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Abstract

This paper studies the structure of state-contingent contracts in the presence of moral haz-
ard and multi-tasking. Necessary and su¢cient conditions for the presence of multi-tasking
to lead to …xed payments instead of incentive schemes are identi…ed. It is shown that the
primary determinant of whether multi-tasking leads to higher or lower powered incentives is
the role that noncontractible outputs play in helping the agent deal with the production risk
associated with the observable and contractible outputs. When the noncontractible outputs
are socially undesirable and risk substitues, standards are never optimal. If the noncon-
tractible outputs are socially desirable, standards are never optimal if the noncontractible
outputs play a risk-complementary role.
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The central tenet of contract theory is that agents respond to incentives in a self-interested
manner. A natural consequence of this assumption is that a principal who rewards agents
should be prepared for the agents to undertake actions in pursuit of those rewards that
may be counter to his own objectives. Hence, the literature on compensation systems has
long recognized that inappropriately designed incentive schemes can lead to counterpro-
ductive (from the principal’s perspective) actions by the agent (Lawler 1971; Kerr 1975).
Similarly, economic regulation of …rms and industries often has unintended and unforeseen
consequences.

The notion that basing agent remuneration on objective performance measures can be
harmful to the principal’s interest in other areas where objective performance measures are
unavailable is central to the multi-task moral hazard and performance measurement litera-
tures (Holmström and Milgrom 1991; Baker 1992). Some examples illustrate. Holmström
and Milgrom (1991) cite the controversy surrounding linking teacher pay to student perfor-
mance on standardized tests. Teacher ‘accountability’ schemes have been introduced in a
number of U.S. states. Advocates argue that it introduces incentives for increased teacher
e¤ort. Opponents counter that it encourages teachers to neglect educational activities that
are not objectively measurable in favor of activities designed solely to raise student scores
on standardized tests. While debate continues on this issue, little doubt exists that teachers
respond to these incentives,1 and there is some limited evidence that these schemes do a¤ect
student performance (Ladd, 1999).

Another example emerges from the common observation that manufacturing …rms rather
infrequently employ piece-rate systems. One explanation is that piece-rate rewards can pro-
vide workers adverse incentives for maintaining the quality of the …rm’s machinery (Alchian
and Demsetz, 1972; Prendergast, 1999).

Chambers and Quiggin (1996) suggest an example from a regulatory framework. Both the
European Community and the United States have long provided subsidies and price support
to farmers. Such support schemes are increasingly recognized to con‡ict with environmental
objectives. For example, providing farmers with formal or informal crop insurance can
encourage riskier production activities which also degrade the environment in the form of
chemical runo¤ and soil erosion.

In each of these examples, an incentive scheme is based on an observable and objective
1Two examples taken from recent newspaper stories illustrate. In June 2000, the Washington Post

reported two separate incidents involving allegations that teachers and school principals had been involved
in assisting students to cheat on standardized examinations (Schulte, 2000; Eggen, 2000). On a more positive
note, the New York Times reports on the success of a cash incentive scheme for teachers in North Carolina
(Steinberg, 2000).
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performance criterion, even though the principal also cares about noncontracted aspects
of the agent’s performance. Starting with the seminal papers of Holmström and Milgrom
(1991) and Baker (1992), theorists have increasingly speculated that the existence of multi-
task concerns may partially explain the tendency of employment contracts to specify …xed
wages, or, more generally, the commonly noted presence of muted incentives within …rms.
In a regulatory context, one might similarly speculate that the frequent tendency toward
command and control regulation in place of taxes or subsidies may emerge from multi-task
concerns.2

This paper revisits the issue of multi-task agency problems, or multi-tasking for short,
from a state-contingent perspective. It was long thought that the state-space approach to
principal-agent problems was intractable (Hart and Holmström, 1988). As a consequence,
much of the theoretical discussion of moral hazard has been cast in the ‘parametrized distri-
bution formulation’ (Hart and Holmström, 1988). However, Quiggin and Chambers (1998)
and Chambers and Quiggin (2000) have recently argued that this seeming intractability
emerged from an implausible speci…cation of state-contingent technologies in early principal-
agent treatments, and that a more plausible speci…cation leads to a tractable and easily
manipulable moral-hazard model. This paper extends that observation to the study of
multi-tasking.

When viewed from the perspective of a plausible state-contingent production technology,
the issue of multi-tasking takes a di¤erent ‡avor. Characteristics of the stochastic technol-
ogy assume center stage. The e¤ect of multi-tasking on contract design in a state-contingent
framework hinges on the role that the noncontractible activities play in allowing the agent to
control the production risk associated with the contractible outputs. The emphasis, there-
fore, switches from agent ‘tasks’ to the outcomes from these tasks. The crop-runo¤ example
illustrates: the tasks might include fertilization of the crop, weeding, and purely abating
activities. The outputs would include the realized crop and the actual run-o¤ pollution.
Presumably, a regulator would be more interested in the run-o¤ than in the activities un-
dertaken to control that run-o¤. Our focus is on those cases where it is more reasonable to
presume that the principal is primarily concerned with outcomes from the tasks rather than
with the tasks themselves.

In what follows, we …rst present a graphical overview of our basic ideas. From there, we
turn to a formal speci…cation of the model. The model follows our earlier work on the state-
contingent representation of moral-hazard as detailed in Quiggin and Chambers (1998) and
Chambers and Quiggin (2000). The basic analytic device is to recognize that the state-space

2Slade (1996) examines some of the empirical implications of multi-task theory. Prendergast (1999)
provides a convenient summary of the theoretical and empirical work on agent response to incentives.
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moral hazard problem can be informatively rewritten as a problem of hidden knowledge
about the state of Nature that occurs.

After the model is speci…ed and some preliminary results are developed, we …rst examine
when …xed payments are optimal in the presence of multi-task considerations. Holmström
and Milgrom (1991) appear to have been the …rst to have identi…ed conditions under which
…xed payments can be optimal in the presence of moral hazard. They show that, when agent
e¤ort in various tasks are perfect substitutes, …xed wages can dominate incentive schemes.
The intuition is relatively simple. If tasks are perfect substitutes, introducing incentives for
a subset of the tasks leads the agent to direct all his attention to the rewarded tasks. If the
principal values some of the nonrewarded tasks, he may be better o¤ not using performance
indexed incentive schemes.

Our focus is somewhat di¤erent. For the sake of concreteness, we presume that the
noncontractible outputs are socially damaging, e.g., pollution, teacher collusion on student
cheating, damage to the …rm’s capital stock, consumer ill-will. Our result is that, provided
an incentive scheme is implementable, a …xed payment is only optimal for strictly monotonic
agent cost structures when the noncontractible output plays a ‘risk-complementary’ role
in the production of the contractible output. By risk-complementary, we essentially mean
that higher levels of the noncontractible output are associated with riskier outcomes with
respect to the contractible output. (This is made precise below.) For weakly monotonic
cost structures, …xed payments are the norm if the production of the contractible outputs
is technically e¢cient. If incentive schemes are to be used with weakly monotonic cost
structures, they must also encompass technical ine¢ciency.

We then take up the issue of higher- vs. lower-powered incentive schemes. Here our
method is to examine how the introduction of multi-task concerns a¤ects the contracts that
would have been chosen in the absence of multi-tasking. We show that higher powered
incentives tend to emerge when the noncontractible outputs play a risk-substituting role
in the production of the contractible outputs. Lower powered incentives emerge when the
noncontractible outputs play a risk-complementary role.

After a general discussion of higher- vs. lower-powered incentive schemes, we then apply
our ideas to the crop-runo¤ problem. We deduce a number of speci…c results for that case,
and then the paper closes.

1 An Overview

Consider Figure 1. There we present a representative isocost curve for the agent. Production
and consumption in state of Nature 2 are measured against the vertical axis, while production
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and consumption in state of Nature 1 are measured along the horizontal axis. In the absence
of moral hazard, the principal would ask the agent to produce the …rst-best state-contingent
output mix, which equates the relative odds of the states occuring to the state-contingent
marginal rate of transformation. This is illustrated by the ray labelled FB in the …gure, which
passes through the point where the fair-odds line (not drawn) is tangent to the agent’s isocost
curve. As a reward, the principal o¤ers a non-stochastic payment, which in state-contingent
terms is depicted as a point on the bisector. Thus, the agent is fully insured against income
risk and maximizes the expected pro…t from production. State-contingent payments do not
vary with state-contingent production.

If the principal faces single-task moral hazard, such a contract structure leads to agent
shirking. The principal must tie payments to production to provide incentives for agent
e¤ort. Relative to the …rst-best, the principal asks the producer to produce a less dispersed
state-contingent output vector in return for a more dispersed payment vector (Quiggin and
Chambers, 1998).3 In Figure 1, this means the state-contingent production vector pivots to
the right, say, to the ray depicted by A, while the state-contingent payment vector pivots to
the left from the bisector, say, to the ray depicted by B.

How then do we expect the presence of multi-task moral hazard to a¤ect the incentive
structure for the contractible task when the economic e¤ects of the other tasks are hard
to measure or verify? Do we expect the principal to respond by muting the incentives he
introduced in the single-task problem or by introducing higher powered incentives than in
the single-task problem?

Viewed from the perspective of Quiggin and Chambers (1998), this is akin to asking
whether or not multi-tasking creates countervailing incentives. In the adverse selection lit-
erature, if there exist countervailing incentives, one expects bunching or pooling (Lewis and
Sappington 1989). In a moral hazard context, bunching or pooling translates into low pow-
ered or performance-independent incentive schemes. Whether such schemes emerge depends
on how the multiple tasks interact in the agent’s response to a risky production situation.

Consider Figure 1 in the context of the crop-runo¤, nonpoint source pollution problem
discussed in the introduction. Suppose that when the producer undertakes a risky, but
potentially high yielding, production strategy, he also emits large amounts of runo¤ pollution.
An example here is given by nitrogen runo¤ associated with the heavy use of chemical
fertilizer. Intuitively, one then expects that the principal (the regulator) would respond by
asking the agent to produce a less risky state-contingent production vector than in the single-
task case. Naturally, one expects the regulator to achieve this by muting the incentives for

3Strictly speaking, demonstrating this result requires assuming the state-contingent cost structure is
homothetic.
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producing output. If the pollution problem is severe enough, the principal might even be
even respond by o¤ering a …xed payment for a …xed output. In terms of pollution regulation,
this means that the principal imposes a production standard in place of an incentive (tax
or subsidy based) scheme. We show, in fact, that a production standard, or more generally
a …xed payment, is only optimal if runo¤ pollution is associated with riskier production
strategies.

On the other hand, suppose that larger amounts of runo¤ are associated with less risky
production activities. For example, one can now think in terms of large-scale applications
of chemical pesticides and their associated contamination of the groundwater. Pesticides,
by their nature, do not raise maximal output so much as they control damage to potential
output. Intuitively, one now expects the principal to respond by asking the agent to produce
a more risky state-contingent output vector than in the single-task case. The principal could
implement such a state-contingent output vector by introducing a payment scheme with
higher-powered incentives than in the single-task case. Moreover, it seems implausible that
a …xed payment or a production standard would ever be optimal in these circumstances. We
show this formally below.

2 The Model

There are two individuals: a principal and an agent. The agent produces two outputs, a
socially bad output, say pollution, and a valuable output under conditions of production
uncertainty. Only the agent engages in productive activity. Uncertainty is modelled by
‘Nature’ making a choice from a set of two alternatives, ­ = f1; 2g. Production relations
are governed by a state-contingent input correspondence (Chambers and Quiggin, 2000),
X : <2

+ £ <+ ! <n+, de…ned by

X (z;p) =
©
x 2 <n

+ : x can produce (z;p)
ª
; z 2 <2

+; p2 <+:

Here x represents an input vector that is committed prior to the resolution of uncertainty,
i.e., before Nature makes its choice from ­, and z is a vector of state-contingent output
also chosen before Nature makes its choice. In line with much of the recent literature on
multi-tasking, one can alternatively interpret x as the various ‘tasks’ undertaken by the
agent. If Nature picks state s then the ex post or realized value of the output is zs. p is a
non-stochastic output,4 which is socially undesirable, associated with the production of the

4p is taken as non-stochastic to preserve notational simplicity. This speci…cation, however, is consistent
with the treatment in other multi-tasking studies where ‘tasks’ are typically viewed as non-stochastic activ-
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state-contingent output vector and the input committal.5

The principal is risk-neutral and does not directly value the agent’s e¤ort, but he does
value the outputs that emerge from that e¤ort.6 Damage associated with p is given by a twice
di¤erentiable, strictly increasing, and strictly convex function m (p). The agent’s preferences
depend upon his payment from the principal, which we denote as y, the vector of inputs,
x, that he commits, and the level of the socially undesirable output, p. His ex post utility
function is given by

w (y;x) = u (y)¡ g (x;p)

where u : <++ ! < is a strictly increasing, strictly concave, and twice di¤erentiable function,
and g : <n+1+ ! < is everywhere continuous, increasing in x and p, and strictly convex.7 Both
u and g satisfy the von Neumann-Morgenstern postulates. The principal and the agent share
the same probabilities of a state s occurring and that probability is denoted by ¼s 2 <++

(s = 1; 2) with ¼1 + ¼2 = 1.
Ex post, the principal cannot observe either the state of nature or level of p. Hence,

the informational asymmetry between the principal and the agent encompasses both hidden
action (input committal, p emitted) and hidden knowledge (ex post about the state of nature
that occurs) on the part of the agent. What is observable, and by assumption contractible
to both parties, is the ex post output.

Two indirect representations of the state-contingent input correspondence prove useful.
The …rst is the agent’s e¤ort-cost function for a given vector of state-contingent output and
a pollution level. It is de…ned by

c (z; p) = min
x

fg (x;p) : x 2X (z;p)g

ities undertaken by the agent. More generally, however, our approach allows p to be stochastic at the cost
of increased notational complexity.

5p is taken to be socially undesirable for the sake of clarity and because it re‡ects the role that p plays
in our theoretical example. As pointed out below, our results can be extended in an obvious fashion to the
case where p is socially desirable.

6This may seem to represent somewhat of a departure from much of the recent literature on multitasking
where the principal is assumed to have direct preferences over some of the agent’s tasks. However, the
di¤erence at best is only semantic and corresponds closely to the semantic di¤erence between inputs, outputs,
and netputs in the axiomatic literature on production.

7g is taken to be increasing in p to avoid the agent having pathological preferences over the socially
undesirable output. If p were socially desirable, the parallel assumption would be that g is decreasing in
p. However, it is easy to see that these assumptions could be easily relaxed if one’s interest is in modelling
purely ‘anti-social’ behavior.
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if there exists an x 2X (z;p) and 1 otherwise. Hence, for …xed (y; z;p), the agent’s ex post
welfare is

u (y)¡ c (z;p) :

It is always assumed that the agent’s production of (z;p) results in jointness in c (z;p). More
precisely, c (z;p) is not additively separable in z and p. Given the structure of the agent’s
evaluation of e¤ort, this jointness can arise from several sources. It can be embedded in
the production technology itself (formally, the production technology would not be input
nonjoint). Alternatively, the input correspondence could be input nonjoint, but the nonlin-
earity of g could result in this jointness. It is important to recognize, however, that even in
the presence of linear pricing of the inputs, x, one generally does not expect c (z;p) to be
additive.

The second cost function that we consider is the one that is relevant when the agent
privately chooses the level of p associated with a given vector of state-contingent outputs.
Denote the agent’s private cost function by

C (z) =Minp fc (z; p)g :

We assume that C (z) is strictly increasing and positively linearly homogeneous in z.8 Let

p (z) = arg min
p

fc (z; p)g :

Both C and p (z) are assumed to be everywhere smoothly di¤erentiable.
If c (z;p) does not exhibit jointness, then the agent’s choice of z and p are independent

and

p (z) = p;

for all z. The principal, therefore, cannot use an output-based incentive scheme to implicitly
regulate p. In e¤ect, the principal is then reduced to delegating the authority for the optimal
choice of p completely to the agent.9

Following Chambers and Quiggin (1997, 2000), we denote by ¹¼ a partial ordering of <2
+

that ranks vectors of state-contingent output vectors with the same mean. The notation

z ¹¼z0

8Homogeneity is imposed to rule out the possibility of states of Nature cycling between ‘good’ and ‘bad’
(Quiggin and Chambers, 1998; Chambers and Quiggin, 2000, Chapter 4).

9 In fact, if one were to use our model to study the optimal delegation of authority for certain tasks by
the principal to the agent, the optimality of various degrees of delegation would depend critically upon the
degree of jointness of c (z;p).
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means that §s2­¼szs = §s2­¼sz
0
s, and that z is less risky in the Rothschild-Stiglitz sense

than z0. p (z) is risk-complementary at z if

z ¹¼z0 ) p (z) · p (z0)

and risk-substituting at z if

z ¹¼z0 ) p (z) ¸ p (z0) :

Intuitively our notion of risk-complementarity is that the producer responds to a local in-
crease in the riskiness of the output vector by setting p (z) at a higher level (Chambers and
Quiggin, 2000, Chapter 4). Notice that p (z) is risk-complementary at z only if

µ
p1 (z)
¼1

¡ p2 (z)
¼2

¶
(z1 ¡ z2) ¸ 0;

where subscripts on functions denote partial derivatives (Chambers and Quiggin, 2000, Chap-
ter 4). p (z) is risk-substituting only if the above inequality is reversed.10

Our production technology is general enough that either state 1 or state 2 could be
the ‘good’ state of Nature in the sense that a risk-neutral individual facing this technology
would choose to produce a higher output in that state of Nature. To order states of Nature,
therefore, we assume without further loss of generality11 that

C2 (z; z)
¼2

· C1 (z; z)
¼1

; z 2 <+:(1)

Therefore, a risk-neutral individual facing this technology would always choose z2 ¸ z1.
Following, Quiggin and Chambers (1998), a state-contingent output vector is de…ned as
monotonic if z2 ¸ z1.

Suppose

p1 (z)
¼1

¡ p2 (z)¼2
· 0; 8z:

Then p is risk-complementary for monotonic z , and risk-substituting for non-monotonic z:
The converse also holds.

In the state-contingent framework, it is natural to think of di¤erent state-contingent out-
puts as having di¤erent relative input-intensities. For example, returning to the chemical-
runo¤ problem, if the set of states of nature includes states favorable to insect infestations,

10To derive these results, take a di¤erentiably small multiplicative spread of z under the assumption that
p is risk complementary or risk substituting (Chambers and Quiggin, 2000, Chapter 4).

11This is purely a convention. By homogeneity, either (1) or its reversal must hold.
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output in those states will be relatively pesticide-intensive. Whether pesticides are risk com-
plements or risk substitutes depends on whether the relevant states of nature have relatively
high or relatively low output. For any given technology, this, in turn, will depend on whether
the output vector under consideration is monotonic or non-monotonic.

With the ability to monitor p and the ex post state of Nature, the principal chooses p
and z to maximize

¼1z1 + ¼2z2 ¡ c (z;p)¡m(p):

Optimality would require making a non-stochastic payment y to the agent such that

u (y) ¡ c (z;p) = ¹u

where ¹u represents the agent’s reservation utility, while choosing z and p to maximize ex-
pected surplus. The solution to this problem will be referred to as the …rst-best.

If pollution is a risk substitute for monotonic z; then, since the socially optimal p will be
lower than the privately optimal p, the …rst-best optimal z will be riskier than the private
optimum, and hence will also be monotonic. Hence, a su¢cient condition for the …rst best
z to be monotonic is that pollution should be a risk-substitute for monotonic z.

However, because the principal cannot observe p, the state of Nature, or the agent’s
input use, the principal’s problem is to design a contract that awards the agent for what is
observable, ex post output, while ensuring the agent the reservation utility and still coming
as close as possible to maximal expected social surplus. Let Y be the class of all functions
y : <+ ! < that the principal can choose from in designing an agent reward scheme. The
reward scheme works as follows: If the agent realizes an output of z then his income is set
at y (z) by the principal. In picking such a reward scheme, the principal must realize that
if she wants to implement a particular state-contingent output vector (z1; z2), that state-
contingent output vector must be both technically feasible and consistent with the agent’s
private optimization in the sense that

(z1; z2) 2 arg max
p;z

f¼1u (y (z1)) + ¼2u (y (z2))¡Minp fc (z; p)gg
= arg max

z
f¼1u (y (z1)) + ¼2u (y (z2))¡ C (z)g :

Notice, in particular, that here we use the agent’s private-cost function because pollution is
not observable or contractible.

The principal’s problem, therefore, is

max
s2­

8
><
>:

¼1 (z1 ¡ y (z1)) + ¼2 (z2 ¡ y (z2)) ¡m (p (z)) :
(z1; z2) 2 arg max f¼1u (y (z1)) + ¼2u (y (z2))¡ C (z1; z2)g ;

¼1u (y (z1)) + ¼2u (y (z2)) ¡ C (z1; z2) ¸ u

9
>=
>;
;
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for technically feasible z.
Under relatively weak conditions (Quiggin and Chambers, 1998), this version of the

principal’s problem is equivalent to designing a state-contingent payment structure subject
to a set of constraints which make it privately rational for the agent to pick the desired
state-contingent production structure. As discussed by Quiggin and Chambers (1998), the
payment scheme operates in the following way: When the agent realizes an ex post output
of, say, z she receives an ex post payment of y1 if z = z1, a payment of z = z2, and an
arbitrarily large negative payment otherwise. We refer to f(y1; y2) ; (z1; z2)g as the contract
in what follows. Formally, the principal’s problem becomes:

max
(y;z)

8
>>>>>><
>>>>>>:

¼1 (z1 ¡ y1) + ¼2 (z2 ¡ y2)¡m (p (z)) :
¼1u (y1) + ¼2u (y2)¡ C (z1; z2) ¸ u;

¼1u (y1) + ¼2u (y2)¡ C (z1; z2) ¸ u (y1) ¡ C (z1; z1) ;
¼1u (y1) + ¼2u (y2) ¡ C (z1; z2) ¸ u (y2)¡ C (z2; z2)

¼1u (y1) + ¼2u (y2) ¡ C (z1; z2) ¸ ¼1u (y2) + ¼2u (y1)¡ C (z2; z1)

9
>>>>>>=
>>>>>>;

:

The last three constraints in this problem are the ones that ensure that the agent …nds it
privately rational to pick the state-contingent production structure in return for the state-
contingent reward structure o¤ered by the principal.

Manipulating the second and third constraints demonstrates that contracts must be
monotonic in the sense that whichever state has the highest output associated with it must
also have the highest payment (Quiggin and Chambers, 1998). We state this as a lemma for
future reference.

Lemma 1: Any solution must satisfy

(y1 ¡ y2)(z1 ¡ z2) ¸ 0;

with equality only when both terms on the left-hand side are zero.

Lemma 1 implies that the principal chooses a contract with a …xed payment if and only
if the contract also has a …xed production level. An example of a mechanism which would
implement such a contract is a bonus-type scheme in which the agent receives no payment for
production below a certain threshold and a constant payment once that threshold is reached,
that is,

y (z) =

(
0 if z < ẑ
ŷ if z ¸ ẑ:(2)
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Provided that ŷ allows the agent to reach his reservation utility level, he will accept this
contract and devote all his e¤ort to ensuring that he realizes ẑ.

Following Grossman and Hart (1983), Weymark (1986), and Quiggin and Chambers
(1998), the principal’s problem can be rewritten:

max
z

f¼1z1 + ¼2z2 ¡m (p (z)) ¡ Y (z1; z2; u)g :

Y (z1; z2; u) represents what Quiggin and Chambers (1998) term the agency-cost function
and is de…ned as the least costly way in an expected value sense for the principal to get the
agent to adopt (z1; z2) in an incentive compatible manner. Y (z1; z2; u), thus, represents the
agent’s expected payment for producing (z1; z2). Mathematically,

Y (z1; z2; u) = min
y

8
>>>>>><
>>>>>>:

¼1y1 + ¼2y2 :
¼1u (y1) + ¼2u (y2) ¡ C (z1; z2) ¸ u;

¼1u (y1) + ¼2u (y2)¡ C (z1; z2) ¸ u (y1) ¡ C (z1; z1)
¼1u (y1) + ¼2u (y2)¡ C (z1; z2) ¸ u (y2) ¡ C (z2; z2)

¼1u (y1) + ¼2u (y2)¡ C (z1; z2) ¸ ¼1u (y2) + ¼2u (y1) ¡ C (z2; z1)

9
>>>>>>=
>>>>>>;

:

The solution to the agency-cost problem is one of the main contributions of our earlier
paper (Quiggin and Chambers 1998). While our derivation there is relatively complicated,
the end result is that the underlying moral hazard problem can be reduced to a remarkably
simple nonlinear program. We do not go into details here, but instead refer the reader to
our earlier work.12 Applying Results 1- 6 of Quiggin and Chambers (1998), the principal’s
problem can be written

max
z

f¼1z1 + ¼2z2 ¡m (p ( z))¡ Y (z1; z2; u) : z2 ¸ z1g ;

where

Y (z1; z2; u) = ¼1h (¹u+ C(z1; z1)) + ¼2h
µ
¹u+ C(z1; z1) +

C(z1; z2)¡ C(z1; z1)
¼2

¶
;(3)

and h is the inverse mapping of u. A brief comment about this result is appropriate before
proceeding. Under (1) and homogeneity of C , the optimal state-contingent production struc-
ture must be monotonic.13 In other words, the principal will order states of Nature exactly
as would a risk-neutral individual facing the technology. Because the production structure is

12Chambers and Quiggin (2000, Chapter 9) also gives a complete treatment of the problem.
13This follows from Result 1 and Lemma 4 in Quiggin and Chambers (1998).
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monotonic in this sense, Lemma 1 then implies that the state-contingent payment structure
must be as well. Second, for given z, the optimal state-contingent payments are given by

y1 = h (¹u+ C(z1; z1))(4)

and

y2 = h
µ
¹u+ C(z1; z1) +

C(z1; z2) ¡C(z1; z1)
¼2

¶
:(5)

Intuitively, for higher-powered state-contingent contracts, the reward schedule relating
payments to output (which by Lemma 1 is positively sloped) is in some sense steeper than
for lower-powered incentives. For example, in comparing two a¢ne payment schedules with
a common intercept, the one with the steeper slope has the higher powered incentives.
Now consider comparing two a¢ne payment schedules with a common slope but a di¤erent
intercept. The schedule with the higher intercept now involves higher overall incentives for
all ex post outputs. The certainty of higher income associated with it will entice some agents
to accept it who would reject the other contract. If we compare two a¢ne payments schemes
with di¤erent intercepts and slopes, the intercepts can be chosen so that the one with the
steeper slope o¤ers lower returns for all relevant ex post outputs than the alternative. More
generally, for nonlinear contract structures, the di¤erence between a higher-powered and
a lower-powered contract involves more than just the slope of the payment schedule for
risk-averse agents.14

Alternatively, one can also observe that the contract with what are traditionally viewed
as the highest-powered incentives, where the agent is made the residual claimant, exposes
the agent to the entire spectrum of income and production risk. Moreover the contract
with what are usually perceived as the lowest-powered incentives, where the agent receives
a …xed payment regardless of the production outcome, exposes the agent to no income risk.
Therefore, we base our formal de…nition of higher powered incentives upon the relative
dispersion of contracts. Contract

©
yA; zA

ª
has higher powered incentives than

©
yB; zB

ª
if

yA2 ¸ yB2 ¸ yB1 ¸ yA1
zA2 ¸ zB2 ¸ zB1 ¸ zA1 :

Thus, our notion of higher-powered contracts is that they are ‘spread out’ versions of lower-
powered contracts. The agent is asked to produce a more dispersed output distribution in
return for a more dispersed income payment distribution.

14Both Holmström and Milgrom (1991) and Baker (1992) use linear payment schedules. In Holmström
and Milgrom (1991), this ambiguity is removed by restricting attention to individuals with constant absolute
risk aversion. In Baker (1992), individuals are risk neutral.
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3 Optimality of Fixed Payment Schemes

By Lemma 1, …xed payments only emerge in concert with …xed production. Our notion of
a …xed payment-production standard is the lowest-powered incentive scheme possible, where
the optimal contract can be implemented by a mechanism of the form (2). Both the state-
contingent production and the payment are …xed. For mnemonic simplicity, we refer to the
case where the contract does not involve a …xed payment as an incentive contract. Suppose
that z1 = z = z2, is optimal. By (3),

Y (z; z; u) = h (¹u + C (z; z)) ;

with h (¹u +C (z; z)) representing the …xed payment to the agent. The optimal value of the
principal’s objective function is then

z ¡ h (¹u +C (z; z)) ¡m (p (z; z)) :

The only implementable alternatives to the …xed payment-production standard are strictly
monotonic contracts with z2 > z1. Consider the multiplicative spread of the output vector
de…ned by increasing z2 by the small positive amount ±z2 and decreasing z1 by ¡¼2¼1 ±z2. The
induced change in the principal’s welfare has the same sign as

¡h0 (¹u +C (z; z))
µ
C2 (z; z)
¼2

¡ C1 (z; z)
¼1

¶
¡m0 (p (z; z))

µ
p2 (z; z)
¼2

¡ p1 (z; z)
¼1

¶
;(6)

where 0 denotes a derivative. If p (z; z) is a risk substitute, moving to a riskier z decreases
p, whence

³
p2(z;z)
¼2

¡ p1(z;z)
¼1

´
< 0. Thus, by (1) such an increase in the riskiness of z unam-

biguously increases the principal’s welfare in this case. Hence, a …xed payment-production
standard cannot be optimal if p (z; z) is a risk substitute, and the multiplicative spread is
implementable. For a …xed payment-production standard to be optimal, such an increase
in the riskiness of z must make the principal’s welfare fall. By (1), this can only happen if³
p2(z;z)
¼2

¡ p1(z;z)
¼1

´
¸ 0. But this requires that p ( z) rises as a result of the move to the riskier

z.

Proposition 1: If p (z) is a risk substitute, and the principal can implement an incentive
scheme, a …xed payment-production standard cannot be optimal.

A word about the structure of our problem is appropriate. The unmeasurable task, p ,
has been modelled as a ‘bad’. Results change in a predictable manner if the unmeasurable
task is a ‘good’. In that case, the multiplicative spread above would increase the principal’s
expected pro…t from production as expected return does not change, but agent cost falls by
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(1). Hence, if the unmeasurable task is a good, then a …xed payment is optimal only if it is
a risk substitute. A similar argument applies to the remaining results in the paper, and we
leave it to the reader to appropriately adjust our stated results.

Proposition 1 may be given some heuristic content by considering the case where the
agent is a factory employee, and p is wear and tear on a piece of capital equipment that is
used by several employees. It seems plausible that p will be directly related to the rate and
intensity at which the equipment is operated. Suppose that the equipment is such that if
all things go well, its productivity in terms of z increases dramatically when it is operated
at high speed but diminishes even more rapidly if things go poorly. Here one can think of
the states of Nature as being the worker’s surrounding environment, his health, etc. Then
in our terms, p would be risk complementary. And Proposition 1 suggests that the …rm
might consider paying workers a straight wage rather than a piece rate. Piece rates, in this
instance, could lead to excessive wear and tear on the capital stock.

Proposition 1 remains true even if (1) holds as an equality. In that instance, the multi-
plicative spread of z leaves the agent’s cost, and hence the principal’s agency cost, unchanged.
But if p (z) is a risk substitute, then the riskier z still carries with it a lower p; which is welfare
improving. Chambers and Quiggin (1997,2000) have de…ned a class of technologies for which
(1) always holds as an equality– the generalized Schur convex technologies. C is generalized
Schur convex if

z ¹¼z0 ) C (z) · C (z0) ; z 2 <2
+:

Intuitively, it is the class of stochastic technologies which leads a risk-neutral individual to
always pick a non-stochastic production vector.15

Quiggin and Chambers (1998, Corollary 8.1) show that a principal facing single-task
moral hazard with an agent using a generalized Schur convex technology can completely
eliminate that moral hazard. If costs are generalized Schur convex, there is no tension be-
tween risk allocation and production e¢ciency. Production e¢ciency then requires producing
a non-stochastic output which, in turn, is implementable by a …xed payment.

In the multi-task case, the principal’s ability to resolve the agency problem must be
traded o¤ against her ability to control p (z) indirectly through the contract. Thus, even
when the technology is generalized Schur convex, the principal prefers an incentive contract
if p is a risk substitute.

15As Chambers and Quiggin (1997) demonstrate, the non-stochastic technology is a degenerate special
case of the class of generalized Schur convex technologies. However, generalized Schur convex technologies
are not trivially stochastic as also demonstrated by Chambers and Quiggin (1997).
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Corollary 1.1: If C is generalized Schur convex, and if p (z) is a risk substitute at z optimal
for the single-task moral-hazard problem, the principal prefers a multiplicative spread
of z to z:

Corollary 1.1 and Lemma 1 imply that the principal always gains, as compared to the
single-task optimal contract, by introducing a riskier production structure. Hence, when
costs are generalized Schur convex, the optimal regulatory scheme will involve higher-powered
incentives for production than in the single-task case if p (z) is a risk substitute.

Corollary 1.1 establishes a seemingly paradoxical result. Even when it is privately cheap-
est to implement a non-stochastic z and doing so completely removes agency costs, the
principal’s concerns about p will lead him to insist on the agent deploying a stochastic pro-
duction vector. Multi-tasking causes the principal to insist on an incentive scheme where he
would otherwise implement a standard.

If there is to be a case made for standards when incentive schemes are feasible, it must
rest on the presumption that the noncontractible activities are risk-complementary. In fact,
it is an easy consequence of preceding arguments to state a su¢cient condition for standards
to be optimal.

Proposition 2: A …xed payment-production standard is always optimal if C is generalized
Schur convex and p (z) is risk-complementary.

When the cost structure is generalized Schur convex, the incentive problems associated
with the presence of moral hazard can be e¢ciently surmounted by implementing a produc-
tion standard. If p (z) is risk-complementary as well, then the principal’s evaluation of the
damage caused by the unobservable task also pushes him toward a standard.

There are, however, instances where incentive problems are so severe that even in the
presence of risk-substitutability, they will prevent the principal from implementing anything
other than a production standard. One such limiting case is given by the case of complete
aversion to risk16 where the agent’s attitudes toward state-contingent incomes are given by

W (y1; y2) = minfy1; y2g :(7)

In an appendix, we show

Lemma 2 If agent preferences are given by (7), z is implementable if and only if z1 = z2:
16Of course, this case departs from the expected-utility hypothesis that underlies the rest of the paper.

However, we can arrive at this characterization by assuming constant absolute risk aversion and allowing the
risk parameter to go to in…nity.
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Because the agent is so averse to risk, she only cares about the lowest payment she may
receive. Thus, o¤ering her a reward for realizing a higher output in one of the states of
Nature does not elicit greater e¤ort. Ex ante, it carries no marginal gain in welfare. All
her e¤ort is concentrated on ensuring that she realizes the lowest acceptable output. The
principal’s problem, therefore, becomes one of picking the optimal standard. A natural
conjecture, therefore, is that as the agent’s risk aversion increases, the principal becomes less
likely to rely upon a high powered contract because the cost of implementing such contracts
grows with the agent’s risk aversion.

By Lemma 2, the agency cost function is now C (z; z) + ¹u. The principal’s problem is to

max
z

fz ¡C (z; z) ¡m (p (z; z))g ¡ ¹u:

The solution is straightforward, and therefore we do not discuss it in detail. Even here,
however, a multiplicative spread about the optimal z improves the principal’s welfare if p (z)
is a risk substitute. But as Lemma 2 establishes, this riskier z is never implementable.

Corollary 1.2: If agent preferences are given by (7), ignoring incentive e¤ects, the principal
always prefers an incentive scheme to a standard if p (z) is a risk substitute.

Optimality of …xed payments and production standards requires the presence of risk-
complementarity. One can go further. De…ning an auxiliary variable, ®, by

z2 = z1+ ®;

the principal’s …rst-order conditions for the multi-task problem are

1¡ Y1 (z1; z2; ¹u) ¡ Y2 (z1;z2; ¹u) ¡m0 (p (z)) (p1 (z) + p2 (z)) · 0; z1 ¸ 0;

¼2 ¡ Y2 (z1; z2; ¹u) ¡m0 (p (z)) p2 (z) · 0; ® ¸ 0;(8)

in the notation of complementary slackness. We restrict attention to the case where a
production standard is optimal at a positive level of production. Hence, the …rst expression
in (8) requires

Y2 (z; z; ¹u) +m0p2 (z; z) = 1 ¡ Y1 (z; z; ¹u) ¡m0p1 (z; z) :(9)

A standard is only optimal if the optimal solution requires ® = 0, whence the second expres-
sion in (8) requires

¼2 ¡ Y2 (z; z; ¹u)¡m0p2 (z) < 0:(10)
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Adding (9) and (10) yields

¼1 ¡ Y1 (z; z; ¹u) ¡m0p1 (z; z) > 0:(11)

Recognizing that in the case of a standard Y (z; z; ¹u) = h (¹u+ C (z; z)), allows us to rewrite
(10) and (11) as

¼1 ¡ h0 (¹u +C (z; z))C1 (z; z) ¡m0p1 (z; z) > 0;

¼2 ¡ h0 (¹u +C (z; z))C2 (z; z) ¡m0p2 (z; z) < 0:(12)

The left-hand side of the inequalities in expressions (12) can be recognized as the deriva-
tives of the principal’s objective function in the case where he is able to observe the state
of Nature, but p remains unobservable. Because the state of Nature is observable, the
principal can write enforceable state-contingent contracts without fear of providing adverse
incentives. Hence, it is optimal to o¤er the agent a …xed payment equalling h (¹u + C (z)).
However, because the principal cannot observe p, he cannot regulate it by charging an ap-
propriate Pigouvian tax or granting a subsidy. The agent’s private cost function and p (z),
therefore remain relevant. We shall refer to this as the second-best problem and note that it
corresponds with the classic externality problem.17 For the sake of simplicity, assume that
the principal’s second-best objective function is concave in z.

Expressions (12) require that the solution to the second-best problem involves a non-
monotonic production structure. Thus, a …xed payment-production standard is optimal only
if p is a strong enough risk complement to force the principal to overturn the sorting of states
of Nature imposed by (1). With moral hazard, a non-monotonic z is not implementable.
The closest the principal can come to the second-best non-monotonic production structure
is to o¤er the agent a …xed payment and a production standard.

For the converse, suppose that the principal’s solution to the second-best problem is
non-monotonic. Call it zSB. For any monotonic z, there is a ¸ 2 [0; 1] such that z¤ =
¸zSB + (1¡ ¸)z lies on the bisector. By the de…nition of zSB

E¼[zSB] ¡ h(C(zSB) + ¹u) ¡m
¡
p(zSB)

¢
¸ E¼[z] ¡ h(C(z) + ¹u)¡m (p(z)) ;(13)

where E¼ denotes the expectations operator with respect to ¼. Therefore:

E¼[z¤] ¡ Y (z¤; ¹u) ¡m (p( z¤)) = E¼[z¤] ¡ h(C(z¤) + ¹u)¡m (p(z¤))

¸ E¼[z] ¡ h(C(z) + ¹u) ¡m (p(z))

¸ E¼[z] ¡ Y (z;¹u) ¡m (p(z))
17 In earlier versions of this paper, we referred to the second-best problem as the externality with insurance

problem.
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The equality follows from (3) because z¤ lies on the bisector. The …rst inequality follows by
concavity of the principal’s objective function and (13). The …nal inequality follows from
Result 2 of Quiggin and Chambers (1998), which establishes that Y (z;¹u) is always bounded
below by h(C(z)+¹u).18 Combining results, we have established that in this case there always
exists a production standard which dominates any implementable monotonic contract. Thus,
we conclude:

Proposition 3: If C (z1; z2) is strictly monotonic, a …xed payment-production standard is
optimal if and only if the solution to the second-best problem has non-monotonic z.

Our notion of a …xed payment-production standard involves the principal specifying a
contract where the agent produces a nonstochastic output in return for a nonstochastic
payment. Holmström and Milgrom (1991), however, have identi…ed conditions under which
a principal …nds it optimal to o¤er the agent a non-stochastic reward in return for a stochastic
output. By Lemma 1, this cannot happen in our model. The reason lies in our assumption of
strict monotonicity of the agent’s private cost structure. If that assumption is relaxed, then
incentive compatibility only requires that the payment structure be weakly monotonic. The
possibility of a …xed payment for a stochastic output then emerges. However, as we show
immediatly below, …xed payments typically will be optimal for cost structures that are not
strictly monotonic, regardless of the presence of multi-task concerns, unless production of z
is technically ine¢cient. Original speci…cations of agency problems in terms of a stochastic
production function (e.g., Ross, 1973; Harris and Raviv, 1979) presumed that production
was always technically e¢cient. Therefore, in addition to identifying how our results change
as a consequence of relaxing the strict monotonicity assumption, the discussion in the next
section also helps explain some of the di¢culty early moral-hazard studies encountered in
identifying monotonic contracts.

3.1 Weak monotonicity

Thus far, we have assumed that the cost structure is strictly monotonic. Chambers and
Quiggin (2000, Chapter 4) have shown that specifying the state-contingent technology by a
stochastic production function yields a cost structure that is only weakly monotonic. More
precisely, cost is non-decreasing in z; but is strictly increasing only along a one-dimensional

18Because Quiggin and Chambers (1998) only consider a single-task moral hazard problem, h (C (z) + ¹u)
is what they refer to as the …rst-best agency cost function, YFB . This referenced result, therefore, simply
re‡ects the fact that contracts with incentives are more expensive for the principal to implement than the
…rst-best contract. Note that this observation underlies much of the empirical work on incentive contracts.
Prendergast (1999) contains a review of this literature.
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expansion path determined by the stochastic production function. Quiggin and Chambers
(1998) and Chambers and Quiggin (2000, Chapter 9) pinpoint this weak monotonicity as the
stumbling block to establishing contract monotonicity in the original state-space formulations
of the principal-agent problem. The following cost structure

C (z1; z2) = max
©
c1 (z1) ; c2 (z2)

ª
;

corresponds to a stochastic production function satisfying free disposability of state-contingent
output (Chambers and Quiggin 2000, Chapter 4), and will be referred to as weakly mono-
tonic. Here ci (zi) is the minimal ex post cost associated with producing zi. Imposing positive
linear homogeneity on this speci…cation requires

ci (zi) = cizi

with ci > 0. To ensure consistency with (1) in this case where C (z1; z2) is not smoothly
di¤erentiable, assume that the …rst state of Nature is the ‘bad’ state of nature so that c1 > c2
. Regardless of their risk attitudes or their subjective probabilities, residual claimants facing
this technology always choose z2 > z1.

An optimal solution to the single-task problem for this cost structure is for the principal
to o¤er a …xed payment, subject to the production of some minimum level of output z1: For
any monotonic z = (z1; z2) with c1z1 ¸ c2z2 consider the …xed payment

y(z1) = y(z2) = h (¹u+ c1z1) :

Because C (z1; z1) = C (z1; z2) = c1z1, this contract o¤ers the agent exactly his reservation
utility. It is also incentive compatible because for monotonic z, C (z2; z2) = c1z2 ¸ c1z1. If
c1z1 < c2z2, the principal can achieve a higher level of z1 with no change in cost to the agent.

Output vectors z with c1z1 < c2z2 can be implemented with a payment vector (y1; y2)
satisfying

¼1u (y1) + ¼2u (y2) ¡ c2z2 = ¹u

¼1u (y1) + ¼2u (y2) ¡ c2z2 = u (y1)¡ c1z1:

However, for any such z; there exists z0 with

C (z01; z
0
2) = c1z01 = c2z

0
2

z1 < z01 < z02 < z2

¼1z01 + ¼2z02 = ¼1z1 + ¼2z2;

19



which can be implemented with payment structure

y(z01) = y(z
0
2) = h (¹u+ C (z01; z

0
2)) :

Since

C (z1; z2) = c2z2 > c2z02 = C (z01; z02) ;

we have, by the convexity of h that

¼1y1 + ¼2y2 > h (¹u + c2z2)

> h (¹u +C (z01; z02)) :

The contract associated with z0 thus o¤ers the principal the same expected return but a
lower cost. Hence, he will always prefer the …xed-payment contract eliciting output z0 to the
incentive-based contract eliciting z:

Now consider the general multitask case. As in the single-task case, (4) and (5) imply
that y2 ¸ y1 if and only if

maxfc1z1; c2z2g = C (z1; z2) ¸ C (z1; z1) = c1z1:

The optimal payment structure will thus be strictly monotonic if and only if

c2z2 > c1z1:(14)

Expression (14), however, requires that the state-contingent output bundle be technically
ine¢cient in the sense that the agent could produce strictly more z1 while maintaining the
level of z2 without incurring any higher cost. Hence, for this cost structure, we conclude on
the basis of these arguments that

Proposition 4: For the weakly monotonic cost structure

C (z1; z2) = max fc1z1; c2z2g ;

the principal o¤ers strictly monotonic payments if and only if production of z is techni-
cally ine¢cient. In the single-task problem, the principal always o¤ers a …xed payment,
and production of z is never technically ine¢cient.

Clearly, the only situation where the principal will desire a technically ine¢cient pro-
duction pattern is one in which p (z) is strongly risk-substituting, so that the bene…ts which
arise in the single-task problem from the adoption of the less risky output z0 in place of z
are o¤set by an increase in p (z).
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4 Optimal Contracts and the Structure of Incentives

We now turn to the broader issue of whether multi-task problems lead to higher powered
or lower powered incentives. We use the single-task moral hazard problem as a point of
reference. The single-task optimum yields a particularly interesting benchmark because it
corresponds to the case where the principal e¤ectively delegates the responsibility for the
choice of p completely to the agent.

4.1 The Single-Task Optimum

We only consider the case where a standard is not optimal in the single-task case.19 The
…rst-order conditions for an optimum then are

¼1 ¡ Y1 (z1; z2; ¹u) · 0; z1 ¸ 0;

¼2 ¡ Y2 (z1; z2; ¹u) = 0; z2 > 0;

in the notation of complementary slackness. Quiggin and Chambers (1998) fully characterize
the solution to this problem. The interested reader can refer to that paper for details. For
an interior solution,

Y2 (z1; z2; ¹u)
¼2

=
Y1 (z1; z2; ¹u)

¼1
:(15)

Observing this solution for the single-task moral hazard problem allows us to state the
following lemma (proof is in an appendix):

Lemma 3 At the optimal solution to the single-task moral hazard problem, implementing
a (small) multiplicative spread of z yields a higher powered contract.

In the single-task moral hazard problem, a move to a higher powered contract has no
impact on the principal’s welfare. Hence, the principal obviously has no incentive to move
in this direction, but as the next section illustrates, matters change in the multi-task case.

4.2 Higher vs. Lower Powered Contracts

Evaluate the principal’s objective function at the solution to the single-task agency problem
and consider a mean-preserving increase in the riskiness of z. The resulting change in the
principal’s objective function is

¡
·
Y2 (z1; z2; ¹u) ¡ ¼2

¼1
Y1 (z1; z2; ¹u) +m0 (p (z))

µ
p2 (z) ¡ ¼2

¼1
p1 (z)

¶¸
±z2

19This implies that z2 > 0:
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with ±z2 > 0. By (15), this reduces to

¡m0 (p (z))
µ
p2 (z)¡ ¼2

¼1
p1 (z)

¶
±z2:

Lemma 3, in turn, implies that such a mean-preserving increase in the riskiness of z leads
to a mean-preserving increase in the riskiness of y. On this basis, we conclude

Proposition 5: At the single-task agency optimum, the principal bene…ts from a contract
structure with higher-powered incentives if p (z) is a risk substitute. At the single-task
agency optimum, the principal bene…ts from a contract structure with lower-powered
incentives if p (z) is risk-complementary.

Proposition 5 con…rms our intuition. Suppose that the principal ignores the possibility
of multi-tasking. He then o¤ers the agent a contract that trades o¤ e¢ciency losses against
enhanced provision of incentives. It is often alleged that contracts which focus solely on
measurable outcomes provide too high powered incentives and encourage the agent to divert
attention from other tasks toward producing the contracted outcomes. Baker (1992), for
example, contains a clear illustration of this e¤ect for risk-neutral agents. Proposition 5
quali…es this argument by showing that the principal can bene…t from providing even higher
powered incentives when p (z) is a risk substitute. However, when p (z) is a risk complement,
the appropriate response is for the principal to mute the incentives associated with the
contracted outcomes, as in the case examined by Baker.

As an illustration of this e¤ect, consider the case of preventive medicine. Suppose that
p is the cost of tests and diagnostic procedures, and that doctors’ contractual arrangements
cannot be made contingent on p. Then if doctors face high-powered incentives, for example
in the form of potentially bankrupting malpractice suits, and if diagnostic procedures reduce
the riskiness of patient outcomes, excessively high values of p will be chosen. Insurers or
governments providing health funding will therefore have an incentive either to ensure that
doctors face lower-powered incentives (for example, through tort law reform) or to design
contracts in which p can be monitored (for example, managed care contracts).

5 An application to Nonpoint-Source Pollution Con-
trol

Earlier, we brie‡y discussed a speci…c multi-task, principal-agent problem: the design of opti-
mal crop payments schemes in the presence of noncontractible runo¤ pollution. Government
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supported payment schemes, typically advertised as protection against market vagaries, have
a long standing in both the United States and the European Community. In recent years, it
has become increasingly recognized that such schemes should be designed taking into account
the potential adverse e¤ects that agricultural production has on the environment (Lichten-
berg and Zilberman, 1986). Thus, in recent U.S. farm bills there has been increased use of
environmental provisions such as ‘swamp buster’ clauses, conservation acreage reserves, and
the installation of riparian bu¤ers. Such programs are typically based on observable conser-
vation practices, such as the planting of fragile lands to cover crops instead of commercial
crops. In a broad sense, therefore, the optimal design of these policies can be addressed by
standard Pigouvian analysis.

Our model is more apposite to the case where the environmental activity is not con-
tractible but is directly related to the production activity. Such is the case with the reg-
ulation of non-point source pollution from farming in the form of runo¤. Segerson (1988)
studied the optimal regulation of nonpoint-source pollutants for an agent who is indi¤er-
ent to the dispersion of runo¤. Dosi and Tomasi (1994) contains a number studies on the
optimal regulation of nonpoint-source pollution control under di¤erent informational and
institutional settings including hidden action and hidden information. None of these studies,
however, address the problem in a multi-task framework with moral hazard. Chambers and
Quiggin (1996) have studied nonpoint-source pollution control as a multi-task problem under
di¤erent informational assumptions than used here. Speci…cally, they consider pure hidden
action in the sense that the agent’s e¤ort, crop output, and runo¤ level are all unobservable.
What is observable and contractible is the state of Nature. Therefore, unlike the present
model, hidden action is not coupled with hidden knowledge.

In this example, ­ corresponds to climatic conditions that are beyond the farmer’s con-
trol. z represents crop output in the two states of Nature, and p is runo¤ pollution from
farming, which is assumed unobservable by the principal who is now taken to be a social
planner. Thus, under our assumptions one might think intuitively of state 1 as indexing
relatively low natural moisture or drought conditions, while state 2 corresponds to adequate
natural moisture. Or alternatively, state 1 might index a severe natural pest infestation
and state 2 might index no pest infestation. We are particularly interested in studying the
possibility of a command and control approach to the regulation of nonpoint-source runo¤
pollution. In actual policy experience, these are often manifested in the form of acreage or
production quotas or mandated ‘best management practices’. If p is a risk substitute, these
practices are likely not optimal. Therefore, we initially focus attention on the case where
runo¤ is risk-complementary.
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Assume that the agent’s cost function can be written as

c (z; p) = c1z1 + c2 (z2; p) ;

where c1 > 0 and c2 (z2; p) is positively linearly homogeneous in its arguments and strictly
increasing in z2. This particular technology is a special case of what Chambers and Quiggin
(1996, 2000) refer to as a state-allocable technology. Speci…cally, it implies that the agent’s
tasks can be targetted at two production activities: preparing the …rst state-contingent
output and preparing the second state-contingent output and the runo¤. Runo¤, therefore,
is most naturally associated with the production of the second state-contingent output. This
assumption is made solely to streamline the analysis and to allow for the statement of clear-
cut results.

In general, one expects runo¤ to be associated with both state-contingent outputs. The
case of chemical fertilizer illustrates. If applied with too little moisture from natural or man-
made sources, chemical fertilizer can sharply reduce yield. However, if moisture is adequate,
its application can greatly enhance yield. Thus, assuming runo¤ is directly associated with
chemical application, one expects there to be regions in which chemical fertilizer is risk
complementary and is related to both z1 and z2. Our speci…cation, therefore, would perhaps
be most appropriate for the case where 1 indexes natural moisture that is too little for
optimal growth but su¢cient to avoid chemical ‘burn’ of the crop.20

The farmer’s private cost function is now

C (z) = c1z1 +Minp
©
c2 (z2; p)

ª

= c1z1 + z2Min pz2

½
c2

µ
1; p
z2

¶¾

= c1z1 + z2c2 (1; ½)

´ c1z1 + c2z2:(16)

where

½ = arg min
p
z2

½
c2

µ
1; p
z2

¶¾
:

Unobservable runo¤ is, therefore, given by ½z2. Because runo¤ is always proportional to z2
and unrelated to z1, it is risk-complementary in a very strong sense. Regardless of what

20 In the agricultural-economics literature, the concept of a risk increasing input corresponds approximately
to our notion of risk complementary. Chemical fertilizers are cited as an example of a risk increasing input.
Recently, there has been an empirical debate on whether fertilizers, and in particular chemical fertilizers, are
in fact risk increasing (Horowitz and Lichtenberg, 1993; Babcock and Hennessy, 1996).

24



happens to the dispersion of z, runo¤ increases if z2 increases. This speci…cation, therefore,
allows for the possible optimality of production standards as a means of controlling the
runo¤.

The agent’s private isocost curve, therefore, corresponds to a negatively sloped line seg-
ment in state-contingent output space. Under (1), a risk-neutral individual facing this tech-
nology would, therefore, set z1 = 0.

Assume that the social marginal cost of runo¤ is a positive constant ¹. The planner’s
second-best problem in this framework, therefore, can be written

Maxz f¼1z1+ ¼2z2 ¡ ¹½z2 ¡ h (¹u + c1z1 + c2z2)g ;

and the associated …rst-order conditions, which are necessary and su¢cient, are

¼1 ¡ h0 (¹u+ c1z1 + c2z2) c1 · 0; z1 ¸ 0

¼2 ¡ ¹½¡ h0 (¹u+ c1z1 + c2z2) c2 · 0; z2 ¸ 0;

in complementary slackness notation.
Any solution to the second-best problem must, therefore, satisfy

h0 (¹u+ c1z1 + c2z2) ¸ max
½
¼1
c1
; ¼2 ¡ ¹½
c2

¾
:(17)

¼1
c1

and ¼2¡¹½
c2

, respectively, are the social bene…t cost ratios associated with a marginal
increase in z1 and z2, while h0 (¹u + c1z1 + c2z2) represents the marginal cost of increasing the
agent’s welfare. Because of the linear nature of cost and damages, optimality requires setting
the latter equal to the maximal of the two former quantities. The optimal solution involves
setting z1 = 0, z2 = 0, or is indeterminate. We assume away the indeterminate solutions in
what follows..

Therefore, it is a straightforward consequence of Proposition 3 that:

Corollary 3.1: In the nonpoint-source pollution control model, a …xed payment-production
standard is optimal only if ¼1c1 >

¼2¡¹½
c2
:

A production standard, therefore, is only optimal if the damage associated with runo¤
from crop production is so large that it would lead even a risk-neutral producer (forced
to internalize the cost of runo¤) to reverse the ordering of states dictated by (1). In fact,
environmental damage is so large that it is second-best optimal for the producer only to
produce a positive amount in the ‘bad’ state of nature. No e¤ort would then be devoted to
z2, and consequently run o¤ would be zero as well. However, this outcome is not monotonic
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and, therefore, is not implementable. The planner thus opts for the next best thing which
is a standard.

There are a number of obvious and intuitive corollaries to Corollary 3.1. They include that
production standards are more likely to be an optimal way of regulating the nonpoint-source
pollutant the larger is the rate at which runo¤ occurs and the larger is the marginal damage
associated with runo¤. Standards are less likely to be optimal, even in the case of strong risk-
complementarity, the larger is the initial gap between the marginal-cost probability ratios
given in (1).

For the remainder of this section, we will consider the case where runo¤ is a strong risk
complement, but production standards are not optimal. Our goal, of course, is to ascertain
the e¤ect that the presence of multi-task considerations has on the design of an optimal
crop-payment scheme. Therefore, maintain the assumption that ¼2¡¹½c2 > ¼1

c1
. The optimal

second-best solution sets z1 = 0. Denote the optimal level of z2 by zSB2 and the associated
optimal non-stochastic payment by ySB = h

¡
¹u + c2zSB2

¢
.

We …rst consider the solution to the single-task agency problem in which there is no
pooling of payments. Substituting the assumed cost structure into (4) and (5), the principal’s
objective function can be written

¼1z1 + ¼2z2 ¡ ¼1h (¹u+ (c1 + c2) z1)¡ ¼2h
µ
¹u + (c1 + c2) z1 +

c2
¼2

(z2 ¡ z1)
¶
:

Introducing an auxiliary variable as before, the associated necessary and su¢cient …rst-order
conditions for an interior solution with no pooling of payments are

1 ¡ (c1 + c2) [¼1h0 (u1) + ¼2h0 (u2)] = 0;(18)

¼2 ¡ h0 (u2)c2 = 0;(19)

where ui = u (yi). Expression (18) requires that the principal exhaust all opportunities
for raising pro…t by having the agent nonstochastically increase production, while expression
(19) implies that the principal will design the contract so that the agent chooses z2 e¢ciently
at the margin.

If the crop-payment contract is strictly monotonic and does not admit a production
standard Lemma 1, (18), and (19) ensure that

¼2
c2

= h0 (u2) > ¼1h0 (u1) + ¼2h0 (u2) =
1

c1 + c2
(20)

in the single-task optimum. Expression (20) says if a production standard is not optimal,
the bene…t cost ratio from raising z2 must be greater than the bene…t cost ratio associated
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with nonstochastically increasing production. If it were not, at the margin the principal is
better o¤ asking the farmer to increase production nonstochastically than asking the farmer
to increase z2. Under such circumstances, the principal would always bene…t more from a
production standard than from a separating solution.

Turning to the multiple-task agency problem, the principal’s necessary and su¢cient
…rst-order conditions (after introducing an auxiliary variable as before) essentially repeat
(18) and (19) while accounting for the presence of runo¤ in the design of the crop-payment
schedule:

1¡ (c1 + c2) [¼1h0 (u1) + ¼2h0 (u2)] ¡ ¹½ · 0; z1 ¸ 0;(21)

¼2 ¡ h0 (u2) c2 ¡ ¹½ = 0:(22)

Expression (22) is written as an equality because our assumptions guarantee that a produc-
tion standard is not optimal.

We …rst compare the solution of the multiple-task moral hazard problem to the second-
best problem above. Denoting the solutions to the multiple-task problem by superscript M ,
we have (the proof is in the Appendix):

Proposition 6: Assume ¼2¡¹½c2 > ¼1c1 ; then for an interior solution to the multiple-task moral
hazard problem,

yM2 = ySB > yM1 ;

C
¡
zSB1 ; z

SB
2

¢
> C

¡
zM1 ; z

M
2

¢
;

and

zSB2 > zM2 > z
M
1 > z

SB
1 = 0:

When compared to the regulatory scheme that emerges in the second best, the multi-task
regulatory scheme is characterized by four things: a lower level of e¤ort by the agent (as
measured by his private cost), a lower level of runo¤, a more dispersed payment schedule,
and a less dispersed production schedule.

In the second-best, it is optimal for the principal to ask the agent to produce, in e¤ect,
the riskiest type of production bundle, one that involves no output at all in the ‘bad’ state
of nature in return for a non-stochastic payment. If the principal tries to implement such
a regulatory scheme in the presence of moral hazard, the agent will always respond by
committing no e¤ort (thus ensuring no output and no runo¤ pollution) and simply taking the
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non-stochastic payment. Therefore, the principal has to simultaneously reduce the riskiness
of the production bundle while exposing the agent to more risk in the payment schedule.
The move away from specialization in the ‘good’ state output forces the principal to forego
some expected output, which in turn allows the agent to reduce his cost. It also follows
immediately from Proposition 6 that less runo¤ is emitted in the multi-task case than in
the second-best case. This decrease in runo¤ is directly linked to the diminished e¤ort and
nonspecialization of the agent in the good state output.

It is a straightforward consequence of Proposition 4 that at the solution to the single-
task moral hazard problem, the principal under the current assumptions would gain by
introducing lower-powered incentives. We leave this to the reader. Our next result compares
the single-task and multiple-task solutions directly. Denoting the solution to the single-task
moral hazard problem by a superscript S , we have (the proof is in an appendix)

Proposition 7: Assume ¼2¡¹½c2 > ¼1c1 ; then for an interior solution to the multiple-task moral
hazard problem,

yS2 > yM2 > y
M
1 > y

S
1 ;

zS2 > zM2 > z
M
1 > z

S
1 :

When compared to the single-task problem, the presence of multiple tasks leads the
planner to o¤er the farmer lower-powered incentives. Again, this is as our intuition would
dictate. The planner realizing that runo¤ is now a strong risk complement will want to push
the farmer to a less dispersed output vector. However, to ensure incentive compatibility for
this less dispersed output vector, he must also o¤er the farmer a less dispersed payment
vector.

To this point, we have assumed that p is a risk complement. However, it is easy to think
of cases where p might be a risk substitute. Suppose that ­ indexes the presence or absence
of pest infestations, and that p now measures runo¤ from the application of pesticides. It
seems unlikely that pesticides will enhance crop output in the absence of a pest infestation
so one might reasonably approximate this problem by assuming a cost structure of the form:

C (z) = c1z1 + c2z2

with p (z) = Áz1 with Á > 0. That is increased runo¤ of pesticides is associated with higher
production in the pest-infested state as a result of the application of increased pesticide
application. Then our results change in a predictable fashion. Fixed payments and produc-
tion standards are never optimal as this would encourage excessive marginal application of
pesticides. And in comparison with the single-task case, the planner always o¤ers the farmer
a higher-powered incentive scheme. We leave the details of the analysis to the reader.
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6 Concluding Remarks

We have studied the structure of state-contingent contracts in the presence of moral hazard
and multi-tasking. Our analysis has identi…ed necessary and su¢cient conditions for the
presence of multi-tasking to lead to …xed payments instead of incentive schemes. Holmström
and Milgrom (1991) were the …rst to isolate the possibility of …xed payment schemes in the
presence of moral hazard due to multi-tasking. We rely on the state-contingent representation
of the moral hazard problem developed in our earlier work. That model places primary
emphasis on the state-contingent technology, and consequently our analysis of the multi-
tasking problem focuses on di¤erent aspects of the problem than the pathbreaking Holmström
and Milgrom analysis. We show that when viewed from a state-contingent perspective, a
primary determinant of whether multi-tasking leads to higher or lower powered incentive
schemes is the role that the noncontractible outputs play in helping the agent deal with the
production risk associated with the observable and contractible outputs. In particular, we
show that when the noncontractible outputs are socially undesirable, standards are never
optimal if they are also risk substitutes. If the noncontractible outputs are socially desirable,
standards are never optimal if the noncontractible outputs play a risk-complementary role.

7 Appendix

Proof of Lemma 2: The incentive compatibility constraints in this case are:

minfy1; y2g ¡ C (z1; z2) ¸ y1 ¡ C (z1; z1)

minfy1; y2g ¡ C (z1; z2) ¸ y2 ¡ C (z2; z2)

C (z2; z1) ¡ C (z1; z2) ¸ 0:

Multiply the …rst constraint by ¸ ( 0 < ¸ < 1) and the second constraint by 1¡ ¸ and add
the resulting equations together to obtain after rearrangement

¸C (z1; z1) + (1 ¡ ¸)C (z2; z2)¡ C (z1; z2) ¸ ¸y1 + (1¡ ¸) y2 ¡ minfy1; y2g
¸ 0:

There are two possible ways to avoid a standard z2 > z1 and the reverse. Consider the
former, then incentive compatibility requires

¸C (z1; z1) + (1¡ ¸)C (z2; z2) ¡ C (z1; z2) ¸ 0; 0 < ¸ < 1:

Letting ¸ ! 1 yields contradicts the strict monotonicity of C (z). A parallel argument
yields a similar conclusion in the reverse case. This establishes necessity. Let z2 = z1 = z.
Su¢ciency is established by setting y1 = y2 = ¹u+ C (z; z) :
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Proof of Lemma 3: A multiplicative spread of z requires

±z1 = ¡¼2
¼1
±z2:

with ±z2 > 0. Hence, by (15), any such change is mean preserving for y. The agent’s
payment in state 1 is

y1 = h (¹u + C(z1; z1)) :

Observing that y1 varies directly with z1 then establishes the result.
Proof of Proposition 6: By (22) and (17) under the maintained assumption

h0
¡
uM2

¢
=
¼2 ¡ ¹½
c2

= h0
¡
¹u+ c2zSB2

¢
:

Because h is strictly increasing and strictly convex, it follows immediately that

uM2 = ¹u+ c2zSB2 :

This establishes that yM2 = ySB. The remainder of the inequality follows by Lemma 1 and
the fact that under the maintained assumption a standard is not optimal. To prove the cost
inequality, note that by the separability of the agent’s objective function, the reservation
utility constraint must bind exactly in both the second-best and moral hazard problems, i.e.,

¼1u1+ ¼2u2 ¡ C (z1; z2) = ¹u:

The …rst line of the theorem establishes that

¼1uM1 + ¼2uM2 < uSB;

which with the reservation utility constraint yields cost inequality.
The last part is now obvious under strict monotonicity of the contract since we have

established

c2zSB2 > c2zM2 + c1zM1 :

Proof of Proposition 7: It follows trivially from the …rst-order conditions for the single-
task and multiple task moral hazard problems that uS2 > uM2 , and therefore yS2 > yM2 . By
(21) and (22)

¼1h0
¡
uM1

¢
=

1
c1 + c2

¡ ¼2h0
¡
uM2

¢
¡ ¹½
c1 + c2

=
1

c1 + c2
¡ ¼2

µ
¼2 ¡ ¹½
c2

¶
¡ ¹½
c1 + c2

=
1

c1 + c2
¡ ¼

2
2

c2
+¹½

µ
¼2
c2

¡ 1
c1 + c2

¶

>
1

c1 + c2
¡ ¼

2
2

c2
= ¼1h0

¡
uS1

¢
;
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where the inequality follows by (20). This establishes that uM1 > uS1 . The …rst series of
inequalities now follows by Lemma 2 and the recognition that the contract must be monotonic
under the current assumptions.

We …rst show that zM1 > zS1 . By (4)

u1 = ¹u + (c1 + c2)z1

in both the single-task and multi-task problems. Using the fact that uM1 > uS1 then establishes
that zM1 > zS1 . By (5)

u2 = ¹u + (c1 + c2)z1+
c2
¼2

(z2 ¡ z1)

in both the single-task and multi-task problems. Because uS2 > uM2 , therefore,

(c1 + c2) zS1 +
c2
¼2
zS2 > (c1 + c2) zM1 +

c2
¼2
zM2 ;

whence

c2
¼2

¡
zS2 ¡ zM2

¢
>

µ
c1 + c2 ¡ c2

¼2

¶ ¡
zM1 ¡ zS1

¢
:

By (20) and the fact that zM1 > z11, the right-hand side is positive, which establishes the
result.
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