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Resource Allocation and Asset Pricing

The modern theories of the productive Þrm and the Þnancial Þrm are, for the most part,

distinct. Apart from some pioneering attempts to model Þrms facing price uncertainty for

physical commodities in the presence of Þnancial markets (Danthine, 1978; Holthausen, 1979;

Anderson and Danthine, 1981) and some recent research on production-based asset pricing

and Þnancial innovations (Cochrane, 1991; Rahi, 1995), these two literatures have developed

separately. A common view seems to be that recently articulated by LeRoy and Werner

(2001, p.13) that �...production theory...does not lie within the scope of Þnance as usually

deÞned, and not much is gained by combining exposition of the theory of asset pricing with

that of resource allocation�.

Cochrane (2001) discusses the rationales for treating production and Þnance separately,

observing that while Þnance theory typically takes production decisions as given, and exam-

ines asset price determination, permanent income macroeconomics does the opposite. For an

S-state world, the Þxed output and Þxed asset price models may be interpreted, respectively,

as Þxed-proportions and linear approximations to a general technology, coinciding at a given

equilibrium point. These approximations work well in characterizing an equilibrium, but less

well in a comparative-static setting. Cochrane (2001, p. 43) cautions that

We routinely think of betas and factor risk prices ... as determining expected

returns. But the whole consumption process, discount factor and factor risk

premia change when the production technology changes. Similarly, we are on

thin ice if we say anything about the effects of policy interventions, new markets

and so on.

Given that many productive Þrms routinely operate in Þnancial markets, the idea that

production and Þnancial decisions should be treated separately appears problematic. For

such Þrms, the primitive ability to separate production decisions from Þnancial decisions

must rest either on some form of separability in the Þrm�s objective function, which allows

consideration of production decisions separately from Þnancial decisions, or on some form of

orthogonality between productive and Þnancial operations. Intuitively, this requires either

the implausible assumption that Þrms have fundamentally different preferences over income



earned from these two sources or the equally unappealing assumption that the assets traded

in Þnancial markets are unrelated to the risks faced by Þrms engaged in real production.

The same point may be expressed in terms of arbitrage arguments. The view that Þ-

nancial and production decisions may be treated separately requires the assumption either

that Þrms ignore arbitrage opportunities between Þnancial and production operations, or

that no such arbitrage opportunities exist. The Þrst assumption is inconsistent with stan-

dard assumptions about the objectives of the Þrm and its shareholders, while the second is

inconsistent with the basic presumption that Þnancial markets are created to manage the

risks associated with production and consumption.

A strong argument for not combining the theories of resource allocation and asset pric-

ing would be increased theoretical simplicity and tractability gained from considering them

separately. However, when one compares the literatures on arbitrage pricing and producer

decisionmaking, one must be struck by their similarities. In the axiomatic approach to pro-

duction, one typically proceeds from the speciÞcation of a technology, deÞned by convex sets,

to a minimal cost characterization of the technology. There is an obvious analogy with the

construction of derivative assets as replicating or super-replicating elements derived from

a set of feasible portfolios, which is typically a convex cone. Milne (1976; 1988; 1995), in

particular, utilizes this observation to induce both individual preference structures over asset

holdings and producer technologies over asset returns and input use.

The true difficulty in combining these theories, therefore, is not that they are fundamen-

tally different. In fact, it seems obvious that they are virtually identical. Rather the problem

appears to be that until recently, the theory of production under uncertainty was speciÞed in

terms of stochastic production functions in a manner that was distinct from either modern

Þnance theory or modern production theory. Chambers and Quiggin (2000) have shown

how to transport modern non-stochastic, axiomatic production theory virtually en masse

to Þrms facing stochastic technologies using the Arrow-Debreu state-space speciÞcation of a

technology.

A crucial feature of the state-contingent production technologies considered by Chambers

and Quiggin (2000) is that they allow for substitution between outputs in different states

of nature. Substitutability between outputs in different state of nature, in turn, allows for



subsitutability between incomes generated by those outputs, and is essential to the manner

in which Þrms respond to difference in state-claim prices. Stochastic production functions

rule this substitutability out by assumption. Hence, they cannot yield useful information

on the relative behavior of state-claim prices for a given time period, and more importantly

they severely circumscribe the range of arbitrage opportunities open to the Þrm.

The most immediate implications of this substitutability, or lack thereof, relate to the

theory of arbitrage pricing for productive Þrms. Ross�s (1978) pathbreaking demonstration

of the existence of positive state claim prices relies on the solution to a simple linear program,

which minimizes the cost of purchasing an investment portfolio that ensures the Þrm at least

a zero return in each state of nature. In a frictionless economy, the result is a linear valuation

operator which places a positive value on each contingent claim. This basic observation has

been extended in a multiplicity of directions to account for various forms of Þnancial market

frictions including, among many others, pre-existing tax structures, the existence of bid-ask

price spreads, and general convex friction functions as well as empirical analyses of these

effects (Prisman, 1986; Ross, 1987; Dermody and Prisman, 1988; Dermody and Rockafellar,

1991; Clark, 1993; Jouini and Kallal, 1995 (a,b); Luttmer, 1996; Jouini, Kallal, and Napp,

2001).1

The arbitrage problem solved by Ross (1978) is mathematically equivalent to the cost

minimization problem for a Þrm facing a linear multi-output technology. Because the �tech-

nology� used to produce payouts in the second period is linear, it exhibits constant returns

to scale generally and linearity over the cone deÞned by the asset structure. Thus, the

law of one price and the existence of positive state-claim prices can be recognized in mod-

ern production-theoretic terms as mathematical reßections of the basic properties of this

�technology�. The natural conclusion seems to be that the arbitrage problem and the Þrm�s

resource allocation problem are essentially equivalent. Hence, it should be relatively easy

and hopefully fruitful to re-unite the analysis of the productive and Þnancial decisions of the

Þrm under a common paradigm of minimizing the cost of assembling a derivative Þnancial

asset by combining Þnancial and productive operations. This paper attempts to initiate that
1The literature in this area is voluminous, and an adequate citation of all relevant contributions would

entail a reference list exceeding the length of the current paper.



reuniÞcation.

Our paper is perhaps most closely related in spirit and method of analysis on the Þnance

side to Prisman�s (1986) analysis of arbitrage pricing in the face of suitably convex frictions

and on the production side to the contribution of Chambers and Quiggin (2000). The latter,

in particular, adapts a long line of contributions in axiomatic production analysis, including

Shephard (1970), McFadden (1978), Diewert (1982), and Färe (1988), to the Arrow-Debreu

state-space representation of stochastic technologies. The arguments in this paper are thus

largely reworkings, or perhaps better, convex combinations of arguments familiar from these

literatures. Most, therefore, when placed in their proper context should be very familiar

from basic microeconomic theory.

For example, when one compares our problem with that of Prisman (1986) and Ross

(1987), the main difference is that we have replaced convex frictions on the Þnancial asset

structure with a convex cost structure for a stochastic production technology. This change,

while in a sense relatively minor, leads us to focus on a completely different set of issues

than in either of these earlier works, or in the numerous studies that have followed them.

In particular, we concentrate on the interplay between the Þnancial asset structure and

the technology in creating the derivative asset. On the production side, our analysis can

be recognized as a reinterpretation of a special case of the theory of cost minimization for

output-nonjoint technologies (Chambers, 1988).

In what follows, we Þrst introduce some notation and concepts used throughout the

paper. Then we turn to the speciÞcation of a stochastic technology in Arrow-Debreu state-

space terms and a frictionless Þnancial market structure. This structure is brießy compared

with the technology that is characterized by a stochastic production function. The Þnan-

cial market and the Þrm�s state-space technology are then used to deduce what we term a

derivative-cost function, which represents the minimal cost to the Þrm of assembling a Þnan-

cial asset or �derivative� through real and Þnancial operations. The derivative-cost function

is shown to be convex in the derivative asset, and its basic properties are then derived and

formally proved.

We then turn to an analysis of virtual state-claim prices, virtual risk-free rates, and virtual

asset prices for the Þrm in terms of the subdifferentials of the derivative-cost function and



its associated directional derivatives. It is shown, among other results, that cost minimizing

production decisions can always be interpreted in terms of virtual proÞt maximization, and

that as a consequence virtual state-claim prices (and thus virtual asset prices) can often be

deduced directly from the physical production technology. This reinforces Cochrane�s (1991)

observation that there exists a production-based approach to asset pricing, which is com-

pletely analogous to the more familiar consumption-based approach. The main difference is

that our pricing rules are in terms of a cost function for a more general technical speciÞcation

than that permitted by Cochrane (1991), and, therefore, should be applicable to a greater

range of actual problems.

The tools developed for the virtual pricing of state-claims are then used to examine two

problems drawn, respectively, from the literatures on asset pricing and the literature on

producer decisionmaking under uncertainty. The Þrst is the existence of no-arbitrage pricing

of state claims. We show that these no-arbitrage prices of state-claims and assets are our

virtual pricing rules. After that we take up the issue of when the decisionmaker�s production

choices are independent of his or her attitudes towards risk. This has been referred to as

separation. We use our results to provide necessary and sufficient conditions for such a

separation between the production choices and decisionmaker�s risk attitudes for general

asset structures and technologies.

The penultimate section of the paper considers three brief applications of our approach,

and the Þnal section concludes.

1. Notation

Denote the unit vector by 1 ∈ <S+. DeÞne ei as the i-th row of the S × S identity matrix

ei = (0, ..., 1, 0, ..., 0) .

For m,m0 ∈ <S, the notation m ·m0 denotes the componentwise product of the two vectors,

i.e., m ·m0 = (m1m
0
1, ...,msm

0
s) , while the notation

m
m0 denotes the componentwise ratios

of the two vectors, i.e., m
m0 =

³
m1

m
0
1

, ...., mS

m
0
S

´
The notation mm0 for two conformable vectors

denotes the usual inner product. For a linear subspace, H, denote its orthogonal complement

by H⊥. For the S×J matrix, B, denote its right inverse if it exists by BR and the left inverse



by BL. Denote the relative interior of a convex set A ⊆ <S by riA, and the convex hull of a
set A by coA.

For a convex function2 f : <S → <, its subdifferential at m is the closed, convex set:

∂f (m) =
©

k ∈<S : f (m) + k (m0−m) ≤ f (m0) for all m0ª . (1)

The elements of ∂f (m) are referred to as subgradients. The one-sided directional (Gateaux

differential) derivative of f in the direction of n is deÞned by

f 0 (m;n) = lim
λ→0+

½
f (m+ λn)− f (m)

λ

¾
.

For f convex, f 0 (m;n) is positively linearly homogeneous and convex in n. Moreover,

f 0 (m;n) ≥ −f 0 (m;−n) .

When f 0 (m;n) = −f 0 (m;−n), we say that f is smooth in the direction of n at m. When

f is smooth in all directions at m, it is differentiable. Moreover, if f is differentiable at m,

∂f (m) is a singleton and corresponds to the usual gradient, which we denote by ∇f (m) =
[f1 (m) , ..., fs (m)] where subscripts denote partial derivatives. If ∂f (m) is a singleton, f is

differentiable at m. By basic results, for f convex and Þnite at m:

f 0 (m;n) ≥ {kn : k ∈∂f (m)} . (2)

The convex conjugate of f is denoted

f ∗ (k) = sup
m
{km−f (m)} .

If f is proper and closed,3 then f ∗ is proper and closed and

f (m) = sup
v
{km−f ∗ (k)} , (3)

and on the relative interior of their domains

k ∈ ∂f (m)⇔ m ∈ ∂f ∗ (k) . (4)

2Apart from our notion of smoothness in a particular direction, these results on convex functions are all

drawn directly from Rockafellar (1970).
3f is proper if f (x) <∞ for at least one x, and f (x) > −∞ for all x. A proper convex function is closed

if is lower-semicontinuous.



2. State-Contingent Technologies, Asset Structures, and the Deriv-

ative Cost Function

We model a price-taking Þrm facing a stochastic environment in a two-period setting. The

current period, 0, is certain, but the future period, 1, is uncertain. Uncertainty is resolved by

�Nature� making a choice from Ω = {1, 2, ..., S} . Each element of Ω is referred to as a state of
nature. The Þrm�s stochastic production technology is represented by a single-product, state-

contingent input correspondence.4 To make this explicit, let x ∈ <N+ be a vector of inputs

committed prior to the resolution of uncertainty (period 0), and let z ∈ <S+ be a vector of
ex ante or state-contingent outputs also chosen in period 0. If state s ∈ Ω is realized (picked
by �Nature�), and the producer has chosen the ex ante input-output combination (x, z), then

the realized or ex post output in period 1 is zs.

The Þrm�s technology is characterized by a continuous input correspondence, X : <S+ →
<N+ , which maps state-contingent output vectors into input sets that are capable of producing
that state-contingent output vector.5 It is deÞned

X (z) = {x ∈ <N+ : x can produce z}.

Intuitively, X (z) is associated with everything on or above the isoquant for the state-

contingent output vector z. At points it will be convenient to consider an alternative repre-

sentation, which we refer to as the state-contingent output set,

Z (x) =
©

z ∈ <S+ : x ∈X (z)ª .
Intuitively, Z (x) can be thought of as all state-contingent outputs on or below a state-

contingent product transformation curve. We impose the following axioms on X (z):

X.1 X(0MxS) = <N+ (no Þxed costs), and 0 /∈ X (z) for z ≥ 0 and z 6= 0 (no free lunch).

X.2 z0≤ z ⇒ X (z) ⊆ X(z0).
4For a generalization to the multiple-output case, see Chambers and Quiggin (2000, Chapter 4). Our

results extend straightforwardly to that case.
5In general, different Þrms need not have the same technology, so that, if there are N Þrms, the technology

for Þrm n will be represented by a correspondence Xn. Since we mainly discuss the decisions of a single Þrm,

we will normally suppress the index n.



X.3 x0≥ x ∈ X (z)⇒ x0 ∈ X (z) .
X.4 λX (z) + (1− λ)X(z0) ⊆ X(λz+ (1− λ)z0) 0 ≤ λ ≤ 1.
X.5 X is continuous.

The Þrst part of X.1 says that doing nothing is always feasible, while the second part of

X.1 says that realizing a positive output in any state of nature requires the commitment of

some inputs. X.2 says that if an input combination can produce a particular mix of state-

contingent outputs then it can always be used to produce a smaller mix of state-contingent

outputs. X.3 implies that inputs have non-negative marginal productivity. X.4 ensures that

the cost function developed below is convex in state-contingent outputs.

Period 0 prices of inputs are denoted by w ∈<N++ and are non-stochastic. Output price

is stochastic, and we denote by p ∈<S++ the vector of state-contingent output prices corre-

sponding to the vector of state-contingent outputs. Producers take these state-contingent

output prices and the prices of all inputs as given. The state-contingent revenue vector,

denoted p · z ∈ <S+, has typical elements of the form pszs.

Financial markets are frictionless, and the ex ante Þnancial security payoffs are given by

the S × J non-negative matrix A. The assumption that Þnancial markets are frictionless

can be easily modiÞed by subsuming the Þnancial frictions within the production technology

with little change in the analysis that follows. The vector of state-contingent payoffs on the

jth Þnancial asset is denoted Aj ∈ <S+. Denote the span of the matrix A by M . The prices

of the Þnancial securities are given by v ∈<J+. The Þrm�s portfolio vector is denoted h ∈ <J .
Dual to the input correspondence is the cost function, c : <N++ ×<S+ → <+, deÞned as

c(w, z) = minx{wx : x ∈ X (z)} w ∈ <N++

if there exists an x ∈ X (z) and ∞ otherwise. Mathematically, c(w, z) is equivalent to the

multi-product cost function familiar from non-stochastic production theory (Färe 1988). Let

x(w, z) ∈ argminx{wx : x ∈ X (z)}

If the input correspondence satisÞes properties X, c(w, z) satisÞes (Chambers and Quiggin,

2000):



C.1. c(w, z) is positively linearly homogeneous, non-decreasing, concave, and continuous

on <N++;

C.2. If x(w, z) is unique, c is differentiable in w and x(w, z) = ∇wc(w, z). If ∇wc(w, z)

exists, then x(w, z) is unique, and x(w, z) = ∇wc(w, z) (Shephard�s Lemma).

C.3. c(w, z) ≥ 0, c(w, 0S) = 0, and c(w, z) > 0 for z ≥ 0, z 6= 0;

C.4. zo ≥ z ⇒ c(w, zo) ≥ c(w, z).
C.5 c (w, z) is convex on <S+ and continuous on the interior of the region where it is Þnite.
For q ∈ <S+, the convex conjugate of c,

c∗ (w,q) = sup
z
{qz−c (w, z)} ,

can be interpreted as a proÞt-function for the �price� vector q. Let z0 ∈ arg sup {qz−c ( w, z)} ,
then

qz0 − c (w, z0) ≥ qz−c (w, z) ,

for all z, and hence q ∈ ∂c (w, z0). By (4), we then obtain z0 ∈ ∂c∗ (w,q) , which restates
Hotelling�s lemma in terms of subdifferentials.

2.1. The stochastic production function

It is worthwhile to brießy compare the Arrow-Debreu state-space representation with the

technology most commonly considered in the literature on production under uncertainty

as well as in many Þnancial applications (e.g., Cochrane, 1991). A stochastic production

function is typically speciÞed

zs = f (x, εs)

where x is a scalar input chosen by the producer and ε is a random input taking the value

εs in state s.

Chambers and Quiggin (1998, 2000) show that the cost function for this technology6 is
6Chambers and Quiggin (2000) consider the more general multiple input case and show that

c (w, z) ≥ max {c1 (w,z1) , ...cS (w,zS)}

where ci (w,zi) is the cost function corresponding to f (x,εi) .



given by

c(w, z) = inf {wx : f (x, εs) ≥ zs∀s}
= sup

s

©
wf−1 (zs; εs)

ª
Its output set,

Z (x) = {z :f (x, εs) ≥ zs, s ∈ Ω} .

Figure 1, drawn from Cochrane (2001), illustrates by comparing a general state-contingent

output set and that associated with a stochastic production function that agrees with the

general set at a given equilibrium point. Notice, in particular, that Z (x) maintains that

state-contingent outputs are not substitutable for one another. Chambers and Quiggin

(2000) offer a three-dimensional illustration of the same-technology, which they refer to as

output-cubical. In particular, if the technology does not allow X.2, and

Z (x) = {z :f (x, εs) = zs, s ∈ Ω} ,

the associated state-contingent output set is a single point. The range of state-contingent

outputs, which can be feasibly produced, is then even more severely circumscribed and

corresponds to a manifold emanating from the origin.7 This speciÞcation, thus, severely

limits the ability of the Þrm to use its physical technology in conjunction with operations in

Þnancial markets to construct derivative assets. And, in some instances, for example, those

of additive or multiplicative uncertainty, this speciÞcation can render the physical technology

redundant. More generally, as we illustrate below, this restriction circumscribes the ability

of the physical technology to provide virtual prices for arbitrary derivative assets in a way

that does not occur in the more general speciÞcation.

2.2. The derivative-cost function

DeÞne the derivative-cost function C : <S+ → <, by

C (y) = min
h,z
{c (w, z) + vh : Ah+ p · z ≥ y} (5)

7This remains true for the multiple input case.



if there exists Ah+ p · z ≥ y and ∞ otherwise. C (y) , thus, represents the minimal cost

(maximal buying price) to the Þrm of constructing the derivative Þnancial asset, y, either

through operations in Þnancial markets or through its production operations.

The Þrm�s derivative-cost minimization problem can be visualized with the aid of a

Lerner-Pearce diagram, familiar from the theory of factor-price equalization, as adapted to

state-contingent output space. In the case where S = 2 and J = 1, and there is no output

price uncertainty, we can illustrate as in Figure 2a. Here Þnancial markets are incomplete,

and the span of the Þnancial market is given by the ray through the origin labelledM. Short-

ing the asset corresponds to operating in the non-positive quadrant, while long positions are

represented by the positive quadrant. Isocost curves for the state-contingent technology are

drawn as exhibiting an increasing marginal rate of state-contingent transformation, reßecting

the convexity of c. The problem is to choose an asset position and a point on an isocost curve

to reach point y at minimal cost. Points B and C in the Þgure represent such a potential

solution. As illustrated, the Þrm�s equilibrium internal rate of transformation between state

claims is largely dictated by the physical cost structure.

When J = 2, and there is no redundant asset, the analogy with factor-price equalization

is complete. In that case, the decisionmaker�s cost of raising (r1, r2) in Þnancial markets is

given by

r1

µ
v1A22 − v2A12

A22 − A21A12

¶
+ r2

µ
v2 − v1A21

A22 − A21A12

¶
,

which has linear isocost cost lines as illustrated in Figure 2b. Cost minimization, therefore,

takes place at points where the slope of this isocost line is tangent to an isocost contour

for c (w, z) and r+ z = y. The equilibrium slopes of the isocost curve and line correspond

to the Þrm�s equilibrium internal supporting state-claim prices. It is easy to see that if

the isocost curve associated with c (w, z) is kinked at the equilibrium, as it would be with

a stochastic production function speciÞcation, then even though the state-claim prices are

uniquely determined in Þnancial markets, the only useful information that can be inferred

from the physical cost structure is the magnitude of z and the level of cost. In this case,

which has been the basis of most theoretical and empirical analyses of Þnancial and physical

production interaction, the physical technology does not generally permit inferences about

state-claim prices, other than to require that they lie somewhere in co {e1, .., eS} .



There are alternative, but equivalent, ways to deÞne C, which allow for different intuitive

interpretations and, which may prove analytically useful in differing contexts. Studies in the

Þnancial literature (e.g., Garmann and Ohlson, 1981; Prisman, 1986; and Ross, 1987) have

investigated the properties of �minimal investment functions� deÞned by the linear program

ci (y) = min {vh : Ah ≥ y} ,

if {h : Ah ≥ y} is nonempty and ∞ otherwise.

These minimal investment functions are equivalent to multiple-output cost functions for a

linear production technology, well understood from the theory of production correspondences

and duality.8 In addition to satisfying homogeneity and concavity properties in v, they are

positively linearly homogeneous and convex in y. And for y ∈M, they are linear.9 Thus,
they naturally form the basis for the linear pricing of assets deÞned on M. Prisman (1986),

Ross (1987), Dermody and Prisman (1988), Dermody and Rockafellar (1991) and others

have developed generalizations of ci to cover Þnancial frictions in the forms of transactions

costs, taxes, bid-ask spreads etc. Clark (1993) has shown how to extend pricing derived from

such linear asset valuations beyond the asset span.

One can thus redeÞne the derivative-cost function as

C (y) = min
r,z

©
c (w, z) + ci (r) : r+ p · z ≥ y

ª
.

Viewed in this fashion, C corresponds to a multiple-output cost function for an output-

nonjoint technology, where production operations in the construction of p · z and r are

independent, and interdependence between the two technologies only results from the Þrm�s

arbitrage activities in constructing y at minimal cost (Chambers, 1988). By restricting at-

tention to a single state and setting ps = 1, this cost minimization problem can be visualized
8The main difference is that the �inputs�, h, can be either positive or negative because of the ability to

go short in frictionless markets.
9Linearity can be established by noting that so long as y ∈M, ci (y) = ri (y) , where

ri (y) = max {vh : Ah ≤ y} .

ri (y) is the Þrm�s minimal selling price of the asset y and is equivalent mathematically to multiple-output

revenue function for a linear technology. Hence, it is positively linearly homogeneous and concave in y by

standard arguments. This establishes that onM, ci (y) is both convex and concave. Hence, it must be linear.



in terms of the �beaker diagram� illustrated in Figure 3, where the horizontal dimension

of the beaker is ys, the marginal production cost is graphed against the left axis, and the

marginal cost of the Þnancial holding is graphed agains the right axis. In equilibrium, the

marginal costs must be equalized between Þnancial and physical operations.

This observation illustrates a general point. The developments in this paper, the develop-

ments in Prisman (1986), Ross (1987), Dermody and Rockafellar (1991) and many others are

all special cases of a more general income production problem where vectors of inputs/assets

(which allow short selling) are used/purchased to assemble derivative assets using a general-

ized state-contingent production technology that encompasses the output-nonjoint form and

the others as special cases. One can generalize axioms X to permit the possibility of short

selling and then, by replacing z there by y, axiomatically derive a cost function for that

technology along the general lines demonstrated by Chambers and Quiggin (2000).

The advantages of proceeding in this latter fashion are clear, increased generality and

elegance. However, the cost is equally clear. As one moves to a more canonical state-

contingent income production structure, one loses insight into the actual arbitrage activities

undertaken by the Þrm, whether they are due to responses to the structure of Þnancial

assets, the presence of convex tax structures, transactions costs, or physical production

opportunities.

3. Properties of the Derivative-Cost Function

At points in the following discussion, it will be useful to assume that no y ∈ <S+ can have a
cost that is arbitrarily negative. Formally, this assumption�s role is to ensure that C (y) is

a proper convex function, which allows us to invoke standard results on subdifferentials and

conjugate duality for convex functions (Rockafellar, 1970).

Assumption 1 C (y) > −∞, y ∈ <S+.

We list some basic properties of C. (Proofs not included in the text are in an appendix.)10

10C is a cost function, and thus it possesses standard properties in terms of the input prices (v,h). These

can be gleaned from any good microeconomics text, and thus in the interest of notational economy and



Theorem 1. C satisÞes:

1. C (y) is a nondecreasing, convex function that is continuous on the interior of the region

where it is Þnite. If z0 ≥ z, z0 6= z ⇒c (w, z0) > c (w, z) , then y0 ≥ y,y0 6= y ⇒C (y0) >
C (y).

2. If C is subdifferentiable at y ∈ri<S+, ∂C (y) ⊂ <S+. If C is strictly monotonic and C
is subdifferentiable at y ∈<S++, ∂C (y) ⊂ <S++.

3. Under Assumption 1, if C (y) is Þnite for any y ∈ ri<S+, then C is subdifferentiable at
y, and

C 0 (y; z) = sup {qz : q ∈ ∂C (y)}

is Þnite for every z.

4. C (0) ≤ 0.
5. C

¡
y + δAj

¢
= C (y) + δvj y + δAj ∈ <S+.

Theorem 1.1 ensures that we can invoke standard methods from convex analysis in ana-

lyzing C. In a sense, therefore, it motivates everything else that follows. Theorem 1.2 gives

consequences of monotonicity for subdifferentials of C. Property 3 shows that C will be

subdifferentiable at all points in the relative interior of the positive orthant. Thus, for any

strictly positive derivative asset that can be constructed at Þnite cost, C is always subdif-

ferentiable implying that there exist well deÞned supporting hyperplanes for the graph of C.

As usual, these supporting hyperplanes have the natural interpretation as being the Þrm�s

virtual prices (supporting state-claim prices) for the state contingent incomes (state claims).

Property 3 also relates the subdifferentials to the directional derivative of the cost function.

Later developments will show that this representation, in conjunction with property 5, is key

in determining virtual state-claim prices for assets which are not marketed. The fourth part

of the theorem simply exploits the absence of Þxed costs for the production technology to

show that the Þrm would never pay a strictly positive price for a non-stochastic zero payoff

in each state of Nature. It also demonstrates that the Þrm can never make a negative proÞt

in its construction of the 0 asset, presuming of course that the latter is priced at zero. As we

parsimony, we do not discuss them here. But at points in the development, we use these properties when

needed.



see below, a strict inequality here is equivalent to the presence of an arbitrage opportunity,

and thus ruling out such a strict inequality forms a fundamental part of the argument in

establishing the presence of no-arbitrage prices.

Theorem 1.5 shows that translating the derivative asset by some multiple of an existing

Þnancial asset just changes derivative-cost by the same multiple of the price of the asset.

This a pre-requisite for the derivative asset to have been assembled efficiently. Suppose, for

example, that C
¡
y + δAj

¢
> C (y)+ δvj. The Þrm could assemble y at a cost of C (y), and

then purchase of δ units of Aj , giving the Þrm claim to y + δAj , but at a cost less than the

minimal cost of constructing y + δAj. This contradicts the deÞnition of the minimal cost

function. On the other hand suppose that C
¡
y + δAj

¢
< C (y) + δvj . Then, by a parallel

argument, it follows that the Þrm can assemble y + δAj at a cost of C
¡
y + δAj

¢
, sell δAj

and realize a return of y and a proÞt on the operation, which is again a contradiction.

We have the following immediate consequence of Theorem 1:

Corollary 2. C 0
¡
y;Aj

¢
= vj, and C (y) is smooth in the direction of A.

3.1. Virtual State-Claim Prices

Most of the paper is devoted to an analysis of what happens in the generalization of Figure

2a and not of Figure 2b. Our interest is largely focussed on what supporting state-claim

prices look like when markets are not complete. Our next theorem provides a conjugate

representation of C that relates the Þrm�s virtual state-claim prices to the asset structure

and to c (w, z). To motivate this result, notice that the convex conjugate of C,

C∗ (q) = sup
y
{qy−C (y)} ,

can be interpreted as the Þrm�s virtual proÞt function for the state-claim prices q. Intuitively,

it seems clear that this virtual proÞt function is unboundedly large if there exist any arbitrage

opportunities in Þnancial markets at state-claim prices q, that is qA 6= v. When there are

no such opportunities, then the Þrm�s virtual proÞt is given by the maximal virtual proÞt



realized from the production of z. More formally, for q ∈ <S+

C∗ (q) = sup
y
{qy−C (y)}

= sup
y

½
qy−min

h,z
{c (w, z) + vh : Ah+ p · z ≥ y}

¾
= sup

y,h,z
{qy − c (w, z)− vh : Ah+ p · z ≥ y}

= sup
h,z
{q (Ah+ p · z)−c (w, z)− vh}

=

 ∞ qA 6= v

c∗ (w,q · p) qA = v
.

For any q∗ ∈ arg sup {qy−C∗ (q)} ,

q∗y − C∗ (q∗) ≥ qy−C∗ (q) ,

so that y ∈ ∂C∗ (q∗) and by (4), q∗ ∈ ∂C (y) .
We conclude by conjugacy.

Theorem 3. Under Assumption 1 for y ∈ri<S+, C (y) = supq {qy−c∗ (w,q · p) : qA = v} .

Before we say what this theorem implies more formally, let�s Þrst see what it is saying

intuitively. Consider the associated Lagrangean expression in the case of a smooth technology

L = qy−c∗ (w,q · p)− (qA− v)µ,

where µ ∈ <J+ is a vector of Lagrangean multipliers. First-order conditions here include

y −∇c∗ (w,q · p) · p−Aµ = 0,

where∇c∗ (w,q · p) is the gradient of c∗ (w,q · p) in q · p.By basic duality theory,∇c∗ ( w,q · p)
is the vector of virtual proÞt maximizing supplies of state-contingent outputs. By standard

optimization theory, µ corresponds to the vector of marginal costs of C (y) with respect to

v. But notice that from our original formulation of the derivative-cost problem and Shep-

hard�s lemma, these marginal costs of C (y) with respect to v just correspond to the optimal

positions, h, taken in the Þnancial market. Thus, rewriting the derivative-cost problem in

this fashion is intuitively equivalent to recasting the problem into one of locating the virtual



state-claim prices and Þnancial market positions for which the Þrm�s supply of the derivative

asset just equals its demand, as given by y.

If q ∈ ∂C (y) , then two conditions must hold. First, these virtual state-claim prices must
allow no virtual proÞt from Þnancial operations. Because the asset structure effectively ex-

hibits constant returns to scale between the Þrm�s position in Þnancial markets and payouts,

virtual proÞt is either zero or inÞnitely large. If such a proÞt existed, the Þrm could always

create the asset associated with the position, sell it, and then use the proceeds to Þnance

the purchase of y. Because this could be repeated an inÞnite number of times, the cost of

assembling y would thus be driven to −∞. Second, the Þrm�s cost minimizing choice of z in

creating the derivative asset, y , must also maximize virtual proÞt in terms of the virtual

state-claim prices. This observation echoes Working�s (1953) long-ago assertion that the pri-

mary reason for a productive Þrm (in his case millers) engaging in Þnancial hedging activity

(in his case wheat futures) was not risk avoidance, but proÞt enhancement. By this last

observation, if q ∈ ∂C (y) , then q · p ∈ ∂c (w, z) at any z which solves the derivative-cost

problem.

If c (w, z) is strictly convex, then maximal virtual proÞt is Þnite. Consider, however, the

case where the state-contingent production technology exhibits constant returns to scale so

that c (w,µz) = µc (w, z) , µ > 0 . Then either c∗ (w,q · p) is zero or it is unboundedly
large. Suppose, for example, that (q · p) z−c (w, z) > 0. Then for these virtual state-claim
prices, the Þrm can always ensure itself of creating the asset y at a virtual proÞt of inÞnity,

which is equivalent to having produced it at a cost of minus inÞnity. The virtual state-claim

prices, therefore, must adjust to eliminate this virtual proÞt. More formally, we conclude:

Corollary 4. Under Assumption 1 for y ∈ri<S+, if c (w,µz) = µc (w, z) , µ > 0, then C (y) =

supq {qy :c∗ (w,q · p) = 0,qA = v} .

3.2. Virtual Risk-Free Rates and Virtual Asset Prices

Suppose that A contains a riskless asset, offered for a price of 1 with a riskless rate of r. By

Corollary 2

C 0 (y; (1 + r) 1) = 1 = sup {(1 + r)q1 : q ∈ ∂C (y)} .



The marginal cost of a sure increase in y of (1 + r) dollars is one dollar. Because the Þrm can

always realize such a sure increase in y by purchasing one unit of the safe asset, this condition

is necessary for the Þrm to have exhausted all its arbitrage opportunities in constructing the

derivative asset. Theorem 3 implies in this instance that for all q ∈ ∂C (y) , (1 + r)q can be

interpreted as risk-neutral probabilites.

On the other hand, even when the riskless asset is not actively traded, the Þrm�s marginal

cost of a sure increase in y of t > 0 dollars is C 0 (y;t1) = tC 0 ( y; 1) , where we have used the

linear homogeneity of the directional derivative. This leads us to deÞne the Þrm�s virtual

risk-free rate

r+ (y) =
1

C 0 (y; 1)
− 1,

as the risk-free rate which yields the Þrm no opportunity for proÞtable arbitrage between

production operations and purchasing one unit of the riskless asset if it were traded. Sym-

metrically, when the riskless asset is not traded then the risk-free rate which yields the Þrm

no opportunity for arbitrage if one unit of the riskless asset were constructed and sold would

be

r− (y) =
−1

C 0 (y;−1)
− 1

=
1

inf {q1 : q ∈ ∂C (y)} − 1

By the properties of directional derivatives r+ (y) ≥ r− (y) . If the riskless asset is traded

with a rate of r, then by Corollary 2 r+ (y) = r = r− (y) .

More generally, directional derivatives offer means for computing virtual asset prices,

whether the assets are traded or not. By Corollary 2 when Aj is traded

C 0
¡
y;Aj

¢
= sup

©
qAj : q ∈ ∂C (y)ª

= vj .

If Aj were not actively traded, then C 0
¡
y;Aj

¢
corresponds to the maximal price the Þrm

should be willing to pay to acquire one unit of it. Thus, it represents an appropriate virtual

price of the Þrm for this asset.

These virtual asset prices inherit several very attractive properties of directional deriv-

atives. First, they are linearly homogeneous indicating that simply renumbering the units



in which returns for assets are denominated renumbers virtual prices in a matching fashion.

Second, they are convex, which, when coupled with linear homogeneity, implies that they

are subadditive, i.e.,

C 0 (y;yo + y∗) ≤ C 0 (y;yo) + C 0 (y0;y∗) .

As noted above in the case of the riskless asset, when an asset is not actively traded

in the market, there is no reason to expect that the virtual price that the Þrm would be

willing to pay to add one unit of it to its portfolio is equivalent to the minimal price that the

Þrm would be willing to accept in divesting itself of one unit of the asset. This minimally

acceptable virtual price for yo is

inf {qyo: q ∈ ∂C (y)} ,

which under the conditions of Theorem 1 corresponds to −C 0 (y;−yo) . To distinguish

−C 0 (y;−yo) from C 0 (y;yo) , we refer to the former as the virtual selling price. By the basic

properties of directional derivatives for convex functions, −C 0 (y;−yo) is linearly homoge-

neous and concave, and therefore superadditive, in yo with −C 0 (y;−yo) ≤ C 0 (y;yo) .When
these virtual prices coincide, as they would in the presence of a marketed asset, C 0 (y;yo) is

smooth in the direction of yo.

3.3. Production and the Efficient Set

Theorem 3 has implications for ∂c (w, z) , and the related cost minimizing production equi-

librium. We start by supposing that the riskless asset is actively traded, then for q ∈ ∂C (y)

q · p ∈ ∂c (w, z) , (6)

at the cost minimizing z, and (2) gives for this z

c0
µ

w, z; (1 + r)
1

p

¶
≥ q1 =1. (7)

The latter condition shows that the marginal cost of a sure increase in y of (1 + r) dollar

via a change in the state-contingent production vector can never be less than a dollar at the

optimal choice of z. If this condition did not hold, then the Þrm could always sell one unit



of its current holding of the riskless asset and replace it with a �riskless asset� of its own

construction, thus lowering its total cost.

Theorem 3 and expressions (6) and (7) admit another interpretation in terms of produc-

tion practices for expected-proÞt maximizing individuals. Rewriting expression (6), the cost

minimizing z must satisfy

(1 + r)q· p

1 + r
∈ ∂c (w, z) ,

so that the cost minimizing z must be consistent with the state-contingent output choice of

an expected proÞt maximizer (in current dollars), who faced the probability vector (1 + r)q,

which corresponds to the �risk-neutral probabilities� deÞned earlier. Expression (7), in these

terms, then manifests the equilibrium condition that such an individual would never miss an

opportunity to raise virtual proÞt with certainty. Following this interpretation, Chambers

and Quiggin (2000) have deÞned the set of z0s , which satisfy (7), as the efficient set, and

noted that its members consist of precisely those state-contingent output vectors which could

be optimal for an expected proÞt maximizing risk-neutral individual.11

More generally, even if the riskless asset is not actively traded, by Theorem 3, it remains

true that

¡
1 + r+ (y)

¢
q· p

1 + r+ (y)
∈ ∂c ( w, z)

c0
µ

w, z;
1

p

¶
≥ 1

1 + r+ (y)
. (8)

Hence,

Corollary 5. Under Assumption 1, if C (y) is Þnite for y ∈ ri<S+, then the cost minimizing
choice of z must be in the efficient set for r+ (y) .

For certain classes of technologies, these observations can yield even further information

about the range of potentially cost minimizing state-contingent outputs. For example, a cost

function exhibits translation homotheticity in the direction of g ∈ <S+ in state-contingent
11Chambers and Quiggin (2000) considered individuals whose preferences were deÞned over net returns,

and thus they implicitly considered the case where r = 0.



outputs (Chambers and Färe, 1998) if

c (w, z) = �c (w,T (z,w)) ,

where T : <S+ ×<N+ → <+ is nondecreasing and continuous in z, and

T (z,λw) = T (z,w) λ > 0

T (z+δg,w) = T (z,w) + δ δ ∈ <.

Visually, a translation homothetic cost structures possesses isocost curves that have equal

slope as one proceeds in the direction g. By deÞnition,

T 0 (z,w; g) = 1.

Supposing for simplicity that �c is smooth and convex in T, we then have for this class of

technologies that

c0 (w, z; g) = �cT (w,T ) .

Applying these facts to what we have already learned, it follows immediately that if there

exists a traded riskless asset with a risk-free rate of r, and c is translation homothetic in the

direction 1
p
,12 then the boundary of the efficient set is given by

c0
µ

w, z;
1

p

¶
= �cT (w,T ) =

1

1 + r
,

and convexity of �c then implies that an unique T corresponds to the boundary of the efficient

set. We thus conclude:

Corollary 6. If c (w, z) is translation homothetic in the direction of 1
p
,, all elements of the

efficient set are equally costly.

Translation homotheticity, in effect, implies that there exists an aggregate output, T.

This aggregate output has the property that movements in the direction of g just increase it

one unit for each unit of g that is added. That is, the marginal cost of moving the associated
12Because such technologies possess isocost curves whose slope does not change as one raises income by

the same sure amount in all states of nature, Chambers and Quiggin (2000), in analogy with the literature

on utility structures, refer to such technologies as being constant absolutely risky.



output bundle in the direction of g equals one. Therefore for such structures, Þnding the

efficient set just reduces to Þnding the aggregate output where the marginal cost of increasing

T is just equal to the reciprocal of the return on the risk-free asset.

Another implication of Theorem 3 is the natural extension of the discussion surrounding

Figure 2b to the case of incomplete Þnancial markets. If the technology is suitably smooth,

its virtual state-claims prices can be deduced from ∂c (w, z). Because the Þrm�s technology

is, in principle, both observable and measurable via econometric analysis, this observation

offers a method for computing Þrms� virtual state-claim prices, and hence virtual asset prices,

directly from estimated versions of the stochastic production technology.

So, for example, if the riskless asset is not actively traded, expression (8) can be used to

place a lower bound on the virtual risk-free rate. As we have shown above, these calculations

become particularly simple when the cost technology is translation homothetic in the direc-

tion of 1
p
, suggesting that translation homotheticity might offer a particularly parsimonious

parametric speciÞcation for measuring virtual risk-free rates. Similarly, the Þrm�s virtual

price for the asset y∗ has upper bound

c0
µ

w, z;
y∗

p

¶
.

If, for example, the objective is to create a virtual price for a speciÞc non-marketed asset,

then by arguments parallel to those above, translation homotheticity in the direction of
y∗
p
may offer a particularly tractable speciÞcation. In the case where the state-contingent

technology is suitably smooth, as it will be in most econometric applications, these bounds

turn into equalities. Naturally, as above, we can construct lower bounds for the virtual

selling prices as −c0
³

w, z;−y∗
p

´
.

However, this approach is generally less useful, when one restricts attention to the sto-

chastic production function speciÞcation of a state-contingent technology, as the following

example illustrates.

Example 7. Consider

c (w, z) = �c

µ
w,max

½
z1

ε1
, ...,

zS
εS

¾¶
,

which corresponds to the a stochastic production function with a multiplicative error struc-

ture (Chambers and Quiggin, 2002). Presuming that �c is smooth in its arguments and that



the decisionmaker preferences are strictly monotonic in both cost and state-contingent re-

turns (see our discussion of no-arbitrage below), the decisionmaker always chooses to locate

at z such that

zs =
εs
ε1
z1,

for all s, where

∂c (w, z) = c2

µ
w,
z1

ε1

¶
co {e1, .., eS} ,

is noninformative about the relative state-claim prices.

Upper bounds on the virtual price of an asset, y, however, can be obtained from

c0 (w, z;y) = c2

µ
w,
z1

ε1

¶
max

½
y1

p1
, ...,

yS
pS

¾
,

and lower bounds from

−c0 (w, z;−y) = c2

µ
w,
z1

ε1

¶
min

½
y1

p1
, ...,

yS
pS

¾
.

Even in the presence of a marketed asset, these bounds will not generally coincide.

More generally, in the stochastic production function speciÞcation, if x is held Þxed, we

have that the bounding hyperplanes of the set

{z :zs ≤ f (x,εs) , s ∈ Ω}

correspond to co {e1, .., eS} , so that information about relative state-claim prices can be

recaptured from the primal technology only by placing additional structure upon the tech-

nology. At the poles, assuming that the dimension of the input space is the same as the

dimension of the state space allows one to infer the supporting state-claim prices, while as il-

lustrated earlier in the section on the stochastic production function, nothing can be inferred

in the case of a single input or an aggregate input. Because most empirical applications will

not be consistent with the state space being spanned by the input space, the stochastic pro-

duction function generally is an inconvenient speciÞcation for capturing information about

state-claim prices.

A number of related observations follow immediately when there is further information

available upon the structure of asset returns. For example, suppose that Þnancial markets



are complete in the sense that rank A = S. Then the right inverse of A exists and is given

by

AR = A0 (AA0)−1
,

and by Theorem 3, q ∈∂C (y) ⇒ q = vAR, and z optimal for (5) satisÞes

z ∈ arg sup©¡vAR
¢
(p · z)−c (w, z)ª ,

which simply reconÞrms that in the presence of complete Þnancial markets, and thus com-

plete state-claims markets, production equilibrium maximizes the surplus given by these

state-claim prices.

However, there will exist cases of interest where markets are not necessarily complete,

but for which further information is available about the relationship between asset payoffs

and their prices. We state two immediate consequences of Theorem 3

Corollary 8. Under Assumption 1, suppose that there exists a vector of objective prob-

abilities, π, such that πA = v (1 + r) . Then either π/ (1 + r)∈∂C (y) or q ∈∂C (y) ⇒
π/ (1 + r)− q ∈ M⊥. For any for any π ∈ <S such that πA > (<)v (1 + r) , q ∈∂C (y)⇒¡
π

1+r
− q

¢
A > (<) 0.

This corollary addresses the case where Þnancial markets are �fair� in the sense of offering

a uniform expected return on all assets for some objective set of probabilities. In this case,

we can strengthen our earlier results on expected proÞt maximizing choices to conclude that

either the Þrm makes it choices of cost minimizing z as though it were a current period

expected proÞt maximizer for these objective probabilities, or it makes its cost minimizing

choice of z as though it were a current period expected proÞt maximizer for the state-claim

prices obtained by projecting π
(1+r)

onto M.

More generally, because q · p ∈ ∂c (w, z) for the cost minimizing z,
¡
π

1+r
−q
¢
measures

the Þrm�s departure from risk-neutral production practices (for the probabilities π) in its

choice of z to create the derivative asset y. In the presence of a fair market these divergences

must be orthogonal to the asset span. When the market is not fair in this sense, the direction

of its unfairness then determines how divergences from risk-neutral production behavior will

match with the structure of the asset market.



4. Arbitrage and Separation

The primary use of minimum investment functionals, ci, has been in the theory of linear

valuation operators for Þnancial assets under different market structures. In the simplest

case, where there are no market frictions, ci (y) is linear on the span of the market (Prisman,

1986; Ross, 1987; Clark, 1993) and positively linearly homogenous and sub-additive (convex,

sub-linear) elsewhere. This linearity, in turn, guarantees the existence of nonnegative, state-

claim prices, corresponding to the subdifferential of ci (y) at the origin. When convex market

frictions are introduced, ci (y) becomes nonlinear but remains convex. However, to ensure

the absence of arbitrage, there must exist a positively linearly homogeneous and sub-linear

valuation providing a lower bound for ci (y). Thus, the absence of arbitrage in the presence of

frictions also requires the existence of non-negative state-claim prices (Prisman, 1986; Ross,

1987; Dermody and Prisman, 1988; Dermody and Rockafellar, 1991; Clark, 1993; Jouini and

Kallal, 1995 (a,b); Jouini, Kallal, and Napp, 2001).

Much attention has also been focused on isolating circumstances in which production deci-

sions are independent of attitudes toward risk (Townsend, 1978; Danthine, 1978; Holthausen,

1979; Anderson and Danthine, 1981; Chambers and Quiggin, 1997). When this happens, it

is said that there exists �separation� between the decisionmakers production decisions and his

risk attitudes, and thus his hedging activities. It is a textbook result (Hirshleifer and Riley,

1992) that this occurs in the presence of complete markets (as well as a trivial consequence

of Corollary 8 above).

In this section, we show how the derivative-cost function can be used to generalize existing

results on no-arbitrage pricing to the case of productive Þrms and to derive necessary and

sufficient conditions for separation to occur.

4.1. Arbitrage

A strong production-Þnancial arbitrage exists at (h, z) if there is (h0, z0) such that

vh0 + c (w, z0) < vh+c (w, z) ,Ah0 + p · z0 ≥ Ah+ p · z.,

or in words a strictly cheaper portfolio and production plan yielding at least the same income

in each state of Nature as (z,h). If the Þrm�s objective function is nondecreasing in state



claims, the existence of a strong production-Þnancial arbitrage at (z,h) is inconsistent with

(z,h) occuring in equilibrium. This local notion of an arbitrage encompasses, as a special

case, the more traditional notion of a strong Þnancial arbitrage, which is the existence of an

h∗ such that

vh∗< 0,Ah∗ ≥ 0,

by setting z0 = z and taking h∗ = h0−h. It also incorporates, as a special case, the notion of a

strong production arbitrage at z, which is the existence of a strictly cheaper state-contingent

output vector, which yields no lower return in any state of Nature,

c (w, z0) < c (w, z) ,p · z0 ≥ p · z.

Hence, if no strong-production Þnancial arbitrage exists, then no strong Þnancial arbi-

trage exists and no strong production arbitrage exists. Moreover, if (z,h) is cost minimizing

for y = Ah+ p · z, the absence of a strong production-Þnancial arbitrage requires that there
exist no strong arbitrage at y in the form of a strictly cheaper y0 with returns as large in

each state of Nature,

C (y0) < C (y) ,y0 ≥ y.

Theorem 1 ensures that a strong arbitrage of this form can never exist at any y. Firms

constructing their derivative assets at minimal cost, that is rational Þrms, automatically

eliminate such strong production-Þnancial arbitrages. Hence, applying the no-arbitrage con-

dition to such points brings no further information than that already embedded in C (y) .

The absence of a strong production-Þnancial arbitrage at (v,h) guarantees the existence

of nonnegative state-claim prices.

Theorem 9. If there is no strong production-Þnancial arbitrage at (z,h) , there exists a

q ∈ <S+ such that

qA= v,

(q · p) z− c (w, z) ≥ (q · p) z0 − c (w, z0) , p · z0 ≥ p · z.

These no-arbitrage prices ensure that virtual proÞt in Þnancial markets is zero, and that

virtual marginal proÞt associated with moving from z to z0 is nonpositive. Hence, for any



rational y constructed at minimal cost, the Theorem implies that state-claim prices, q, exist

and satisfy

q · y − C (y) ≥ q · y0 − C (y0) , y0 ≥ y.

Because all the members of ∂C (y) satisfy this inequality for all y, they are state-claim prices

consistent with the absence of a strong production-Þnancial arbitrage. Thus, the no-arbitrage

risk free rate

r+ (y) =
1

C 0 (y; 1)
− 1,

and the no-arbitrage price of the asset yo, C 0 (y;yo) , can be taken as the virtual risk-free

rate and virtual asset price at y. These no-arbitrage asset prices are positively linearly

homogeneous and convex (sub-additive) by the properties of directional derivatives. The

no-arbitrage selling price of the asset is now −C 0 (y;−yo) . When yo is in the span of the

market, by previous results C 0 (y;yo) = −C 0 (y;−yo) implying that the no-arbitrage pricing

operator is smooth in the direction of the asset structure.

One result of particular interest emerges from considering the case (h, z) = 0. An imme-

diate consequence of the absence of an arbitrage there is that there exists no y ≥ 0 such that

C (y) < 0. This observation shows that Assumption 1 must be satisÞed, and in conjunction

with Theorem 1 proves that the decisionmaker cannot realize a strictly positive proÞt from

constructing the zero asset and selling it for a price of zero.

Theorem 10. The absence of a strong production-Þnancial arbitrage at (h, z) = 0 implies

C (0) = 0.

A production-Þnancial arbitrage exists for the Þrm at (h, z) if there exists an (h0, z0) such

that

vh0 + c (w, z0) ≤ vh+c (w, z) ,Ah0 + p · z0 ≥ Ah+ p · z

with at least one strict inequality. Such an arbitrage is inconsistent with equilibrium if the

decisionmaker preferences are strictly increasing in y.

This notion of an arbitrage can be used to generate no-arbitrage state-claim prices, and it

is a relatively easy extension of Theorem 9 to demonstrate that these prices must be strictly

positive. These state-claim prices then yield no-arbitrage virtual asset prices and risk-free



rates just as above. We leave the details of this to the reader, and turn our attention instead

to the implications of the absence of a production-Þnancial arbitrage for C (y) . If (h, z) is

cost minimizing, then the absence of a production Þnancial arbitrage requires that there is

no y0 ≥ y, y0 6= y, such that C (y0) ≤ C (y) . This implies:

Theorem 11. If (z,h) is cost minimizing for y, and there is no production-Þnancial arbi-

trage at (z,h) , then C (y) is strictly increasing in all its arguments at y.

Example 12. This example illustrates the difference between a strong production-Þnancial

arbitrage and a production-Þnancial arbitrage, and the different implications they have for

asset pricing and monotonicity of C (y). Consider the cost structure

c (w, z) = �c (w)max

½
z1

ε1

,
z2

ε2

¾
,

and suppose that output price is nonstochastic and normalized for convenience to one. As

Figure 4 illustrates, this cost structure is nonsubstitutable in state-contingent outputs (it cor-

responds to a linearly homogeneous state-contingent production function with multiplicative

effort). For any z such that

z2 >
ε2

ε1
z1,

z0 = z2

³
ε1

ε2
, 1
´
represents a production arbitrage but not a strong production arbitrage.

Because c (w, z0) = c (w, z) . C (y) is only weakly monotonic, and the supporting state-claim

prices are given by ∂c (w, z) = ĉ(w)
ε2

e2, which is nonnegative but not strictly positive. At

z0, there exists no production arbitrage and the supporting state-claim prices are given by

∂c (w, z0) = �c (w) co
³

e1

ε1
, ..., eS

εS

´
, which contains strictly positive elements.

It is well-known, that the existence of a linear valuation implies that the valuation can

be expressed as an expectation for a particular martingale (Harrison and Kreps, 1979; Cox,

Ingersoll, and Ross, 1985). Clark (1993) has demonstrated the formal linkages between linear

valuations derived from the absence of arbitrage and the subjective probability theory of de

Finetti (1937). A similar connection exists here:

Corollary 13. There are no production-Þnancial arbitrage opportunities at y if and only if

there exists an expectations operator E such that

C (y) ≥ ¡1 + r+ (y)
¢

Ey,y ∈<S+



with ¡
1 + r+ (y)

¢
EAj = vj, j = 1, ..., J, .

4.2. Separation

The question of when the Þrm�s output will be independent of the preferences of its owners

(assuming only that these preferences are monotonic) has arisen in a variety of contexts.

For example, as mentioned above, this happens when there exist complete markets. It is

legitimate to ask, therefore, whether other circumstances may exist in which, from the Þrm�s

perspective as a producer, markets are effectively complete in the sense that all Þrms facing

the same technology and the same Þnancial market structure will make the same production

decisions. Because the output decisions of the Þrm generally depend on the decisionmaker�s

risk attitudes, this would be an important step forward in removing some of the ambiguity

surrounding such decisions. This section provides necessary and sufficient conditions for

separation for general technologies and frictionless Þnancial markets.

We start by noting that any z that is produced must belong to

©
z0 : ci (p · z) ≥ c (w, z)ª ,

because for any z not in this set, the decisionmaker is always better off assembling p · z in
Þnancial markets. This observation leads us to the crudest kind of separation result. Namely,

if this set is empty, then the decisionmaker�s production decisions are always independent

of his risk attitudes, because all rational decisionmakers would operate at z = 0, regardless

of the magnitude of y. This is the case, where the technology is entirely redundant in the

presence of asset markets.

We now seek instances other than complete production redundancy where production de-

cisions are independent of the decisionmaker�s risk attitudes. In considering cost minimizing

production choices, Theorem 3 allows us to restrict attention to the set

Z∗ = ∪q {z : z ∈ ∂c∗ (w,q · p)} .

Z∗ corresponds to the efficient set for all possible r+ (y).



We say that separation exists over a set Y, if for all y ∈Y the decisionmaker�s cost mini-
mizing production choices satisfy

z ∈ ∂c∗ (w,q · p) , (9)

for the same q. In other words, for all y ∈Y, q ∈∂C (y) . Consider the set obtained by
translating the span of the market by the ex ante values of the cost minimizing production

choices:

Y ∗ =M + p·Z∗.

By the basic properties of ci, ci (r) = qMr, r ∈M. Thus, for y ∈Y ∗ :

C (y) = min
z∈Z∗,r

©
c (w, z) + ci (r) : p · z+ r ≥ y

ª
= min

z∈Z∗
©
c (w, z) + ci (y − p · z)ª

= min
z∈Z∗

©
qMy − qM (p · z) + c (w, z)ª

= qMy−c∗ ¡w,qM ·p¢ ,
implying separation over M + p·Z∗.
Suppose that separation exists over Y, and let the common q be qM . Then by Theorem

3, for all y ∈Y
C (y) = qMy−c∗ ¡w,qM ·p¢

with qMA = v. Together these expressions imply that the optimal choice of r = Ah and z

satisfy

ci (r) = qMr, (10)

and (9). Expression (10) implies that ci is linear in r, and hence by the basic properties of

ci, r ∈M. Hence, y ∈M + p·Z∗.

Theorem 14. Separation occurs over Y if and only if Y ⊂M + p·Z∗.

Several things should be noted here. If p·Z∗ ⊂M, then separation always occurs, and the
decisionmaker�s production decision is completely independent of his or attitudes towards

risk. We might call this strong separation, and state this obvious fact as a Corollary



Corollary 15. If p·Z∗ ⊂M, separation occurs for all y, and

Z∗ = arg sup
©

qM (p · z)− c (w, z)ª ,
where ci (r) = qMr, r ∈M.

Second, even in the presence of separation between production decisions and preferences,

full insurance is not typically available and the income accruing to the Þrm�s owners need

not lie in the Þnancial span M. Rather, the owners of the Þrm are subject to �background�

risk that cannot be offset either by production choices or by Þnancial transactions. We close

this section with an example which illustrates an application of the basic theorem in the case

of strong separation.

Example 16. Consider again costs in the form

c (w, z) = �c

µ
w,max

½
z1

ε1

, ...,
zS
εS

¾¶
.

Suppose that
³
p1

ε1
, p2ε2

ε1
, ..., psεS

ε1

´
∈M, then

C (y) = min
z,r

½
�c

µ
w,max

½
z1

ε1
, ...,

zS
εS

¾¶
+ ci (r) : r+ p · z ≥ y

¾
= min

z1,r

½
�c

µ
w,
z1

ε1

¶
+ ci (r) : r+z1p·

µ
1

ε1
,
ε2

ε1
, ...,

εS
ε1

¶
≥ y

¾
= min

z1,r

½
�c

µ
w,
z1

ε1

¶
+ ci

µ
y−z1p·

µ
1

ε1
,
ε2

ε1
, ...,

εS
ε1

¶¶¾
= qMy−max

½
z1q

Mp·
µ
p1

ε1
,
p2ε2

ε1
, ...,

pSεS
ε1

¶
− �c

µ
w,
z1

ε1

¶¾
.

5. Other Applications

The results above can be applied to a wide range of problems involving Þrms that undertake

nontrivial production and also buy or sell Þnancial assets. To illustrate, in this section,

we present brief applications of our methods that study: the relationship between equilib-

rium and no-arbitrage pricing, the special case of price but not production uncertainty, and

comparative static issues.



5.1. Equilibrium and No-Arbitrage Prices

The no-arbitrage conditions ensurethe existence of positive state-claim prices, which allow

decisionmakers to price out any potential assets. These asset prices generally do not coincide

with �equilibrium prices�. In this section, we brießy review the connection between the no-

arbitrage prices and the �equilibrium prices� as they are usually understood. To that end,

we need a fuller characterization of the economy in which we are operating, and to keep

things simple we make several assumptions. First, we assume that all Þrms have access to

the same technology. Second, we assume that all Þrms agree on p, and that these prices

are taken as given by all. Third, we assume that the economy wide endowment of the

factors of production is x∗. And fourth, we assume that there are a Þxed number of Þrms,

N, with period 0 wealth of ωn, and preferences Wn (c0,y) which is strictly increasing in all

its arguments.

To examine the equilibrium, it is convenient to enrich our notation by reintroducing

the suppressed parameters v and w into the cost structure, while recalling that Shephard�s

Lemma applies to C (y,w,v) just as it does for c (w, z) . Because we presume that preferences

are strictly increasing in all arguments, in equilibrium all y must be consistent with the

absence of a production-Þnancial arbitrage, and hence with locally strictly monotonic costs.

Therefore, with little true loss of generality we presume that C is smooth.

Our equilibrium concept is any v,w, and
¡
y1, ...,yN

¢
such that

yn ∈ argmax {W n (ωn − C (yn,w,v) ,yn)}X
n

∇vC (y
n,w,v) = 0,X

n

∇wC (y
n,w,v) = x∗.

The Þrst n conditions are self explanatory, the second two sets of conditions are market-

clearing conditions in the asset market and the market for inputs expressed in terms of

Shephard�s lemma. Assuming the Þrst-order conditions are necessary and sufficient for an



optimum allows us to rewrite the above as the system

∇yW
n −W n

1 ∇yC (y
n,w,v) = 0, n = 1, ..., NX

n

∇vC (y
n,w,v) = 0,X

n

∇wC (y
n,w,v) = x∗.

Upon inspection, ∇yC (y
n,w,v) must be a no-arbitrage price vector for decisionmaker

n, and they must coincide, in equilibrium, to the risk-neutral probabilities deÞned by the de-

cisionmakers preferences, ∇yW
n/Wn

1 . Because decisionmakers can have different attitudes

towards risk, there is no a priori reason, even in this very simpliÞed economy, for all deci-

sionmakers to have the same no-arbitrage prices, even though all face the same technical and

Þnancial possibilities. In fact, if all decisionmakers had the same no-arbitrage prices, then

markets must be effectively complete because the no-arbitrage prices could then taken as

Arrow state-claim prices. The structure of the no-arbitrage prices, even at the Þrm level, are

dependent on the input endowment within the economy as well as the technology and the

asset structure. So the determination of no-arbitrage prices in a world where Þrms engage

in both productive and Þnancial operations is considerably more complex than in the more

stylized setting familiar from Þnance theory, where the asset prices are determined solely

by the structure of Þnancial market. In particular, the no-arbitrage prices associated with

absence of arbitrage in Þnancial markets alone, ∂ci (0) , only correspond to ∇yC (y
n,w,v)

if the decisionmaker�s net position in Þnancial markets is zero, which suggests that Þnancial

activities are not being used to balance the production risk faced by the decisionmakers in

equilibrium. These observations reinforce and formalize, in our framework, our introductory

quotation from Cochrane (2001).

The interaction between preferences, technology, effective market completeness, and no-

arbitrage prices can be examined further with a simple example. Suppose that,

W n (ωn − C (yn,w,v) ,yn) =
X

πsys − C (yn,w,v) + ωn.

Producers are risk-neutral for a set of either objective probabilities or a set of commonly



shared subjective probabilities. Equilibrium is then characterized by

π−∇yC (y,w,v) = 0, n = 1, ..., N

∇vC (y,w,v) = 0,

N∇wC (y,w,v) = x∗.

Markets are effectively complete, and ∇yC (y,w,v) is both a vector of Arrow state-claim

prices and a vector of no-arbitrage prices. Because they are risk-neutral and identical,

decisionmakers take no position in the asset market in equilibrium. If they had a strong

incentive to take a non-zero position, it must offer unboundedly large proÞt, and this is

inconsistent with equilibrium. If, however, producers faced different technologies, they would

generally take offsetting positions in asset markets, offering zero proÞt, but which exploited

the relative cost advantages across technologies in raising overall surplus.

We can use this simpliÞed equilibrium setting to illustrate how C can be used to examine

the potential for innovation of new Þnancial assets via the introduction of physical production

technologies. We consider the simplest possible case, where the existing equilibrium can be

entirely described by equilibrium in asset markets, and no physical production takes place.

Then if an equilibrium does exist it must be true (in an obvious notation) that

π ∈ ∂ci (y,v)

∇vc
i (y,v) = 0.

Suppose y is in the span of the market, in which case, the above reduces to

π = ∂ci (0,v)

∇vc
i (0,v) = 0,

because ci is linear over the span of the market. Hence, equilibrium can emerge in the span

of the market if and only if the decisionmakers subjective probabilities are rational in the

sense that they mirror the no-arbitrage prices generated by the asset structure, ∂ci (0,v).

There remains the possibility that an equilibrium might emerge outside of the span of the

market. However, this is also impossible because if the decisionmaker found it proÞtable in

an expected-value sense to operate at y, he could realize inÞnitely large expected proÞts by



repeatedly replicating that market position. Formally, this is a consequence of the fact that

ci (y,v) is always positively linearly homogeneous.

For this setting, the only sensible equilibrium is the �rational� one where decisionmakers

basically adopt the objective probabilities dictated by the asset structure. In essence, this is

the trivial equilibrium, where there are no Þrms, and no one takes a position in the market.

Now suppose that a new technology becomes available. Then innovation will take place in

equilibrium if and only if there exists a y 6= 0, v, and w such that

π ∈ ∂C (y,v,w)

∇vC (y,v,w) = 0

∇wC (y,v,w) ≤ x∗.

5.2. Nonstochastic Production

Our treatment thus far has restricted attention to the case where production is stochastic.

However, an extremely large literature has developed around the case where the producer

faces price uncertainty but not production uncertainty. We now brießy consider such sit-

uations in this framework. Let cc (w,z) denote a cost function for a scalar, nonstochastic

output z. This cost function satisÞes the same basic properties in w as c (w, z) .13 In par-

ticular, we assume that it is nondecreasing and convex in the nonstochastic scalar z. The

convex conjugate of cc (w,z) , cc∗ : <n++ ×<+ → <, is deÞned by

cc∗ (w,�q) = sup {�qz − cc (w,z)}

The Þrm�s problem is

C (y) = min
z,h
{cc (w,z) + vh : zp+Ah ≥ y} , (11)

if there exists (z,h) such that zp+Ah ≥ y and ∞ otherwise. We have the slight modiÞca-

tion of Theorem 3:

13In fact, it may be regarded as the special case of the stochastic production function technology where

all ε are equal.



Theorem 17. For problem (11) under Assumption 1,

C (y) = sup
q

n
qy−cc∗

³
w,
X
qsps

´
: qA = v

o
.

A particularly striking example arises if price as well as output is nonstochastic, so p =p1.

We then obtain

cc∗
³

w,p
X
qs

´
.

If a riskless asset exists, for q ∈ ∂C (y) , Pqs = 1
1+r
. If a riskless asset is not traded,

P
qs

stills yields the Þrm�s virtual valuation of the non-stochastic vector 1, and thus one can

interpret
1P
qs
− 1,

as measuring the Þrm�s virtual risk-free rate as we have noted above. Theorem 17 establishes

that the Þrm makes its non-stochastic production decisions so that it maximizes its virtual

discounted proÞt. If a riskless asset exists and is traded, the Þrm then always maximizes the

period 0 proÞt in choosing its level of output.

This result, of course, reßects the parallel result developed in (7). There we saw that the

Þrm should always choose its state-contingent production vector to exhaust all opportunities

for increasing state-contingent return for sure in each state of nature. Here, because there

is neither price or production risk, the parallel result is that the Þrm should exhaust all

opportunity for discounted proÞt. If it did not, it could always proÞtably sell off some of its

endowment of the riskless asset and replace it with production from the Þrm.

Because p
P
qs ∈ ∂cc (w,z) at the cost minimizing z, this observation and the discussion

in the previous section on virtual prices implies that the that the Þrm�s virtual risk-free rate

can be inferred directly from its marginal cost of output. However, because production and

price are non-stochastic, the Þrm cannot use its technology to �construct� derivative assets,

and therefore analogous results for virtual asset pricing are not available. More generally,

for this technology, even in the case where cc is smoothly differentiable in z, only bounds on

virtual prices for arbitrary assets can be obtained from the production technology, though

of course the virtual asset prices themselves remain available from C (y).

Suppose, for example, that the technology is smooth and that the Þrm is considering

moving its derivative asset y in the direction of Aj . It has at least two choices, one is to



purchase a unit of Aj in the market for vj . Alternatively, it can increase its production by

the amount max
n
A1j

p1
, ...,

ASj

pS

o
at marginal cost of

max

½
A1j

p1
, ...,

ASj
pS

¾
ccz (w,z) .

However, if this latter term is strictly less than vj the Þrm could not have constructed y at

minimal cost, and thus

max

½
A1j

p1
, ...,

ASj
pS

¾
ccz (w,z) ≥ vj .

More generally, we conclude that

max

½
y∗1
p1
, ...,

y∗S
pS

¾
ccz (w,z) ,

must always represent an upper bound on the Þrm�s virtual price for y∗. Alternatively, one

can view this imprecision in asset pricing as resulting from the fact that the non-stochastic

case is the special case of the stochastic production function, where εs = ε for all s.

We now turn to separation results in the presence of nonstochastic production. A funda-

mental result from the expected utility literature on futures and forward markets (Danthine,

1978; Holthausen, 1979; and Anderson and Danthine, 1981) is that a Þrm facing a single for-

ward market for the commodity produced offering a sure price of v∗ for the amount hedged,

and stochastic spot prices, p, should have its production decisions independent of its risk

attitudes. This result may be recognized as an immediate corollary of Theorem 14.

If the amount hedged is denoted h, then the Þrm creates the income stream y = p (z − h)
at a cost to itself of cc (w,z) + v∗h. Making the simple substitution of a = z − h, this
implies that the Þrm creates an asset with return y = pa at a cost of cc (w,z) + v∗ (a− z) .
Regardless of the level of a chosen, the Þrm always perceives its marginal cost of varying z

as ∂cc (w,z) − v∗, and it thus minimizes this cost by choosing the same z regardless of the
choice of y.

In this setting since y = pa, and the span of the asset market and p coincide leading to

the conclusion that the price of the asset and the marginal cost of the non-stochastic output

must also coincide. Alternatively, the Þrm is combining two assets, one has a return of p,

and the other has a return of −p. Their marginal prices must then match. Our next result



specializes Theorem 14 to the case of a general asset market structure where p lies in the

span of the asset market.

Theorem 18. For problem (11), if p ∈M, there exists a ∈ <J such that Aa = p and

C (y) = ci (y)− cc∗ (w,va) .

By Theorem 18, therefore, the Þrm constructs the derivative asset as best as it can via

purely Þnancial operations. It then uses its physical production activity simply to defray

the costs of doing so by taking an offsetting position in the real market which exhausts

the possibilities for proÞtable behavior in that market and for arbitrage between the two

markets. Production decisions are, thus, determined by equating marginal cost of output to

va. Perhaps the most intuitive way to interpret this result is in the context of a production

operation, which itself is relatively riskless, but for which the Þrm faces price uncertainty, but

also has good opportunities to hedge that price risk in Þnancial markets. These stylized facts,

for example, might closely approximate the milling industry considered in Working�s (1953)

classic study of price hedging in the presence of well-functioning futures markets. Theorem

18 would then imply that the Þrm�s ultimate production decisions would not depend upon

its attitudes towards risk, but would instead be driven by it attempting to maximize the

sure proÞt associated with va, and then using operations in Þnancial markets to cope with

the price risk that it faces

5.3. Some Observations on Comparative Statics

As we noted much earlier in a footnote, in addition to y, C is functionally dependent on

(w,v,p,A) . Moreover, C is also obviously dependent upon the state of the technology in

the current period when production decisions are taken. Now let us return to a quotation

from Cochrane (2001) that we offered in the introduction to this paper.

We routinely think of betas and factor risk prices ... as determining expected

returns. But the whole consumption process, discount factor and factor risk

premia change when the production technology changes. Similarly, we are on

thin ice if we say anything about the effects of policy interventions, new markets

and so on.



From the preceding developments, it is now obvious that these parameters of C, which

we have largely suppressed so far, have an important role in addressing the problem being

raised by Cochrane (2001). Moreover, it is also apparent that C inherits the property

characteristic of all dual representations of technology of affording a means of efficient and

simple comparative-static analysis. In this section, we illustrate how the representation

that we have developed can be used to make concrete statements about the effects of such

developments on virtual asset prices and virtual risk-free rates.

For the sake of economy of notation, we assume that we are interested in a single parame-

ter of C, which we denote as t, and refer to as an index of the technology in current period.

Thus, we can think of what follows as the simple comparative statics of technical change for

asset pricing. We refer to an increase in t as technical change. However, we emphasize that

the principles used, and the arguments are perfectly general, and we will close the section

by noting how similar arguments can be adapted for the introduction of new assets.

Let�s Þrst address the issue of whether virtual state-claim prices can be independent of t,

and thus invariant to technical change in the physical production technology. Denoting the

subdifferential of C (y;t) in y by ∂C (y;t) , we have

∂C (y;t) = {q : + q (y0−y) ≥ C (y0;t)− C (y;t) , all y0} ,

from which we conclude that the virtual state-claim prices for the Þrm can be independent

of t if and only if

C (y;t) = �C (y) +m (t) .

This observation and the deÞnition of C yield:

Theorem 19. If the state-contingent production technology satisÞes,

c (w, z,t) = �c (w, z) +m (w,t)

with m (w,t) positively linearly homogeneous and concave in w, then

∂C (y;t) = ∂ �C (y)

for all t, and the no-arbitrage asset prices and risk-free rates are independent of the state of

the technology.



The technology in Theorem 19 corresponds to one consisting of the sum of two state-

contingent input sets, one which can be thought of as a Þxed-cost component that depends

upon the t. The other component, which depends upon z but not t, can be interpreted

as variable cost. Notice that this technology is only sensible if we relax X.1 to permit the

existence of Þxed costs associated with the state of the technology.

Now suppose that the technology index t describes movements in the technology applica-

ble to the economy is a whole, and that these movements lead to an uniform increase in the

payoffs of all assets as well to a proportional reduction in the Þrm�s production costs of the

form

A (t) =
A

m (t)
,

c (w, z,t) = m (t) c (w, z) ,

with m(t) > 0 monotonically decreasing in t. We have

C (y;t) = min
h,z

½
m (t) c (w, z) + vh :

A

m (t)
h+ p · z ≥ y

¾
= min

h,z

½
m (t) c (w, z) + vh : A

h

m (t)
+p · z ≥ y

¾
= min

h,z

½
m (t) c (w, z) +m (t)v

h

m (t)
: A

h

m (t)
+p · z ≥ y

¾
= m (t) min

h/m,z

½
c (w, z) + v

h

m
: A

h

m
+p · z ≥ y

¾
= m (t)C (y) .

The converse follows by duality and so,

Theorem 20. C (y;t) = m (t)C (y) if and only if, one can write

A (t) =
A

m (t)
,

c (w, z,t) = m (t) c (w, z) .

For this speciÞcation, virtual prices are independent of the state of the technology. It

follows immediately that relative no-arbitrage prices will also be independent of t. More

generally, by basic separability results, relative virtual prices are independent of t if and only

if C (y;t) = �C (c̄ (y) , t) . This latter restriction requires that the joint technology, deÞned by



the asset structure and c (w, z) , exhibit output-Hicks-neutral technical change (Chambers

and Färe, 1994).

Now consider the effect of technical change on the no-arbitrage pricing rules that we have

derived above. For simplicity, we restrict attention to the case C (0;t) . The no-arbitrage

prices are the virtual state-claim prices associated with

∂C (0;t) = {q : qy ≥ C (y;t) , all y} ,

from which we conclude:

Theorem 21. If t0 > t implies c (w, z,t0) ≤ c (w, z,t) , C 0 (0;t;yo) , rises as a result of tech-
nical change, and the no-arbitrage risk-free rate, r+ (0) , falls.

These theorems are trivial consequences of our speciÞcation of the derivative-cost func-

tion, but despite their triviality they answer potentially important questions in the literature

on asset pricing. And when this recognition is combined with our earlier observations on the

ability to infer asset pricing directly from c (w, z,t) , these results can be made empirically

meaningful using traditional econometric methods of analysis.

It is equally trivial to deduce similar results for the entire range of the remaining para-

meters (w,v,p,A) of C. For example, it is easy to demonstrate that C is nonincreasing in

both w and v. Hence, it follows immediately by parallel arguments that the no-arbitrage

asset prices are decreasing in both w and v, and that the no-arbitrage risk-free rate is

increasing. Notice, moreover, that the introduction of a new Þnancial asset, as opposed

to the introduction of a physical technology as discussed above, can be interpreted as a

comparative-static change of the form of moving from an S × J dimensional matrix A con-

taining as one of its columns the null vector to one containing no null vectors. For simplicity,

let that correspond to the Jth column. Then innovating the new Þnancial asset Aj increases

all no-arbitrage prices and reduces the no-arbitrage risk-free rate if, in an obvious nota-

tion, C
¡
y;Aj

¢ ≤ C (y; 0) . But this is trivially true because the range of feasible choices

has grown. Similarly, it is trivially true that the introduction of a new physical technology

with zero Þxed costs always increases the no-arbitrage prices of assets and the no-arbitrage

risk-free rate.



6. Concluding Comments

The primary purpose of this paper has been to demonstrate that a state-contingent model of

production under uncertainty can fruitfully be integrated with the standard Þnance-theoretic

model of asset pricing, giving rise to signiÞcant extensions of basic arbitrage arguments. A

number of observations, made in passing, could potentially be developed further.

First, the model provides a natural framework for treating frictions, transactions costs and

taxes. Rather than distinguishing, as we have here, between a Þnancial sector characterized

by a conical span M, and consuming no real resources, and a more general state-contingent

production technology, it would be possible, and appropriate, to treat both non-Þnancial

and Þnancial Þrms as being jointly engaged in real economic activity, consuming resources

and producing state-contingent outputs.

Second, as Cochrane (2001) observes, the limitations of the endowment-economy assump-

tion commonly used in Þnance theory are most evident in relation to comparative static

analysis. For example, despite the central role of claims about technological change in recent

discussions of the behavior of Þnancial markets, there has been little formal analysis of the

impact on asset prices of changes in the technology of production. Changes in the actual

manner in which the physical technology is employed arise from a variety of sources including

technical change and evolving market conditions. Moreover, as has been emphasized above,

the manner in which a technology is employed depends upon both Þnancial and resource

markets. Although we have only superÞcially addressed these issues here, C (y) affords a

natural and well-understood means for examining such issues. C (y) is mathematically equiv-

alent to a cost function for a multi-product state-contingent production technology. Just as

c (w, z) has characteristics that make it particularly suitable for comparative-static analy-

sis, so does C (y) . In particular, C (y) can be shown to nondecreasing, positively linearly

homogeneous, and concave in (w,v) while also satisfying a version of Shephard�s lemma in

(w,v) . We have demonstrated that asset pricing can be conducted solely in terms of the

directional derivatives of C (y) . Each of these properties can be used to examine the effect of

exogenous changes in technology (via technical change), marketed asset prices, input prices,

and state-contingent output prices on the no-arbitrage prices derived above speciÞcally, and



more generally on the no-arbitrage equilibrium itself.

The presentation of Þnancial and nonÞnancial technology in terms of underlying produc-

tion sets provides a natural way of modelling both Þnancial and technological innovation.

In particular, it is possible to distinguish between exogenous technological change, modelled

as an induced shift in c (w, z), and induced technical change, modelled as a shift in the

production-Þnance vector in response to changing factor or state-claim prices. The ability

to do this for a no-arbitrage equilibrium is a Þrst and necessary analytic step in doing the

same in a truly general-equilibrium setting. Moreover, the approach advanced in this paper

promotes the further integration of the theory of the Þnancial and productive Þrms rather

than their continued segregation into specialized sub disciplines.

Third, asset pricing rules can always be recaptured from both C (y) and c (w, z). Thus,

once procedures for estimating non-stochastic production structures are extended to the

estimation of cost functions for state-contingent technologies, estimated cost structures can

be used to price derivative assets.
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8. Appendix: Proofs

Proof of Theorem 1: Continuity follows by the theorem of the maximum (Berge, 1963).

Let (h0, z0) be optimal for y0 ≥ y, then C nondecreasing follows because (h0, z0) is feasible

for y. Let y0 ≥ y,y0 6= y, there must exist a z ≤ z0, z 6= z0 such that h0A+ p · z ≥ y, but for

which c (w, z) +vh0 < C (y0) if c is strictly increasing. To demonstrate convexity, let (h0, z0)

and (h00, z00) be optimal for y0 and y00, respectively. By the linearity of the constraint sets

(λh0 + (1− λ)h00,λz0 + (1− λ) z00) is feasible for λy0 + (1− λ)y00. By C.5,

c (w,λz0 + (1− λ) z00) + v (λh0 + (1− λ)h00) ≤ λ [c (w, z0) + vh0] + (1− λ) [c (w, z00) + vh00] .

Taking the minimum of the left-hand side yields convexity. This establishes 1.

To establish 2, consider q ∈ ∂C (y) . By deÞnition,

C (y)− C (z) ≤ q (y − z) .

Let y = z+δej for δ > 0 but suitably small. Weak monotonicity guarantees that qj ≥ 0, and
strong monotonicity guarantees a strict inequality.

To establish 3, suppose that C (y) is Þnite at y, then by Assumption 1, it is a proper

convex function. Theorem 23.4 of Rockafellar (1970) then yields the result.

C (0) ≤ 0 follows by C.3 and the deÞnition of the cost function because h = 0, z = 0 is

feasible for y = 0.

To establish 5,

C
¡
y + δAj

¢
= min

h,z

©
c (w, z) + vh : Ah+ p · z ≥ y + δAj

ª
= min

h,z

n
c (w, z) + v−jh−j + vj (hj − δ) : A−jh−j + (hj − δ)Aj+p · z ≥ y

o
+ vjδ

= C (y) + δvj .

Proof of Theorem 3: Under Assumption 1 and by Theorem 1, C (y) is proper and

closed function with the convex conjugate identiÞed in the text. By conjugacy, then

C (y) = sup
q

½
qy− sup

z
{q (p · z) −c (w, z)} : qA = v

¾
.

Proof of Corollary 8: By Theorem 3, q ∈∂C (y) requires

v = qA,



and thus under the maintained condition

(π − q)A = 0

so that (π − q) is orthogonal to A and thus to M. q is thus the projection of π on M. In

this case,

C∗ (q) = sup
y
{qy−C (y)}

= sup
y

½
qy−min

h,z
{c (w, z) + vh : Ah+ p · z ≥ y}

¾
= sup

h,z
{q [Ah+ p · z]−c (w, z)− πAh}

= sup
h,z
{(q− π) Ah+ q (p · z)−c (w, z)}

=

 ∞ q− π /∈M⊥

supz {q (p · z)−c (w, z)} otherwise
.

If π − q /∈ M⊥ then ∂C∗ (q) = ∅, hence π − q ∈ M⊥ for there to exist a y satisfying

q ∈∂C (y) .
Proof of Theorem 9: Apply Theorem 22.3 of Rockafellar (1970) to the condition that

Ah0 + p · z0≥ Ah+ p · z ⇒ vh0 + c (w, z0)≥ vh+ c (w, z) .

Proof of Theorem 17:

C∗ (q) = sup
y
{qy−C (y)}

= sup
y

½
qy−min

z,h
{cc (w,z) + vh : zp+Ah ≥ y}

¾
= sup

y,z,h
{qy−cc (w,z) + vh : zp+Ah ≥ y}

= sup
h,z
{q [Ah+ pz]−cc (w,z)− vh}

=

 ∞ qA 6= v

supz {z
P
qsps−cc (w,z)} qA = v

.

The result follows by conjugacy.

Proof of Theorem 18: Suppose that p ∈M, then there exists an a such that

Aa = p,



and the minimization problem becomes

C (y) = min
z,h
{cc (w,z) + vh : A (h+ az)≥ y}

= min
z,h
{cc (w,z) + v (h+ az)− vaz : A (h+ az)≥ y}

= min
z,h∗

{cc (w,z) + vh∗ − vaz : Ah∗ ≥ y}
= min

z
{cc (w,z)− vaz}+min

h∗
{vh∗ : Ah∗ ≥ y} .
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