each decision order the parameter estimates (standard errors are in parentheses) are presented for both subject pools. *, **, and ***
represent differences between the subject pools at 10 percent, 5 percent, and 1 percent levels. All parameter estimates are significantly

different from zero individualy.




Table 6. Posterior Probabilities and Choice Probabilities with QRE Decision Error for Both Market Professionals (M)
and College Students (C)

Posterior pr(D1=A) Decision
M C M C M C

Choice | Signd Bayes QRE Bayes QRE A | B | Proportion A A | B | Proportion A
Order History

1 A 0.67 |0.667 {0667 |1.00 |0822 {0915 |37 |8 |0.822 43 (4 |0.822
2 Aa 080 |0.757 {0.779 | 1.00 | 0912 {0.999 |23 |3 |0.885 27 | 0 | 1.000
2 Ab 050 |0436 {0469 |050 |0.358 {0150 |4 |15|0.211 3 |17 |0.150
3 AAa 0.89 |0806 {0854 |100 |0995 {0998 |14 (O |1.000 17 |1 | 0944
3 AADb 0.67 |0.509 {0593 |1.00 |0539 {0833 |7 |6 |0.538 12 |0 |1.000
3 ABa 0.67 |0.649 {0638 |1.00 |0.929 | 0.916 |10 |0 | 1.000 8 |0 |1.000
3 ABb 033 |0316 {0306 |000 |0039 {0034 |1 |7 |0.125 0 9 |0.000

Entries are the first three choices of the symmetric gain treatment, the posterior probability (Pr (urn=A)), and decision probability
(Pr@ =A) for each choice history that reflects the adjustment for decision error. For comparison, the Bayesian (Bayes) posteriors and
choice probabilities are also presented for both students and market professionals. The actual decisions are aso reported. Due to the

symmetry of the treatments, urn A and B are treated equaly.
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Table 7. Cascade Formation: Probit Model: Asymmetric Treatment

Dependent | 7a: Pooled Model (combining market 7b. Student Model 7c. Market Professionals Model
variable: professionals and students) n=180 n=149

cascade n=329

Ind. Coefficient z dat P>z Coefficient z stat P>z Coefficient z stat P>|z|
Variables:

Diff 2.723 2.48 0.013 0.895 0.56 0.575 5.143 2.86 0.004
Heurist -0.595 -2.13 0.034 -0.865 -2.13 0.033 -0.244 -0.56 0.576
Othbys -0.503 -0.8 0.426 -2.835 -2.94 0.003 2.070 1.93 0.054
Gain 0.378 1.62 0.106 -0.030 -0.08 0.934 0.443 1.29 0.197
Trader -0.044 -0.19 0.849 - - - - - -
order_2 0.293 0.92 0.357 0.237 0.55 0.58 0.507 0.95 0.344
order_3 -0.098 -0.32 0.749 -0.081 -0.19 0.846 -0.003 -0.01 0.995
order_4 0.394 1.12 0.264 0.475 0.97 0.332 0.313 0.53 0.594
order 5 -0.471 -1.11 0.268 -0.372 -0.56 0.579 -0.450 -0.72 0.469

Log Likelihood: -199.02, Wald =

2 2 _
C( 38.11, Prob> c; = 0.000

Log Likelihood: -108.94, Wald =
Ci 2110, Prob>cf = 0.007

Log Likelihood: -81.40, Wald = c
25.33,Prob> ¢, = 0.001

The dichotomous dependent variable in all three probit models (pooled, student, and market professional) is coded one for a cascade decison
and zero otherwise. Independent variables include diff, which is | prob (urn = A) - E{ , Where the prob (urn = A) is the posterior probability

arising from the combination of public and private information at the disposal of each decision maker. The variables gain and trader (in the case
of the pooled model) are dichotomous and distinguish the treatment/subject type. Othbys indicates the aggregate performance of other subjects
in terms of the proportion of Bayesian decisions they have made. Heurist is a dummy variable equal to one for the counting rule sequences and
zevo for al others. Order_x isa categorica variable indicating where in the period of play the decision was made. Note: Because the othbys
variable is not applicable for those first in order (they do not observe others decisions), this is excluded. Order_6 is therefore excluded
automatically to avoid problems associated with collinearity. The Wald statistic tests the null hypothesis that all coefficients are zero.




Table 8. Non-Parametric Tests of Bayesian Behavior and Cascade Formation at the Individual Treatment L evel

Treatment AGC ALC SGC SLC AGM ALM SGM SLM
AGC _ 0.085 0.000 NA 0.478 NA NA NA
n=17 0.042 0.035 0.008

0.422 0.924 0.028
ALC L NA 0.003 NA 0.106 NA NA
n=15 0.120 0.377
0.114 0.057
SGC L 0.898 NA NA 0.005 NA
n=17 0.155 0.984
0.291 0.558
SLC L NA NA NA 0.154
n=5 0.049
0.065
AGM L 0.607 0.004 NA
n= 17 0.701 0.909
0.163 0.002
ALM L NA 0.008
n=18 0.270
0.039
SGM L 0.476
n=15 0.675
0.327
S M L
n=>5

Treatment codes: First letter S or A indicates the symmetric or asymmetric treatment. Second letter is G or L for the domain of gains or
losses. Third letter indicates subject type, where C = college students and M = market professionals The top number (bold) representsthe
p-value associated with differences in Bayesian decisions across treatments. The middle (italic) number reports pvalues for cascade
formation. The lower number represents the pvaues for reverse cascades. All are tested with the Mann-Whitney U test with an
individual’ s aggregate choice being the observation level.
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Table9. Trading I ntensity

Dependent 9a Trader subset of CBOT Market Professionals 9b. Nontrader subset of CBOT Market
variable: baye n= 255 Professionals
n=450

Ind. Variables: Coefficient z stat P>|z| Coefficient z dat P>|z|
Diff 0.118 -1.668 0.897 1.648 2.470 0.013
Heurist -1.526 -2.194 0.000 -0.801 -3.900 0.000
Sym 0.099 -0.524 0.755 0.348 1.920 0.055
Gain 0.246 -0.427 0.474 0.005 0.030 0.976
Intensity 0.011 0.002 0.011 0.001 -1.920 0.055
order_2 0.273 -0.382 0.414 -0.284 -1.140 0.254
order_3 0.073 -0.587 0.829 -0.305 -1.150 0.252
order_4 -0.326 -1.015 0.354 -0.669 -2.680 0.007
order 5 0.144 -0.610 0.707 -0.390 -1.540 0.123
order 6 0.443 -0.514 0.364 -0.598 -1.990 0.047

Log Likelihood: -103.50, Wald C(Zlo) = 37.76, Prob

> Cag = 0.0002

Log Likelihood: -215.88, Wald c(zlo) = 59.37, Prob

> Cao = 0.000

The dichotomous d

ependent variable in these two probit models is coded one for a decision consistent with the Bayesian posterior and

zero otherwise. Independent variables include diff, which is | prob (urn = A) - E{ , Where the prob (urn = A) is the posterior probability

arising from the combination of public and private information at the disposal of each decision maker. The variables gain and sym (in the
case of the pooled model) are dichotomous and distinguish the treatments. Heurist is a dummy variable equal to one for the counting rule
sequences and zero for al others. Order_x (where x=2,..6) is a categorica variable indicating where in the period of play the decision was
made. Intensity reflects the level of trading intensity among participants, measured as the number of contracts traded per day. The Wald
statistic tests the null hypothesis that al coefficients are zero.




Table 10. Posterior Probability Urn isA and Proportion of Bayesian Decisions (Counting Rule Sequencesin Bold)

b |0 1 2 3 4 5 6
a
0 0.33 0.20 0.11 0.06 0.03 0.02
0.85 1.00 1.00 1.00 0.89 1.00
1 0.55 0.38 0.23 0.13 0.07 0.04
0.76 0.56 0.72 0.64 0.95 0.63
2 0.59 0.42 0.26 0.15 0.08
0.87 0.46 0.63 0.69 0.79
3 0.63 0.46 0.30 0.18
0.84 0.30 0.52 0.58
4 0.67 0.51 0.34
0.76 0.76 0.29
5 0.71 0.55
0.87 0.78
6 0.75
0.80

The number of A and B signals are given in the first row and column respectively. The pairs of numbers within an (a, b) pair represent
the Bayesian posterior (upper number) and the proportion of Bayesian decisions (lower number and in italics). Those in bold type are
the counting heuristic sequences. Thus (2,1) has a posterior probability of 42 percent that the urn is A (diff=0.08). Forty-9x percent
made the Bayesian decision in this case. By contrast the (2,0) sequence (in which diff=0.09) has a posterior probability of 0.59, and 87
percent of those decisions were Bayesian.
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