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markets exhibit excessive volatility.
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1. I ntroduction

Recent empirical research on optimal hedging has focused on two distinct areas. One
branch of the literature has investigated models wherein there is a multi-period hedging horizon
and the optimal hedge may be updated each period. This research has relied largely on
applications of dynamic programming (DP), with examples including Anderson and Danthine
(1983); Karp (1983); Martinez and Zering (1992); Mathews and Holthausen (1991) and Vukina
and Anderson (1993). Overadl, these studies find that, while intuitively appealing (but
operationally complicated), multi-period hedging models have not resulted in significant
improvements over static models from a risk management perspective.

The other thrust in the literature has been to use time-series econometrics to model
conditional variance and covariance dynamics for commodity cash and futures prices. To this
end various versions of the ARCH/GARCH framework advanced by Engle (1982) and
Bollerdev (1986) have been utilized, the result being that time-varying one-step-ahead hedge
portfolios are estimated (e.g., Baillie and Myers, 1991).%? Gagnon et a. (1998), Haigh and Holt
(2000), Kroner and Sultan (1993), Lin et a. (1994), Myers (1991), Park and Switzer (1995),
Sephton (1993), Tong (1996), and Yeh and Gannon (2000) have employed ARCH/GARCH
methods, and have reported significant gains in hedge performance relative to more traditional
OLS techniques include. Like the DP approach, GARCH methods alow hedge updating.
Unlike the DP approach, the time-series approach thus far has been limited to determining only
sequentially updated one-period-ahead optimal hedge ratios (OHRS).

In this paper we first present a method of utilizing GARCH time series models within a
DP framework to construct dynamic optimal hedging portfolios. Dynamic hedging strategies are

developed for a hypothetical firm (merchandiser) interested in purchasing in advance but on a



weekly basis commodities (specifically, cocoa and sugar) used in food manufacturing. For each
commodity we begin by specifying theoretically consistent yet redlistic and tractable risk
management models. We allow the representative firm to adjust the optimal hedge severa times
between initial hedge placement and eventual commodity purchase several weeks into the future.
In each case the hedger is assumed to minimize the variability of total costs. By employing DP
recursion relations, OHRs are thereby derived.

This research departs from prior studies by relaxing the assumption that hedgers will not
revise their estimates of underlying variances/covariances over time and that they will not update
futures positions. The representative merchandiser’s variance expressions are manageable
functions of non-contemporaneous, time-varying variances and covariances, requiring multi-step
ahead forecasts that are incorporated directly into the DP framework. Because GARCH
specifications are effective in modeling time-varying volatility, the model developed here
illustrates the gains from combining dynamic hedging strategies in a DP framework with modern
time-series techniques. Indeed, the research not only expands on both the time-series and
dynamic programming hedging literature, thus being of interest to an academic audience, but
also, because of its practicality and ease of use, should be of interest to risk- management
practitioners responsible for developing optimal hedging strategies with varying time horizons.

Another unique aspect of this study is the development of confidence bands around
competing portfolios. Specifically, by employing a parametric bootstrap we are able to evaluate
whether portfolio variance reductions from each method are statistically different. We are
therefore able to shed light on circumstances under which one method outperforms another. This
analysis will offer a more complete understanding of the conditions that are likely to offer

similar portfolio payoffs and, from a practical standpoint, will enable a trader to decide when to



employ a simple strategy (like OLS techniques) and when to embark on a more sophisticated
strategy (like a GARCH or DP-GARCH approach).

The remainder of the paper is organized as follows. First, we present a brief overview of
hedge ratio estimation, and then introduce the DP—-GARCH modd. This is followed by a
description of the data used in the empirical analysis and econometric estimation results. We
then present hedging results and the bootstrap analysis. The final section concludes.
2. Hedge Ratio Estimation

A basic concept in the hedging literature is the notion that traders optimally select
combinations of cash and futures positions to minimize portfolio risk. These combinations,
typically expressed in terms of proportion of cash to futures positions for an asset, are commonly
referred to as Optimal Hedge Ratios (OHRs). One popular method of determining OHRs is to
employ a minimum-variance (MV) framework, wherein an agent (e.g., a merchandiser) is
assumed to minimize variability of outlays (costs) associated with an expected purchase. For
several reasons the MV framework has become the benchmark in the hedging literature. First,
MV hedge ratio is optimal for exceptionaly risk averse traders (Ederington, 1979; Kahl, 1983).
As well, MV hedge ratio is aso optimal when futures markets are unbiased. This result is
important as such a phenomenon has been verified in several empirical studies (Baillie and
Myers, 1991; Martin and Garcia, 1981).> As such, MV methodology has been widely applied, in
part because of the heoretica justification of finding unbiased markets and in part because
components of the MV hedge ratio may be retrieved from variance and covariance estimates of
underlying cash and futures prices (see, e.g., Baillie and Myers, 1991; Kroner and Sultan, 1993).

Many studies calculate OHRs from historical data by simply regressing changes in cash

prices on changes in futures prices (see Appendix equations (A1) — (A3)). The resulting slope



coefficient, b_,, is interpreted as an estimate of the OHR (Ederington, 1979; Kahl, 1983).* This

result holds because in the smple least squares model the estimated slope coefficient equals the
term shown in (A3). This form of the hedge ratio is commonly referred to as the MV hedge
ratio, and has been employed in many studies including that by Mathews and Holthousen (1991).

Implicit in traditional hedge ratio estimation methodology is the assumption that the
covariance matrix of cash and futures prices—and hence the hedge ratio—is constant through
time. But as Fama (1965) observed, variances and covariances of asset returns are often not
constant over time—large changes tend to be followed by other large changes and small changes
tend to be followed by other small changes. This phenomenon, known as volatility clustering, is
effectively captured by Engle's (1982) ARCH model; in an early application Cecchetti et al.
(1988) employed a bivariate ARCH process to infer time-varying OHRs. Bollerslev (1986)
subsequently proposed the GARCH model to circumvent the long lags often needed to specify
correctly an ARCH model. A large body of research has therefore focused on utilizing the
GARCH framework to construct time-varying (conditional) hedge portfolios.

Here we ignore the potential need for a time series structure for the mean of cash and
futures prices. The relevant price equations may then be specified as

Dp, =m+e,,

(1)
& W, ~N(O,H)),

where Dp =(c, f,)" isa (2 x 1) vector containing the first difference of cash and futures prices
(T is a transpose operator); mis a (2 x 1) mean vector (i.e.,, a (2 x 1) vector of intercept or drift
terms) for, respectively, cash and futures prices; e, is a (2 x 1) vector of meanzero, bivariate

normally distributed cash and futures price innovations, W, , is the information set available at



time t-1; and H,, where vech(H,)=(hy,,hy..h,, )", isa (2 x 2) conditional covariance matrix.®

One method for specifying the structure generating conditional second moments is to utilize the
positive semi-definite parameterization (PSD) explained in Engle and Kroner (1995). In their
setup the form of H;, the conditional covariance matrix, is

H =W'W+A'e_el A+B"H, B, )
where W is a symmetric (2 x 2) parameter matrix and A and B are (2 x 2) parameter matrices.
Alternative GARCH specifications include the constant correlation parameterization employed
by, among others, Cecchetti et al. (1988), Garcia et al. (1995), and Kroner and Sultan (1993).
The set up, while parsimonious, does not allow the cash-futures covariance (and, therefore,
OHRs) to switch signs in the short run as cash and futures prices move in opposite directions
(see, e.g., Haigh and Holt, 2000). The implication is this model may be overly restrictive. The
linear diagonal model used by Baillie and Myers (1991) is less restrictive in this regard, but does
not ensure the conditional covariance matrix is positive definite for al t.

The bivariate GARCH process defining H; in (2) is specified so that each h.. termin H;

1)t
is a linear function of lagged values of H:.1, as well as lagged values of products and cross-

products of innovations e, ,e/,. A notable feature of this specification isthat al elementsin Hy.,

and e e, are permitted to influence the ij; component of Hi. As such equation (2) is the

analogue to a VARMA model in the system’s conditional covariance process, and therefore
provides a genera way of modeling time dependencies in the system’s conditional second
moments. By construction the specification in (2) ensures H; is positive semi-definite at all data

points and so is used in this analysis. As well, (2) alows inferences about the extent to which



lagged variances (innovations) in, say, the cash (futures) market influences the current variance
in the futures (cash) market.
Returning to the optimal hedging problem, it follows that, given the time-varying nature

of variance covariance matrix Hi, the time-varying hedge ratio may be expressed as

_ Cov(fi, ¢ IW.y) _ hi,
Var(ft |Vth) h22,t

t-1

where by.; is the OHR conditional on all available information, W,_,, at timet-1.

Numerous studies have focused on time-varying hedging by using variants of the
ARCH/GARCH approach to model the cash-futures price distribution. OHRs are then inferred
by relaxing the assumption that conditional variances (covariances) are time independent. For
instance, Cecchetti et al. (1988) applied a bivariate ARCH mode to financial futures prices.
Myers and Baillie (1991), Myers (1991), and Sephton (1993) applied bivariate GARCH models
to commodity prices. Park and Switzer (1995), Tong (1996), and Yeh and Gannon (2000)
compared GARCH-generated OHRs to OLS hedging for stocks. Finally, Kroner and Sultan
(1993) and Lin et a. (1994) used a bivariate GARCH framework in foreign currency hedging.

3. Combining DP Hedging Models with GARCH Time-Series Techniques

In this section we outline the theoretical multi-period hedging models for commodity
merchandisers that undertake weekly purchases of cocoa and sugar. Our representative firm is
assumed to hedge cash price uncertainty associated with anticipated commodity purchase several
weeks in future. That is, the merchandiser maintains the required amount of cocoa or sugar for
processing on a weekly basis. To minimize uncertainty associated with each week’s anticipated

purchase, the firm uses futures market as a hedge.®



The hedging framework developed here is multi-period, and builds upon the somewhat
restrictive dynamic models presented by Mathews and Holthausen (1991). We focus on long
hedging in part because extensive research in agricultural economics has assessed risk attitudes
and the use of derivative instruments from a short hedgers perspective (e.g., Binswanger, 1982;
Pennings and Smidt, 2000). This focus has occurred in spite of Berck (1981) and Shapiro and
Brorsen's (1988) findings that only 5 per cent and 11.4 per cent, respectively, of farmers
actualy use futures markets to hedge. The need for more sophisticated hedging models, at |east
from a producer's perspective (i.e, short hedging), is therefore caled into question.
Alternatively, Nance et al. (1993) studied the determinants of corporate hedging, which is more
typically associated with long hedging. They reported that 61 per cent of corporate firmsin their
sample used hedging instruments. Collins (1997) reached a similar conclusion, observing that
many manufacturers do employ hedging techniques. Corporate buyers are therefore more likely
to employ hedging, and accordingly are more apt to utilize sophisticated hedging techniques,
than are primary producers. Empirical evidence supporting actual futures market utilization by
corporate hedgers (i.e., merchandisers or processors) provides the first of two reasons why we
focus on long hedging.

The second reason we focus on long hedging is there are no overriding issues regarding
storage. See, for example, Lence et a. (1993). This assumption is not overly restrictive,
however, as the gains from hedging effectiveness from using a model that incorporates
Speculative storage decisions are, according to these authors, negligible. Importantly, we assume
the merchandiser does not purchase the commodity and store it (at least beyond one week). In

this way our framework resembles more closely that of Mathews and Holthausen (1991).



Given that we focus on a long hedging scenario, how then might we determine whether in
fact a DP-GARCH framework outperforms a smple GARCH framework (without recursion
relations for optimal updating) and a time-invariant OLS, and, correspondingly, SUR,
framework, where the differenced futures price is regressed on the differenced cash price?’ Such
comparisons are of interest for several reasons. First, based on results reported by Mathews and
Holthausen (1991) there is little evidence that dynamic (DP) hedge ratios differ in magnitude
over the hedging horizon; there may be negligible improvement (measured by the reduction in
portfolio variability) obtained by following a DP approach relative to static OL S models, casting
doubt on the usefulness of the DP approach. Second, and more importantly, previous empirical
research has assumed a trader does not optimally update variance and covariance terms over time
in the DP framework. For this reason we also compare our advancement of the DP approach (the
DP-GARCH moded) with a basic GARCH approach, which, by itself, has been shown to
outperform myopic alternatives (Baillie and Myers, 1991; Gagnon et al., 1998; Haigh and Holt,
2000; Park and Switzer, 1995; Yeh and Gannon, 2000). Both DP-GARCH and basic GARCH
are then compared with the static OLS/SUR approach. Doing so isolates gains from using
GARCH relative to OLS/SUR and, as well, gains from using DP-GARCH over GARCH and
OLS/SUR approaches. We may therefore isolate the importance of introducing time-varying
variances-covariances without the DP framework with that of time-varying variances
covariances within a DP framework, thereby allowing a comparison of a truly time-varying and
dynamic GARCH approach with the more typical time varying but non-dynamic GARCH
model.

In the DP—-GARCH setup we assume merchandiser’s price paid for the commodity in

future, that is, several weeks ahead, is uncertain. In other words, the merchandiser’s purchasing



cost for the raw commodity is stochastic. For each commodity we therefore derive, on a weekly
basis, the optimal number of contracts for the merchandiser to lock into in order to minimize
total cost variability. Each merchandiser is then alowed to update relevant variance-covariance
estimates—used to generate the hedged position—multiple times between when the initial hedge
is placed and when the commodity is ultimately purchased in the cash market.

By using a DP-GARCH approach the merchardiser decides the amount hedged at each
decision date in order to minimize the variance of total termina cost, Cost;. To illustrate, with

four trading dates total cost is defined as

Cost, =- G +b,, (foi- F)+r,(f - fo)+ri0,(fos- £,)+r%0,(f,- f..), @
where week t denotes the termina period and r represents the merchandiser’ s opportunity cost of
funds. Asindicated in (3), at the end of week t the commodity is finaly purchased in the cash
market at price ¢.. At the beginning of week t-1 and for two weeks prior to that (i.e., weeks t-2
and t-3) the trader may adjust the position set initidly at t-4. Cost; is therefore total (discounted)
cost paid for the commodity at the end of the four-week horizon, accounting for gains (losses)
from futures market. Setup (3) is similar to that utilized in prior research employing DP hedging.
The difference is we focus on a merchandiser who will ultimately purchase the commaodity; our
methodology could of course also be applied to a short hedgers problem.

In the DP-GARCH framework the merchandiser’s aim is to minimize total variance of
cost by determining the optimal number of futures contracts to lock into each period t-i, where
O£t- i£t. Inother words, at each period t-i the merchandiser chooses the optimal number of
futures contracts to minimize total variance of cost, which is simply the sum of final cash price
paid, ¢, and (discounted) futures market gaing/losses accrued over the four-week period

preceding cash purchase. As illustrated by Mathews and Holthausen (1991) and Anderson and



Danthine (1983) the general solution to this problem is obtained through backward induction.
Therefore, to find cost-minimizing hedge ratio b4 at initial trade date t-4, the merchandiser must
also determine relevant hedges to employ at t-3, t-2, and t-1. That is, to minimize variance of
discounted purchase cost we work backwards with the merchandiser first choosing the OHR that
would be used at the start of delivery week, t-1. The conditional variance—where we have
suppressed conditioning information notation—is shown in Appendix egquation (A2). The first-
order condition for an extremum and the corresponding OHR are also presented in the Appendix.

At time t-2 (two weeks prior to the eventual cash purchase) the merchandiser minimizes
variance of total cost relevant at that date, illustrated in Appendix equation (A4). The variance at

t-2 isafunction of severa variances and covariances; the hedge ratio used at t-2, by, referred to

as the operational hedge ratio; and the expected tedge ratio to be used at t-1 (h_,) 2 The first-
order condition with respect to b, ,—Appendix equation (A5)—is a function of both b _,and

b_,, asystem of two equations in two unknowns. But given unbiased commodity markets, the
OHR at t-2 reducesto

- Cov,., (Ct | ft—l)

Var () “

b, =

See Appendix for details. Importantly, with unbiased markets hedge ratio (4) is smply the
covariance-to-variance ratio weighted by discount factor r.

Corresponding cost functions, variance expressions, and first order conditions at t-3 and
t-4 are also functions of the operational hedge ratios for that week and, as well, the hedge ratios
expected to be used during subsequent weeks prior to cash purchase. In addition to discount
factor r, the resulting hedge ratios are also functions of variances and covariances over the

following weeks. Again, assuming unbiased commodity markets, these hedge ratios collapse to

10



simple expressions similar in form to those used in later weeks. Specifically, it may be shown
that the optimal hedge ratiosat t - 3andt - 4 are simply

Cov,_,(c,. f..5)

rVar, ,(f,,)

AVar,.f..) | ©

b= ,and by, =

where the influence of discount factor r increases the further away is the expected purchase date.

Based on the foregoing results for the four-week hedging horizon example, it is clear the
optimal dynamic hedging rule (given unbiased markets) is easily generalized. Determining the
OHR therefore involves picking an appropriate discount rate and estimating the relevant
variance-covariance forecasts at each date. In the ensuing analysis we set discount value r to 10
per cent and continue with the four-week hedging scenario as in the example.

For the basic GARCH portfolio it is assumed that once a hedge has been placed it is not
updated. Of course a weekly sampling frequency enables the trader relying on a basic GARCH
model to update the hedge ratio for each subsequent week’s purchase; however, for comparison

sake this hedge is left in place for the entire four-week period. The implication is the average
GARCH hedge ratio, buqey,, IS identical to the DP-GARCH hedge ratio h_, developed at the
beginning of the trading period. But as aready indicated this hedge is left in place over the four-
week horizon so that b,,., 1S unaffected by changes in volétility over the remainder of the
month and, unlike DP-GARCH, is unaffected by future hedging ratios. As a result, because

there is no provision for optimally updating the hedge basic GARCH hedging will likely be

inferior to DP-GARCH in periods of short-run market volatility.

Of course once determined the OLS/SUR hedge ratio b

OLS/ SUR

never changes, as it is

simply obtained from an OLS/SUR regression of the futures price on the respective cash price.

A priori, this approach will likely be inferior to DP-GARCH and basic GARCH, especialy in

11



volatile markets, because it in no way adjusts to short-run volatility. Aswell, b does not

OLS/ SUR

account for future hedging decisions and changes in volatility like the DP-GARCH approach.®
To summarize differences between models, a typical four-week time line for the basic

GARCH and DP-GARCH hedging approaches would look as follows:

Week 4 Week 1 Purchase
GARCH:  |rrmmmmme e e |
b 4= Boarcn G
Week 4 Week 3 Week 2 Week 1 Purchase
5= N e7.Y =0 = R S —— S —— S —— [EE—— |
b, b5 b, b, G

The OLS/SUR time-line would be similar to the GARCH time-line as only one hedge ratio is
employed over the four-week period. The main difference is the OLS/SUR hedging ratio would
be the same for every four-week period. Once determined the GARCH hedge is |eft in place for
each four-week horizon; there is no updating over that month but updating can and does occur
the following month.

In some instances the hedging ratios derived from these approaches might be similar;

hence, the portfolio values could well be indistinguishable from each other. Specificaly, if H,
in (2) is reasonably stable, changing little over the sample period, then OLS and basic GARCH
models should yield similar results. Similarly, if H, remains stable over the sample period, DP-

GARCH hedge ratios would effectively differ from basic GARCH hedges (and, as well, the

OL S/SUR hedges) only by the discount factor r.*°



Unlike prior studies employing DP methods to obtain OHRs, we assume traders revise
their estimates of relevant variances-covariances through time by using a GARCH framework.
Using the PSD framework (presented in (2) above) multi-step-ahead forecasts of relevant
variances and covariances, derived from the underlying bivariate GARCH process, may then be
made.

To egtimate time-varying hedge ratios it is necessary to model jointly the first two
moments of cash and futures prices relevant to each merchandiser. Based upon residua
diagnostic tests (see econometric estimation results presented below), each seriesis specified asa
simple martingale process, thereby satisfying the assumption of unbiased markets. That is, for
each cash price ¢, and for each futures price f;, the model outlined in (1) and (2) is estimated.™*

With the econometric methodology for estimating time-varying variances-covariances in
hand, we may now ask whether or not a DP-GARCH model that utilizes backward induction to
generate and update OHRs outperforms a basic GARCH model without optimal updating and, as
well, a static OLS hedging approach in practice. Obtaining information on the relative
performance of these various hedging approaches from both an economic and statistical
standpoint is the issue to which we now turn.

4. Data and Econometric Estimation Results

Weekly cash and futures prices for cocoa and sugar were collected for the period January
4™ 1985-August 4" 2000, yielding a total of 814 weekly observations for the in-sample analysis.
In addition cash and futures prices were also collected for the period August 11" 2000-
September 9" 2002, yielding 57 observations for an out-of-sample analysis. Cocoa (Ivory Coast)
and sugar (#11 World Raw) cash prices were provided by Reuters (formerly Bridge CRB).

Futures settlement prices for cocoa and sugar are from the NYBOT, and were aso provided by

13



Reuters. As cash prices are only reported on Friday, the futures price series was also constructed
by using Friday prices. Futures prices are for the nearby contract month, which forms the first
value for the continuous series and runs until the last trading day of the contract.

By using Augmented Dickey-Fuller (ADF) (tests), each price series was first examined
for existence of a unit root. Results indicate al four series are nonstationary. Applying the same
tests to the differenced series, the null hypothesis of a unit root is regjected. Therefore, we
conclude each series is I(1), that is, integrated of order one, in the sense of Engle and Granger
(1987). Correspondingly, each series was first differenced in econometric estimation.

Maximum likelihood estimates of model parameters are obtained by using the Davidon
Fletcher-Powel (DFP) agorithm in conjunction with symmetric numerical derivatives.
Parameter estimates for each bivariate PSD GARCH model are presented in Table 1. Point
estimates of GARCH parameters indicate substantial evidence of conditional variance dynamics
for each commodity. As well, a number of off-diagonal elementsin A and B matrices for each

PSD model are large in absolute terms relative to their asymptotic standard errors. Estimates of

skewness and Kkurtosis parameters for the standardized residuals—defined by m, and m,,

respectively—are reported for each equation in each portfolio mode in the lower panel of Table
1. Results indicate no serious departures from the conditional normality assumption.

To more formally assess the relevance of the structure implied by a bivariate PSD
GARCH specification, several sets of maintained restrictions were imposed on parameter
matrices A and B and the models re-estimated. One set of models was estimated wherein all
parameters in A and B were set to zero. These restrictions result in a model with a constant
conditional covariance structure, that is, a model without GARCH effects, and is consistent with

a constant (non time-varying) hedge ratio as provided by an SUR model. Alternatively, each

14



PSD mode is re-estimated by restricting all off-diagonal elements of A and B to zero. As
reported in Table 2, for each model both sets of restrictions were overwhelmingly rejected by the
data. In addition, intercept (drift) terms were placed in each equation. In both instances
likelihood ratio test results revealed these terms could be omitted without harming model fit. On
balance there is substantial empirical support for the PSD parameterizations reported in Table 1.

The Q(20) and Q?(20) test statistics for, respectively, standardized residuals and squares
and cross products of (standardized) residuals for each model are reported in the lower panel of
Table 1. Results of these diagnostics tests indicate the models do a reasonable job of explaining
conditional mean and variance dynamics of cash and futures prices. Overal, the PSD-
GARCH(1,1) models do a good job of characterizing essential features of the data, and are
therefore potentially useful tools for examining dynamic hedging strategies.
5. Hedging Results

Given the empirica support for the PSD-GARCH(1,1) specification, the natural question
is how well does DP-GARCH hedging portfolio perform relative to either a basic GARCH or an
OLS/SUR approach for a representative cocoa/sugar merchandiser? To examine this issue in-
sample average hedge ratios, along with standard deviations and minimum and maximum values,
for each of the DP—-GARCH, GARCH, and OLS models and for each portfolio are reported in
the upper pand of Table 3. Comparable summary datistics for the out-of-sample analysis are
recorded in the lower panel of Table 3. Aswell, in sample plots of DP—GARCH, basic GARCH,
and OL S hedge ratios are reported in figures 1-2 for sugar and cocoa, respectively. As indicated
previously, hedge ratios in Table 3 were derived by assuming merchandisers minimizes total

variance of cost and use an annualized discount rate r of 10 per cent.*?
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Asillustrated in the top panel of Table 3 and figures 1-2, on average each model calls for
long hedging, as indicated by the negative signs associated with OHRs. This outcome is as
expected for a risk averse merchandiser anticipating making cash purchases up to four weeks
hence. Furthermore, regardless of the method used more hedging is recommended in the cocoa
portfolio than in the sugar portfolio. While results for the DP-GARCH portfolio show
substantial variation in OHRs at each hedge horizon through time, there is relatively little
variation among OHRs across hedge horizons. This general result holds for both commodities.
To illustrate, during the initial period, t—4, the average hedge ratio b_, for a cocoa merchandiser
is —0.918; conversely, during the last period in which the portfolio may be adjusted, t-1, the
average hedge ratio, h_;, is—0.923. These results indicate that on average the cocoa hedge ratio
increases (in absolute terms) by only 0.50 per cent as actual purchase date approaches. Results
for sugar portfolio show a similar pattern, with, on average, b_, =-0.778 and b_, =-0.783 for
the DP-GARCH. If no variation occurred across hedge horizon, then DP-GARCH hedge ratios
would equal GARCH hedge ratios (ignoring the discount rate), and there would be no incentive
to combining approaches. Results reported in Table 3 also reveal that for DP-GARCH and
GARCH portfolios, at most, a cocoa merchandiser would have hedged 212 per cent of the cash
positiony correspondingly, at most 112 per cent of the sugar merchandiser’s expected cash
position would have been hedged.

Results reported in the top portion of Table 3 and figures 1-2 also illustrate that during
the inrsample period hedge ratios vary considerably. As suggested by figures 1 and 2, there is
more variability in OHRs a every horizon for sugar than for cocoa. As well, for the sugar

portfolio it is clear that during a few periods short hedging is caled for by the DP-GARCH

model (a hedge ratio of gproximately 0.52). But as cash and futures variances (prices) may
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(and do) move in opposite directions in the short run, it is not unreasonable for the optimal hedge
to cal for the merchandiser to go short in some instances. Indeed, it is precisely for this reason
that we chose to apply unrestrictive GARCH structures (i.e., the PSD), as other specifications
may not pick up on such patterns. As indicated in figure 2, short hedging is not observed for
cocoa using the DP—GARCH modél; the minimum hedge ratio for cocoa is near zero (—0.064).

The final row in Table 3 reveds that OLS/SUR hedge ratio for cocoa is —0.899,
suggesting somewhat less hedging on average than either the DP-GARCH or the basic GARCH
model. Alternatively, OLS/SUR hedge ratio for sugar is —0.723, which is dlightly greater than
those called for by DP—-GARCH. By adopting an OLS/SUR approach the hedger would employ
the same hedge ratio every week over the entire sample period, indicating no variability in the
proportion hedged. Overall, results for cocoa and sugar portfolios provide an interesting contrast
in that cocoa basis is generally more predictable than sugar basis, as suggested by the
observation that cocoa hedge ratios are typicaly closer to one in absolute value than are sugar
hedge ratios (see, e.g., figures 1-2).

Traders are perhaps less concerned about past events than they are with future
performance. It is for this reason that an out-of-sample evaluation was made of the competing
models. Therefore, for each approach a forecast is made of the following week’s hedge ratio.
For each period the required variance and covariance terms are predicted and the hedge ratio
calculated. Each model is then re-estimated with the new observation included in the sample and
the evaluation repeated. This prediction/re-estimation agorithm is continued until al out-of-
sample data are exhausted. Summary statistics of hedging ratios are presented in the lower panel
of Table 3. As with the in-sample analysis, DP-GARCH portfolio shows variation in OHRs at

each hedge horizon through time, although the variation is not as great as for the in-sample
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period. Alternatively, thereis relatively little variation among OHRS across hedge horizons. For
instance, during initial period, t—4, the average out-of-sample hedge ratio b_, for cocoa is —
0.945; whereas, during the last period, t—1, average hedge ratio h_, is —0.950, indicating again
that, on average, proportions hedged increase as the purchase date approaches. A similar pattern

emerges for sugar portfolio where, on average, b_, =—0.797 and h_, =—0.801 for DP-GARCH.

Results aso reveal for DP-GARCH and basic GARCH portfolios that, out-of-sample, at most
120 per cent of the cash position would have been hedged by a cocoa merchandiser;
correspondingly, at most 96 per cent of a sugar merchandiser’s expected cash position would
have been hedged.

For both commodities out-of-sample hedging ratios exhibit less volatility than do their in
sample counterparts (the standard deviation drops from approximately 0.138 to 0.081 for cocoa
and from 0.198 to 0.180 for sugar), suggesting that more complicated models that incorporate
emerging volatility patterns (like DP-GARCH and basic GARCH) are less likely to perform
better than OLS/SUR. Of course out-of-sample the OLS/SUR model also exhibits some
variability, with standard deviations of 0.002 for both cocoa and sugar. This result occurs
because data are added each week and the models re-estimated. Even so, out-of-sample
OLS/SUR hedge ratios are still nearly constant, and would likely perform better in more stable
markets where the relationship between cash and futures remains steady.

Overal sample and average hedge ratios are instructive, and give some guidance as to the
potential usefulness of each model; they do not, however, indicate much about how the various
models perform in each respective portfolio. To this end average variance of total cost is
computed for each model and for each commodity. These results, along with other descriptive

statistics including the standard deviation of cost variance and minimum and maximum cost
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variances are reported, for each model, in Table 4. The top half summarizes the results from the
insample analysis, the lower half for the out-of-sample analysis. First, the results are quite
striking for the inrsample analysis. Importantly, there appears to be rewards to using the DP-
GARCH approach relative to the basic GARCH approach in terms of average variance
reductions. This result may not be particularly surprising, however, because the smple GARCH
model, while allowing for time-variation in hedge ratios, does not optimally use information to
update hedge ratios in away provided for by the DP—GA RCH approach.

As reported in Table 4, average variance of total cost for cocoa merchandiser is 30228.77
per ton with DP-GARCH, while the corresponding value for basc GARCH is 30461.37,
representing a 0.76 per cent gain by using DP—GARCH relative to the simple GARCH strategy.
Also, the standard deviation associated with the average variance of the DP-GARCH model
(18736) is considerably lower than for basic GARCH (20359), suggesting that following the DP-
GARCH method would yield a more stable risk management strategy for a cocoa hedger. Based
on estimated hedge ratios, the cocoa market basis seems more predictable than sugar as hedging
ratios for cocoa are closer to one in absolute value. The implication is there may be even greater
rewards to employing more sophisticated models (i.e., DP-GARCH) over standard approaches
(i.e., basic GARCH) in relatively more unpredictable markets like sugar, where recommended
hedging ratios are smaller in absolute terms. To illustrate, average variance for sugar total cost is
2.248 for the DP—GARCH model; the corresponding value for basic GARCH is 2.501, implying
a 10.14 per cent gain associated with usng DP-GARCH in lieu of the basc GARCH
methodology. Not unlike the cocoa market, portfolio variance ‘volatility’ for DP-GARCH sugar
model is lower than for ssmple GARCH (reported standard deviation of 0.051 versus 0.060).

There is apparently a reward in terms of risk reduction by using the DP—GARCH framework
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relative to a simple hedge-and- hold GARCH strategy, especially in markets where basis is less
predictable. Rewards to following the DP-GARCH strategy are, however, highly dependent
upon the total costs of buying the commodity confronted by a particular merchandiser,
suggesting the DP—GARCH model would in fact benefit more greatly a merchandiser making
frequent but large purchases. ™

Turning to OLS/SUR portfolios, Table 4 reveas that while basic GARCH outperforms
OLS/SUR for cocoa, the OLS/'SUR approach actualy dominates the GARCH approach for
sugar. Interestingly, the standard GARCH model for sugar, when evaluated within a DP
framework, does not perform as well as might be reported in myopic settings, where, as
mentioned previously, GARCH models tend to outperform OLS/SUR approaches. Our results
do show reward to following the DP—-GARCH methodology over the straightforward OLS/SUR
model. To illustrate, relative to OLS/SUR the DP—-GARCH model yields 1.58- and 8.18 per cent
reductions in total cost variability for cocoa and sugar merchandisers, respectively. Moreover,
volatility of DP-GARCH variance is lower than for OLS/SUR models, as indicated by standard
errors (18736 versus 20001.74 and 0.05 versus 0.07 in, respectively, the cocoa and sugar
markets), suggesting a more stable risk management strategy over the OLS/SUR dlternative.
The implication is that using an OLS/SUR approach would result, at least in some periods, in
foregone cost-reduction opportunities relative to the DP-GARCH approach, with the most
compelling evidence offered in the sugar market.

Results from the out-of-sample analysis illustrates that the effectiveness of DP-GARCH
and GARCH approaches is somewhat dampened. As suggested previously, sample hedging
ratios seem to indicate that markets exhibited less volatility in the out-of-sample data period—

particularly in the cocoa market—implying more stable (constant) models are likely to perform
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better. This conjecture is confirmed by, on average, poorer performance of DP GARCH and
GARCH models relative to OLS/SUR. According to the average improvement figures reported
in the lower panel of Table 4, there is essentially no difference between the DP-GARCH and
basic GARCH models (average percentage improvement is < -0.001 per cent). Moreover, out-
of-sample DP-GARCH model is outperformed by the more stable OLS approach (average
improvement of —2.32 per cent). The sugar market did exhibit more volatility out-of-sample
(noting that the standard deviation of the hedging ratios was much higher at 0.18). Accordingly,
DP-GARCH outperforms both GARCH and OL S/SUR approaches by 8.37 per cent and 1.80 per
cent, respectively.

Like all statistics described thus far, the figures recorded in Table 4 are averages. The
implication is a trader may not only be concerned with average model performance, but may also
want to know whether a model could be detrimental if the market exhibits an unexpected burst of
volatility or a period of prolonged stability. For this reason we aso focus on period-by-period
estimates to assess whether one model outperforms another under certain conditions. To assess
period-by-period performance we first employ bootstrapping techniques to generate confidence
intervals around both the hedging ratios and the portfolio variances. Specifically, drawing from
the appropriate bivariate normal distribution, 500 parametric bootstrap estimates of both the DP-
GARCH and basic GARCH portfolios are obtained for both commodities. We then assess
whether one model is statistically different from another model (by determining whether or not
confidence bands overlap), and if so, by how much and how many times that model
outperformed the alternatives.

To summarize the results of the bootstrap evaluations, we first estimate confidence bands

around the GARCH and DP-GARCH models and find that, statistically speaking, hese two
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models are equivalent. That is, during no period were the variances from the DP-GARCH model
(with confidence bands) not overlapping the variance of the GARCH model. We aso compare
the DP-GARCH model with OLS/SUR. The results of this comparison are summarized in Table
5. The upper panel of Table 5 illustrates that 37.1 per cent (33.7 per cent) of the time OLS/'SUR
model is datistically equivalent to DP-GARCH for the cocoa (sugar), suggesting that a trader,
for this percentage of the time, would be indifferent between the approaches. The lower panels
of Table 5 provide more insight into the merits of each approach. The middle panel of Table 5
illustrates the percentage of times OLSSUR variance is significantly less than the DP-GARCH
approach for cocoa and sugar portfolios (47.2 per cent and 48.9 per cent, respectively).
Furthermore, the greatest improvement in portfolio variances of DP-GARCH vis-&vis GARCH
amounts to 78.18 per cent and 73.99 per cent for, respectively, cocoa and sugar.

These results seemingly contradict findings presented earlier whereby DP-GARCH
outperforms OLS on average. The implication is there must be times when OLS/SUR approach
is beaten dramatically by DP-GARCH. Indeed, a cursory glance at the lower panel of Table 5
suggests this very result. While DP-GARCH exhibits fewer times that it actually dominates
OLS/SUR (15.7 per cent and 17.9 per cent in the cocoa and sugar models, respectively), there are
times—as illustrated by the maximum improvement numbers—that the OLS/SUR model proves
quite detrimental to the trader. Indeed, in the case of sugar OLS/SUR is outperformed on one
occasion by 608.67 per cent in the sugar model and 212.96 per cent in the cocoa model.**

Figures 3 and 4 shed more light on this issue. Figure 3 illustrates over the 1992 — 1998
period the difference between sugar DP-GARCH variance (with confidence bands) and sugar
OLS/SUR variance. Also depicted (in the insert) is a time-series plot of the cash and futures

sugar prices for 1995, resulting cost variances, and bootstrapped confidence intervals. An



interesting pattern emerges in that when cash and sugar prices are moving consistently together,
as they are at the beginning of 1995, OLS/SUR performs satisfactorily. As the co- movement
relationship breaks down, however, and the basis becomes more volatile, DP-GARCH tends to
outperform OLS/SUR. Specifically, OLS/'SUR variance, complete with confidence bands, is
greater than the variance (and bands) generated by DP-GARCH. Toward the end of the year as
the basis normalizes OL S/SUR approach improves and eventually outperforms DP-GARCH.

As presented in Figure 4, a similar (but less vivid) scenario is illustrated for cocoa
Figure 4 depicts DP-GARCH variance and confidence bands and OLS portfolio variance over
the 1990 — 1996 period, along with a plot of the basis (cash and futures prices). The cocoa
market, unlike sugar, has a somewhat more predictable basis;, due to mild basis volatility only in
1990 is OLS/SUR beaten by DP-GARCH. From 1991 — 1996 the basis was more predictable,
hence the acceptable performance of OLS/SUR.

6. Conclusion

In recent years numerous empirical hedging studies—typically relying upon variants of
ARCH/GARCH-type models—have adopted the term ‘dynamic’ to describe the portfolio
updating that occurs when the assumption of a time-invariant cash-futures covariance matrix is
relaxed. While these studies have established the potential benefits of relaxing this assumption,
they have continued to rely on one-period-ahead variance and covariance forecasts. In this sense
the extant ARCH/GARCH hedging literature has not truly utilized a ‘dynamic’ approach.
Conversely, the DP hedging literature, while alowing for multi-period-ahead hedge ratio
calculations, has not employed modern methods for estimating time- varying covariance matrices.

Our paper has attempted to bridge the gap between these two related yet distinct

approaches. Importantly, we present a truly time-varying and dynamic hedging model by
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combining DP recursion relations with GARCH time-series models. To illustrate the DP-
GARCH framework empirical applications were reported for hypothetical cocoa and sugar
merchandisers. Results indicate that for both commodities gains were achieved by using the
DP-GARCH model relative to the standard GARCH approach, with greater rewards accruing for
sugar. Importantly, while sample summary statistics suggest that modest improvements may be
made by employing techniques that optimally update—Ilike the DP-GARCH approach—we aso
isolate particular times that such a model outperforms simper alternatives. Specifically, through
a bootstrap experiment we isolate the number of times DP-GARCH approach dominates (in both
a statistical and economic sense) OLS. We conclude that in periods of low volatility a trader
may be just as well off following the smpler (and probably cheaper) OLSSUR approach. The
caveat is, of course, that the smpler approach may fail dramatically relative to more
sophisticated techniques in periods of excessive volatility. Consequently, a DP-GARCH
approach is likely, at times, to yield greater rewards in more volatile markets like sugar.

The framework developed here should not only be of interest as a contribution to the
empirical hedging literature, but should aso be of interest to risk managers. This said, more
work is clearly needed. Specificaly, the methodologies developed in this paper should be
applied to other commodities (and assets) and for different hedging horizons. Also, transaction
and liquidity costs should be included.® Only then will it be possible to truly assess the value of

the DP-GARCH approach.
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Table 1.
Bivariate GARCH Models with Positive Definite Parameterization

Dp, =&, Dp =(c. f,)
eJw, ~N(O,H,)
Ht =W'W + ATet_letT_lA+ BTHt_lB

Cocoa Portfolio Sugar Portfolio
Std. Std.
Parameter  Estimate Errors Parameter  Estimate Errors
W, -18.381 2.647 W, -0.052 0.022
W, -10.710 2.466 W, 0.090 0.035
W, -10.642 1.985 W, 0.129 0.038
a, 0.642 0.089 a, 0.430 0.077
a, 0.162 0.062 a, -0.467 0.090
a, -0.389 0.077 a, -0.151 0.067
a, 0.095 0.058 a,, 0.771 0.080
b, 0.679 0.069 b, 0.762 0.057
b, -0.133 0.042 b, 0.353 0.073
b,, 0.186 0.049 b,, 0.173 0.055
b,, 1.038 0.030 b,, 0.567 0.068
Log-likelihood —6481.71 Log-likelihood 1097.18
Cash Equation Cash Equation
m, 0.484 m, 0.271
m, 1.760 m, 2.213
Q(20) 20.099 (0.452) Q(20) 21.341 (0.377)
Q*(20) 26.985 (0.136) Q%(20) 24.252 (0.232)
Futures Equation Futures Equation
m, 0.403 m, 0.011
m, 2.646 m, 2.366
Q(20) 13.249 (0.866) Q(20) 28.385 (0.101)
Q*(20) 27.859 (0.113) Q%(20) 25.933 (0.168)
Covariance Equation Covariance Equation
Q*(20) 24.454 (0.223) Q%(20) 30.778 (0.060)

Note: M, is sample skewness and M, is sample kurtosis. Q(ZO) denotes
the test statistic for twentieth-order serial correlation in the normalized
residuals and QZ(ZO) isthe test statistic for twentieth-order serial correlation

in squared normalized residuals. Numbers in parentheses are asymptotic p-
values.
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Table 2.
Log likelihood Estimates and Tests of Parameter Restrictions for the
Bivariate GARCH Commodity Models

Dpt :m+et’ Dpt = (Ct7 ft)T
e/w ~N(.H,)
H =W'W+A'e el ,A+B"H,,B

No. of Parameters/
Model/Test Log-likelihood/LR Test Degrees of Freedom

Cocoa Portfolio

No GARCH, m =0 -7518.47

DiagA andB, m =0 -6647.06

Full AandB, m=0 -6481.71 1

Full AandBand 't O -6481.67 13
LRTestA=B =0 2073.52 (0.000) df.=8
LR Test A and B Diagonal 330.79 (0.000) df.=4
LRTest m=0 0.08 (0.961) df.=2

Sugar Portfolio

No GARCH, m =0 824.63

DiagA andB, 1 =0 1042.45

Full AandB, m=0 1097.18 11

Full AandBand Nt O 1096.87 13

LR TetA=B=0 549.09 (0.000) df.=8
LR Test A and B Diagonal 109.47 (0.000) df.=4
LR Test M =0 0.63 (0.730) df.=2

Note: Values in parentheses are asymptotic p-values. d.f. denotes degrees of freedom. All
restrictions are imposed on parameters of the A and B matrices from the conditional
covariance structure.
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Table 3.
Descriptive Statistics for Hedge Ratios for Variance

Minimizing DP-GARCH, GARCH

and OL S/SUR Objectives, Four-Week Hedging Horizon

Cocoa Portfalio Sugar Portfolio
In- Sample

Hedge Model b_, b, b, b, b, b, b, b,
DP-GARCH

Avg. -0.918 -0.920 -0.921 -0.923 -0.778 -0.780 -0.781 -0.783

SD 0.138 0.138 0.139 0.139 0.198 0.198 0.199 0.198

Min -2.214 -2.128 -2.132 -2.136 -1.122 -1.125 -1.127 -1.129

Max -0.064 -0.064 -0.065 -0.065 0.190 0.190 0.190 0.191
GARCH bGA RCH bGA RCH

Avg. -0.918 -0.778

SD 0.005 0.198

Min -2.124 -1.122

Max -0.064 0.190
OLS/SUR bOLS/SUR bOLS/SUR

-0.899 -0.723
Out-of-Sample

Hedge Model b, b, b, b,, b, b, b, b,
DP-GARCH

Avg. -0.945 -0.947 -0.949 -0.950 -0.797 -0.801 -0.801 -0.801

SD 0.081 0.080 0.080 0.081 0.180 0.179 0.184 0.184

Min -1.208 -1.210 -1.213 -1.219 -0.968 -0.974 -0.976 -0.978

Max -0.792 -0.794 -0.796 -0.797 -0.027 -0.042 -0.039 -0.049
GARCH bGA RCH bGA RCH

Avg. -0.945 -0.797

SD 0.081 0.180

Min -1.208 -0.968

Max 0.792 -0.030
OLS/SUR bOLS/SUR bOLS/SUR

Avg. -0.900 -0.727

SD 0.002 0.002

Min -0.897 -0.723

Max -0.903 -0.730

Note: The annualized discount rate, r, is 0.10. Avg. denotes sample average, SD is the corresponding standard
deviation of the average of the hedge ratios, Min is the sample minimum and Max is the sample maximum. The

represents the average hedge ratio that would be used by the trader over the four-week
b, used

GARCH hedge ratio b

GARCH

period, and is equal to the hedge ratio used at t - 4 by the DP-GARCH. The OLS/SUR hedge ratio,
each week is not, like the GARCH counterpart updated each week.

OLS/ SUR!

27



Table 4.

Summary Statistics for DP-GARCH, GARCH, and OLS/SUR
Portfolios, Four-Week Hedging Horizon.

Cocoa Portfolio Sugar Portfolio
In Sample
DP-GARCH
Avg. 30228.77 2.248
sD 18736.00 0.051
Min 15688.70 0.833
Max 231871.40 13.406
GARCH
Avg. 30461.37 2.501
sD 20359.31 0.060
Min 17147.21 1.002
Max 274274.50 12.938
OLS/SUR
Avg. 30714.32 2.448
sD 20001.74 0.070
Min 16526.30 1.017
Max 224806.90 21.257
% Reduction in Variance of
DP-GARCH Relative to:
GARCH 0.769% 11.254%
OLS/SUR 1.606% 8.897%
Out-of -Sample
DP-GARCH
Avg. 24211.25 2.055
sD 5049.20 0.742
Min 17327.74 1.120
Max 40431.00 4.628
GARCH
Avg. 24211.13 2.227
sD 5196.19 0.765
Min 17148.44 1.355
Max 36393.43 4.432
OLS/SUR
Avg. 23649.11 2.092
sD 4582.61 0.719
Min 16898.62 1.288
Max 37134.67 4,543
% Reduction in Variance of
DP-GARCH Relative to:
GARCH -0.001% 8.370%
OLS/ISUR -2.322% 1.800%

Note: The annualized discount rate, r, is 0.10. ( was also adjusted to 0.01 and
0.05 and results were qualitatively unchanged). Avg. denotes sample average
variance, SD denotes the corresponding standard deviation of the average, Min
is the sample minimum and Max is the sample maximum. There are a total of
810 weekly hedging periods in sample and 57 out-of-sampl e.
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Tableb.
Evaluating the Performance of the DP-GARCH and OLS/SUR
Portfolios: Results from the Bootstrap Experimert

Cocoa Portfolio Sugar Portfolio
Scenario OLSvariance = DP-GARCH variance
Percentage of times 37.10% 33.70%
Avg. improvement - -
D - -
Min - -
Max - -
Scenario: OLSvariance < DP-GARCH variance
Percentage of times 47.20% 48.90%
Avg. improvement 32.28% 37.71%
SD 14.51 12.30
Min 10.64% 11.32%
Max 78.18% 73.99%
Scenario: OLSvariance > DP-GARCH variance
Percentage of times 15.70% 17.90%
Avg. improvement 54.95% 95.92%
SD 46.45 98.68
Min 6.27% 18.54%
Max 212.96% 608.67%

Note: Percent of times represents. 1) Percentage of times that the DP-GARCH
and OLS approaches are statistically equivalent (upper panel). 2) Percentage of
times the OLS approach statistically outperforms the DP-GARCH approach
(middle panel) and 3) Percentage of timesthe DP-GARCH approach statistically
outperforms the OLS approach (lower panel). Avg. improvement denotes
percentage improvement in variance reduction against the competing model
(either DP-GARCH or OLS), SD denotes the corresponding standard deviation
of that average improvement, and Min is the sample minimum and Max is the
sample maximum improvement.
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Hedge Ratio

Figure 1. Weekly Sugar DP-GARCH (by.4, b3, bio, bry) GARCH (bgarer) and OLS/SUR (boLgsur) Optimal Hedging Ratios
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Weekly optimal hedging for the DP-GARCH, GARCH and OL S/SUR hedging models. January 1985 — August 2000. The GARCH hedge ratio bGARCH represents

the average hedge ratio that would be used by the trader over the four-week period. It is equal to the hedge ratio used at t - 4 by the DP-GARCH user asiit is
assumed that the GARCH user uses weekly data to form the hedge ratio to be applied at t-4 and left in place until the commodity is purchased at the end of the

horizon. The OLS/SUR hedge ratio, b, ,..used each weekisnot, like the GARCH counterpart, updated each week and is constant over the entire time-frame.
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Hedge Ratio

Figure 2. Weekly Cocoa DP-GARCH (by.4, bt3, bt2, bta) GARCH (bgarcn) and OLS/SUR (bo gsur) Optimal Hedging Ratios
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Weekly optimal hedging for the DP-GARCH, GARCH and OL S/SUR hedging models: January 1985 — August 2000. The GARCH hedger ratio bGARCH represents

the hedge average hedge ratio that would be used by the trader over the four-week period. It isequal to the hedge ratio used at t - 4 by the DP-GARCH user asit
is assumed that the GARCH user uses weekly data to form the hedge ratio to be applied at t-4 and left in place until the commodity is purchased at the end of the

horizon. The OLS/SUR hedge ratio, b, ,.,used each week is not, like the GARCH counterpart, updated each week and is constant over the entire time-frame.
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Variance (in cents per Ib)

Figure 3. Comparing the Variance of the DP-GARCH and OL S Sugar M odel
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Large graph: Weekly optimal hedging variances for the DP - GARCH (with confidence bands) and OLS models over the period 1992 — 1998. Inserted graph
displaysthe datafor year 1995, and corresponds to the period of time that the variances are framed.
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Variance (in dollars per ton)

Figure 4. Comparing the Variance of the DP-GARCH and OL S Cocoa Model
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Large graph: Weekly optimal hedging variances for the DP-GARCH (with confidence bands) and OLS models over the period 1990 — 1996. Inserted graph
displaysthe datafor year 1995, and corresponds to the period of time that the variances are framed.



Endnotes

1.This branch of the hedging literatue also uses the term dynamic because the assumption of
constant conditional variances and covariances is relaxed via ARMA-like specifications for
conditional second moments. But in reality, these hedge ratios are typically not determined from
a dynamic qotimization set-up as applied to a multi-period hedging problem. In this sense
GARCH-derived OHRs are not dynamic, but rather may be thought of as time varying.

2.ARCH is short for Autoregressive Conditional Heteroscedasticity while GARCH denotes
Generalized ARCH.

3.There are a variety of methods for determining OHRs. Callins (1997) questions the validity of
many of these approaches including the MV framework; he aso reviews the empirical evidence
about hedging behavior when evaluating competing models. In an attempt to explain ‘rea life
hedging behavior he concludes that the MV model is unlikely to fully capture a short hedgers
true objective. Indeed, the vast majority of competing models evaluated did not pass such a test.
The purpose of this study is to combine techniques (DP and GARCH) used in previous research
(from a long hedgers perspective) that have employed the MV methodology. We therefore
utilize the MV framework here, but we acknowledge that such an objective may not be truly
optimal for al hedgers. Also, while it is plausible that commodity markets are unbiased, there is
some empirical evidence suggesting that, at least for some markets, futures prices do exhibit
some persistence and/or biasedness. See, e.g., Tong (1996); Rausser and Carter (1982); and
Raynaud and Tessier (1984).

4.Myers and Thompson (1989) suggest that 1ags should be included in the regression procedure
in order to include conditioning information. Pennings and Leuthold (2001) estimated hedging

models with and without lags by using a procedure proposed by BrittertJones (1999). Because



(1) Pennings and Leuthold (2001) found that including lags made no difference in their moddl;
(2) because we wish to maintain the assumption of weak form efficiency; and (3) because we do
not find any evidence of residual autocorrelation (see econometric results) we do not include lags
in the mean regression equations. We therefore maintain the MV set up.

5.Most high-frequency asset price data are modeled in first difference form without any
autocorrelation structure (the approach utilized here). As noted by Fama (1965) this martingale
behavior is often interpreted as being consistent with weak form efficiency. This approach says
nothing, however, about higher moments of asset returns, which are typically found to exhibit
leptokurtosis. Consequently, some studies employ a distribution such as Student’s t to account
for the excess kurtosis (see Baillie and Myers, 1991). In this study we follow Haigh and Holt
(2000) and maintain the normality assumption, accepting its somewhat stringent assumptions.
6.We focus on a weekly hedge for several reasons. First, our origina motivation and hence
model was based on conversations with a large food merchandiser who suggested that a weekly
horizon was reasonable given their large amount of transactions (see Footnote 13). Second, as
shown by Castelino (1992), Geppert (1995) and Pennings and Meulenberg (1997), the hedging
effectiveness of this type of model is likely to increase with time, and so it is expected (although
not explored here) that the model is likely to improve over alonger time horizon. We present the
more conservative results based on this shorter (but more redlistic) time-period. Extending the
time frame is left for future research.

7.1ndeed both the OLS and SUR models are nested within the GARCH framework (see

econometric estimation results for full details).



8.To simplify the model, we follow Mathews and Holthausen (1991) in assuming that the hedger
knows b  at the initial trade date. If we did not make this assumption, b_, would be stochastic

and additional variance and covariance terms would be involved. However, this assumption is
not restrictive, as variance-covariance estimates based on historical relationships (like the
GARCH framework) are relatively easy to forecast. Moreover, to operationally use a hedge ratio
that is a function of future hedge ratios the merchandiser must forecast future ratios and thus
consider them to be non-stochastic.

9.As pointed out by an anonymous reviewer complicated models that alow for more updating
will incur higher transaction costs. As Haigh and Holt (2000) show, incorporating transaction
costs reduces the appeal of more complicated approaches but not by enough to reduce the
incentive to utilize these techniques, particularly when the hedger is confronted with large cash
transactions. In the current analysis margina transaction costs are unlikely to deter the
representative hedger from employing a more sophisticated strategy. Such may not be the case,
however, for a farmer or a smaller corporate entity. From an operational standpoint,
incorporating transaction costs into a DP framework would require a numerical solution to the
resulting recursion relations. Therefore, incorporating transaction costs is left for future
research.

10.This time-line represents an in-sample comparison. In the out-of-sample analysis all models
experience some variability. Therefore, unless the basis remains constant, the OLS hedge ratios
will aso change as new observations are added. However, the concepts underlying model
comparisons remain the same. Results for OLS and basic GARCH (DP-GARCH) models are

likely always going to differ, even if only dightly, due to the nature of estimation.



11.Baillie and Myers (1991) also undertook their analysis using a similar framework, thus
employing arelatively parsimonious model. We base our structure for the time series generating
process on residua diagnostic results. Because we find no evidence of residual autocorrelation
in the markets studied here the MV framework may be appropriate.

12.As suggested by an anonymous reviewer, simulations were conducted by using three different
levels of interest rates, 1 per cent, 5 per cent and 10 per cent. Varying the rate had no qualitative
effect on model orderings; however, higher the interest rates eroded the performance of the DP-
GARCH and GARCH approaches relative to OLS. Therefore, to provide conservative estimates
of the relative performance of these models we employ the higher interest rate.

13.Therefore, in this application, and over this hedging horizon, substantial gains, in terms of
risk reduction appear to be available by adopting the DP-GARCH relative to aternatives. Indeed
according to a large U.S. based food manufacturer approximately $75 million dollars and $350
million dollars are spent annually on sugar and cocoa purchases, respectively, in their
manufacturing processes (and the food manufacturer regards itself as a large corporate
commodity hedger). According to this manufacturer, purchases and hedges are undertaken
frequently. Given the large amount of purchases it is unlikely that extra transaction costs
associated with more complicated methods would deter a large hedger. Transaction costs could,
however, ater the risk management strategy of a smaller hedger.

14.Collins (2000) undertakes out-of-sample analysis on a variety of competing models. Similar
to Colling(2000), we isolate the proportion of times our model outperforms potentialy inferior
models. In our analysis, however, we investigate the conditions that arise when a model
better/worse than a smpler approach. While Collins (2000) suggests the naive (i.e., one-to-one)

hedge outperforms the risk-minimizing hedge most of the time, he did not investigate what
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happens when the market exhibits short-run unpredictable volatility (i.e., erratic basis behavior)
as we do here.

15.As shown by Pennings and Leuthold (2001), liquidity might also have an important bearing
on hedging effectiveness, particularly in thinly traded markets. Researchers might therefore take
this into account when developing optimal hedging strategies. For the commodities analyzed
here trading volume between July 2000 and June 2001 was, for example, 1,408,945 cocoa
contracts and 759,828 sugar contracts respectively. While these markets are not traded as
heavily as larger financial contracts like the FTSE (9,033,641 contracts traded), they experience
heavier trading volume than other commodities like wheat, which had a trading volume of
97,705 contracts. We therefore conclude that liquidity may not be a serious issue in our
application. As pointed out by an anonymous reviewer, however, liquidity costs may be updated
in manner similar to that for updating variances/covariances. Such an updating scheme and

would likely be more important in thinly traded markets.
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Appendix

Derivation of the Cost and Variance Expressionsat TimePeriod t —1and t — 2 and the
Resulting Optimal Hedging Ratios.

The cost function facing the merchandiser at t - 1is
Cost, =-¢ +h_(f_,- f,) (A)
where ¢; is the cash price in period t, f; is the corresponding futures price in period t, and by.1 is
the proportion of the cash purchase hedge in period t-1. Therefore, the variance of cost, Var, ,,
may be written as
Var, , (Cost,) =Var (¢ ) +& Var ( f,) +2h.,Cov(c, f,).
The first order condition for an extremum associated with the above is, after simplifying,

Var, , (Cost,)
.,

Solving (A2) for the OHR, h_,, yields

=h_Var( f,) +Cov(g, f,) =0. (A2

. _ COV(Q’ ft) , (A3)
Var (f,)
the optimal hedging ratio to be used at t—1. At timet-2, the variance of cost is:
Vart_Z(Cosi;) :Vart-z (' G+ t11( ft-l' ft) +I’Q_2 ( ft—2 - ft—l))
=Var,_,(q)+b.Var_, (f.,)+r’ Var ,(f.,)
+h—lzvart—2( ft)+2rQ— ZCOVt—Z( ft—l’ct) (A4)

- 2”:1- Zbl-lvart-Z ( ft-l) + 2I’h_ th-lCOVt-Z (ft-l' ft)
-2b_Cov,,(c, f_,)+20 ,Cov,_,(c. f,)

t? t-1 Tt

- Zh_lZCOVt_Z( f[-1’ ft ) :
wherer isadiscount factor. The first order conditions corresponding to the minimization of

(A4) with respectto b , and b _, are:



TVar,_,(Cost,) _, ,
=2r°h Val f.,)+2rCov,,(f.,,
., b Var., (f.,) 2(fu1G) (A5)

-2rh_Var_, (f_,)+2rb_Cov,_,(f,.,,f)=0.
vVar, ,(Co
‘ﬂ;f S = a0 var, (1,,) 2 var (1)
-1
- 2rh-2COVt-2(ft-1’ ft) - 2C0Vt—2( ft—l’Ct) (A6)

+2Cov,_, (g, f)- 4h ,Cov,.,(f.., f,) =0.
Expressions (A5) and (A6) represents a system of two equations in the two unknowns h,_, and
b.,. Conveniently, given unbiased commodity markets the OHR at t - 2 is reduced to

Cov,_, (c f )

t? -1

rvar,(f.,)

b, =

This result holds because with unbiased markets—each series is represented by a martingale—so
the futures price at t-1 may be represented as
ft-l = ft—2 + Xt-l'

In this case the variance of fi.1, takenint - 2, issimply

2

Var, , (fi1) = Eoo (%)
The futures price at time t can be written as f, = f,_, +X,, and using the fact
fo=fatXa*X,
we have:

Covo (fss )= Eup (X Xea %) = Ep (%)



Therefore, from (A6) 2rb_Var_,(f._,)=2rk.,Cov_,(f.,, f,), which obtains the hedge ratio

represented by

t? t-1

_ Cov,(c.f.,)
2 rvar,(f,)

Using similar arguments it can also be shown that the hedging ratios at t—3 and t—4 are as

presented in (5).



