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1 Introduction
Stochastic optimal growth involves the study of the optimal intertemporal allo-
cation of capital and consumption in an economy where production is subject
to random disturbances. The theory traces its roots to the seminal work on
deterministic optimal growth by Ramsey [106], Cass [21] and Koopmans [55].
Its influence has been enhanced by research that shows how the convex stochas-
tic growth model can be decentralized to represent the behavior of consumers
and firms in a dynamic competitive equilibrium of a productive economy ([102],
[115], [15]). This makes the stochastic optimal growth model useful both as a
normative exercise and in the development of positive theories of how the econ-
omy works. As a consequence, the theory has emerged as one of the central
paradigms of dynamic economics. It is based on a simple, yet powerful model
that encompasses fundamental questions that are basic to any theory of dynamic
economic behavior: What are the characteristics and determinants of optimal
policies? What are the economic incentives that govern the optimal intertem-
poral allocation of resources? What is the transient and long run behavior of
variables in the model? Under different assumptions the model admits a rich
set of answers to these questions.
Historically, the main focal point of the theory has been issues of aggregate

economic growth. At the same time its primary variable, capital, has a flexible
interpretation that allows the model and its extensions to represent a wide
variety of economic problems ranging from the study of business cycles ([59],
[63]) and asset pricing ([14], [15]) to the allocation of renewable natural resources
([77], [82], [83]). Equally important, the model provides a strong theoretical
foundation for applied analysis of these problems. The model can be solved
numerically and has proved a testing ground for many numerical techniques
used today in the analysis of dynamic economic problems.
This chapter provides an overview of key results the theory of discounted sto-

chastic optimal growth in discrete time.1 The paper begins with an analysis of

1There is a large literature on stochastic growth in continuous time that builds on Merton’s
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the classical stochastic growth model of Brock and Mirman [18] for a one-sector
economy with a convex technology and utility that depends only on consump-
tion.2 We then consider extensions of the theory to problems with irreversible
investment, increasing returns or a non-convex technology, experimentation and
learning, and problems where utility depends on more than consumption alone.
We develop the competitive price characterization of optimal policies that can
be used to establish the equivalence between optimal and competitive outcomes;
our focus, however, is on optimal solutions and their properties. The large lit-
erature on dynamic competitive equilibria is, therefore, left to the reader to
explore. Likewise, we do not survey the many applications of the stochastic
growth model. Instead, we focus on how the theory can be extended in different
directions that have proved useful in application. Finally, we provide a glimpse
of practical methods for solving the model, but the literature on numerical
methods is too large for us to review here.

2 The Classical Framework

2.1 The One Sector Classical Model: Basic Properties

The stochastic growth model has three essential elements: an exogenous sto-
chastic environment corresponding to random productivity disturbances, the
production possibilities that determine the set of feasible allocations for con-
sumption, investment and output, and an instantaneous welfare or utility func-
tion that represents the preferences of the agent or economic decision-maker.
Productivity shocks at dates t = 1, 2, ..., are denoted by {rt}, a sequence of
i.i.d. real-valued random variables, with common distribution ν on B(Φ), the
Borel σ-field of Φ ⊂ <.In particular, Φ is the support of ν and is assumed to
be compact. Associated with this stochastic environment is a measure space
(Ω,F , µ), where Ω is the set of all real sequences, F is the σ-field generated by
cylinder sets of the form

Q∞
t=0At, where At belongs to B(Φ) for all t, and µ is

the product distribution induced by ν. The statements: for a.e. ω and µ-a.s.
mean "except for a subset of Ω of µ-measure zero". The random variable rt is
simply the tth coordinate function on Ω. In the economy, output of a homoge-
neous consumption/capital good is produced via a production function that is
homogeneous of degree one in capital and labor. This allows the economy to be
represented in per capita terms where ct, kt and yt denote per capita consump-
tion, capital and output at time t. Given a capital stock at time t − 1 and the
productivity disturbance at the beginning of period t, yt = f(kt−1, rt), where
f : <+×Φ→ <+ is the production function. The feasible set for consumption
and investment is: Γ(yt) = {(ct, kt)|0 ≤ ct, 0 ≤ kt, and ct + kt ≤ yt}.
Each period the economic agent receives utility u(ct), where u : <+ → < and

the discount factor for future utility is δ, where 0 ≤ δ < 1. At the beginning
of period t the agent observes yt and chooses ct and kt. The productivity

[78] early work (see also, [16]).
2Previous surveys of stochastic growth such as [81] and [6] focus primarily on this case.
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disturbance, rt+1, occurs and a new output, yt+1, is produced. The objective of
the agent is to maximize the expected discounted sum of utility over time subject
to the feasibility constraints on consumption and capital, and the transition
equation that maps capital to output in the following period. Given an initial
output, y0, the objective is to:

Max E

" ∞X
t=0

δtu(ct)

#
subject to: 0 ≤ ct, 0 ≤ kt, ct+kt ≤ yt, yt = f(kt−1, rt), t ≥ 1.

(1)
This problem can be formulated as a stochastic dynamic programming prob-

lem ([11], [125] and [65]). At date t the partial history is ht = {y0, c0, k0, y1, ..., ct−1, kt−1, yt}.
A policy, π, is a sequence {π0, π1, ...}, where πt is a conditional probability on
B(<+), given ht, such that πt(Γ(yt) | ht) = 1. Let z be the set of all measur-
able functions φ such that φ(y) ∈ Γ(y) for all y ∈ <+. A policy isMarkovian if
πt ∈ z for all t. AMarkov policy is stationary if there exists a Borel measurable
function, bπ(y), such that πt(y) = bπ(y) for all t. A policy, π, and an initial state,
y, induce a feasible program, (y,c,k)=(yt, ct, kt)∞t=0, a stochastic process for out-
put, consumption and capital such that (ct, kt) ∈ Γ(yt) and yt+1 = f(kt, rt+1)
a.s. for all t. Associated with each policy is an expected discounted sum of
utility Vπ(y) = E

P∞
t=0 δ

tu(ct), where (y,c,k) is the feasible program generated
by π and f in the obvious manner. A policy, π∗, is optimal if Vπ∗(y) ≥ Vπ(y)
for all π and y, and the associated program is called an optimal program. The
value function V (y) is defined on <+ by V (y) = sup{Vπ(y) | π is a policy}. It
follows that π∗ is an optimal policy if, and only if, Vπ∗(y) = V (y) for all y ≥ 0 .
Throughout the paper, derivatives are denoted using subscripts, so that uc

represents marginal utility and so on. The production technology and prefer-
ences are assumed to satisfy the following assumptions:

A.1. f(0, r) = 0, f(k, r) > 0 for all r ∈ Φ and all k > 0.
A.2. f is continuous on <+ × Φ and for each r ∈ Φ, f(·, r) is continuously

differentiable on <++.
A.3. fk(k, r) > 0 and infr∈Φ fk(0, r) > 1.
A.4. f(., r) is strictly concave on <+ for all r ∈ Φ.
A.5. There exists a k > 0 such that f(k, r) < k for all k > k and all r ∈ Φ.
A.6. u is continuous on <+ and continuously differentiable on <++.
A.7. uc(c) > 0 on <++.
A.8. u is strictly concave on <+.

Under these assumptions the dynamic optimization problem is well defined,
the value is finite from any initial state and it satisfies the functional equation:

V (y) = max
c∈Γ(y)

u(c) + δ

Z
V (f(y − c, r))dυ(r). (2)

3



Further, there exist stationary optimal policy functions for consumption, C(y) =
argmaxc∈Γ(y) u(c) + δ

R
V (f(y − c, r))dυ(r), and capital, K(y) = y − C(y).3

To characterize economic behavior in the model it is important to understand
the basic properties of the optimal value and policy functions. Further, such
knowledge is necessary to examine how departures from the classical model affect
economic outcomes. In the classical model, the feasible set is expanding with a
convex graph,4 and the production and utility functions are strictly increasing
and strictly concave. Using the fact that the functional equation (2) maps the
set of continuous, increasing and concave functions into itself this implies (e.g.,
[124]):

Lemma 1 . Under A.1-A.8, V (y) is continuous, strictly increasing and strictly
concave.

The value function is a measure of lifetime economic welfare and to a first order
approximation is proportional to traditional measures of GDP. The economic
implication of Lemma 1 is that small increases in output have small effects on
welfare, and that welfare increases at a diminishing rate as output increases.
In the classical model the production, utility, and value functions are strictly

concave, so the optimization problem has a unique solution and the optimal
policy functions are continuous. Monotonicity properties of C(y) and K(y) are
determined by the complementarity5 between k and y, and c and y, respectively.

Lemma 2 . Under A.1-A.8, C(y) and K(y) are single-valued, continuous and
increasing functions.6

Proof. The fact that C(y) and K(y) are single-valued and continuous follows
from the maximum theorem and the strict concavity of u and f. Let k ∈ K(y)
and k0 ∈ K(y0) for y < y0. Suppose that k0 < k. Then k0 ∈ Γ(y) and k ∈
Γ(y0). Further, 0 < u(y − k) + δEV (f(k, r)) − [u(y − k0) + δEV (f(k0, r))] <
u(y0 − k) + δEV (f(k, r)) − [u(y0 − k0) + δEV (f(k0, r))] < 0, where the first
and last inequalities follow from the principle of optimality and the middle
inequality follow from the fact that A.8 implies u is strictly supermodular in
(y, k). Hence, it must be that k0 > k. Next suppose that c0 ≤ c. Then,
0 ≤ u(c) + δEV (f(y − c, r))− [u(c) + δEV (f(y − c0, r))] + u(c0) + δEV (f(y0 −
c0, r))− [u(c0)+ δEV (f(y0− c))] < 0, where the first inequality follows from the
principle of optimality and the last inequality is due to the strict concavity of
f and V . Hence, c0 > c.

3Note that existence and all other results in this section continue to hold for logarithmic
or CES utility functions that are unbounded below, though V (0) = u(0) = −∞ (e.g., [116]).

4The feasible set is expanding if y ≤ y0 implies Γ(y) ⊆ Γ(y0) and has a convex graph if
{(c, k, y) | (c, k) ∈ Γ(y)} is a convex set.

5Formally this is represented by the concept of supermodularity. Let y ∧ y0 = min[y, y0]
and y ∨ y0 = max[y, y0]. A function F (k, y) is supermodular in (k, y) if F (k ∧ k0, y ∧ y0) +
F (k ∨ k0, y ∨ y0) ≥ F (k, y) + F (k0, y0). For C2 functions this is equivalent to Fky ≥ 0 so that
an increase in one argument raises the marginal value or marginal productivity of the other.

6Lemma 2 was first established by Brock and Mirman [18]. The monotonicity of K(y) does
not depend on the concavity of u or f and can be generalized to the case where K(y) is a
correspondence using the methods of Topkis [127] (see also,[119]).
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When the stochastic growth model is representative of aggregate economic
behavior, it is natural that consumption and investment should always be in the
interior of the feasible set. In disaggregate or microeconomic settings, this may
not always be true. Since the interiority of optimal policies facilitates the use
of differentiable optimization methods it is common to impose an assumption
that guarantees interiority.

A.9. limc↓0 uc =∞.

Lemma 3 . Under A.1-A.9, C(y) > 0 and K(y) > 0.

The condition limc↓0 uc = ∞ is known as the Inada [44] condition at zero.
In the classical model, the intuition for its use is as follows. To invest y yields
finite discounted expected marginal value of investment but an infinite marginal
utility from consumption. Hence, one can do better by reallocating some output
from investment to consumption. Analogous arguments can be used to rule out
investment of zero.
When optimal policies are interior, the value function in the classical model

is differentiable.

Lemma 4 . (Mirman-Zilcha [84], Lemma 1). Under A.1-A.9, V (y) is differ-
entiable for all y > 0 and Vy(y) = Uc(C(y)).

Proof. As a concave function, V has left and right-hand derivatives, V−(y) ≥
V+(y). Let k and c be optimal from y. As c > 0, k is feasible from y + � and
y − � for sufficiently small � > 0. By optimality, V (y + �) − V (y) ≥ u(c+ �) +
δEV (f(k, r))− [u(c)+δEV (f(k, r))], which implies V+(y) ≥ uc(c). By a similar
argument V−(y) ≤ uc(c).7

In this case output has a unique shadow price given by Vy(y). This shadow
price is useful in examining the intertemporal tradeoff between consumption and
investment, and in showing that the optimization problem can be decentralized.

Proposition 5 Let (c,k) be an optimal program induced by C(y),K(y). Under
A.1-A.9, necessary and sufficient conditions for C(y),K(y) to be optimal are:

uc(ct) = δ

Z
uc(ct+1(r)))fk(kt, r)dυ(r). (3)

lim
t→∞ δtE[uc(ct)kt] = 0. (4)

7An alternative approach in [12] assumes that the disturbance distribution has a Cn density.
This smooths out possible points of discontinuity in the derivative of V . The approach has the
advantage that it can be used to obtain higher order differentiability of both V and the optimal
policy function, the latter via the implicit function theorem. Santos and Vigo-Aguiar[114] also
contains sufficient conditions for the value and policy functions to be C2 and C1, respectively.
They use their results to place analytical bounds on the approximation error of a numerical
solution.
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Proof. The necessary condition (3) is typically proved in one of two ways. The
first method is a variational approach that assumes period t output and the
period t+1 capital stock are optimal. It then examines how a how a change
in period t consumption affects discounted expected utility across the two peri-
ods. The second method proceeds as follows. If V is differentiable (Lemma
4) then maximizing the right hand side of equation (2) implies: uc(ct) =
δ
R
Vy(f(kt, r)fk(kt, r)dυ(r). Further, Vy(yt) = uc(ct) by the envelope theo-

rem. Combining these yields (3). As commonly used, this approach requires
both interior solutions and a differentiable value function; but a more general
statement using inequalities is possible in other cases.
A proof of (4) is given in [86].

Equation (3) is known as the stochastic Ramsey-Euler equation. It is a dy-
namic optimality condition that equates the marginal utility from consumption
to the discounted expected marginal value of investment. The latter can be
decomposed into the marginal productivity of investment times the marginal
utility from consuming the additional output next period.
Equation (4) is the transversality condition. It implies that marginal utility

is bounded in expectation. Mirman and Zilcha [85] show that marginal utilities
themselves may be unbounded. It is also important to note that there may
be many non-optimal programs that satisfy the Ramsey-Euler equation. The
transversality condition selects an optimal program from among those satisfying
(3).
One of the most important results in the stochastic growth literature relates

to the validity of the fundamental theorems of welfare economics in infinite
horizon, stochastic economies. The two basic issues are the existence of prices
that support an optimal program and the optimality of a dynamic, competitive
equilibrium. In their seminal work Malinvaud [71] and Koopmans [54] make
clear that the fundamental welfare theorems do not extend to infinite horizon
settings without some additional conditions. The importance of these issues is
apparent in [18], [84], [85] and [86] even though prices are often implicit in the
necessary and/or sufficient conditions for optimality. Zilcha ([133], [134], [135])
examines the fundamental welfare theorems in a setting in which competitive
prices are explicit throughout.
A feasible program (y,c,k) is competitive if there exists a sequence p =

(pt)
∞
t=0 of discounted prices such that pt > 0 a.s. for all t and:

δtu(ct)− ptct ≥ δtu(c)− ptc a.s.for all c ≥ 0. (5)

Ept+1f(kt, rt+1)− ptkt ≥ Ept+1f(k, rt+1)− ptk a.s. (6)

Proposition 6 A feasible program is optimal if and only if it is competitive
and satisfies:

lim
t→∞ Eptkt = 0. (7)
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Proof. See [133]. As in Proposition 5, the existence of competitive prices alone
is not sufficient to guarantee optimality. For that, the transversality condition
(7) is also required.

It should be clear that the supporting price pt is the discounted shadow
price of the consumption-capital good. Equation (5) requires that for almost
every realized path and every time period, consumption maximize "reduced
discounted utility" (utility of consumption minus expenditure). Equation 6
captures intertemporal (expected) profit maximization. When a competitive
program is interior it implies pt = Ept+1fk(kt, rt+1). A primary difference
between the deterministic and stochastic models is that in the former prices
reflect temporal values, while in the latter prices reflect both temporal values and
values across different random states of nature. As a consequence, prices and the
marginal willingness to substitute consumption are an important determinant
of economic behavior even in the long run.

2.2 Stochastic Steady States and Convergence Properties
in the One Sector Classical Model

A central concern of optimal growth theory is the study of the long run dynam-
ics of an economy. The deterministic literature focusses on the existence and
stability of non-trivial (strictly positive) optimal steady states and on turnpike
properties of optimal capital accumulation paths.
An optimal steady state or stationary program is a limit point of an optimal

program. If optimal paths from all initial states converge to a steady state then
this unique optimal steady state is globally stable and the long run behavior of
the economy is independent of initial conditions. When the evolution of capital
stocks is stochastic, an optimal program of capital stocks is a sequence of random
variables. The optimal policy, the production function, and the random shock
map the probability distribution of current capital stocks to the probability
distribution of the next period’s capital stock. A stochastic steady state is a
fixed point of this mapping or a distribution of capital that is invariant under
the optimal policy. The stochastic analogue of a globally stable steady state is
a unique invariant distribution to which the stochastic process of capital stocks
converges from any initial state. In such a steady state the capital stock is not
constant over time. Instead, it exhibits endogenous fluctuations in response to
random productivity disturbances.8

Turnpike theorems study the conditions under which differences in initial
conditions have negligible effects on the process of economic growth over long
time horizons.9 In the deterministic case this involves analyzing when optimal
paths from different initial states approach each other asymptotically. The
stochastic analogue is convergence in probability, or sometimes, almost sure
convergence to zero of an appropriately defined distance between the optimal
capital stocks in each period.

8One may also look at stronger concepts of optimal steady states [131].
9 See, [76], [74], [75].
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In the classical one sector stochastic optimal growth model the unique op-
timal stationary policy generates a Markov process of capital stocks kt. Recall
that the optimal investment function K(y) is a continuous and strictly increas-
ing function on <+. Define H(k, r) ≡ K(f(k, r)) to be the realized capital stock
for the next period under the optimal policy. Then, H is continuous in (k, r) and
increasing in k. Let S denote the interval [0, k]. Given y0 ∈ S, k0 = K(y0) ∈ S,
the evolution of optimal capital stocks over time is given by:

kt = H(kt−1, rt) (8)

Recall that ν is the common probability distribution of the i.i.d random
shocks rt, with support Φ, a compact subset of <. Let νt be the joint dis-
tribution of rt ≡ (r1, ...rt) on the product space Φt and define kn(k0, r

n) ≡
H(H(....(H(k0, r1), r2)..., rn). In other words, kn(k0, rn) is the realization of
nth-period capital stock kn, given k0 and realization rn = (r1, ...rn) of random
shocks in the first n periods. For any probability measure µ defined on S (and
the Borel σ−field generated by S), define the probability measure νnµ on S by
the relation

νnµ(B) =

Z
S

νn({rn ∈ Φn | kn(k0, rn) ∈ B})µ(dk0)

where B is any Borel-subset of S. Thus, νtµ gives us the probability distribution
of kt, when k0 is distributed according to the probability measure µ. Let S0 be a
closed interval in S. Then, S0 is said to be ν−invariant if ν({r ∈ Φ | H(k, r) ∈ S0

for all k ∈ S0 = 1. A probability measure µ on S is said to be an invariant
probability measure on S0 if the support of µ is a subset of S0and for any Borel
set B in S,

νµ(B) = µ(B) (9)

In other words, if k0 is distributed according to an invariant probability µ, then
the distribution of optimal capital stocks in every subsequent period follows
the same distribution. The distribution function corresponding to an invariant
probability measure is an invariant distribution.
There is a large body of work in the mathematical theory of Markov processes

and random dynamical systems that provides sufficient conditions for the exis-
tence and stability of invariant distributions for a given stochastic process10,11 .
Let

Hm(k) = min
r∈Φ

H(k, r) and HM (k) = max
r∈Φ

H(k, r)

denote the lower and upper envelopes, respectively, of the transition function
H(k, r) defining the Markov process (8). Note that the continuity of H and

10See, among many others, [35], [41], [42], [2], [8], [9].
11Models of descriptive stochastic growth (such as the stochastic Solow model) where the

consumption and investment rules are exogenously specified have also applied these conditions.
See, [80], [13] and [107].

8



the fact that Φ is compact imply that Hm(k) and HM (k) are well defined and
continuous. Further, sinceH is increasing in k,Hm(k) andHM (k) are increasing
functions.
In addition to the assumptions made in the previous section, the standard

proof of existence and global stability of the invariant distribution requires that
the production function f(k, r) and the optimal transition function H(k, r) sat-
isfy two additional conditions.

A.10. There does not exist any k > 0 and ey ∈ S such that ν{r | f(k, r) =ey} = 1.
A.11. There exists an � > 0 such that Hm(k) > k for all k ∈ (0, �).
A.10 requires that every investment level is associated with some non-trivial

uncertainty over output. A.11 is a restriction on the optimal policy. It implies
that even if the lowest possible output is realized every period, the optimal pro-
gram from every initial stock is bounded away from zero. In a deterministic
model, the optimal policy satisfies this condition as long as marginal produc-
tivity at zero is large enough. This is no longer true in the stochastic model.
Mirman and Zilcha [85] develop an example where the production function has
infinite slope at zero, yet the optimal program from any initial stock comes ar-
bitrarily close to zero with probability one.12 One can impose restrictions on
the production function and distribution of random shocks to ensure that A.11
is satisfied. For example, if there is a strictly positive probability mass on the
"worst" production function in the sense that there exists some ε > 0 such that
ν{r | f(k, r) = minr∈Φ f(k, r)} > ε, ∀k > 0, then infinite marginal productivity
at zero is sufficient for A.11. For conditions that are applicable to atomless
distributions, see [92].
Define the maximal fixed point ofHm by km = max{k > 0 | Hm(k) = k} and

the minimal fixed point of HM by kM = min{k > 0 | HM (k) = k}. Assumption
A.11 implies that km, kM > 0.

Lemma 7 km < kM .

Proof. Since H(k, r) is continuous in r, there exists rm, rM ∈ Φ such that km =
Hm(km) = H(km, rm) and kM = HM (kM ) = H(kM , rM ). Further, f(km, rm) ≤
f(km, r) for all r ∈ Φ.From the stochastic Ramsey-Euler equation:

u0(C(f(km, rm)) = δ

Z
Φ

u0(C(f(H(km, rm), r)))f 0(H(km, rm), r)ν(dr)

= δ

Z
Φ

u0(C(f(km, r)))f 0(km, r)ν(dr).

Since u is strictly concave and C is increasing u0(C(f(km, r))) ≥ u0(C(f(km, rm))
for all r ∈ Φ. Hence, the inequality above yields 1 ≤ δ

R
Φ
f 0(km, r)ν(dr). Sim-

ilarly, one can show that 1 ≥ δ
R
Φ
f 0(kM , r)ν(dr) so that

R
Φ
f 0(kM , r)ν(dr) ≤

12Mitra and Roy [92] develop general conditions under which Prob{lim inft→∞ kt = 0} is 0
and 1.
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R
Φ
f 0(km, r)ν(dr). The fact that km ≤ kM follows from the strict concavity of

f. Finally, if km = kM then f(k, r) is constant in r which violates A.10.

Lemma 7 implies that the highest fixed point of Hm lies below the smallest
positive fixed point HM (see Figure 1). We now state the main result regarding
the existence and global stability of the optimal stochastic steady state. For the
stochastic process of optimal capital stocks kt defined by (8), let Ft(k) be the
distribution function of kt i.e., Ft(k) =νt{rt ∈ Φt | kt ≤ k}.
Proposition 8 Assume A.1 - A.11. There exists a unique non-zero invariant
distribution F (k) on S and its support is the interval [km, kM ].For any initial
capital stock k0 > 0, as t −→∞, Ft(k) converges uniformly in k (on S) to F (k).

Proof. (Sketch).Instead of giving a full proof, we sketch the main arguments
for the simple case of multiplicative shock ( f(k, r) = rf(k)) which assumes
just two possible values a and b, 0 < a < b < ∞. Then, Hm(k) = K(af(k))
and HM (k) = K(bf(k)). The proof consists of the following key arguments.
First, for the Markov process (8), the set of states (0, km) and (kM ,∞) are
transient. With probability one, capital stocks move out of these sets in finite
time, never to return. Second, once the process enters the set [km, kM ] it remains
there with probability one. Further, [km, kM ] is the smallest ν − invariant
set. The intuition behind these arguments can be readily seen from Figure
1. Let ym = min{k : Hm(k) = k} and yM = max{k : HM (k) = k}. Then,
0 < ym ≤ km < kM ≤ yM . From any stock k ∈ (0, ym) the optimal capital
stocks increase almost surely and reach the set [ym, kM ] in finite time with
probability one. Similarly, from any stock k ∈ [yM ,∞) the optimal capital
stocks decrease almost surely and reach the set [km, yM ] in finite time with
probability one. Further, for k ∈ [ym, km) one can show that the probability
that the optimal path from such a stock does not enter [km, kM ] in finite time
is zero. To move the capital stock ym to the interval [km, kM ] only takes a
sufficiently long, but finite run rt = b, such that the realized transition occurs
along the function HM (k). Any such run must occur ω−almost surely as shocks
are independent. The same argument shows that (kM , yM ] is transient. It can
also be seen from Figure 1 that no strict subset of [km, kM ] is invariant. The
next step is to show that a well-known "splitting" condition due to Dubins and
Freedman [35] (or some variation/extension) holds on the interval [km, kM ]. For
any n = 1, 2..., the probability νn is said to split on a ν−invariant subset S0 of
S if there exists z ∈ S0 and η > 0 such that:

νn{rn ∈ Φn | kn(k, rn) ≤ z for all k ∈ S0} > η

νn{rn ∈ Φn | kn(k, rn) ≥ z for all k ∈ S0} > η.

To verify that the splitting condition holds fix any z ∈ (km, kM ). There exists
some N ≥ 1, such that: (i) if rt = a, t = 1, ...N, then kN (kM , rN ) ≤ z, and (ii)
if rt = b, t = 1, ...N, then kN (km, r

N ) ≥ z. For 0 < η < min{(ν(a))N , (ν(b))N},
n = N, it is easy to see that the splitting condition is satisfied on S0. Dubins
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Figure 1: Figure 1
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and Freedman [35] then show that this implies there exists a unique invariant
distribution F on S0 and that Ft(k) converges uniformly in k to F (k).13 Finally,
since the set S − S0 is transient and S0 is the smallest ν−invariant set on S, it
must be that F is the unique invariant distribution on S and Ft(k) converges
uniformly in k to F (k) on S.14

The basic results on the existence and global stability of an invariant dis-
tribution for the classical one sector stochastic model were originally developed
in the pioneering work by Brock and Mirman [18] and subsequently refined by
Mirman and Zilcha [84]. Majumdar, Mitra and Nyarko [68] were the first to
explicitly use the Dubins-Freedman splitting condition. Versions of this problem
have also been analyzed by [124] and [42]. [19] [25] contain similar results for
the undiscounted model (δ = 1) where optimality is based on the "overtaking
criterion".15 Donaldson and Mehra [34] extend these results to the case of cor-
related shocks that enter the production function multiplicatively and follow a
stationary process.
From an empirical point of view one may be interested in the asymptotic

statistical properties of the stochastic processes for capital and consumption.
For example, if the law of large numbers holds so that sample averages from
time series converge to the mean of the limiting steady state distribution, then
one can test a model by comparing the sample average over a sufficiently long
period with the theoretical prediction. Alternatively, one can forecast the mean
of the long run distribution by using the sample average. The central limit
theorem or asymptotic normality of the partial sums can be used for inference of
likelihood of values in a parameter space. Many of the conditions that guarantee
global stability of an invariant distribution also ensure that both the law of large
numbers and the central limit theorem hold. In addition, they imply a minimum
bound on the rate of convergence.16

An important implication of global stability is that the long run behavior of
the economy is independent of the initial state. The latter aspect is also brought
out in turnpike results that directly examine the conditions under which differ-
ences in initial conditions have negligible effects on the process of economic
growth over long time horizons. Majumdar and Zilcha [70] establish a "late"

13For recent extensions of the result that is applicable to situations where H(k, r) is
monotonic but not necessarily continuous and situations where the capital process is mul-
tidimensional, see [8],[9].
14A more traditional approach in theory of Markov processes is to directly verify that the

process is irreducible on [km, kM ], that intervals disjoint from [km, kM ] are transient and an
equicontinuity condition on the sequence of probability measures for the capital stock (defined
through the stochastic kernel of the Markov process). See, [77]. Another approach is to show
that the iterated random functions satisfy a Lipschitz condition and are "contracting on the
average" (see, [33]). Stachurski [122] shows that there is always a unique globally stable steady
state for the special case of a multiplicative shock where r has a density function that is strictly
positive everywhere on <++. With an interior optimal policy, the structure imposed on the
random shock ensures that the system moves with positive probability from any positive stock
to any interval on <++ in one step.
15For convergence in a stochastic open economy, see for example, [28].
16 See, [9]. [123] contains similar results for the case of multiplicative unbounded shocks.
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turnpike theorem in a model that is far more general than the classical model of
Section 2. Their model allows for unbounded expansion of capital and consump-
tion, time varying utility and a non-stationary stochastic processes of random
shocks. Under a condition that requires the elasticity of marginal product to be
bounded away from zero (implying a lower bound on the degree of concavity of
the production function), they show that the number of periods for which the
relative distance between the optimal capital stocks (from any two initial stocks)
exceeds any positive threshold is bounded almost surely, where the bound de-
pends on how far apart the initial states are. In other words, optimal paths from
different initial states eventually approach each other with probability one. Note
that this result is quite independent of whether there is a globally stable invari-
ant distribution. The condition on the elasticity of marginal product ensures a
that a uniform "value-loss" argument (originally due to Radner [103]) holds.17

Joshi [49] provides similar turnpike results in a one-sector model with recursive
preferences and time varying technology.
Apart from convergence, the other important question in economic growth

relates characterization of the properties of the limiting steady state. In other
words, what can we say about the relationship between the preferences and
technology underlying the economy and the nature of the invariant distribu-
tion to which it converges. In the one sector convex deterministic model of
optimal growth, there is fairly rich characterization of the steady state. For
example, with a strictly concave production function f , the unique steady state
or modified golden rule is a capital stock bk that is the unique maximizer of
[δf(k)−k], where the latter can be interpreted as the net gain from investment.
For the no-discounting case, the steady state is the well-known golden rule cap-
ital stock that maximizes the level of sustainable consumption [f(k)−k]. There
are other decentralized or support price-based characterizations of the optimal
steady state. More generally, in the deterministic one sector model, it is possible
to look at the steady state as a solution to an independent static optimization
problem that has desirable economic properties. In the multisector deterministic
model, it is a solution to a static optimization and a fixed point problem.
What are the corresponding results in the stochastic case? The answer,

surprisingly, is close to none. In fact, there is very little by way of general
qualitative characterization of the limit invariant distribution in the stochastic
growth literature. One of the reasons behind this is the fact that, unlike the
deterministic model, the steady state is not determined solely by the production
function and discount factor. Both the utility function (and its curvature) and
the distribution of the random shocks play important roles. Specific examples
show that for the same technology, discount factor and distribution of random

17The value loss argument uses support prices of optimal paths to look at the accumulation
of shortfalls in values (shadow profits and losses) of input-output combinations along one
optimal path relative to another at the other’s support prices. Loosely speaking, for two
optimal paths that do not approach each other asymptotically, if the value loss is uniformly
bounded away from zero over all states and time periods, then the accumulated loss is infinite
and that contradicts optimality. [51] contains a turnpike result without requiring uniformity
of value-loss across time and states.
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shocks, the steady state distribution can change dramatically with variations
in the utility function [26]. Further, even for very standard utility and produc-
tion functions, the form limiting distribution can be very sensitive to parameter
values when the shock does not have a continuous distribution.18 For the case
with logarithmic utility, Cobb-Douglas production, and a binary multiplicative
shock, Mirman and Zilcha [84] show that the invariant distribution can be de-
generate for some parameter values and uniform for others. Montrucchio and
Privileggi [93] show that the invariant distribution can also be a Cantor function.
Mitra, Montrucchio and Privileggi [91] expand on this example to establish pre-
cise bounds on the parameters under which Cantor and more general singular
invariant distributions can arise as well as bounds under which the distribution
is absolutely continuous. Recently, Mitra and Privileggi [90] extend the example
to the class of all iso-elastic utility functions and establish sufficient conditions
for a Cantor type invariant distribution.

2.3 Stochastic Steady States and Convergence Properties
in the Multisector Classical Model

In the literature on deterministic models of optimal economic growth, the multi-
sector case has been extensively studied. In particular, the literature has focused
on two key issues - the existence of an optimal steady state and turnpike results
or the convergence properties of optimal paths.19 In comparison, the stochas-
tic multisector optimal growth literature is relatively thin and there is only a
small literature on the existence and stability of steady states in the stochastic,
multisector case.
In the deterministic literature, it is well recognized that with discounting,

the existence of a globally stable optimal steady state and other turnpike results
may not hold in the multisector case, even though it always holds under very
mild restrictions in the one-sector model.20 With significant discounting, opti-
mal paths in the multisector model may not be convergent. They may exhibit
cyclical and even chaotic dynamics.
A general stochastic multisector optimal growth model with i.i.d. shocks has

been analyzed by Brock and Majumdar [17]. The model is a natural extension
of the classical one-sector model to the case of m capital goods. For each
vector of current capital stocks and realization of the random shock there is a
correspondence that defines the set of attainable utilities and capital stocks for
the next period, which in turn can be used to define the set of feasible programs
from any given initial vector of capital stocks. The objective is to maximize the
discounted expected sum of utilities, or for the undiscounted case, a stochastic
version of the overtaking criterion. The paper imposes four conditions:

(i) there is a compact set S0 ⊂ <m+/{0} such that for any initial vector
18For the case of multiplicative shock with continuous density, Danthine and Donaldson [27]

show that the limiting invariant distribution has a continuous density function.
19For an excellent review of the basic results see McKenzie [75].
20 See, [126].
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of capital stocks lying in S0, there exists an optimal program such that the
stochastic process for capital lies almost surely in S0.
(ii) there exist continuous stationary optimal investment and consumption

policies.
(iii) an optimal programs is "competitive" relative to a non-trivial price

process in a similar sense as in the previous section and satisfies a transversal-
ity condition that the expected values of the capital stocks (at the competitive
prices) go to zero, for the case of discounting, and is bounded, in the undis-
counted case.
(iv) the Hamiltonian system corresponding to the optimal processes has

"suitable curvature" so that a stochastic value-loss condition is satisfied.

Under conditions (i) - (iv), Brock and Majumdar show that the distance be-
tween the probability distributions of tth−period optimal capital vectors from
two distinct initial capital vectors in S0 converges to zero as t → ∞. Further,
the difference between the two optimal paths converges to zero in probability.
Thus, conditions (i) - (iv) are sufficient to ensure that the optimal paths from
alternative capital stocks come close to one another asymptotically and that the
long run behavior of optimal paths does not depend on initial conditions. The
existence of a unique and globally stable invariant distribution for the stochastic
process of optimal capital stocks can also be established under these conditions.
Unlike the conditions for global stability of an invariant distribution and other
turnpike results in the one-sector stochastic growth model, (i) - (iv) are fairly
strong restriction imposed directly on the optimal policy rather than the prim-
itives of the model. Conditions (i) - (iii) are readily satisfied in the one sector
stochastic growth model. In the multisector case there are plausible conditions
on preferences and technology for (i) and (ii) to hold. For example, Majum-
dar and Radner [69] consider a stochastic nonlinear activity analysis model in
which neoclassical conditions on the technology and preferences are sufficient
for (i) and (ii).21 Condition (iii) is motivated by the equivalence between opti-
mal programs and competitive programs that satisfy a transversality condition
(see, [133], [134], [135]). Condition (iv) is a stochastic extension of conditions
for asymptotic stability in the deterministic multisector model due to Cass and
Shell [22] and Rockafellar [108] that are, in turn, based on the well known "value
loss" argument alluded to in the previous subsection (see also, McKenzie [74]).
In particular, condition (iv) requires that the Cass-Shell-Rockafeller version of
the value-loss restriction holds uniformly for all states of the environment.
Chang [24] shows that a weaker version of condition (iv) based on expected

value loss is actually sufficient and further, that the difference between any two
optimal paths converges not only in probability, but almost surely. It is worth
noting that in a multisector model condition (iv) involves a strong restriction
on the extent of discounting in the model, and unlike the one-sector case, it
does not follow directly from a restriction on the curvature of the production
function.
21See also the discussion in [104].
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Föllmer and Majumdar [39] follow a somewhat different approach using the
theory of martingales to show that even if one does not impose a condition
such as (iv), a weaker result is possible. That is, for any two optimal paths, the
number of periods for which the value loss exceeds any given positive threshold is
finite with probability one. Under uniformity of value loss and a specific distance
metric, optimal paths approach each other asymptotically almost surely.
For the case of no discounting with the "overtaking" criterion of optimal-

ity, global stability of the stochastic state and other turnpike results can be
established under much less restrictive conditions (see, among others, [46], [25],
[134]).22 ,23

3 Extensions of the Classical Framework

3.1 Sustained (Long Run) Growth

The past two decades have seen a renewed interest in the economics of long
run growth where unbounded expansion of output, capital and consumption is
possible. In the deterministic convex one-sector model, sustained growth is op-
timal if the marginal productivity of capital at infinity exceeds the discount rate
[47]. Much of the literature on stochastic optimal growth theory focusses pri-
marily on models where the technology exhibits bounded growth that rules out
indefinite expansion of consumption and capital and sustained long run growth.
An exception is the class of models on optimal intertemporal household savings
under uncertainty. A portion of this literature considers a linear production
function with a multiplicative shock, f(k, r) = rk, so that optimal paths may
diverge to infinity (see, Phelps [101], Levhari and Srinivasan [62] and subsequent
contributions). A closely related literature on the permanent income hypoth-
esis has examined optimal savings where the wealth next period is composed
of a deterministic return on current savings (interest income) plus an additive
income shock (non-interest income).24

De Hek and Roy [31] examine the possibility of sustained long run growth
in optimal consumption and capital stocks in a one sector model with i.i.d.
shocks and a concave production function that is not necessarily linear. Con-
sider the model in Section 2 without assumption A.5. In particular, suppose
that f(k, r) = rf(k) and let θ = limk→∞

f(k)
k . They show that under the follow-

ing two conditions, optimal capital and consumption diverges to infinity with

22Dutta [37] provides sufficient conditions under which as δ → 1, the optimal policies (and
value functions) in the discounted stochastic model converge to the optimal policy using two
alternative optimality criteria - the undiscounted overtaking criterion and the long run average
reward criterion.
23 In a stochastic multisector model with a double infinity of time periods and discount

factors close to 1, Yano [131] establishes the existence and continuity in the discount factor
of a stronger concept of an optimal stationary program where a stationary program is one
where the vector of current capital stocks associated with any infinite realized sequence of
past history is time invariant with probability one). See also, [72].
24 See [130] and [117] for the undiscounted case, [118] and [120] for the discounted case and

also [23].
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probability one from every positive initial stock:

(i) E[ln(θr)] > 0
(ii) infy>0 δE[

uc(rf(sy))rfk(sy)
uc((1−s)y) ] > 1, where s = exp[−E[ln(θr)]].

Note that these conditions involve the utility function and its curvature.
The possibility of long run growth depend on more that a simple comparison
of the discount rate and average marginal product at infinity. Once again, this
reflects the general fact that in a stochastic growth model, the utility function
and distribution of shocks play important roles in determining the nature of
long run behavior of the economy. To illustrate this further we consider a
specific example of iso-elastic utility and linear production function for which
we can derive the optimal policy explicitly and thus provide an almost exact
characterization of the condition for sustained long run growth.

Example 9 u(c) = c1−σ
1−σ , σ > 0, σ 6= 1, f(k, r) = rk. One can show that the

optimal policy function K(y) is linear and given by K(y) = [δE(r1−σ)]
1
σ y so

that
kt+1 = αrt+1kt where α = [δE(r1−σ)]

1
σ (10)

which implies ln kt+1 = ln k0 + (t + 1)[
1

t+1

Pt
j=0 lnαrj+1]. Using the law of

large numbers, it is easy to show that an "almost" exact condition for ln kt+1
to diverge to infinity with probability one is that E[ln(αr)] > 0 which can be
rewritten as σE(ln r) + ln δ + lnE(r1−σ) > 0. This indicates that the risk
aversion/intertemporal elasticity of substitution parameter of utility, σ, plays
an important role in determining whether sustained growth occurs.

3.2 Stochastic Growth with Irreversible Investment

In the classical framework analyzed in the previous section, investment is either
reversible or the existing capital stock depreciates completely at the end of a
period. In reality, it is costly to transform capital into consumption and there
are limits to how fast the aggregate capital stock depreciates. The stochastic
growth model with irreversible investment was first examined by Sargent [115].
In his setting output can either be consumed or invested, but once invested,
capital cannot be converted for consumption. Individual agents transact in
a competitive market for existing capital. This allows individual investment
decisions to be reversed while maintaining the irreversibility of investment in
the aggregate. As Sargent shows, irreversibility in the aggregate provides the
necessary friction for Tobin’s q, the relative price of used to new capital, to
diverge from unity. This enables aggregate investment to be positively correlated
with q. However, this same friction implies that agents’ investment decisions
are necessarily a function of their expectations about the future which cannot
be summarized by q. The implication is that q-theory of investment functions
are of little use for econometric policy evaluation.
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The analysis in Sargent is based on the properties of the value function.
Olson [98] develops an alternative approach that characterizes optimal policies
using stochastic Kuhn-Tucker conditions. Let f(k, r) = F (k, r)+(1−d)k where
k is the depreciation rate of capital. If λt is the Lagrange multiplier on the
period t irreversibility constraint, kt+1 ≥ (1− d)kt, the Ramsey-Euler equation
can be written as:

uc(ct)− λt = δE [uc(ct+1(r)))fk(kt, r)− (1− d)λt+1(r)] . (11)

Solving for λt and substituting forward this can be expressed as:

uc(ct) = δ
TX
i=1

(δ(1− d))i−1E [uc(ct+i)Fk(kt+i−1, rt+i)]+δT (1−d)TE[uc(ct+T )].
(12)

This derivation uses the fact that eventual depreciation of the entire capital
stock is not optimal so there is a uniform upper bound, T , on the number of
time periods for which the irreversibility constraint binds. Sargent’s point that
agent’s decisions are a function of expectations about the future is clearly evident
from (12). Evaluating (12) at the minimal and maximal optimal transition
functions for capital it can be shown that the support of the limiting distribution
under irreversible investment is a subset of the support when investment is
reversible.

3.3 Stochastic Growth with Experimentation and Learn-
ing

The stochastic growth model has been extended to environments where there is
learning about productivity or the capital stock itself. This requires expanding
the state space to represent the agent’s beliefs. The transition equation for
beliefs follows Bayes’ rule. In this setting, the possibility of learning affects the
optimization problem in two important ways. First, even if information signals
are exogenous so that learning is passive and not affected by the current action,
the mere prospect of learning may alter current period decisions. Second, when
the current action affects how much learning occurs, there is an incentive to
experiment to obtain better information. Friexas [40] was the first to examine
this problem. Assume output is produced by a technology f(k, θ, r), where θ
is an unknown parameter. The distribution of r is known. Given an initial
value for y and current beliefs about θ, the agent chooses consumption and
investment. Output in the following period is observed and provides information
that can be used to update beliefs about θ. Friexas examines how learning
and experimentation affect the initial consumption/investment decision. The
learning effect depends on whether learning increases or decreases the marginal
value of investment. Friexas then uses Blackwell’s [10] theorem to assert that if
larger investment yields more information then the experimentation effect leads
to an increase in investment. Subsequently, it was shown in [5] and [29] that
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this need not always be true. The reason is that investment affects both state
variables in the value function so that Blackwell’s theorem does not apply. While
higher investment may be more informative, the value of information at higher
levels of output may be lower. When the second effect dominates, an expected
utility maximizer may prefer to invest less even if it is more informative. These
tradeoffs have made it difficult to obtain a general set of verifiable conditions to
characterize how information affects consumption and investment in the infinite
horizon model. Precise results are limited largely to problems where there are
only two relevant decision periods.
Nyarko and Olson [97] examine experimentation and learning in a stochastic

growth model where there is imperfect information about the capital stock itself.
Consumption is observable, but output and investment are not. Beliefs about
the state are summarized by a probability distribution over y. After choosing
consumption, an information signal is observed that can be used to update
beliefs about y. The mapping from beliefs in period t to beliefs in period t+ 1
is determined jointly by consumption, the information signal and the stochastic
production function. Here there is learning about a moving target, in contrast
to the case above where the unknown parameter is fixed. Nyarko and Olson
show that if u(0) = −∞25 then the optimal policy is to assume the worst and
optimize against that. That is, the initial state is assumed to be the lower bound
of the support of the agent’s beliefs about output and the transition equation
is infr f(k, r). When information alters the lower bound of the support of the
agent’s beliefs there is an endogenous capital discovery process. When it does
not, the problem with learning has an equivalent, deterministic representation.
In that case, output and investment are more volatile than consumption and
there is excess saving compared to the case where the capital stock is observable.
In cases where u(0) > −∞, the solution either corresponds to that above, or
the capital stock becomes zero with strictly positive probability.

4 Non-classical Models of Optimal Stochastic
Growth

The models of optimal economic growth under uncertainty reviewed in the pre-
vious section are based on the classical assumptions of a convex technology and
utility that depends only on consumption. This section reviews some extensions
of the theory that allow for non-classical features such as non-convexities and
state-dependent utility. These non-classical features imply that even in a one-
sector model, continuity and monotonicity properties of optimal policies need
not hold and optimal paths need not converge to a unique stochastic steady
state. The long run behavior of the economy may depend critically on the
initial state.
25This assumption holds for the class of all constant relative risk averse utility functions

with coefficient at least one.
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4.1 Stochastic Growth with Non-convex Technology

Non-convexities enter the production technology of an economy through numer-
ous sources, such as fixed costs, threshold effects, increasing returns to scale,
economies of scope, and depensation in the reproduction of natural resources. In
applications of optimal growth models to areas such as environmental manage-
ment there is also the need to study the implications of a non-convex technology.
A separate chapter of this handbook focuses on optimal growth in non-convex
economies. In this subsection, we concentrate on explaining how a non-concave
production function (non-convex technology) alters the basic results of the clas-
sical stochastic growth literature reviewed in the previous subsections.
Majumdar, Mitra and Nyarko [68] were the first to comprehensively analyze

the problem of optimal stochastic growth in a one sector model where the pro-
duction function, f(k, r), is not necessarily concave, though it exhibits bounded
growth.26 In this framework, the set of feasible programs is not necessarily con-
vex and therefore, the value function for the dynamic optimization problem is
not necessarily concave even though the utility function satisfies classical con-
cavity restrictions. This non-convextiy means that the maximization problem
on the right hand side of the functional equation may have multiple solutions so
that instead of a unique optimal policy function, the solution is characterized
by a measurable selection from an upper semi-continuous optimal policy cor-
respondence. Further, there need not exist any continuous selection and every
policy function may exhibit jump discontinuities on a set that is at most count-
able. Also, non-convexity in the economy implies that the optimal path is not
necessarily decentralizable - in particular, support prices may not exist.
As the value function is not necessarily concave, the expected future mar-

ginal value of capital may be increasing in current investment.27 This, in turn,
implies that optimal consumption may actually decline with an increase in out-
put.28 Indeed, in the deterministic model it has been shown that there may not
exist an optimal consumption function that is globally monotonic. The optimal
investment policy correspondence is, however, an ascending correspondence.
Further, if the utility function is strictly concave, then it can be shown that
every measurable selection from this correspondence is non-decreasing and an
optimal investment policy function K(y) is always non-decreasing in output.29

26Some notable contributions to deterministic optimal growth with a non-convex technology
include [67],[32].
27The term "marginal" is used loosely here as the value function is not necesarily differen-

tiable no matter how smooth the utility and production functions are.
28Unlike both the classical stochastic model and the deterministic model with non-concave

production function, it is difficult to guarantee that optimal consumption is strictly positive
in the stochastic model with non-concave production, even if Inada conditions are imposed on
the utility and production functions. An interior optimal policy is ensured in [68] by assuming
that u(0) = −∞, which is a very strong restriction on the class of admissible utility functions.
More recently, [94] establish interiority by assuming the Inada condition on utility, sufficiently
high marginal productivity at zero, and that the random shock is multiplicative and has a
density function so that the maximand on the right hand side of the functional equation of
dynamic programming is smooth.
29 If the utility function is concave but not strictly concave, then there may be an optimal
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A central question is whether there exists a globally stable invariant distrib-
ution. In the deterministic literature with non-concave production functions, it
has been shown that there may be a multiplicity of steady states and the limit of
the optimal path of capital stocks may depend on the initial state. For example,
with an S-shaped production function, it is quite possible that optimal paths
from small stocks converge to zero (extinction), while for initial stocks above
a critical level,30 optimal paths converge to a strictly positive optimal steady
state. This initial state dependence can be expected to be true in the stochastic
model too.
Consider the model of Section 2 without assumption A.4. For any measur-

able selection from the optimal policy correspondence, the transition function
H(k, r) for the Markov process of optimal capital stocks (8) is non-decreasing in
k, but not necessarily continuous.31 Recall that km, kM are the largest positive
fixed point of the lowest transition function Hm(k) and the smallest positive
fixed point of the highest transition function HM (k), respectively. A critical
step in the proof of global stability in Proposition 8 is Lemma 7 that showed
km < kM . Indeed, if A.10 and A.11 hold and km < kM , then even if assumption
A.4 does not hold, the proof of Proposition 8 goes through and there exists a
globally stable invariant distribution. However, in the non-convex model it is
quite possible that km > kM so that Lemma 7 does not hold. To see what
happens in that case, suppose that A.10 and A.11 hold and optimal policy is in-
terior (0 < K(y) < y for all y >).Once again, confine attention to the case where
f(k, r) = rf(k) where r assumes one of two possible values a, b. As before, let ym
> 0 be the smallest positive fixed point of the lowest transition function Hm(k).
Then, for all k ∈ (0, ym),HM (k) > Hm(k) > k and HM (ym) > Hm(ym) = ym
so that ym < kM . Similarly, it is easy to show that km < yM , where yM is the
largest fixed point for the highest transition function HM (k). Thus, km > kM
implies ym < kM < km < yM .This configuration is depicted in Figure 2. It
is easy to check that the two disjoint intervals [ym, kM ] and [km, yM ] are both
ν−invariant; from any initial state in either interval, the optimal capital process
remains in that interval almost surely. For k0 ∈ (0, kM ], all optimal paths even-
tually enter and stay in the interval [ym, kM ] while for k0 ∈ [km,∞), all optimal
paths eventually enter and stay in the interval [km, yM ]. There is no globally
stable invariant distribution. Using arguments based on the splitting condition
referred to earlier, Majumdar, Mitra and Nyarko [68] show that if km > kM ,
then for all k0 ∈ (0, kM ], the distribution of capital stocks converges to the same
invariant distribution whose support is [ym, kM ], while for all k0 ∈ [km,∞),
the distribution of capital stocks converges to another invariant distribution

investment function that is non-monotonic though, even in that case, there is at least one
optimal investment function that is non-decreasing.
30This critical level is referred to as a safe standard of conservation in the literature on

renewable resource economics.
31An innovative approach to the non-convex model can be found in Amir [1]. It takes

advantage of the averaging associated with the random disturbances to derive conditions for
the monotonicity of optimal policies and higher order differentiability of the value function.
As in [12], differentiability of the optimal policy functions follows from the implicit function
theorem.
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whose support is [km, yM ]. For any fixed initial stock in the intermediate range
(kM , km), the optimal path may enter either of the two invariant sets and re-
main there, depending on the realization of random shocks. This last possibility
illustrates an aspect of path dependence that has no parallel in the deterministic
literature.
In general, non-convexities in production may lead to multiple invariant

distributions. However, if production is "sufficiently stochastic", then there
exists a globally stable invariant distribution despite the non-convexity [68].
Here, the precise condition that ensures global stability is

A.12. There exists some ϑ > 0 in S such that ν({r ∈ Φ | f(k, r) ≤ ϑ for each
k ∈ S}) > 0 and ν({r ∈ Φ | f(k, r) ≥ ϑ for each k ∈ S}) > 0. This is a
condition on the production function, not the transition function for the opti-
mal capital process. It captures the idea that the output that results from any
given investment is sufficiently spread out, i.e., the technology exhibits sufficient
variability. Under this condition, if we let z = K(ϑ),then one can easily verify
that the splitting condition described in the proof of Proposition 8 is immedi-
ately satisfied. This ensures global stability. Hence, the possibility of multiple
stochastic steady states depends on the stochasticity of the model. This is an-
other instance where the stochastic growth model (with sufficient uncertainty)
is qualitatively different from the deterministic analogue. We summarize the
above discussion in the next proposition:

Proposition 10 Assume A.1 − A.7, A.10, A.11 and that optimal policy is in-
terior. Then, (i) if km < kM , then there is a unique invariant distribution
on S whose support is [km, kM ] and from every k0 > 0,the optimal capital
stocks converge in distribution (uniformly) to this invariant distribution; (ii) if
km ≥ kM , then for all k0 ∈ (0, kM ], the distribution of optimal capital stocks
converges to an invariant distribution whose support is [ym, kM ], while for all
k0 ∈ [km,∞), the distribution of capital stocks converges to another invariant
distribution whose support is [km, yM ].If, further, A.12 holds, then the conclu-
sion in (i) always holds.

As in Section 3.1, A.11 implicitly imposes restrictions on the technology.
For example, in [68] it is obtained from the model primitives by assuming (in
addition to a condition for interiority of optimal policy) that the random shock
has finite support and that the marginal productivity at zero is infinite. The
latter is a rather serious restriction on the class of admissible non-concave pro-
duction functions. It rules out the S-shaped production function that is a widely
used canonical form to capture increasing returns to scale and other threshold
effects.32 In a recent paper, Nishimura, Rudnicki and Stachurski [94] analyze
a non-convex model with multiplicative i.i.d. random shock that has a density
function that is strictly positive on <++. Under restrictions on the expectation
of the random shock, they show that the Markov process of optimal capital
stocks either converges to zero from every initial state or there is a globally

32Mitra and Roy [92] provide weaker conditions that can ensure A.11 even when the marginal
productivity at zero is finite and the distribution of the random shock is absolutely continuous.
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stable non-zero steady state. To place their results in context, their assumption
on the density function automatically satisfies the "very stochastic" assumption
in [68] discussed above. Their result does not require Inada conditions on the
production function and, in fact, allows the marginal product at zero to be less
than one with positive probability.
The literature on non-convex stochastic growth also develops turnpike condi-

tions under which optimal paths approach each other asymptotically. In a model
with non-convex and non-stationary technology Joshi [50] uses monotonicity
properties of the optimal policy and a supermartingale process generated by
the stochastic Ramsey-Euler equation to show that, under a strong "value loss"
condition that is uniform with respect to time and state, the asymptotic dis-
tance between optimal paths from two distinct initial states converges to zero
with probability one. However, as in the case of turnpike theorems in the sto-
chastic multisector convex models, the uniform value loss condition is not very
transparent in terms of its implications for the model primitives.
One of the interesting questions in stochastic growth models with non-

convexity is the possibility of extinction where optimal paths converge to zero.
This is particularly important in applications of the optimal growth model to
problems of renewable resource management where utility reflects the net benefit
from harvesting and the production function reflects natural biological growth.
Assuming a bounded growth production function and i.i.d. shocks that have
compact support, Mitra and Roy [92] show that there are only three possibili-
ties: (i) optimal paths from all initial states get arbitrarily close to zero infinitely
often with probability one (this includes extinction in finite time), (ii) optimal
paths from all initial states are bounded away from zero with probability one,
and (iii) there exists a critical capital stock or safe standard above which all
optimal paths are bounded away from zero with probability one. They develop
sufficient conditions on the preferences and technology that leads to each of the
above outcomes. In contrast to the deterministic literature, these conditions
involve not just the discount factor and marginal productivity, but also mar-
ginal utility - one compares the discount rate to expected "welfare-modified"
return on investment (marginal productivity) as in the condition in Proposition
11. Another result on optimal extinction is due to Kamihigashi [53] who shows
that if the marginal productivity at zero is finite, then sufficient variability in
the random shock implies that all feasible programs (including therefore, the
optimal program) converge to zero almost surely.

4.2 Stochastic Growth with Stock-Dependent Utility

For some important capital theoretic allocation problems welfare depends on
both consumption and the beginning of period output, as represented by u(c, y).33

Utility is assumed to be nondecreasing in y, jointly concave in (c, y) and A.7 is

33Such models include the allocation of natural capital or renewable resources and the effects
of wealth on consumption-savings behavior.
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no longer imposed.34 In the deterministic case stock-dependent utility has two
important consequences. The first consequence arises if investment and output
are substitutes in utility in the sense that u(y− k, y) is submodular in k and y.
In that case, an interior optimal investment policy may be decreasing in output.
At the same time, there may be intervals of the state space on which corner
solutions are optimal and the optimal transition function coincides with the
production function. Combining these two possibilities opens the door for the
optimal transition function to be like a tent map, or even more complex. When
this happens an optimal program may exhibit nonlinear dynamics including cy-
cles or chaos [3]. The second important consequence is that multiple optimal
steady states are possible, even if the utility function is supermodular in k and
y and the optimal investment policy is monotone (Kurz [58]). In such cases, the
asymptotic behavior of an optimal program depends on the initial state.
The first analysis of stochastic models with stock-dependent utility can

be traced to the literature on renewable resource allocation. In that liter-
ature, the production function represents biological growth of the renewable
resource and the random shock represents the effect of environmental distur-
bances on resource growth. The state variable is the resource stock (output)
at the beginning of the period. Stock-dependent utility arises when the harvest
costs depend on the resource stock or when the resource stock has amenity or
other social value. Early papers ([45], [105], [121]) focused on the case where
ucc(c, y) + ucy(c, y) = 0. In this case the direct and indirect utility effects of an
increase in output offset exactly and investment and output are neither strict
complements nor strict substitutes in utility. An interior optimal investment
policy is simultaneously nondecreasing and nonincreasing in output. That is,
the optimal investment policy is a constant investment policy, which in the pres-
ence of fixed costs becomes an (s,S) inventory rule. Mendelssohn and Sobel [77]
prove monotonicity of the optimal investment policy under the supermodularity
condition ucc(c, y)+ucy(c, y) ≤ 0. Nyarko and Olson [95] show that the optimal
consumption policy is nondecreasing when ucy(c, y) ≥ 0 is imposed in addition
to the concavity of u and f . They also use the Dubins and Freedman splitting
condition to characterize the convergence of optimal programs to a limiting dis-
tribution. Without additional restrictions the invariant distribution may not
be unique and the long run behavior of an optimal program may depend on
initial conditions.35 Subsequently, Nyarko and Olson [96] show that additional
sufficient conditions for the existence of a unique invariant distribution are: (i)
uc(c, y) = 0 implies uy > 0 for sufficiently large y, and (ii) for all y > 0, c ∈ Γ(y)
and α > 1, if uc(c, y) > 0 and uc(αc, αy) > 0 then uy(c,y)

uc(c,y)
≥ uy(αc,αy)

uc(αc,αy)
. The

last assumption is a complementarity condition that implies that the slope of
indifference curves for u decrease as output and consumption increase along a

34 In renewable resource allocation problems welfare declines if consumption exceeds the
quantity that equates demand and supply.
35One, but not the only, mechanism by which this can happen is for one invariant distrib-

ution to exist where state is large enough that its shadow price is zero, Vy = uc(C(y)) = 0,
while another invariant distribution exists at smaller states with a strictly positive shadow
price.
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ray through the origin in (c, y) space. Nyarko and Olson provide examples to
show that multiple invariant distributions can be optimal when either (i) or (ii)
are violated. The existence of a unique invariant distribution is also ensured
when there is sufficient divergence between production in the best and worst
states. [68] and [96] show that there is more than one way to define sufficient
variation in production. The underlying intuition is the same. A model with
multiple limiting distributions can be transformed into one with a unique in-
variant distribution by the mixing that results from increasing the variance in
production. On the other hand, if the variability in production is small enough
and if u(y−k, y) is submodular in (k, y), then an optimal program may oscillate
between cyclic sets [3].
The economic possibilities associated with the stochastic growth model ex-

pand considerably when a non-convex production technology is combined with
stock-dependent utility. To date this combination has primarily been used to
examine the conditions under which capital stocks remain strictly bounded away
from zero, issues related to conservation and extinction. In the deterministic
model with both non-convex production and stock-dependent utility it is pos-
sible for there to be disjoint intervals in the state space from which an optimal
program converges to zero. That is, an optimal program starting from inter-
mediate states may remain bounded away from zero, while optimal programs
starting from lower or higher states converge to zero [99]. The addition of ran-
dom productivity disturbances leads to the somewhat surprising possibility that
a first-order improvement in the distribution of disturbances can reduce the set
of initial states from which optimal output and capital stocks have a positive
lower bound.
One useful technique to analyze some questions in the non-convex model is

to examine behavior under the convex-hull of the technology. If capital stocks
under an optimal program always remain in an interval for which the convex-hull
coincides with the non-convex technology then the two optimization problems
coincide on that interval. This can be used, for example, to provide conditions
for the existence of a safe standard of conservation.

Proposition 11 Assume u(y − k, y) is supermodular in (k, y), u is increasing
in c, and f is concave in k for all r. Let f(k) = infr f(k, r). If

inf
z∈[0,k]

δE[
uc(f(k, r)− z, f(k, r)) + uy(f(k, r)− z, f(k, r))

uc(f(k)− z, f(k))
> 1 (13)

then lim inf yt ≥ k for all y0 ≥ k.

A general version of this result in the model with non-convex technology and
stock-dependent utility can be found in Olson and Roy [100], along with other
results dealing with conservation or extinction. The conclusions depend on the
joint properties of the technology, utility, and the distribution of disturbances.
As can be seen above, f(k) or productivity under the worst disturbance is an
important determinant of conservation or extinction.
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5 Comparative Dynamics
An important question in stochastic growth theory is the sensitivity of optimal
decision rules and paths with respect to preference and technology parameters
that describe the underlying economy. In a one sector model, continuity of op-
timal investment and consumption decision with respect to various parameters
of the model generally holds under far weaker assumptions than those described
in Section 2.36

The theory of monotone comparative statics using supermodular functions
and complementarity developed in Topkis [127] has been extended to stochastic
dynamic models (see, for example, [119], [42]). One can apply results from this
literature to derive the comparative dynamics of the optimal policy function
with respect to various preference and technology parameters by looking at
the maximization problem on the right hand side of the functional equation of
dynamic programming [43]. Most of these results have been derived in a one
sector framework.
Danthine and Donaldson [26] show that an increase in the discount factor

increases optimal investment and shifts the distribution of optimal capital stocks
to the right and hence, the invariant distribution to which the stocks converge.37

Moreover, they show that an increase in the curvature of the utility function
(loosely speaking, an increase in risk aversion), leads to higher consumption
(i.e., lower investment) at low levels of output, and lower consumption (i.e.,
higher investment) at high levels of output; further, the range of the limiting
distribution expands as risk aversion increases.38

Another important issue in comparative dynamics is the effect of a change
in the degree of riskiness or volatility of the random shocks. This relates to a
central concern in macroeconomics about the relationship between riskiness of
productive assets and the optimal intertemporal precautionary saving decisions
of individuals as well as more aggregative analysis of the relationship between
growth and economic fluctuations (see for example, [48]). Unfortunately, there is
no general characterization of the effect of a second order stochastic dominance
change in the distribution of shocks on the optimal policy.39

In the specific case of optimal savings under uncertainty 40 discussed in
Example 9, one can characterize the comparative dynamics of riskiness fairly
tightly. From (10), we have

36See for example, [38]. Conditions for parametric continuity of stationary distributions
of Markov processes are discussed, among others, by [124] and [60]. These properties are
important for numerical simulations.
37Dutta [36] shows that lengthening the time horizon for a fixed discount factor and in-

creasing the discount factor for a fixed time horizon are, in a precise sense, equivalent.
38 In the case of logarithmic utility, Cobb-Douglas production with multiplicative shock, an

increase in the discount factor increases the variance of capital stock and output. Danthine
and Donaldson [27] provide sufficient conditions for this to occur. They also characterize
conditions under which an increase in the curvature of the utility function has a similar effect.
39An exception is the model of optimal dynamic consumption with deterministic linear

interest and additive labor income shock. See, for example, [79].
40 See, among others, [101], [62], [109], [61].
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K(y) = αy,E[
kt+1
kt
] = αE(rt+1), where α = [δE(r1−σ)]

1
σ

so that the propensity to invest/save and the expected growth rate of capital
are both proportional to α and the latter is increasing (decreasing) in riskiness
of the random shock if σ > (<)1 because r1−σ is a convex (concave) function
of r in that case. Thus, depending on the curvature of the utility function,
an increase riskiness may increase or decrease optimal investment and cause
a first order increase or decrease in the distribution of optimal capital stocks.
Roughly speaking, if utility is more concave than the logarithmic function, an
increase in riskiness of the random shock increases the optimal savings rate and
the expected rate of growth. The reverse holds if utility is less concave than the
logarithmic function. In the case of log utility, the optimal policy depends only
on the average realization of the random shock and not on its higher moments.41

A less ambitious question relates to a comparison of the moments of the
limiting distribution to the steady state in the deterministic model.

Example 12 u(c) = ln c and f(k, r) = rkβ , 0 < β < 1. For this example
Mirman and Zilcha [84] show that the optimal investment policy is given by
K(y) = βδy. Danthine and Donaldson [27] use this to analyze the properties
of the optimal program for capital:

kt = (βδ)
1+β+...+βt−1kβ

t

0 rβ
t

0 rβ
t−1
1 ...rβt−1rt.

This implies:

Ekt = (βδ)

t−1P
s=0

βs

kβ
t

0

t−1Q
s=0

E(rβst−s−1).

Assume E(rt) = 1 and a non-degenerate distribution for rt. Then taking
limits as t → ∞, the first moment of the limiting invariant distribution of
capital satisfies: Ek = (βδ)

1
1−βL, where, L = limt→∞

t−1Q
s=0

E(rβst−s−1). Jensen’s

inequality implies L < 1. Expected consumption and output in the limiting
invariant distribution are given by: Ec = (1 − βδ)(βδ)

β
1−βL, Ey = (βδ)

β
1−βL.

In the deterministic version of the model (where rt = 1 almost surely), steady
state capital, consumption and output are given by: k = (βδ)

1
1−β , c = (1 −

βδ)(βδ)
β

1−β , y = (αδ)
β

1−β . This shows that in the stochastic model, the steady
state distribution has smaller average capital stock, output and consumption
than in the certainty equivalent version of the model.

In Example 12, uncertainty only affects the evolution of an optimal program
and not the optimal policy function itself. This simplifies the task of characteriz-
ing the effect of uncertainty on the limiting distribution. In general, uncertainty
will also affect the optimal policy function. As we have seen earlier, in the case

41For an extension of this kind of result to a model of endogenous growth see [30].
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of iso-elastic utility and linear production, uncertainty may increase or reduce
optimal investment depending on the nature of the utility function. This makes
it difficult to compare the moments of the limiting distribution of capital for
the stochastic model with its certainty equivalent.

6 Solving the Stochastic Growth Model
The stochastic growth model is inherently nonlinear. There is no known gen-
eral, closed form solution. Instead, analysis of the model with general functional
forms aims to qualitatively characterize optimal policies and the resulting im-
plications for economic behavior. There are two main approaches to achieving
more specific solutions, all of which require assumptions regarding functional
forms for production and utility. The only cases with known closed form ana-
lytical solutions are those discussed in Examples 9 and 12 the linear-quadratic
case.
Approximation and numerical methods are the alternative when an analyti-

cal solution is not available.42 By far the most common approximation technique
is to linearize the Euler equations around the steady state of the model, an idea
pioneered by Magill [64] in continuous time and Kydland and Prescott [59] in
discrete time. This approach was subsequently extended by [56], [57], [20] and
many others. In a model with Cobb-Douglas technology and CES/CRRA utility,
[129] develops central limit and large deviation principles that characterize the
manner in which capital trajectories in the stochastic model converge to those
in the deterministic case as the standard deviation of the random shock goes to
zero. In practice, most approximation methods are not entirely analytical and
the approximate solution is analyzed using simulations where the underlying
parameters are calibrated to data. Solutions are accurate in the neighborhood
of a stochastic steady state with support on a small interior interval. Approx-
imation methods are less useful in situations where the disturbance term has
support on a large interval, where the solution is not interior, where second
order effects are important, and in the study of transition dynamics.
Numerical dynamic programming can be also be used to solve the para-

metric specifications of the stochastic growth model. The two most common
approaches involve iteration of discrete or parametric approximations to the
value or policy functions. Recent surveys of numerical methods can be found
in [110], [52], [73], and [111]. Once the model is solved, the policy functions
can be used to compute moments for the limiting distributions of the economic
variables of interest. The main advantage of numerical dynamic programming
is that attention need not be restricted to a neighborhood of the steady state.
This allows one to investigate almost any question of interest within the con-
text of a given parametric specification, including a study of global dynamics.
The primary disadvantage has to do with robustness to model specification,
calibration and choice of numerical method.43 In general, different numerical

42An early survey and comparison of different methods can be found in [128].
43For algorithms generated by a contraction mapping of modulus δ , the approximation
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procedures can yield substantially different results so care must be exercised in
their implementation.

7 Conclusion
The literature on optimal stochastic growth theory is over three decades old
now and there are many important ways in which the theory has contributed
to our understanding of capital accumulation, growth and more generally, op-
timal intertemporal resource allocation. In this section, we summarize some
of the contributions of the stochastic growth literature and we point out where
the introduction of uncertainty has done little to alter the conclusions of the
deterministic model.
First, stochastic growth theory has provided a different explanation of eco-

nomic volatility. In contrast to the deterministic case, an optimal program in the
stochastic model is a sequence of random variables generated jointly by optimal
decisions and random productivity disturbances. Realized capital paths fluc-
tuate even when the optimal policy is time stationary and well-behaved. This
way of looking at economic volatility has been successfully utilized by the busi-
ness cycle literature as a way to capture various stylized facts about economic
fluctuations.
Second, in the stochastic growth model the utility function plays a prominent

role in determining the long run behavior of the economy. Indeed, even in a
one-sector model and for the same production technology, discount factor and
distribution of random shock, the limiting steady state distribution can differ
wildly according to the specification of the utility function. The role of the
utility function is also seen in conditions for long run growth and avoidance of
extinction. This role is absent in deterministic models.
Because the utility function affects long run behavior in the stochastic growth

model it is possible to examine how optimal paths and the limiting distribution
are affected by changes in the riskiness of productive assets, risk aversion, or
the willingness to substitute consumption across time. Unfortunately, not much
general analytical characterization is available outside a few examples in the log-
linear family. These examples nonetheless serve to illustrate how the qualitative
nature of comparative dynamics can depend on the parameters of the utility
function.
Third, key qualitative features of optimal policies such as continuity and

monotonicity are not significantly altered by the presence of uncertainty in the
production technology.
Fourth, extending results on the existence and global stability of an optimal

steady state to the stochastic model requires verifying that the transition law

error is bounded by k Vn − Vn+1 k< �/(1− β), where � is the tolerance level under the given
metric and Vn is the nth iterate of the algorithm. Santos [112] shows how the Euler equation
residuals can be used to bound the approximation error for other types of algorithms. Santos
and Peralta-Alva [113] examine when the simulated moments from a numerical solution to
converge to their exact values as the approximation errors converge to zero.
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for the optimal process satisfies certain conditions, which are discussed above.
This has necessitated strong technical assumptions that have no counterpart
in the deterministic literature. In the multisector case, this difficulty has been
more pronounced and the conditions for global stability of a stochastic steady
state are only specified in terms of the transition law for the optimal process,
making it difficult to evaluate their economic implications.
Fifth, in non-classical one-sector models that generate multiple invariant

distributions that act as local attractors, it has been shown that if the volatility
of technological disturbances is increased sufficiently, one can establish global
convergence of optimal processes to a unique stochastic steady state. Loosely
speaking, higher stochasticity in the production technology makes it more likely
that realized optimal paths exhibit a high degree of economic fluctuations over
time, but it also increases the likelihood that the distribution of optimal capital
stocks converges globally to a unique invariant distribution independent of the
initial state. In other words, greater production uncertainty may be associated
with higher economic volatility and at the same time, may ensure long run
"convergence" in probability distribution of economies that differ in their initial
states. This is a fundamental insight into the process of growth and fluctuations
in an economy.
Finally, the stochastic growth literature has followed the deterministic liter-

ature very closely in establishing a set of turnpike results that show how optimal
paths approach each other almost surely in the long run.
As for the important theoretical questions that remain unanswered, our brief

survey indicates that a general characterization of the stochastic steady state,
or invariant distribution, is lacking. Steps toward such a characterization would
improve our understanding of the forces that determine long run economic be-
havior in a convergent stochastic economy. We not only need to understand
how complex the limiting distribution can be, but also have some idea of the
relationship between the fundamentals of the model and the properties of the
limiting distribution. That is, what do technology and preferences imply about
the nature of the limiting distribution? Much work remains to be done there.
Other important open questions in the one sector model are: a complete

characterization of conditions under which optimal paths converge to zero al-
most surely, to a non-trivial invariant distribution and diverge to infinity al-
most surely (the existing literature only provides strong sufficient conditions for
each of these events); relaxing the conditions for convergence and stability in
the non-convex model; and the question of asymptotic convergence in versions
of the model with non-monotone optimal investment policy (such as the stock-
dependent model). Developing more transparent conditions for convergence and
stability in the multisector stochastic model and conditions for sustained long
run growth in such models are also problems that remain open to the current
generation of growth theorists.
Finally, the methodology of stochastic optimal growth is increasingly applied

to other problems of dynamic resource allocation ranging from models of finan-
cial markets and macroeconomic fluctuations to the management of natural and
environmental assets. These applications often require extensions and modifica-
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tions to the basic framework in order to suit the stylized facts that characterize
the fundamentals. This, in turn, poses new questions for the growth theorist.
The development of new applications and extensions of existing ones may well
continue to be the most fruitful source of new ideas related to the stochastic
growth model.
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