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Abstract

Scouting is the most widely used integrated pest management (IPM) technique. It has been argued that only
independent crop consultants provide unbiased scouting information. In contrast, chemical dealers inflate

scouting reports and/or reduce economic thresholds in order to increase pesticide sales while farmers may use
excessively low treatment thresholds due to risk aversion and/or overestimation of pest pressure.. Since the
majority of scouting isdone by farmers and chemical dealer employees, it follows that scouting may not be avery
effective means of reducing reliance on chemical pesticides. This study appliesan implicit demand formulation of
the Lichtenberg-Zilberman damage abatement model to data from a survey of Maryland field crop growers to
examine differences in pesticide demand between growers using scouts trained and supervised by extension and
those using chemical dealer employees or scouting themselves. Our results give partial support to those skeptical

of the quality of scouting by farmers themselves and by consultants working for chemical dealers. Wefound that
soybean growers using extension trained scouts had significantly lower pesticide demand than those using

chemical dealer employees or scouting themselves. However, we found no significant differencesin the pesticide
demandsfor afalfa, corn, and small grains. Since soybeansin Maryland are substantially more pesticide-intensve
than corn, afalfa, or small grains, these results suggest that it does matter who scouts when there is scope for
substantial savings in pesticides.
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Does |t Matter Who Scouts?
Integrated pest management (IPM) is an gpproach that combines the use of chemical pesticides
with non-chemica methods to limit the damage caused by such pests as insects, weeds,
diseases, and rodents. Among the non-chemical techniques used in IPM drategies are
protection of naturd pest enemies, cultivation practices that limit pest overwintering or diffusion,
and crop rotation (for areview see Kogan 1998). The most widely used non-chemica method
is scouting, thet is, monitoring fields to determine actud pest infedtation levels. In scouting-
based IPM drategies, chemicd pesticides are applied only when the pest infestation leve
exceeds the economic threshold, usualy defined asthe level a which the value of crop losses
will exceed the costs of pesticide gpplication(see Pedigo et d. 1986 for a standard exposition).
Pest management regimes based on scouting and economic thresholds have largely replaced the
earlier practices of spraying preventively on a predetermined caendar-based schedule. By the
early 1990s, they were used on 78 percent of U.S. corn acreage, 77 percent of U.S. soybean
acreage, 80 percent of U.S. wheat acreage, 86 percent of U.S. potato acreage, 88 percent of
U.S. cotton acreage, 76 percent of U.S. fruit and nut acreage, and 71 percent of U.S. vegetable
acreage (Economic Research Service 1997; Vandeman et d. 1994).

Despite its apparent widespread adoption, certain aspects of scouting remain somewhat
controverdga. One bone of contention is the issue of who performs scouting and makes spray
recommendations. Scouting is performed by independent crop consultants, by consultants
working as employees of farm chemical sdesfirms, or by farmers themselves. Some believe that
only independent crop consultants provide unbiased scouting information (see for example

Zilberman et d. (1994) for adiscussion of this debate). Those who hold this point of view



argue that farmers tend to overestimate pest infestation levels due to lack of training and risk
averson (see Pingdi and Carlson (1985) for some evidence confirming this hypothesis for gpple
growersin North Caroling, albait a a much earlier point in the diffuson of scouting). They aso
argue that consultants working for farm chemicd deders overdate infetation levels, use
economic thresholds that are too low, or both, in order to increase pesticide sdles. Sincethe
mgority of scouting is done by farmers and chemica dealer employees, proponents of this
perspective posit that scouting may not be avery effective means of reducing reliance on
chemica pesticides.

As a counterargument, it has been suggested that consultants working for chemicd
dealers can be impdled to generate unbiased scouting reports and spray recommendationsin
order to retain customer loyadty by competition from independent crop consultants, from other
dedlers, and from farmers with sufficient human capita to scout accurately and gpply economic
thresholds themsdlves (Zilberman et d. 1994). It isaso possible that extenson dissemination
efforts create widespread familiarity with scouting methods and economic thresholds, enabling
growers to employ economic thresholds based on their own scouting and to make accurate
assessments of scouting reports and spray recommendations generated by consultantsin the
employ of chemicd deders. Asareault, it may not matter who scouts: Independent consultants,
consultants working for chemica deders, and farmers who scout themsalves may generate the
same spray recommendations so that scouting will affect pesticide demand the same ways
regardless of who scouts.

There are few empiricd studies examining the impacts of scouting on pesticide demand

and none examining differences between the effects of scouting by extensontrained consultants



and scouting by farmers or chemical deder employees. Mogt of the existing empirica studies
compare the average amounts of pesticides gpplied by farmers participating in an IPM
demondtration project with the average amounts gpplied by non-participants (for a survey see
Norton and Mullen 1994). Comparisons of this kind are not highly satisfactory because they do
not control for differencesin land quality, human capita, input and output prices, pest pressure,
and other factors that can influence pesticide use. Econometric sudies, which do control for
such variations, tend to show that scouting reduces pesticide use. Burrows (1983) found that
participation in an IPM program that featured scouting reduced expenditures on pesticides
ggnificantly among Cdifornia cotton growers during the early 1970s. Pingdi and Carlson
(1985) found that scouting reduced North Carolina apple growers demand for insecticides and
fungicides during the late 1970s by reducing errorsin their assessments of insect and disease
pressure. More recently, Hubbell and Carlson (1998) found that apple growers using scouting
selected different insecticides than those who did not use scouting but found no difference in the
totd weight of insecticidal chemicd active ingredients goplied or in the potentia harmfulness of
the chemicals usad in terms of human safety or the environment. Hubbell (1997) found some
wesk evidence suggesting that scouting may influence the frequency with which apple growers
apply insecticides. None of these sudies, however, compared scouting by independent crop
consultants to scouting by farmers or chemica deder employees. Fernandez- Cornejo (1996)
found that tomato growers using insect scouting plus one or more other norn-chemica pest
control methods made a smdler number of insecticide applications than those who did not.
This paper uses data on Maryland field crops to compare the pesticide demands of

those using scouting by extension-supervised independent crop consultants with those scouting



themsdves or using chemicd deder employees. We formulate maximum likelihood estimators
for implicit demand functions derived from the damage control specification introduced by
Lichtenberg and Zilberman (1986), an approach to estimating damage abatement parameters
that has not bee used before. We use those estimatorsto test for differencesin pesticide
demand between farmers obtaining scouting services from consultants trained and certified by
Maryland Cooperative Extenson (MCE) and those who did not in terms of both the parameters
of damage abatement functions and the variances of random errors affecting production.
Findly, we use the estimated parameters to discuss pesticide productivity on Maryland field
crops.
A Model of Pesticide Demand
We follow Lichtenberg and Zilberman (1986) in modding pest management services as an
intermediate input providing damage contral. Lichtenberg and Zilberman motivated this
approach on the grounds of a priori biologicd information, noting that pest management
methods generally do not augment plant growth but rather reduce crop loss due to pests. They
a0 argued that generic firg-order functional forms are likely to overdate the productivity of
pest management, making it appear that pesticides are underused in cases where they are
actudly overused. As Chambers and Lichtenberg (1994) pointed out subsequently, an
additiond advantage of the damage control gpproach isthat it generates implicit estimates of
percentage crop loss and thus puts pesticide productivity in terms better understood by crop
scientists.

Severd empiricd gpplications found that this damage-control approach yielded better-

fitting or more plausible estimates of pesticide productivity for North Carolina gpples (Babcock,



Lichtenberg, and Zilberman 1992), Kansas whesat (Saha, Shumway, and Havenner 1997), and
U.S. aggregate agriculturd (Chambers and Lichtenberg 1994). Other studies of aggregate U.S.
agricultura output (Carrasco- Tauber and Moffitt 1992) and aggregate French cered and
oilseed production (Carpentier and Weaver 1997) found that damage control moddsfit no
better (but aso no worse) than generic specifications.

Like these other sudies, we specify output Q as aweakly separable combination of
potentia yield F(X) and damage abatement G(Z,a ), where X isavector of norma inputs, Z
denotes pest contral inputs, specificaly, the amount of pesticides gpplied, a isavector of
parameters, and damage abatement is scaded to liein the unit interval. |f peticides are essentid,
then zero is the minimum possible value for abatement. If pesticides are not essentid inputs, as
most crop scientists believe, then the minimum possible value of G(Z,a) is postive.

Because the number of observations on each crop is smdl, parsmony in parametersis
esentid. To this end, we employ the implicit demand specification suggested by Chambers and
Lichtenberg (1995). Output of farmer | is

Q; =F(X;)G(Z;,a)uy; (1)
where y isalognorma white noise error congsting of random variations in unobserved factors
affecting both potentia yield and damage abatement (e.g., human capital, pest pressure,
microclimatic variations in wesether, etc.), assumed to be distributed independently and
identicaly acrossfarms. Profit is

p(X;,Z;,a)=pF(X,)G(Z;,a)u, - wxX, - vZ,, 2

where p isthe crop price, w isavector of the unit prices of normal inputs, and v is the unit price



of pesticides. Thefirst order condition for profit maximization can be written
3

where R = pF(X;)G(Z;,a) isfarmer j’s expected revenue. If R and v are observed, only the
parameters of the damage abatement function a need be estimated.

Nether theory nor empirica studies give guidance as to the exact specification of
G(Z,a), other than that it have the attributes of a cumulative digtribution function. Like other
empirical studies (Babcock, Lichtenberg, and Zilberman 1992, Saha, Shumway, and Havenner
1997, Chambers and Lichtenberg 1994, and Carpentier and Weaver 1997) we use an
exponential specification

G(Z,a,)=1- e, (4)
where a isavector of damage abatement parameters that differs between participants (k = p)
and non-participants (k = n) in the M CE scouting program.  Aside from computationd
convenience, the exponentia is one of the few functiona forms that meetsdl of the redtrictions
of the damage control hypothesis. In particular, it is defined over the postive rea numbers.
The other functiond forms suggested by Lichtenberg and Zilberman (1986) are not: The support
of the logidtic digtribution is (-¥ ,+¥ ) while the lower supports of the Pareto, and Weibull
digtributions are positive real numbers (Johnson, Kotz, and Baakrishnan 1994).

We use anon-central exponentid specification (ao * 0) because, as Chambers and
Lichtenberg (1994) pointed out, setting a o« = 0 corresponds to assuming that pesticides are

essentid inputs. The nonkcentral specification alows this hypothesis to be tested formaly and

smply.



In this modd, pesticide demand of farmers using extension-trained and certified scouts
may differ from that of farmers scouting themselves or usng chemica deder employeesin two
ways. Fird, the parameters of the damage abatement function a, may differ because extenson+
trained scouts may provide different trestment recommendations than scouts employed by
chemica dedlers or farmers doing their own scouting. This hypothessisa,® a,. Second, the
unobserved variables comprising the white noise error may differ in distribution. Letting s «
denote the variance of y, this hypothessiss, * s,. The most generd form of the likelihood

function of the model specified by equations (3) and (4) isthus
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where Wis aconstant, T, is the number of participants, and T,, is the number of non-
participants.

We examined three possible ways participants and nonparticipants might differ. The
firgt is where participants and non- participants differ in terms of both the damage control
function parameters and the variance of theerror, ap,* a,and s, s,. Theremaning two are
where participants and non-participants differ in terms of ether the damage control function
parameters (ap * a,and s, =S,) or the variance of theerror (ap, =a,and s, * s,,) but not
both.

Data

IPM programs are typically developed by public sector research, either at the federa



leve or through the land grant university syssem. Dissemination of these programsis usudly the
respongbility of agriculturd extenson in each sate (Wearing 1988). A typicd IPM
implementation process conssts of demongtrations on afew farms followed by provision of
advice a subsidized rates (including free of charge), with subsidies phased out over the
implementation period. In the case of scouting, state agriculturd experiment ation and
extenson personnel typicaly develop scouting protocols and train scouts. The services of
extenson-trained and - certified scouts are offered to farmersfirst at no charge, then at charges
that increase until they reach full cog, at which point the implementation process is considered
finished. These IPM protocols are dso disseminated viafact sheets or other publications and
may thus be accessble to those not specificdly trained by extenson, eg., individud farmers or
chemical deder employees.

This study uses data from a survey conducted at the end of one such implementation
program. In 1972, Maryland Cooperative Extenson (MCE) initiated a pilot program to test
scouting protocols on the state' s four mgor field crops. corn, soybeans, dfadfa, and smal grains.

MCE then provided scouting free of charge until 1979. Beginning in 1980, farmers were
required to pay for scouting services but at subsidized rates. Beginning in 1985, growers were
required to pay the full cost of scouting but MCE continued to train and supervise scouts. In
1992, supervision of scouts was phased out as well, dthough M CE continues to provide
training and certification of scouts.

Persond interviews of 123 field crop growers in two Maryland counties were
conducted in 1991. The main purpose of the survey was to determine the effect of MCE

scouting recommendations on pesticide use. A secondary purpose was to investigate whether



farmers usng M CE scouting differed from those who did not in terms of demographic
characteristics and attitudes towards pesticides. The sample included dl growers who used
MCE scouting in two counties with the strongest programs. One was in central Maryland while
the other was on the Eastern Shore. A matching sample of farmers who did not use MCE
scouting was selected from the Maryland Department of Agriculture’ s magter list of dl farmers
in each of those two counties plus two adjacent counties without a strong MCE IPM program.
Thus, the sample resembled that of a case control study of the kind widdly used in medicine and
epidemiology.

Mogt of the respondents (93) came from central Maryland. Thirty-eight percent (47
farmers) had used MCE scouting.  Thirty-five of the farmers usng M CE scouting grew corn, 30
grew soybeans, 20 grew dfafa, and 16 grew smdl grains. Sixty-five of the 76 farmers not
using M CE scouting grew corn, 57 grew soybeans, 25 grew dfdfa, and 34 grew smdl grains.

The survey inquired about farming operations, human capita and demographic
information, perceptions of disease, weed, and pest problems, attitudes toward pest
management, practices used in pest management, pesticide use, and sources of information
consulted in making pest management decisons. Information obtained about farming operations
included the Sze of the operation (acres farmed), annua saes of farm products, time devoted to
farming, and percentage of income obtained from farming. All were reported as categorical
variables. Also obtained were yield and acreage of each of the four field cropsin 1991, the
percentages of sales from field crops, livestock, and other cropsin 1991, and average yidds of
each of the four field crop categories during 1985-1990. Human capita and demographic

information included age, leve of education, and farming experience (al reported as categorica



variables) and whether the respondent was a certified pesticide applicator. Farmers
perceptions of pest problems were measured categoricaly as the two most important insect and
disease problems and three most important weed problems in each crop. Information on
attitudes toward pest management included the factors each farmer found important in making
pest management decisions, whether the respondent knew anyone who had becomeill asa
result of pesticide exposure, and whether the respondent would be willing to pay ahigher price
for a pesticide that posed less risk to human hedlth or groundwater. Farmers were asked which
non-chemica pest control they used as well as which pesticides. For each pesticide used,
gpplication rates and acreage treated were recorded for each crop. Finaly, respondents were
asked from which sources they received the mgority of their information regarding pest
management and pesticide use.

As noted above, the sample was constructed in the manner of a case control study with
the expectation that the only difference between the two groups of farmers would be the use of
MCE scouting. That expectation was largely borne out in terms of farm operating
characterigtics, human capita and demographics, and attitudes about pesticides. We compared
participants and non-participants in the MCE scouting program using t-tests for continuous
variables and c? tests for categorica variables. Aside from the use of MCE scouting, the only
datigicdly sgnificant difference between the two groups occurred in education: A higher
percentage of those using MCE scouting had a college degree or postgraduate education. Most
of the farmers who did not participate in the MCE scouting program did not apply pesticides
according to a preventive schedule; rather, they either scouted themselves (61 percent), had

scouting done by chemical deders or gpplicators (57 percent), or both.
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Egtimation of the parameters of the mode in equation (5) requires observations on three
variables: pesticide use Z;, the price of pesticides v, and expected revenue R.. We assumed
nonjointness in production (so that pesticide demand was estimated separately for each crop
category) and constant returns to scale (so that output could be expressed in per-acre terms).
Asis standard, we aso assumed that the appropriate measure of the intendity of pesticide use
on each crop was the weight of pesticide active ingredient applied per acre of cropland, z =

Zi/A,. Inthis case, the likelihood function becomes

G¢z ,a o3 G¢%z ,a 5

ﬁnl_ |n%9 ﬁn%_ln%g

r. Z ,a = ; Z.,a,)+
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wherer; = R/A is expected revenue per crop acre.

The survey data contain observations on the area of each crop treated with each
pesticiddl chemical and the application rate used. As noted above, we aggregated pesticides by
weight of active ingredient applied, then divided by crop acreage to obtain the measure of
pesticide use per acre z. Prices of pesticides were obtained from deder price listsand used to
estimate pesticide expenditures. The price of the peticides used by each farmer v, was
caculated by dividing total expenditures on pesticides on each crop by the total weight of active
ingredients gpplied, i.e,, the price of each chemica used was weighted by its sharein the total
weight of active ingredients applied. The survey data also contained observations on the yield
of each crop during the 5 years preceding 1991. This variable should capture long term
variations among farmers in terms of such factors as human capitd, land qudity, and persstent

pest problems. Average prices received for each crop were obtained for each county from
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Maryland Agricultura Statistics annud reports. Naive expectations were assumed: Expected
revenue per acre r; was assumed to be the product of the 1990 county average price and the
average yield per acre obtained during the preceding 5 years. While this treatment of
expectations may be overly ampligtic, it should be noted that changing the treetment of
expectations would smply recalibrate the parameter estimates without changing anything
esentid.

Summary datistics of these varidbles are given in Table 1. Missing information about
yidds and pesticide use reduced the sze of the sample used in the econometric anadyss. The
sample utilized included 35 dfdfa growers, 18 of whom used M CE scouting; 73 corn growers,
28 of whom used MCE scouting; 44 small grain growers, 16 of whom used M CE scouting; and
70 soybean growers, 25 of whom used MCE scouting.

Estimation Method

Maximum likelihood estimators of the parameters of damege abatement a and the
variance of the random error s for each crop category were obtained using the nonlinear
optimization procedure (PROC NLIN) in SAS. Estimators were computed using Marquardt’s
agorithm. Three models were run for each crop. The first was an unrestricted mode alowing
participants and non-participants to differ in terms of both the abatement parameters (a, 1 an)
and the variance of the random error (s, * s ,), obtained by running separate regressions for
each group. The second was a partidly restricted modd dlowing participants and non
participants to differ in terms of abatement parameters (a, * a,) but not variances of the
random errors (S, = S ), obtained by running asingle regresson for the two groups pooled

together, with a dummy variable equaling one for participants included both by itself and



interacted with the quantity of pesticides gpplied.. The third was afully restricted mode
assuming that participants and non-participants had the same abatement parameters (a, = a.)
and variances of the random errors (S, = S ), obtained by running asingle regresson for the
two groups pooled together. Likelihood ratio tests of our three hypotheses were constructed
from these three regressions.

The corn model presented some specid problems. While the modes converged, none
of the estimated parameters were significantly different from zero and the dope coefficient in the
pooled modd could not be estimated. However, F-tests indicated that the intercept and dope
coefficients, taken together, were sgnificantly different from zero at a sgnificance leve well
below 1 percent. Subsequent ingpection of the likelihood functions for the unrestricted model
indicated the existence of globd minimain the dope parameter a 1 for both participants and
non-participants. The likelihood functions were essentidly flat in the congtant parameter a o
dimension for both participants and non-participants, however. Since this patternis not
incong stent with a hypothesis that the congtant terma o, = 0 in both cases, we estimated al

three modd s without constant terms.
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Estimation Results
Differences between Participants and Non-Participants

Asthetest datidticsin Table 2 indicate, the likdihood ratio testsindicate a Sgnificant
difference in the abatement parameters of participant and non-participant soybean growers,
athough the hypothesis that participants and non participants have the same variances of the
random errors cannot be rgected. 1n contrast, the null hypothesis that the abatement
parameters and the variances of the random errors are the same for participants and non
participants could not be rgected for dfdfa, corn, and small grains. Thus, there gppearsto be
no significant difference between participants and non-participants in terms of either abatement
function parameters or variances of the random errorsin any of these three crop categories. In
other words, MCE scouting and scouting by farmers and chemica deders resulted in identica
pesticide demand functions, i.e., scouting by chemica deder employees or by farmers does not
appear to result in greater pesticide demand than scouting by independent crop consultants.
Estimated Pesticide Productivity

Sincethe likelihood ratio tests indicated no significant difference in either abatement
parameters or variances of the random errors for dfafa, corn, and smal grains, the parameters
obtained by pooling participant and non-participant data were used to examine pesticide
productivity in these crops (Table 3). The likelihood retio test indicated a sgnificant difference
in the abatement parameters of participants and non-participants for soybeans, however, the
coefficient of the participant dummy was not Sgnificantly different from zero a a5 percent

ggnificance levd, indicating no difference in the congtant term of the abatement function (Table
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3). A modd dlowing ashift in the dope of the abatement function (the coefficient of pesticides)
but not in the congtant term was thus used to examine pesticide productivity for soybeans.

The congtant term of the abatement function a , was sgnificantly different from zero for
three of the four crops (dfdfa, smdl grains, soybeans), indicating that pesticides are not
essentid inputs for these crops. The congtant term for dfafawas quite large, indicating thet it is
not highly vulnerable to pest pressure. Estimated crop loss with zero pesticide use (e7%°) is5
percent. Smal grains gppear more vulnerable to pest pressure, with estimated crop loss a zero
pesticide use equd to 17 percent. Soybeans appear quite vulnerable to pest pressure, with
estimated crop loss at zero pesticide use equa to 59 percent. As noted above, the likelihood
function for corn wasflat in the a , dimengon, aresult consstent with pesticides being essentia
for production.

The coefficient of peticides was significantly different from zero for dl four crops. The
pesticide coefficient in the small grains abatement function was quite large, suggesting thet the
margind product of pesticides declines very rapidly, aresult consstent with the low pesticide
intensity of these crops. The pegticide coefficients for corn and afafawere smaller, suggesting
more gradualy decreasing margina productivity. The pesticide coefficient for participating
soybean growers was roughly commensurate with those of corn and afdfa. The pesticide
coefficient for non-participating soybean growers was much smaler, however, suggesting that
margina pedticide productivity fals quite dowly and thus aso that non-participants pesticide
demand is higher than participants . Thus, as expected, soybean growers using M CE scouting
had lower pesticide demand curves than those using scouting by chemical dedler employees or

asessing infestation levels themselves, i.e.,, MCE scouting does appear to result in lower
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pesticide demand on soybeans in Maryland than does scouting by consultants working for
chemica dedersor by farmers themsalves.
Discussion

Taken together, these results suggest that it can matter who scouts—at least when the
economic incentives are sufficiently large. As Table 1 indicates, Maryland farmers spend dmost
twice as much per acre on pesticides for soybeans than for corn, four times as much for
soybeans as dfdfa, and eght times as much for soybeans as smdl grains. Higher pesticide
expenditures suggest thet the potential cost savings are greater for soybeans than any of the
other crops consdered here. Greater potentid cost savings make it more likely that farmers will
find it profitable to invest in more accurate but more costly monitoring on soybeans than on any
of these other crops.

It possible that there are differences in participants and non-participants pesticide
demands on these other crops—especidly dfafaand smdl grans—but that the econometric
modd used here lacks sufficient power to digtinguish them. Nether dfdfanor smdl gransare
very pesticide-intensive. As Table 1 indicates, pesticide gpplication rates are so low that any
differences in pesticide demand between participants and nonparticipants are probably quite
smdl. The number of observations on these crops (35 dfdfa growers, 45 smdl grain growers)
isamdl aswdll. If differences between participants and nonparticipants demands do exigt,
they may be too smdl to distinguish given the small sample sizes. Even if such differences do

exist, however, they are probably too smdl to matter for policy purposes.
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Concluding Remarks

The widespread use of scouting and economic thresholdsin U.S. agriculture would
seem to be one of the mgjor successes of public efforts to promote IPM. But some have
argued that this successis more gpparent than rea. Proponents of this latter view note that
most scouting is performed by chemica deder employees or by farmersthemselves. They
believe that chemicd deders inflate scouting reports and/or reduce economic thresholds in order
to increase pesticide sales while farmers may use excessvely low trestment thresholds due to
risk averson and/or overestimation of pest pressure.

This debate has broader implications for the future of agriculture. Many new agricultura
technologies (e.g., precison farming methods) are, like IPM, information-intensive (Nationa
Research Council 1997). Asin the case of scouting, chemica and equipment deders have been
and will likely continue to be among the most common providers of consulting services for use
with these technologies. An obvious fear is that consultants employed by deders may provide
biasad information in order to inflate chemicd or equipment sdes. In other words, if consultants
employed by deders essentidly subvert IPM, they will likely do the same for precison farming
technologies.

We use data from a survey of Maryland field crop growers to investigate thisclam.
Mogt of the growers surveyed used scouting. Some used scouts trained and supervised by
extengon while others used chemica dealer employees or scouted themsalves. Our results give
partid support to those skeptica of the quaity of scouting by farmers themsdaves and by
consultants working for chemicd deders. We found that soybean growers using extenson

trained scouts had sgnificantly lower pesticide demand than those using chemical deder
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employees or scouting themsalves. However, we found no sgnificant differencesin the

pesticide demands for dfdfa, corn, and smadl grains. Since soybeansin Maryland are

subgtantially more pesticide-intensive than corn, dfdfa, or smal grains, these results suggest that

it does matter who scouts whenever thereis scope for substantial savingsin pesticides. When
potentia savings from more accurate monitoring are smdler, though, farmers' rdiance on their
own monitoring or on advice from consultants employed by chemicd dealers does not
necessarily increase pesticide use.

The inferences to be drawn from our results are limited by the fact that our data come

from asingle year and a single producing region and by smal sample Szes. The mixed results

obtained here suggest that further investigation using larger samples and pand data might well be

worthwhile,
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Table 1. Means of Variables Used in the Econometric Analysis

Participantsin MCE Scouting

Non-Participantsin MCE

Program Scouting Program
Alfdfa
Crop Acres 53.24 43.76
Revenue per Acre 659.04 632.55
Expenditures on Pesticides 10.82 9.00
per Acre
Pounds of Pegticide Active 0.85 0.81
Ingredients Applied per Acre
Number of Observations 18 17
Corn
Crop Acres 268.14 288.29
Revenue per Acre 286.05 276.47
Expenditures on Pesticides 27.46 26.63
per Acre
Pounds of Pedticide Active 4.99 4.87
Ingredients Applied per Acre
Number of Observations 28 45
Smdl Grains
Crop Acres 131.25 190.86
Revenue per Acre 147.47 141.53
Expenditures on Pesticides 5.66 5.16
per Acre
Pounds of Pegticide Active 0.10 0.11
Ingredients Applied per Acre
Number of Observations 16 29
Soybeans
Crop Acres 250.05 282.53
Revenue per Acre 236.11 229.66
Expenditures on Pesticides 40.02 34.26
per Acre
Pounds of Pesticide Active 2.20 2.56
Ingredients Applied per Acre
Number of Observations 25 45
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Table 2. Likelihood Ratio Test Statisticsfor Differencesin Pesticide Demand between
Participants and Non-Participants

Crop Number of Hypothesis Tested:
Observations

Abatement Parameters | Abatement Variances Only
and Variances Parameters Only | Different
Different Different

Alfdfa 35 1.1279 1.1279 0

Corn— 73 0.1467 0.1467 1.6209E-14

Slope and

Intercept

Corn— 73 0.0869 0.0811 0.01207

Slope Only

Smdl Grains | 45 3.3551 3.3551 0

Soybeans 70 28.1309** 28.1309** 0

Chi- 7.8147 5.9915 3.8415

Squared 5%

Critica

Vdue

Degrees of 3 2 1

Freedom

** Sgnificantly different from zero a a 1 percent sgnificance leve.

* Sgnificantly different from zero at a5 percent Sgnificance leve.




Table 3. Abatement Function Parameter Estimates

Parameter Crop
Alfdfa Corn Smdl Grains Soybeans
Full Mode Fina Model
Congtant (ao) 2.9941** 1.7593** 0.8445** 0.5290**
(0.2076) (0.0604) (0.1883) (0.1012)
Slope(ay) 0.6043** | 0.5663** | 10.28938** | 0.1446** 0.0620**
(0.1879) | (0.0445) | (0.5130) (0.0720) (0.0201)
Participant -0.3550
Congtant Shift (0.2140)
Participant 0.5449** 0.6152**
Sope Shift (0.1118) (0.0942)
Number of 35 73 45 70 70
Observations
Log likelihood | -44.8822 | -135.0337 | -26.9824 -71.1533 -71.9090

Asymptotic stlandard errors in parentheses.
** Sgnificantly different from zero at a 1 percent significance leve.
* Sgnificantly different from zero & a5 percent Sgnificance leve.




