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Abstract 
 
Scouting is the most widely used integrated pest management (IPM) technique.  It has been argued that only 
independent crop consultants provide unbiased scouting information.  In contrast, chemical dealers inflate 
scouting reports and/or reduce economic thresholds in order to increase pesticide sales while farmers may use 
excessively low treatment thresholds due to risk aversion and/or overestimation of pest pressure..  Since the 
majority of scouting is done by farmers and chemical dealer employees, it follows that scouting may not be a very 
effective means of reducing reliance on chemical pesticides.  This study applies an implicit demand formulation of 
the Lichtenberg-Zilberman damage abatement model to data from a survey of Maryland field crop growers to 
examine differences in pesticide demand between growers using scouts trained and supervised by extension and 
those using chemical dealer employees or scouting themselves.  Our results give partial support to those skeptical 
of the quality of scouting by farmers themselves and by consultants working for chemical dealers.  We found that 
soybean growers using extension trained scouts had significantly lower pesticide demand than those using 
chemical dealer employees or scouting themselves.  However, we found no significant differences in the pesticide 
demands for alfalfa, corn, and small grains.  Since soybeans in Maryland are substantially more pesticide-intensive 
than corn, alfalfa, or small grains, these results suggest that it does matter who scouts when there is scope for 
substantial savings in pesticides. 
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Does It Matter Who Scouts? 
 

Integrated pest management (IPM) is an approach that combines the use of chemical pesticides 

with non-chemical methods to limit the damage caused by such pests as insects, weeds, 

diseases, and rodents.  Among the non-chemical  techniques used in IPM strategies are 

protection of natural pest enemies, cultivation practices that limit pest overwintering or diffusion, 

and crop rotation (for a review see Kogan 1998).  The most widely used non-chemical method 

is scouting, that is, monitoring fields to determine actual pest infestation levels.  In scouting-

based IPM strategies, chemical pesticides are applied only when the pest infestation level 

exceeds the economic threshold, usually defined as the level at which the value of crop losses 

will exceed the costs of pesticide application(see Pedigo et al. 1986 for a standard exposition).  

Pest management regimes based on scouting and economic thresholds have largely replaced the 

earlier practices of spraying preventively on a predetermined calendar-based schedule.  By the 

early 1990s, they were used on 78 percent of U.S. corn acreage, 77 percent of U.S. soybean 

acreage, 80 percent of U.S. wheat acreage, 86 percent of U.S. potato acreage, 88 percent of 

U.S. cotton acreage, 76 percent of U.S. fruit and nut acreage, and 71 percent of U.S. vegetable 

acreage (Economic Research Service 1997; Vandeman et al. 1994). 

Despite its apparent widespread adoption, certain aspects of scouting remain somewhat 

controversial.  One bone of contention is the issue of who performs scouting and makes spray 

recommendations.  Scouting is performed by independent crop consultants, by consultants 

working as employees of farm chemical sales firms, or by farmers themselves. Some believe that 

only independent crop consultants provide unbiased scouting information (see for example 

Zilberman et al. (1994) for a discussion of this debate).  Those who hold this point of view 
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argue that farmers tend to overestimate pest infestation levels due to lack of training and risk 

aversion (see Pingali and Carlson (1985) for some evidence confirming this hypothesis for apple 

growers in North Carolina, albeit at a much earlier point in the diffusion of scouting).  They also 

argue that consultants working for farm chemical dealers overstate infestation levels, use 

economic thresholds that are too low, or both, in order to increase pesticide sales.  Since the 

majority of scouting is done by farmers and chemical dealer employees, proponents of this 

perspective posit that scouting may not be a very effective means of reducing reliance on 

chemical pesticides. 

As a counterargument, it has been suggested that consultants working for chemical 

dealers can be impelled to generate unbiased scouting reports and spray recommendations in 

order to retain customer loyalty by competition from independent crop consultants, from other 

dealers, and from farmers with sufficient human capital to scout accurately and apply economic 

thresholds themselves (Zilberman et al. 1994).  It is also possible that extension dissemination 

efforts create widespread familiarity with scouting methods and economic thresholds, enabling 

growers to employ economic thresholds based on their own scouting and to make accurate 

assessments of scouting reports and spray recommendations generated by consultants in the 

employ of chemical dealers.  As a result, it may not matter who scouts: Independent consultants, 

consultants working for chemical dealers, and farmers who scout themselves may generate the 

same spray recommendations so that scouting will affect pesticide demand the same ways 

regardless of who scouts. 

There are few empirical studies examining the impacts of scouting on pesticide demand 

and none examining differences between the effects of scouting by extension-trained consultants 
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and scouting by farmers or chemical dealer employees.  Most of the existing empirical studies 

compare the average amounts of pesticides applied by farmers participating in an IPM 

demonstration project with the average amounts applied by non-participants (for a survey see 

Norton and Mullen 1994).  Comparisons of this kind are not highly satisfactory because they do 

not control for differences in land quality, human capital, input and output prices, pest pressure, 

and other factors that can influence pesticide use.  Econometric studies, which do control for 

such variations, tend to show that scouting reduces pesticide use.  Burrows (1983) found that 

participation in an IPM program that featured scouting reduced expenditures on pesticides 

significantly among California cotton growers during the early 1970s.  Pingali and Carlson 

(1985) found that scouting reduced North Carolina apple growers’ demand for insecticides and 

fungicides during the late 1970s by reducing errors in their assessments of insect and disease 

pressure.  More recently, Hubbell and Carlson (1998) found that apple growers using scouting 

selected different insecticides than those who did not use scouting but found no difference in the 

total weight of insecticidal chemical active ingredients applied or in the potential harmfulness of 

the chemicals used in terms of human safety or the environment.  Hubbell (1997) found some 

weak evidence suggesting that scouting may influence the frequency with which apple growers 

apply insecticides.  None of these studies, however, compared scouting by independent crop 

consultants to scouting by farmers or chemical dealer employees.  Fernandez-Cornejo (1996) 

found that tomato growers using insect scouting plus one or more other non-chemical pest 

control methods made a smaller number of insecticide applications than those who did not. 

This paper uses data on Maryland field crops to compare the pesticide demands of 

those using scouting by extension-supervised independent crop consultants with those scouting 
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themselves or using chemical dealer employees.  We formulate maximum likelihood estimators 

for implicit demand functions derived from the damage control specification introduced by 

Lichtenberg and Zilberman (1986), an approach to estimating damage abatement parameters 

that has not bee used before.  We use those estimators to test for differences in pesticide 

demand between farmers obtaining scouting services from consultants trained and certified by 

Maryland Cooperative Extension (MCE) and those who did not in terms of both the parameters 

of damage abatement functions and the variances of random errors affecting production.  

Finally, we use the estimated parameters to discuss pesticide productivity on Maryland field 

crops. 

A Model of Pesticide Demand 

We follow Lichtenberg and Zilberman (1986) in modeling pest management services as an 

intermediate input providing damage control.  Lichtenberg and Zilberman motivated this 

approach on the grounds of a priori biological information, noting that pest management 

methods generally do not augment plant growth but rather reduce crop loss due to pests.  They 

also argued that generic first-order functional forms are likely to overstate the productivity of 

pest management, making it appear that pesticides are underused in cases where they are 

actually overused.  As Chambers and Lichtenberg (1994) pointed out subsequently, an 

additional advantage of the damage control approach is that it generates implicit estimates of 

percentage crop loss and thus puts pesticide productivity in terms better understood by crop 

scientists. 

Several empirical applications found that this damage-control approach yielded better-

fitting or more plausible estimates of pesticide productivity for North Carolina apples (Babcock, 
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Lichtenberg, and Zilberman 1992), Kansas wheat (Saha, Shumway, and Havenner 1997), and 

U.S. aggregate agricultural (Chambers and Lichtenberg 1994).  Other studies of aggregate U.S. 

agricultural output (Carrasco-Tauber and Moffitt 1992) and aggregate French cereal and 

oilseed production (Carpentier and Weaver 1997) found that damage control models fit no 

better (but also no worse) than generic specifications. 

 Like these other studies, we specify output Q as a weakly separable combination of 

potential yield F(X) and damage abatement G(Z,α), where X is a vector of normal inputs, Z 

denotes pest control inputs, specifically, the amount of pesticides applied, α is a vector of 

parameters, and damage abatement is scaled to lie in the unit interval.  If pesticides are essential, 

then zero is the minimum possible value for abatement.  If pesticides are not essential inputs, as 

most crop scientists believe, then the minimum possible value of G(Z,α) is positive. 

Because the number of observations on each crop is small, parsimony in parameters is 

essential.  To this end, we employ the implicit demand specification suggested by Chambers and 

Lichtenberg (1995).  Output of farmer j is 

jjjj uZGXFQ ),()( α=      (1) 

where uj is a lognormal white noise error consisting of random variations in unobserved factors 

affecting both potential yield and damage abatement (e.g., human capital, pest pressure, 

microclimatic variations in weather, etc.), assumed to be distributed independently and 

identically across farms.  Profit is 

jjjjjjj vZXwuZGXpFZX −⋅−= ),()(),,( ααπ ,    (2) 

where p is the crop price, w is a vector of the unit prices of normal inputs, and v is the unit price 
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of pesticides.  The first order condition for profit maximization can be written 
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where Rj = pF(Xj)G(Zj,α) is farmer j’s expected revenue.  If Rj and v are observed, only the 

parameters of the damage abatement function α need be estimated. 

 Neither theory nor empirical studies give guidance as to the exact specification of 

G(Z,α), other than that it have the attributes of a cumulative distribution function.  Like other 

empirical studies (Babcock, Lichtenberg, and Zilberman 1992, Saha, Shumway, and Havenner 

1997, Chambers and Lichtenberg 1994, and Carpentier and Weaver 1997) we use an 

exponential specification 

jkk Z
k e 101),G(Z j

ααα −−−= ,     (4) 

where αk is a vector of damage abatement parameters that differs between participants (k = p) 

and non-participants (k = n) in the MCE scouting program.  Aside from computational 

convenience, the exponential is one of the few functional forms that meets all of the restrictions 

of the damage control hypothesis.  In particular, it is defined over the positive real numbers.  

The other functional forms suggested by Lichtenberg and Zilberman (1986) are not: The support 

of the logistic distribution is (-∞,+∞) while the lower supports of the Pareto, and Weibull 

distributions are positive real numbers (Johnson, Kotz, and Balakrishnan 1994). 

We use a non-central exponential specification (α0k ≠ 0) because, as Chambers and 

Lichtenberg (1994) pointed out, setting α0k = 0 corresponds to assuming that pesticides are 

essential inputs.  The non-central specification allows this hypothesis to be tested formally and 

simply. 
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 In this model, pesticide demand of farmers using extension-trained and certified scouts 

may differ from that of farmers scouting themselves or using chemical dealer employees in two 

ways.  First, the parameters of the damage abatement function αk may differ because extension-

trained scouts may provide different treatment recommendations than scouts employed by 

chemical dealers or farmers doing their own scouting.  This hypothesis is αp ≠ αn.  Second, the 

unobserved variables comprising the white noise error may differ in distribution.  Letting σk 

denote the variance of uj, this hypothesis is σp ≠σn.  The most general form of the likelihood 

function of the model specified by equations (3) and (4) is thus 
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where Ω is a constant, Tp is the number of participants, and Tn is the number of non-

participants. 

 We examined three possible ways participants and non-participants might differ.  The 

first is where participants and non-participants differ in terms of both the damage control 

function parameters and the variance of the error, αp ≠ αn and σp ≠σn.  The remaining two are 

where participants and non-participants differ in terms of either the damage control function 

parameters (αp ≠ αn and σp =σn) or the variance of the error (αp = αn and σp ≠σn) but not 

both. 

Data 

IPM programs are typically developed by public sector research, either at the federal 
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level or through the land grant university system.  Dissemination of these programs is usually the 

responsibility of agricultural extension in each state (Wearing 1988).  A typical IPM 

implementation process consists of demonstrations on a few farms followed by provision of 

advice at subsidized rates (including free of charge), with subsidies phased out over the 

implementation period.  In the case of scouting, state agricultural experiment station and 

extension personnel typically develop scouting protocols and train scouts.  The services of 

extension-trained and -certified scouts are offered to farmers first at no charge, then at charges 

that increase until they reach full cost, at which point the implementation process is considered 

finished. These IPM protocols are also disseminated via fact sheets or other publications and 

may thus be accessible to those not specifically trained by extension, e.g., individual farmers or 

chemical dealer employees. 

This study uses data from a survey conducted at the end of one such implementation 

program.  In 1972, Maryland Cooperative Extension (MCE) initiated a pilot program to test 

scouting protocols on the state’s four major field crops: corn, soybeans, alfalfa, and small grains. 

 MCE then provided scouting free of charge until 1979.  Beginning in 1980, farmers were 

required to pay for scouting services but at subsidized rates.  Beginning in 1985, growers were 

required to pay the full cost of scouting but MCE continued to train and supervise scouts.  In 

1992, supervision of scouts was phased out as well, although MCE continues to provide 

training and certification of scouts. 

Personal interviews of 123 field crop growers in two Maryland counties were 

conducted in 1991.  The main purpose of the survey was to determine the effect of MCE 

scouting recommendations on pesticide use.  A secondary purpose was to investigate whether 
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farmers using MCE scouting differed from those who did not in terms of demographic 

characteristics and attitudes towards pesticides.  The sample included all growers who used 

MCE scouting in two counties with the strongest programs.  One was in central Maryland while 

the other was on the Eastern Shore.  A matching sample of farmers who did not use MCE 

scouting was selected from the Maryland Department of Agriculture’s master list of all farmers 

in each of those two counties plus two adjacent counties without a strong MCE IPM program.  

Thus, the sample resembled that of a case control study of the kind widely used in medicine and 

epidemiology. 

Most of the respondents (93) came from central Maryland.  Thirty-eight percent (47 

farmers) had used MCE scouting.  Thirty-five of the farmers using MCE scouting grew corn, 30 

grew soybeans, 20 grew alfalfa, and 16 grew small grains.  Sixty-five of the 76 farmers not 

using MCE scouting grew corn, 57 grew soybeans, 25 grew alfalfa, and 34 grew small grains. 

The survey inquired about farming operations, human capital and demographic 

information, perceptions of disease, weed, and pest problems, attitudes toward pest 

management, practices used in pest management, pesticide use, and sources of information 

consulted in making pest management decisions.  Information obtained about farming operations 

included the size of the operation (acres farmed), annual sales of farm products, time devoted to 

farming, and percentage of income obtained from farming.  All were reported as categorical 

variables.  Also obtained were yield and acreage of each of the four field crops in 1991, the 

percentages of sales from field crops, livestock, and other crops in 1991, and average yields of 

each of the four field crop categories during 1985-1990.  Human capital and demographic 

information included age, level of education, and farming experience (all reported as categorical 
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variables) and whether the respondent was a certified pesticide applicator.  Farmers’ 

perceptions of pest problems were measured categorically as the two most important insect and 

disease problems and three most important weed problems in each crop.  Information on 

attitudes toward pest management included the factors each farmer found important in making 

pest management decisions, whether the respondent knew anyone who had become ill as a 

result of pesticide exposure, and whether the respondent would be willing to pay a higher price 

for a pesticide that posed less risk to human health or groundwater.  Farmers were asked which 

non-chemical pest control they used as well as which pesticides.  For each pesticide used, 

application rates and acreage treated were recorded for each crop.  Finally, respondents were 

asked from which sources they received the majority of their information regarding pest 

management and pesticide use. 

As noted above, the sample was constructed in the manner of a case control study with 

the expectation that the only difference between the two groups of farmers would be the use of 

MCE scouting.  That expectation was largely borne out in terms of farm operating 

characteristics, human capital and demographics, and attitudes about pesticides.  We compared 

participants and non-participants in the MCE scouting program using t-tests for continuous 

variables and χ2 tests for categorical variables.  Aside from the use of MCE scouting, the only 

statistically significant difference between the two groups occurred in education: A higher 

percentage of those using MCE scouting had a college degree or postgraduate education.  Most 

of the farmers who did not participate in the MCE scouting program did not apply pesticides 

according to a preventive schedule; rather, they either scouted themselves (61 percent), had 

scouting done by chemical dealers or applicators (57 percent), or both. 
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Estimation of the parameters of the model in equation (5) requires observations on three 

variables: pesticide use Zj, the price of pesticides v, and expected revenue Rj.  We assumed 

nonjointness in production (so that pesticide demand was estimated separately for each crop 

category) and constant returns to scale (so that output could be expressed in per-acre terms).  

As is standard, we also assumed that the appropriate measure of the intensity of pesticide use 

on each crop was the weight of pesticide active ingredient applied per acre of cropland, zj = 

Zj/Aj.  In this case, the likelihood function becomes 
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where rj = Rj/Aj is expected revenue per crop acre. 

The survey data contain observations on the area of each crop treated with each 

pesticidal chemical and the application rate used.  As noted above, we aggregated pesticides by 

weight of active ingredient applied, then divided by crop acreage to obtain the measure of 

pesticide use per acre zj.  Prices of pesticides were obtained from dealer price lists and used to 

estimate pesticide expenditures.  The price of the pesticides used by each farmer vj was 

calculated by dividing total expenditures on pesticides on each crop by the total weight of active 

ingredients applied, i.e., the price of each chemical used was weighted by its share in the total 

weight of active ingredients applied.  The survey data also contained observations on the yield 

of each crop during the 5 years preceding 1991.  This variable should capture long term 

variations among farmers in terms of such factors as human capital, land quality, and persistent 

pest problems.  Average prices received for each crop were obtained for each county from 
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Maryland Agricultural Statistics annual reports.  Naïve expectations were assumed: Expected 

revenue per acre rj was assumed to be the product of the 1990 county average price and the 

average yield per acre obtained during the preceding 5 years.  While this treatment of 

expectations may be overly simplistic, it should be noted that changing the treatment of 

expectations would simply recalibrate the parameter estimates without changing anything 

essential. 

Summary statistics of these variables are given in Table 1.  Missing information about 

yields and pesticide use reduced the size of the sample used in the econometric analysis.  The 

sample utilized included 35 alfalfa growers, 18 of whom used MCE scouting; 73 corn growers, 

28 of whom used MCE scouting; 44 small grain growers, 16 of whom used MCE scouting; and 

70 soybean growers, 25 of whom used MCE scouting. 

Estimation Method 

Maximum likelihood estimators of the parameters of damage abatement αk and the 

variance of the random error σk for each crop category were obtained using the nonlinear 

optimization procedure (PROC NLIN) in SAS.  Estimators were computed using Marquardt’s 

algorithm.  Three models were run for each crop.  The first was an unrestricted model allowing 

participants and non-participants to differ in terms of both the abatement parameters (αp ≠ αn) 

and the variance of the random error (σp ≠ σn), obtained by running separate regressions for 

each group.  The second was a partially restricted model allowing participants and non-

participants to differ in terms of abatement parameters (αp ≠ αn) but not variances of the 

random errors (σp = σn), obtained by running a single regression for the two groups pooled 

together, with a dummy variable equaling one for participants included both by itself and 
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interacted with the quantity of pesticides applied..  The third was a fully restricted model 

assuming that participants and non-participants had the same abatement parameters (αp = αn) 

and variances of the random errors (σp = σn), obtained by running a single regression for the 

two groups pooled together.  Likelihood ratio tests of our three hypotheses were constructed 

from these three regressions. 

The corn model presented some special problems.  While the models converged, none 

of the estimated parameters were significantly different from zero and the slope coefficient in the 

pooled model could not be estimated.  However, F-tests indicated that the intercept and slope 

coefficients, taken together, were significantly different from zero at a significance level well 

below 1 percent.  Subsequent inspection of the likelihood functions for the unrestricted model 

indicated the existence of global minima in the slope parameter α1k for both participants and 

non-participants.  The likelihood functions were essentially flat in the constant parameter α0k 

dimension for both participants and non-participants, however.  Since this pattern is not 

inconsistent with a hypothesis that the constant term α0k = 0 in both cases, we estimated all 

three models without constant terms. 
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Estimation Results 

Differences between Participants and Non-Participants 

As the test statistics in Table 2 indicate, the likelihood ratio tests indicate a significant 

difference in the abatement parameters of participant and non-participant soybean growers, 

although the hypothesis that participants and non-participants have the same variances of the 

random errors cannot be rejected.  In contrast, the null hypothesis that the abatement 

parameters and the variances of the random errors are the same for participants and non-

participants could not be rejected for alfalfa, corn, and small grains.  Thus, there appears to be 

no significant difference between participants and non-participants in terms of either abatement 

function parameters or variances of the random errors in any of these three crop categories.  In 

other words, MCE scouting and scouting by farmers and chemical dealers resulted in identical 

pesticide demand functions, i.e., scouting by chemical dealer employees or by farmers does not 

appear to result in greater pesticide demand than scouting by independent crop consultants. 

Estimated Pesticide Productivity 

Since the likelihood ratio tests indicated no significant difference in either abatement 

parameters or variances of the random errors for alfalfa, corn, and small grains, the parameters 

obtained by pooling participant and non-participant data were used to examine pesticide 

productivity in these crops (Table 3).  The likelihood ratio test indicated a significant difference 

in the abatement parameters of participants and non-participants for soybeans; however, the 

coefficient of the participant dummy was not significantly different from zero at a 5 percent 

significance level, indicating no difference in the constant term of the abatement function (Table 
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3).  A model allowing a shift in the slope of the abatement function (the coefficient of pesticides) 

but not in the constant term was thus used to examine pesticide productivity for soybeans. 

 The constant term of the abatement function α0 was significantly different from zero for 

three of the four crops (alfalfa, small grains, soybeans), indicating that pesticides are not 

essential inputs for these crops.  The constant term for alfalfa was quite large, indicating that it is 

not highly vulnerable to pest pressure.  Estimated crop loss with zero pesticide use ( 0α−e ) is 5 

percent.  Small grains appear more vulnerable to pest pressure, with estimated crop loss at zero 

pesticide use equal to 17 percent.  Soybeans appear quite vulnerable to pest pressure, with 

estimated crop loss at zero pesticide use equal to 59 percent.  As noted above, the likelihood 

function for corn was flat in the α0 dimension, a result consistent with pesticides being essential 

for production. 

The coefficient of pesticides was significantly different from zero for all four crops.  The 

pesticide coefficient in the small grains abatement function was quite large, suggesting that the 

marginal product of pesticides declines very rapidly, a result consistent with the low pesticide 

intensity of these crops.  The pesticide coefficients for corn and alfalfa were smaller, suggesting 

more gradually decreasing marginal productivity.  The pesticide coefficient for participating 

soybean growers was roughly commensurate with those of corn and alfalfa.  The pesticide 

coefficient for non-participating soybean growers was much smaller, however, suggesting that 

marginal pesticide productivity falls quite slowly and thus also that non-participants’ pesticide 

demand is higher than participants’.  Thus, as expected, soybean growers using MCE scouting 

had lower pesticide demand curves than those using scouting by chemical dealer employees or 

assessing infestation levels themselves, i.e., MCE scouting does appear to result in lower 
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pesticide demand on soybeans in Maryland than does scouting by consultants working for 

chemical dealers or by farmers themselves. 

Discussion 

Taken together, these results suggest that it can matter who scouts—at least when the 

economic incentives are sufficiently large.  As Table 1 indicates, Maryland farmers spend almost 

twice as much per acre on pesticides for soybeans than for corn, four times as much for 

soybeans as alfalfa, and eight times as much for soybeans as small grains.  Higher pesticide 

expenditures suggest that the potential cost savings are greater for soybeans than any of the 

other crops considered here.  Greater potential cost savings make it more likely that farmers will 

find it profitable to invest in more accurate but more costly monitoring on soybeans than on any 

of these other crops. 

It possible that there are differences in participants’ and non-participants’ pesticide 

demands on these other crops—especially alfalfa and small grains—but that the econometric 

model used here lacks sufficient power to distinguish them.  Neither alfalfa nor small grains are 

very pesticide-intensive.  As Table 1 indicates, pesticide application rates are so low that any 

differences in pesticide demand between participants and non-participants are probably quite 

small.  The number of observations on these crops (35 alfalfa growers, 45 small grain growers) 

is small as well.  If differences between participants and non-participants’ demands do exist, 

they may be too small to distinguish given the small sample sizes.  Even if such differences do 

exist, however, they are probably too small to matter for policy purposes. 
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Concluding Remarks 

The widespread use of scouting and economic thresholds in U.S. agriculture would 

seem to be one of the major successes of public efforts to promote IPM.  But some have 

argued that this success is more apparent than real.  Proponents of this latter view note that 

most scouting is performed by chemical dealer employees or by farmers themselves.  They 

believe that chemical dealers inflate scouting reports and/or reduce economic thresholds in order 

to increase pesticide sales while farmers may use excessively low treatment thresholds due to 

risk aversion and/or overestimation of pest pressure. 

This debate has broader implications for the future of agriculture.  Many new agricultural 

technologies (e.g., precision farming methods) are, like IPM, information-intensive (National 

Research Council 1997).  As in the case of scouting, chemical and equipment dealers have been 

and will likely continue to be among the most common providers of consulting services for use 

with these technologies.  An obvious fear is that consultants employed by dealers may provide 

biased information in order to inflate chemical or equipment sales.  In other words, if consultants 

employed by dealers essentially subvert IPM, they will likely do the same for precision farming 

technologies. 

We use data from a survey of Maryland field crop growers to investigate this claim.  

Most of the growers surveyed used scouting.  Some used scouts trained and supervised by 

extension while others used chemical dealer employees or scouted themselves.  Our results give 

partial support to those skeptical of the quality of scouting by farmers themselves and by 

consultants working for chemical dealers.  We found that soybean growers using extension 

trained scouts had significantly lower pesticide demand than those using chemical dealer 
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employees or scouting themselves.  However, we found no significant differences in the 

pesticide demands for alfalfa, corn, and small grains.  Since soybeans in Maryland are 

substantially more pesticide-intensive than corn, alfalfa, or small grains, these results suggest that 

it does matter who scouts whenever there is scope for substantial savings in pesticides.  When 

potential savings from more accurate monitoring are smaller, though, farmers’ reliance on their 

own monitoring or on advice from consultants employed by chemical dealers does not 

necessarily increase pesticide use. 

The inferences to be drawn from our results are limited by the fact that our data come 

from a single year and a single producing region and by small sample sizes.  The mixed results 

obtained here suggest that further investigation using larger samples and panel data might well be 

worthwhile. 
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Table 1. Means of Variables Used in the Econometric Analysis 

 Participants in MCE Scouting 
Program 

Non-Participants in MCE 
Scouting Program 

Alfalfa 
Crop Acres 53.24 43.76 
Revenue per Acre 659.04 632.55 
Expenditures on Pesticides 
per Acre 

10.82 9.00 

Pounds of Pesticide Active 
Ingredients Applied per Acre 

0.85 0.81 

Number of Observations 18 17 
Corn 
Crop Acres 268.14 288.29 
Revenue per Acre 286.05 276.47 
Expenditures on Pesticides 
per Acre 

27.46 26.63 

Pounds of Pesticide Active 
Ingredients Applied per Acre 

4.99 4.87 

Number of Observations 28 45 
Small Grains 
Crop Acres 131.25 190.86 
Revenue per Acre 147.47 141.53 
Expenditures on Pesticides 
per Acre 

5.66 5.16 

Pounds of Pesticide Active 
Ingredients Applied per Acre 

0.10 0.11 

Number of Observations 16 29 
Soybeans 
Crop Acres 250.05 282.53 
Revenue per Acre 236.11 229.66 
Expenditures on Pesticides 
per Acre 

40.02 34.26 

Pounds of Pesticide Active 
Ingredients Applied per Acre 

2.20 2.56 

Number of Observations 25 45 
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Table 2. Likelihood Ratio Test Statistics for Differences in Pesticide Demand between 
Participants and Non-Participants 

Hypothesis Tested: Crop Number of 
Observations 

Abatement Parameters 
and Variances 
Different 

Abatement 
Parameters Only 
Different 

Variances Only 
Different 

Alfalfa 35 1.1279 1.1279 0 

Corn—
Slope and 
Intercept 

73 0.1467 0.1467 1.6209E-14 

Corn—
Slope Only 

73 0.0869 0.0811 0.01207 

Small Grains 45 3.3551 3.3551 0 

Soybeans 70 28.1309** 28.1309** 0 

Chi-
Squared 5% 
Critical 
Value 

 7.8147 5.9915 3.8415 

Degrees of 
Freedom 

 3 2 1 

 

** Significantly different from zero at a 1 percent significance level. 

* Significantly different from zero at a 5 percent significance level. 
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Table 3. Abatement Function Parameter Estimates 
 

Crop 
Soybeans 

Parameter 
Alfalfa Corn Small Grains 

Full Model Final Model 
Constant (α0) 2.9941** 

(0.2076) 
 1.7593** 

(0.0604) 
0.8445** 
(0.1883) 

0.5290** 
(0.1012) 

Slope (α1) 0.6043** 
(0.1879) 

0.5663** 
(0.0445) 

10.28938** 
(0.5130) 

0.1446** 
(0.0720) 

0.0620** 
(0.0201) 

Participant 
Constant Shift 

   -0.3550 
(0.2140) 

 

Participant 
Slope Shift 

   0.5449** 
(0.1118) 

0.6152** 
(0.0942) 

Number of 
Observations 

35 73 45 70 70 

Log-likelihood -44.8822 -135.0337 -26.9824 -71.1533 -71.9090 
 
Asymptotic standard errors in parentheses. 
** Significantly different from zero at a 1 percent significance level. 
* Significantly different from zero at a 5 percent significance level. 

 


