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1. Introduction 

Recent empirical research on optimal hedging has focused on two distinct areas.  One 

branch of the literature has investigated models wherein there is a multi-period hedging horizon 

and the optimal hedge may be updated each period.  This research has relied largely on 

applications of dynamic programming (DP), with examples including Anderson and Danthine 

(1983); Karp (1983); Martinez and Zering (1992); Mathews and Holthausen (1991) and Vukina 

and Anderson (1993).  Overall, these studies find that, while intuitively appealing (but 

operationally complicated), multi-period hedging models have not resulted in significant 

improvements over static models from a risk management perspective. 

 The other thrust in the literature has been to use time-series econometrics to model 

conditional variance and covariance dynamics for commodity cash and futures prices.  To this 

end various versions of the ARCH/GARCH framework advanced by Engle (1982) and 

Bollerslev (1986) have been utilized, the result being that time-varying one-step-ahead hedge 

portfolios are estimated (e.g., Baillie and Myers, 1991).1,2   Gagnon et al. (1998), Haigh and Holt 

(2000), Kroner and Sultan (1993), Lin et al. (1994), Myers (1991), Park and Switzer (1995), 

Sephton (1993), Tong (1996), and Yeh and Gannon (2000) have employed ARCH/GARCH 

methods, and have reported significant gains in hedge performance relative to more traditional 

OLS techniques include.  Like the DP approach, GARCH methods allow hedge updating.  

Unlike the DP approach, the time-series approach thus far has been limited to determining only 

sequentially updated one-period-ahead optimal hedge ratios (OHRs). 

In this paper we first present a method of utilizing GARCH time series models within a 

DP framework to construct dynamic optimal hedging portfolios.  Dynamic hedging strategies are 

developed for a hypothetical firm (merchandiser) interested in purchasing in advance but on a 
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weekly basis commodities (specifically, cocoa and sugar) used in food manufacturing.  For each 

commodity we begin by specifying theoretically consistent yet realistic and tractable risk 

management models.  We allow the representative firm to adjust the optimal hedge several times 

between initial hedge placement and eventual commodity purchase several weeks into the future.  

In each case the hedger is assumed to minimize the variability of total costs.  By employing DP 

recursion relations, OHRs are thereby derived. 

This research departs from prior studies by relaxing the assumption that hedgers will not 

revise their estimates of underlying variances/covariances over time and that they will not update 

futures positions.  The representative merchandiser’s variance expressions are manageable 

functions of non-contemporaneous, time-varying variances and covariances, requiring multi-step 

ahead forecasts that are incorporated directly into the DP framework.  Because GARCH 

specifications are effective in modeling time-varying volatility, the model developed here 

illustrates the ga ins from combining dynamic hedging strategies in a DP framework with modern 

time-series techniques.  Indeed, the research not only expands on both the time-series and 

dynamic programming hedging literature, thus being of interest to an academic audience, but 

also, because of its practicality and ease of use, should be of interest to risk-management 

practitioners responsible for developing optimal hedging strategies with varying time horizons. 

Another unique aspect of this study is the development of confidence bands around 

competing portfolios.  Specifically, by employing a parametric bootstrap we are able to evaluate 

whether portfolio variance reductions from each method are statistically different.  We are 

therefore able to shed light on circumstances under which one method outperforms another.  This 

analysis will offer a more complete understanding of the conditions that are likely to offer 

similar portfolio payoffs and, from a practical standpoint, will enable a trader to decide when to 
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employ a simple strategy (like OLS techniques) and when to embark on a more sophisticated 

strategy (like a GARCH or DP-GARCH approach). 

The remainder of the paper is organized as follows.  First, we present a brief overview of 

hedge ratio estimation, and then introduce the DP–GARCH model.  This is followed by a 

description of the data used in the empirical analysis and econometric estimation results.  We 

then present hedging results and the bootstrap analysis.  The final section concludes. 

2. Hedge Ratio Estimation 

 A basic concept in the hedging literature is the notion that traders optimally select 

combinations of cash and futures positions to minimize portfolio risk.  These combinations, 

typically expressed in terms of proportion of cash to futures positions for an asset, are commonly 

referred to as Optimal Hedge Ratios (OHRs).  One popular method of determining OHRs is to 

employ a minimum-variance (MV) framework, wherein an agent (e.g., a merchandiser) is 

assumed to minimize variability of outlays (costs) associated with an expected purchase.  For 

several reasons the MV framework has become the benchmark in the hedging literature.  First, 

MV hedge ratio is optimal for exceptionally risk averse traders (Ederington, 1979; Kahl, 1983).  

As well, MV hedge ratio is also optimal when futures markets are unbiased.  This result is 

important as such a phenomenon has been verified in several empirical studies (Baillie and 

Myers, 1991; Martin and Garcia, 1981).3  As such, MV methodology has been widely applied, in 

part because of the theoretical justification of finding unbiased markets and in part because 

components of the MV hedge ratio may be retrieved from variance and covariance estimates of 

underlying cash and futures prices (see, e.g., Baillie and Myers, 1991; Kroner and Sultan, 1993). 

 Many studies calculate OHRs from historical data by simply regressing changes in cash 

prices on changes in futures prices (see Appendix equations (A1) – (A3)).  The resulting slope 
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coefficient, 1−tb , is interpreted as an estimate of the OHR (Ederington, 1979; Kahl, 1983).4  This 

result holds because in the simple least squares model the estimated slope coefficient equals the 

term shown in (A3).  This form of the hedge ratio is commonly referred to as the MV hedge 

ratio, and has been employed in many studies including that by Mathews and Holthousen (1991). 

 Implicit in traditional hedge ratio estimation methodology is the assumption that the 

covariance matrix of cash and futures prices—and hence the hedge ratio—is constant through 

time.  But as Fama (1965) observed, variances and covariances of asset returns are often not 

constant over time—large changes tend to be followed by other large changes and small changes 

tend to be followed by other small changes.  This phenomenon, known as volatility clustering, is 

effectively captured by Engle’s (1982) ARCH model; in an early application Cecchetti et al. 

(1988) employed a bivariate ARCH process to infer time-varying OHRs.  Bollerslev (1986) 

subsequently proposed the GARCH model to circumvent the long lags often needed to specify 

correctly an ARCH model.  A large body of research has therefore focused on utilizing the 

GARCH framework to construct time-varying (conditional) hedge portfolios. 

 Here we ignore the potential need for a time series structure for the mean of cash and 

futures prices.  The relevant price equations may then be specified as 
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where ( )T
ttt fc ,=∆ p  is a (2 x 1) vector containing the first difference of cash and futures prices 

(T is a transpose operator); µ is a (2 x 1) mean vector (i.e., a (2 x 1) vector of intercept or drift 

terms) for, respectively, cash and futures prices; tε  is a (2 x 1) vector of mean-zero, bivariate 

normally distributed cash and futures price innovations; 1−Ω t  is the information set available at 
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time t-1; and Ht, where ( ) ( )T
tttt hhhH ,22,12,11 ,,vech = , is a (2 x 2) conditional covariance matrix.5  

One method for specifying the structure generating conditional second moments is to utilize the 

positive semi-definite parameterization (PSD) explained in Engle and Kroner (1995).  In their 

setup the form of Ht, the conditional covariance matrix, is 

  , 111 BHBAAWWH t
TT

tt
TT

t −−− ++= εε              (2) 

where W is a symmetric (2 x 2) parameter matrix and A  and B are (2 x 2) parameter matrices. 

Alternative GARCH specifications include the constant correlation parameterization employed 

by, among others, Cecchetti et al. (1988), Garcia et al. (1995), and Kroner and Sultan (1993).  

The set up, while parsimonious, does not allow the cash-futures covariance (and, therefore, 

OHRs) to switch signs in the short run as cash and futures prices move in opposite directions 

(see, e.g., Haigh and Holt, 2000).  The implication is this model may be overly restrictive.  The 

linear diagonal model used by Baillie and Myers (1991) is less restrictive in this regard, but does 

not ensure the conditional covariance matrix is positive definite for all t.   

 The bivariate GARCH process defining Ht in (2) is specified so that each tijh ,  term in Ht 

is a linear function of lagged values of Ht-1, as well as lagged values of products and cross-

products of innovations T
tt 11 −− εε .  A notable feature of this specification is that all elements in Ht-1 

and T
tt 11 −− εε  are permitted to influence the ijth component of Ht.  As such equation (2) is the 

analogue to a VARMA model in the system’s conditional covariance process, and therefore 

provides a general way of modeling time dependencies in the system’s conditional second 

moments.  By construction the specification in (2) ensures Ht is positive semi-definite at all data 

points and so is used in this analysis.  As well, (2) allows inferences about the extent to which 
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lagged variances (innovations) in, say, the cash (futures) market influences the current variance 

in the futures (cash) market. 

Returning to the optimal hedging problem, it follows that, given the time-varying nature 

of variance-covariance matrix Ht, the time-varying hedge ratio may be expressed as 
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where bt-1 is the OHR conditional on all available information, 1−Ωt , at time t-1. 

 Numerous studies have focused on time-varying hedging by using variants of the 

ARCH/GARCH approach to model the cash-futures price distribution.  OHRs are then inferred 

by relaxing the assumption that conditional variances (covariances) are time independent.  For 

instance, Cecchetti et al. (1988) applied a bivariate ARCH model to financial futures prices.  

Myers and Baillie (1991), Myers (1991), and Sephton (1993) applied bivariate GARCH models 

to commodity prices.  Park and Switzer (1995), Tong (1996), and Yeh and Gannon (2000) 

compared GARCH-generated OHRs to OLS hedging for stocks.  Finally, Kroner and Sultan 

(1993) and Lin et al. (1994) used a bivariate GARCH framework in foreign currency hedging. 

3. Combining DP Hedging Models with GARCH Time-Series Techniques 

In this section we outline the theoretical multi-period hedging models for commodity 

merchandisers that undertake weekly purchases of cocoa and sugar.  Our representative firm is 

assumed to hedge cash price uncertainty associated with anticipated commodity purchase several 

weeks in future.  That is, the merchandiser maintains the required amount of cocoa or sugar for 

processing on a weekly basis.  To minimize uncertainty associated with each week’s anticipated 

purchase, the firm uses futures market as a hedge.6 
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 The hedging framework developed here is multi-period, and builds upon the somewhat 

restrictive dynamic models presented by Mathews and Holthausen (1991).  We focus on long 

hedging in part because extensive research in agricultural economics has assessed risk attitudes 

and the use of derivative instruments from a short hedgers perspective (e.g., Binswanger, 1982; 

Pennings and Smidt, 2000).  This focus has occurred in spite of Berck (1981) and Shapiro and 

Brorsen’s (1988) findings that only 5 per cent and 11.4 per cent, respectively, of farmers’ 

actually use futures markets to hedge.  The need for more sophisticated hedging models, at least 

from a producer’s perspective (i.e., short hedging), is therefore called into question.  

Alternatively, Nance et al. (1993) studied the determinants of corporate hedging, which is more 

typically associated with long hedging.  They reported that 61 per cent of corporate firms in their 

sample used hedging instruments.  Collins (1997) reached a similar conclusion, observing that 

many manufacturers do employ hedging techniques.  Corporate buyers are therefore more likely 

to employ hedging, and accordingly are more apt to utilize sophisticated hedging techniques, 

than are primary producers.  Empirical evidence supporting actual futures market utilization by 

corporate hedgers (i.e., merchandisers or processors) provides the first of two reasons why we 

focus on long hedging. 

 The second reason we focus on long hedging is there are no overriding issues regarding 

storage.  See, for example, Lence et al. (1993).  This assumption is not overly restrictive, 

however, as the gains from hedging effectiveness from using a model that incorporates 

speculative storage decisions are, according to these authors, negligible.  Importantly, we assume 

the merchandiser does not purchase the commodity and store it (at least beyond one week).  In 

this way our framework resembles more closely that of Mathews and Holthausen (1991). 
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 Given that we focus on a long hedging scenario, how then might we determine whether in 

fact a DP–GARCH framework outperforms a simple GARCH framework (without recursion 

relations for optimal updating) and a time-invariant OLS, and, correspondingly, SUR, 

framework, where the differenced futures price is regressed on the differenced cash price?7  Such 

comparisons are of interest for several reasons.  First, based on results reported by Mathews and 

Holthausen (1991) there is little evidence that dynamic (DP) hedge ratios differ in magnitude 

over the hedging horizon; there may be negligible improvement (measured by the reduction in 

portfolio variability) obtained by following a DP approach relative to static OLS models, casting 

doubt on the usefulness of the DP approach.  Second, and more importantly, previous empirical 

research has assumed a trader does not optimally update variance and covariance terms over time 

in the DP framework.  For this reason we also compare our advancement of the DP approach (the 

DP–GARCH model) with a basic GARCH approach, which, by itself, has been shown to 

outperform myopic alternatives (Baillie and Myers, 1991; Gagnon et al., 1998; Haigh and Holt, 

2000; Park and Switzer, 1995; Yeh and Gannon, 2000).  Both DP-GARCH and basic GARCH 

are then compared with the static OLS/SUR approach.  Doing so isolates gains from using 

GARCH relative to OLS/SUR and, as well, gains from using DP–GARCH over GARCH and 

OLS/SUR approaches.  We may therefore isolate the importance of introducing time-varying 

variances-covariances without the DP framework with that of time-varying variances-

covariances within a DP framework, thereby allowing a comparison of a truly time-varying and 

dynamic GARCH approach with the more typical time varying but non-dynamic GARCH 

model. 

In the DP–GARCH setup we assume merchandiser’s price paid for the commodity in 

future, that is, several weeks ahead, is uncertain.  In other words, the merchandiser’s purchasing 
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cost for the raw commodity is stochastic.  For each commodity we therefore derive, on a weekly 

basis, the optimal number of contracts for the merchandiser to lock into in order to minimize 

total cost variability.  Each merchandiser is then allowed to update relevant variance-covariance 

estimates—used to generate the hedged position—multiple times between when the initial hedge 

is placed and when the commodity is ultimately purchased in the cash market. 

By using a DP-GARCH approach the merchandiser decides the amount hedged at each 

decision date in order to minimize the variance of total terminal cost, Costt.  To illustrate, with 

four trading dates total cost is defined as 

         ( ) ( ) ( ) ( )2 3
1 1 2 2 1 3 3 2 4 4 3t t t t t t t t t t t t t tCost c b f f rb f f r b f f r b f f− − − − − − − − − − −= − + − + − + − + − ,       (3) 

where week t denotes the terminal period and r represents the merchandiser’s opportunity cost of 

funds.  As indicated in (3), at the end of week t the commodity is finally purchased in the cash 

market at price ct.  At the beginning of week t-1 and for two weeks prior to that (i.e., weeks t-2 

and t-3) the trader may adjust the position set initially at t-4.  Costt is therefore total (discounted) 

cost paid for the commodity at the end of the four-week horizon, accounting for gains (losses) 

from futures market.  Setup (3) is similar to that utilized in prior research employing DP hedging.  

The difference is we focus on a merchandiser who will ultimately purchase the commodity; our 

methodology could of course also be applied to a short hedgers problem. 

 In the DP-GARCH framework the merchandiser’s aim is to minimize total variance of 

cost by determining the optimal number of futures contracts to lock into each period t-i, where 

0 ≤ − ≤t i t .  In other words, at each period t-i the merchandiser chooses the optimal number of 

futures contracts to minimize total variance of cost, which is simply the sum of final cash price 

paid, ct, and (discounted) futures market gains/losses accrued over the four-week period 

preceding cash purchase.  As illustrated by Mathews and Holthausen (1991) and Anderson and 
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Danthine (1983) the general solution to this problem is obtained through backward induction.  

Therefore, to find cost-minimizing hedge ratio bt-4 at initial trade date t-4, the merchandiser must 

also determine relevant hedges to employ at t-3, t-2, and t-1.  That is, to minimize variance of 

discounted purchase cost we work backwards with the merchandiser first choosing the OHR that 

would be used at the start of delivery week, t-1.  The conditional variance—where we have 

suppressed conditioning information notation—is shown in Appendix equation (A2).  The first-

order condition for an extremum and the corresponding OHR are also presented in the Appendix. 

 At time t-2 (two weeks prior to the eventual cash purchase) the merchandiser minimizes 

variance of total cost relevant at that date, illustrated in Appendix equation (A4).  The variance at 

t-2 is a function of several variances and covariances; the hedge ratio used at t-2, bt-2, referred to 

as the operational hedge ratio; and the expected hedge ratio to be used at t-1 1( )tb − .8  The first-

order condition with respect to 2−tb —Appendix equation (A5)—is a function of both 1−tb and 

2−tb , a system of two equations in two unknowns.  But given unbiased commodity markets, the 

OHR at t-2 reduces to 
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ttt
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fcCov
b .            (4) 

See Appendix for details.  Importantly, with unbiased markets hedge ratio (4) is simply the 

covariance-to-variance ratio weighted by discount factor r. 

 Corresponding cost functions, variance expressions, and first order conditions at t-3 and 

t-4 are also functions of the operational hedge ratios for that week and, as well, the hedge ratios 

expected to be used during subsequent weeks prior to cash purchase.  In addition to discount 

factor r, the resulting hedge ratios are also functions of variances and covariances over the 

following weeks.  Again, assuming unbiased commodity markets, these hedge ratios collapse to 
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simple expressions similar in form to those used in later weeks.  Specifically, it may be shown 

that the optimal hedge ratios at t - 3 and t - 4 are simply 
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where the influence of discount factor r increases the further away is the expected purchase date. 

 Based on the foregoing results for the four-week hedging horizon example, it is clear the 

optimal dynamic hedging rule (given unbiased markets) is easily generalized.  Determining the 

OHR therefore involves picking an appropriate discount rate and estimating the relevant 

variance-covariance forecasts at each date.  In the ensuing analysis we set discount value r to 10 

per cent and continue with the four-week hedging scenario as in the example. 

 For the basic GARCH portfolio it is assumed that once a hedge has been placed it is not 

updated.  Of course a weekly sampling frequency enables the trader relying on a basic GARCH 

model to update the hedge ratio for each subsequent week’s purchase; however, for comparison 

sake this hedge is left in place for the entire four-week period.  The implication is the average 

GARCH hedge ratio, GARCHb , is identical to the DP-GARCH hedge ratio 4−tb  developed at the 

beginning of the trading period.  But as already indicated this hedge is left in place over the four-

week horizon so that GARCHb  is unaffected by changes in volatility over the remainder of the 

month and, unlike DP-GARCH, is unaffected by future hedging ratios.  As a result, because 

there is no provision for optimally updating the hedge basic GARCH hedging will likely be 

inferior to DP-GARCH in periods of short-run market volatility. 

 Of course once determined the OLS/SUR hedge ratio SUROLSb /  never changes, as it is 

simply obtained from an OLS/SUR regression of the futures price on the respective cash price.  

A priori, this approach will likely be inferior to DP-GARCH and basic GARCH, especially in 
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volatile markets, because it in no way adjusts to short-run volatility.  As well, SUROLSb /  does not 

account for future hedging decisions and changes in volatility like the DP-GARCH approach.9 

 To summarize differences between models, a typical four-week time line for the basic 

GARCH and DP-GARCH hedging approaches would look as follows: 

 

     Week 4                          Week 1 Purchase  

GARCH: |--------------------------------------------------------------------------|-------------| 

                   4−tb = GARCHb                 tc  

     Week 4  Week 3  Week 2         Week 1 Purchase  

DP-GARCH: |-----------------------|--------------------------|------------------------|-------------| 

         4−tb                          3−tb                              2−tb                              1−tb            tc  

 

The OLS/SUR time- line would be similar to the GARCH time- line as only one hedge ratio is 

employed over the four-week period.  The main difference is the OLS/SUR hedging ratio would 

be the same for every four-week period.  Once determined the GARCH hedge is left in place for 

each four-week horizon; there is no updating over that month but updating can and does occur 

the following month. 

 In some instances the hedging ratios derived from these approaches might be similar; 

hence, the portfolio values could well be indistinguishable from each other.  Specifically, if tH  

in (2) is reasonably stable, changing little over the sample period, then OLS and basic GARCH 

models should yield similar results.  Similarly, if tH  remains stable over the sample period, DP-

GARCH hedge ratios would effectively differ from basic GARCH hedges (and, as well, the 

OLS/SUR hedges) only by the discount factor r.10 
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 Unlike prior studies employing DP methods to obtain OHRs, we assume traders revise 

their estimates of relevant variances-covariances through time by using a GARCH framework.  

Using the PSD framework (presented in (2) above) multi-step-ahead forecasts of relevant 

variances and covariances, derived from the underlying bivariate GARCH process, may then be 

made.  

 To estimate time-varying hedge ratios it is necessary to model jointly the first two 

moments of cash and futures prices relevant to each merchandiser.  Based upon residual 

diagnostic tests (see econometric estimation results presented below), each series is specified as a 

simple martingale process, thereby satisfying the assumption of unbiased markets.  That is, for 

each cash price ct, and for each futures price ft, the model outlined in (1) and (2) is estimated.11 

 With the econometric methodology for estimating time-varying variances-covariances in 

hand, we may now ask whether or not a DP-GARCH model that utilizes backward induction to 

generate and update OHRs outperforms a basic GARCH model without optimal updating and, as 

well, a static OLS hedging approach in practice.  Obtaining information on the relative 

performance of these various hedging approaches from both an economic and statistical 

standpoint is the issue to which we now turn.  

4. Data and Econometric Estimation Results 

Weekly cash and futures prices for cocoa and sugar were collected for the period January 

4th 1985–August 4th 2000, yielding a total of 814 weekly observations for the in-sample analysis.  

In addition cash and futures prices were also collected for the period August 11th 2000–

September 9th 2002, yielding 57 observations for an out-of-sample analysis.  Cocoa (Ivory Coast) 

and sugar (#11 World Raw) cash prices were provided by Reuters (formerly Bridge CRB).  

Futures settlement prices for cocoa and sugar are from the NYBOT, and were also provided by 
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Reuters.  As cash prices are only reported on Friday, the futures price series was also constructed 

by using Friday prices.  Futures prices are for the nearby contract month, which forms the first 

value for the continuous series and runs until the last trading day of the contract. 

By using Augmented Dickey-Fuller (ADF) (tests), each price series was first examined 

for existence of a unit root.  Results indicate all four series are nonstationary.  Applying the same 

tests to the differenced series, the null hypothesis of a unit root is rejected.  Therefore, we 

conclude each series is I(1), that is, integrated of order one, in the sense of Engle and Granger 

(1987).  Correspondingly, each series was first differenced in econometric estimation. 

 Maximum likelihood estimates of model parameters are obtained by using the Davidon-

Fletcher-Powel (DFP) algorithm in conjunction with symmetric numerical derivatives.  

Parameter estimates for each bivariate PSD GARCH model are presented in Table 1.  Point 

estimates of GARCH parameters indicate substantial evidence of conditional variance dynamics 

for each commodity.  As well, a number of off-diagonal elements in A and B matrices for each 

PSD model are large in absolute terms relative to their asymptotic standard errors.  Estimates of 

skewness and kurtosis parameters for the standardized residuals—defined by 3m  and 4m , 

respectively—are reported for each equation in each portfolio model in the lower panel of Table 

1.  Results indicate no serious departures from the conditional normality assumption. 

 To more formally assess the relevance of the structure implied by a bivariate PSD 

GARCH specification, several sets of maintained restrictions were imposed on parameter 

matrices A and B and the models re-estimated.  One set of models was estimated wherein all 

parameters in A and B were set to zero.  These restrictions result in a model with a constant 

conditional covariance structure, that is, a model without GARCH effects, and is consistent with 

a constant (non time-varying) hedge ratio as provided by an SUR model.  Alternatively, each 
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PSD model is re-estimated by restricting all off-diagonal elements of A and B to zero.  As 

reported in Table 2, for each model both sets of restrictions were overwhelmingly rejected by the 

data.  In addition, intercept (drift) terms were placed in each equation.  In both instances 

likelihood ratio test results revealed these terms could be omitted without harming model fit.  On 

balance there is substantial empirical support for the PSD parameterizations reported in Table 1. 

 The ( )20Q  and ( )202Q  test statistics for, respectively, standardized residuals and squares 

and cross products of (standardized) residuals for each model are reported in the lower panel of 

Table 1.  Results of these diagnostics tests indicate the models do a reasonable job of explaining 

conditional mean and variance dynamics of cash and futures prices.  Overall, the PSD–

GARCH(1,1) models do a good job of characterizing essential features of the data, and are 

therefore potentially useful tools for examining dynamic hedging strategies. 

5. Hedging Results 

 Given the empirical support for the PSD-GARCH(1,1) specification, the natural question 

is how well does DP-GARCH hedging portfolio perform relative to either a basic GARCH or an 

OLS/SUR approach for a representative cocoa/sugar merchandiser?  To examine this issue in-

sample average hedge ratios, along with standard deviations and minimum and maximum values, 

for each of the DP–GARCH, GARCH, and OLS models and for each portfolio are reported in 

the upper panel of Table 3.  Comparable summary statistics for the out-of-sample analysis are 

recorded in the lower panel of Table 3.  As well, in sample plots of DP–GARCH, basic GARCH, 

and OLS hedge ratios are reported in figures 1-2 for sugar and cocoa, respectively.  As indicated 

previously, hedge ratios in Table 3 were derived by assuming merchandisers minimizes total 

variance of cost and use an annualized discount rate r of 10 per cent.12 
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As illustrated in the top panel of Table 3 and figures 1-2, on average each model calls for 

long hedging, as indicated by the negative signs associated with OHRs.  This outcome is as 

expected for a risk averse merchandiser anticipating making cash purchases up to four weeks 

hence.  Furthermore, regardless of the method used more hedging is recommended in the cocoa 

portfolio than in the sugar portfolio.  While results for the DP-GARCH portfolio show 

substantial variation in OHRs at each hedge horizon through time, there is relatively little 

variation among OHRs across hedge horizons.  This general result holds for both commodities.  

To illustrate, during the initial period, t–4, the average hedge ratio 4−tb  for a cocoa merchandiser 

is –0.918; conversely, during the last period in which the portfolio may be adjusted, t–1, the 

average hedge ratio, 1−tb , is –0.923.  These results indicate that on average the cocoa hedge ratio 

increases (in absolute terms) by only 0.50 per cent as actual purchase date approaches.  Results 

for sugar portfolio show a similar pattern, with, on average, =−4tb –0.778 and =−1tb –0.783 for 

the DP-GARCH.  If no variation occurred across hedge horizon, then DP-GARCH hedge ratios 

would equal GARCH hedge ratios (ignoring the discount rate), and there would be no incentive 

to combining approaches.  Results reported in Table 3 also reveal that for DP-GARCH and 

GARCH portfolios, at most, a cocoa merchandiser would have hedged 212 per cent of the cash 

position; correspondingly, at most 112 per cent of the sugar merchandiser’s expected cash 

position would have been hedged. 

 Results reported in the top portion of Table 3 and figures 1-2 also illustrate that during 

the in-sample period hedge ratios vary considerably.  As suggested by figures 1 and 2, there is 

more variability in OHRs at every horizon for sugar than for cocoa.  As well, for the sugar 

portfolio it is clear that during a few periods short hedging is called for by the DP-GARCH 

model (a hedge ratio of approximately 0.52).  But as cash and futures variances (prices) may 
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(and do) move in opposite directions in the short run, it is not unreasonable for the optimal hedge 

to call for the merchandiser to go short in some instances.  Indeed, it is precisely for this reason 

that we chose to apply unrestrictive GARCH structures (i.e., the PSD), as other specifications 

may not pick up on such patterns.  As indicated in figure 2, short hedging is not observed for 

cocoa using the DP–GARCH model; the minimum hedge ratio for cocoa is near zero (–0.064). 

 The final row in Table 3 reveals that OLS/SUR hedge ratio for cocoa is –0.899, 

suggesting somewhat less hedging on average than either the DP-GARCH or the basic GARCH 

model.  Alternatively, OLS/SUR hedge ratio for sugar is –0.723, which is slightly greater than 

those called for by DP–GARCH.  By adopting an OLS/SUR approach the hedger would employ 

the same hedge ratio every week over the entire sample period, indicating no variability in the 

proportion hedged.  Overall, results for cocoa and sugar portfolios provide an interesting contrast 

in that cocoa basis is generally more predictable than sugar basis, as suggested by the 

observation that cocoa hedge ratios are typically closer to one in absolute value than are sugar 

hedge ratios (see, e.g., figures 1-2). 

 Traders are perhaps less concerned about past events than they are with future 

performance.  It is for this reason that an out-of-sample evaluation was made of the competing 

models.  Therefore, for each approach a forecast is made of the following week’s hedge ratio.  

For each period the required variance and covariance terms are predicted and the hedge ratio 

calculated.  Each model is then re-estimated with the new observation included in the sample and 

the evaluation repeated.  This prediction/re-estimation algorithm is continued until all out-of-

sample data are exhausted.  Summary statistics of hedging ratios are presented in the lower panel 

of Table 3.  As with the in-sample analysis, DP-GARCH portfolio shows variation in OHRs at 

each hedge horizon through time, although the variation is not as great as for the in-sample 
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period.  Alternatively, there is relatively little variation among OHRs across hedge horizons.  For 

instance, during initial period, t–4, the average out-of-sample hedge ratio 4−tb  for cocoa is –

0.945; whereas, during the last period, t–1, average hedge ratio 1−tb  is –0.950, indicating again 

that, on average, proportions hedged increase as the purchase date approaches.  A similar pattern 

emerges for sugar portfolio where, on average, =−4tb –0.797 and =−1tb –0.801 for DP-GARCH.  

Results also reveal for DP-GARCH and basic GARCH portfolios that, out-of-sample, at most 

120 per cent of the cash position would have been hedged by a cocoa merchandiser; 

correspondingly, at most 96 per cent of a sugar merchandiser’s expected cash position would 

have been hedged. 

 For both commodities out-of-sample hedging ratios exhibit less volatility than do their in-

sample counterparts (the standard deviation drops from approximately 0.138 to 0.081 for cocoa 

and from 0.198 to 0.180 for sugar), suggesting that more complicated models that incorporate 

emerging volatility patterns (like DP-GARCH and basic GARCH) are less likely to perform 

better than OLS/SUR.  Of course out-of-sample the OLS/SUR model also exhibits some 

variability, with standard deviations of 0.002 for both cocoa and sugar.  This result occurs 

because data are added each week and the models re-estimated.  Even so, out-of-sample 

OLS/SUR hedge ratios are still nearly constant, and would likely perform better in more stable 

markets where the relationship between cash and futures remains steady. 

 Overall sample and average hedge ratios are instructive, and give some guidance as to the 

potential usefulness of each model; they do not, however, indicate much about how the various 

models perform in each respective portfolio.  To this end average variance of total cost is 

computed for each model and for each commodity.  These results, along with other descriptive 

statistics including the standard deviation of cost variance and minimum and maximum cost 
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variances are reported, for each model, in Table 4.  The top half summarizes the results from the 

in-sample analysis, the lower half for the out-of-sample analysis.  First, the results are quite 

striking for the in-sample analysis.  Importantly, there appears to be rewards to using the DP–

GARCH approach relative to the basic GARCH approach in terms of average variance 

reductions.  This result may not be particularly surprising, however, because the simple GARCH 

model, while allowing for time-variation in hedge ratios, does not optimally use information to 

update hedge ratios in a way provided for by the DP–GARCH approach. 

As reported in Table 4, average variance of total cost for cocoa merchandiser is 30228.77 

per ton with DP–GARCH, while the corresponding value for basic GARCH is 30461.37, 

representing a 0.76 per cent gain by using DP–GARCH relative to the simple GARCH strategy.  

Also, the standard deviation associated with the average variance of the DP-GARCH model 

(18736) is considerably lower than for basic GARCH (20359), suggesting that following the DP-

GARCH method would yield a more stable risk management strategy for a cocoa hedger.  Based 

on estimated hedge ratios, the cocoa market basis seems more predictable than sugar as hedging 

ratios for cocoa are closer to one in absolute value.  The implication is there may be even greater 

rewards to employing more sophisticated models (i.e., DP-GARCH) over standard approaches 

(i.e., basic GARCH) in relatively more unpredictable markets like sugar, where recommended 

hedging ratios are smaller in absolute terms.  To illustrate, average variance for sugar total cost is 

2.248 for the DP–GARCH model; the corresponding value for basic GARCH is 2.501, implying 

a 10.14 per cent gain associated with using DP–GARCH in lieu of the basic GARCH 

methodology.  Not unlike the cocoa market, portfolio variance ‘volatility’ for DP-GARCH sugar 

model is lower than for simple GARCH (reported standard deviation of 0.051 versus 0.060).  

There is apparently a reward in terms of risk reduction by using the DP–GARCH framework 
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relative to a simple hedge-and-hold GARCH strategy, especially in markets where basis is less 

predictable.  Rewards to following the DP–GARCH strategy are, however, highly dependent 

upon the total costs of buying the commodity confronted by a particular merchandiser, 

suggesting the DP–GARCH model would in fact benefit more greatly a merchandiser making 

frequent but large purchases.13 

Turning to OLS/SUR portfolios, Table 4 reveals that while basic GARCH outperforms 

OLS/SUR for cocoa, the OLS/SUR approach actually dominates the GARCH approach for 

sugar.  Interestingly, the standard GARCH model for sugar, when evaluated within a DP 

framework, does not perform as well as might be reported in myopic settings, where, as 

mentioned previously, GARCH models tend to outperform OLS/SUR approaches.  Our results 

do show reward to following the DP–GARCH methodology over the straightforward OLS/SUR 

model.  To illustrate, relative to OLS/SUR the DP–GARCH model yields 1.58- and 8.18 per cent 

reductions in total cost variability for cocoa and sugar merchandisers, respectively.  Moreover, 

volatility of DP-GARCH variance is lower than for OLS/SUR models, as indicated by standard 

errors (18736 versus 20001.74 and 0.05 versus 0.07 in, respectively, the cocoa and sugar 

markets), suggesting a more stable risk management strategy over the OLS/SUR alternative.  

The implication is that using an OLS/SUR approach would result, at least in some periods, in 

foregone cost-reduction opportunities relative to the DP-GARCH approach, with the most 

compelling evidence offered in the sugar market. 

 Results from the out-of-sample analysis illustrates that the effectiveness of DP-GARCH 

and GARCH approaches is somewhat dampened.  As suggested previously, sample hedging 

ratios seem to indicate that markets exhibited less volatility in the out-of-sample data period—

particularly in the cocoa market—implying more stable (constant) models are likely to perform 
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better.  This conjecture is confirmed by, on average, poorer performance of DP GARCH and 

GARCH models relative to OLS/SUR.  According to the average improvement figures reported 

in the lower panel of Table 4, there is essentially no difference between the DP-GARCH and 

basic GARCH models (average percentage improvement is < -0.001 per cent).  Moreover, out-

of-sample DP-GARCH model is outperformed by the more stable OLS approach (average 

improvement of –2.32 per cent).  The sugar market did exhibit more volatility out-of-sample 

(noting that the standard deviation of the hedging ratios was much higher at 0.18).  Accordingly, 

DP-GARCH outperforms both GARCH and OLS/SUR approaches by 8.37 per cent and 1.80 per 

cent, respectively. 

 Like all statistics described thus far, the figures recorded in Table 4 are averages.  The 

implication is a trader may not only be concerned with average model performance, but may also 

want to know whether a model could be detrimental if the market exhibits an unexpected burst of 

volatility or a period of prolonged stability.  For this reason we also focus on period-by-period 

estimates to assess whether one model outperforms another under certain conditions.  To assess 

period-by-period performance we first employ bootstrapping techniques to generate confidence 

intervals around both the hedging ratios and the portfolio variances.  Specifically, drawing from 

the appropriate bivariate normal distribution, 500 parametric bootstrap estimates of both the DP-

GARCH and basic GARCH portfolios are obtained for both commodities.  We then assess 

whether one model is statistically different from another model (by determining whether or not 

confidence bands overlap), and if so, by how much and how many times that model 

outperformed the alternatives. 

 To summarize the results of the bootstrap evaluations, we first estimate confidence bands 

around the GARCH and DP-GARCH models and find that, statistically speaking, these two 
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models are equivalent.  That is, during no period were the variances from the DP-GARCH model 

(with confidence bands) not overlapping the variance of the GARCH model.  We also compare 

the DP-GARCH model with OLS/SUR.  The results of this comparison are summarized in Table 

5.  The upper panel of Table 5 illustrates that 37.1 per cent (33.7 per cent) of the time OLS/SUR 

model is statistically equivalent to DP-GARCH for the cocoa (sugar), suggesting that a trader, 

for this percentage of the time, would be indifferent between the approaches.  The lower panels 

of Table 5 provide more insight into the merits of each approach.  The middle panel of Table 5 

illustrates the percentage of times OLS/SUR variance is significantly less than the DP-GARCH 

approach for cocoa and sugar portfolios (47.2 per cent and 48.9 per cent, respectively).  

Furthermore, the greatest improvement in portfolio variances of DP-GARCH vis-à-vis GARCH 

amounts to 78.18 per cent and 73.99 per cent for, respectively, cocoa and sugar. 

 These results seemingly contradict findings presented earlier whereby DP-GARCH 

outperforms OLS on average.  The implication is there must be times when OLS/SUR approach 

is beaten dramatically by DP-GARCH.  Indeed, a cursory glance at the lower panel of Table 5 

suggests this very result.  While DP-GARCH exhibits fewer times that it actually dominates 

OLS/SUR (15.7 per cent and 17.9 per cent in the cocoa and sugar models, respectively), there are 

times—as illustrated by the maximum improvement numbers—that the OLS/SUR model proves 

quite detrimental to the trader.  Indeed, in the case of sugar OLS/SUR is outperformed on one 

occasion by 608.67 per cent in the sugar model and 212.96 per cent in the cocoa model.14 

Figures 3 and 4 shed more light on this issue.  Figure 3 illustrates over the 1992 – 1998 

period the difference between sugar DP-GARCH variance (with confidence bands) and sugar 

OLS/SUR variance.  Also depicted (in the insert) is a time-series plot of the cash and futures 

sugar prices for 1995, resulting cost variances, and bootstrapped confidence intervals.  An 
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interesting pattern emerges in that when cash and sugar prices are moving consistently together, 

as they are at the beginning of 1995, OLS/SUR performs satisfactorily.  As the co-movement 

relationship breaks down, however, and the basis becomes more volatile, DP-GARCH tends to 

outperform OLS/SUR.  Specifically, OLS/SUR variance, complete with confidence bands, is 

greater than the variance (and bands) generated by DP-GARCH.  Toward the end of the year as 

the basis normalizes OLS/SUR approach improves and eventually outperforms DP-GARCH. 

 As presented in Figure 4, a similar (but less vivid) scenario is illustrated for cocoa.  

Figure 4 depicts DP-GARCH variance and confidence bands and OLS portfolio variance over 

the 1990 – 1996 period, along with a plot of the basis (cash and futures prices).  The cocoa 

market, unlike sugar, has a somewhat more predictable basis; due to mild basis volatility only in 

1990 is OLS/SUR beaten by DP-GARCH.  From 1991 – 1996 the basis was more predictable, 

hence the acceptable performance of OLS/SUR. 

6. Conclusion 

In recent years numerous empirical hedging studies—typically relying upon variants of 

ARCH/GARCH-type models—have adopted the term ‘dynamic’ to describe the portfolio 

updating that occurs when the assumption of a time-invariant cash-futures covariance matrix is 

relaxed.  While these studies have established the potential benefits of relaxing this assumption, 

they have continued to rely on one-period-ahead variance and covariance forecasts.  In this sense 

the extant ARCH/GARCH hedging literature has not truly utilized a ‘dynamic’ approach.  

Conversely, the DP hedging literature, while allowing for multi-period-ahead hedge ratio 

calculations, has not employed modern methods for estimating time-varying covariance matrices. 

 Our paper has attempted to bridge the gap between these two related yet distinct 

approaches.  Importantly, we present a truly time-varying and dynamic hedging model by 
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combining DP recursion relations with GARCH time-series models.  To illustrate the DP-

GARCH framework empirical applications were reported for hypothetical cocoa and sugar 

merchandisers.  Results indicate that for both commodities gains were achieved by using the 

DP–GARCH model relative to the standard GARCH approach, with greater rewards accruing for 

sugar.  Importantly, while sample summary statistics suggest that modest improvements may be 

made by employing techniques that optimally update—like the DP-GARCH approach—we also 

isolate particular times that such a model outperforms simper alternatives.  Specifically, through 

a bootstrap experiment we isolate the number of times DP-GARCH approach dominates (in both 

a statistical and economic sense) OLS.  We conclude that in periods of low volatility a trader 

may be just as well off following the simpler (and probably cheaper) OLS/SUR approach.  The 

caveat is, of course, that the simpler approach may fail dramatically relative to more 

sophisticated techniques in periods of excessive volatility.  Consequently, a DP-GARCH 

approach is likely, at times, to yield greater rewards in more volatile markets like sugar. 

 The framework developed here should not only be of interest as a contribution to the 

empirical hedging literature, but should also be of interest to risk managers.  This said, more 

work is clearly needed.  Specifically, the methodologies developed in this paper should be 

applied to other commodities (and assets) and for different hedging horizons.  Also, transaction 

and liquidity costs should be included.15  Only then will it be possible to truly assess the value of 

the DP-GARCH approach. 
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Table 1. 
Bivariate GARCH Models with Positive Definite Parameterization 

 

tt ε=∆ p , ( )T
ttt fc ,=∆ p  

( )ttt HN ,~ 0Ωε  

BHBAAWWH t
TT

tt
TT

t 111 −−− ++= εε  

  Cocoa Portfolio Sugar Portfolio 

Parameter Estimate 
Std. 

Errors Parameter Estimate 
Std. 

Errors 
      

11w  -18.381 2.647 11w  -0.052 0.022 

12w  -10.710 2.466 12w  0.090 0.035 

22w  -10.642 1.985 22w  0.129 0.038 

11a  0.642 0.089 11a  0.430 0.077 

12a  0.162 0.062 12a  -0.467 0.090 

21a  -0.389 0.077 21a  -0.151 0.067 

22a  0.095 0.058 22a  0.771 0.080 

11b  0.679 0.069 11b  0.762 0.057 

12b  -0.133 0.042 12b  0.353 0.073 

21b  0.186 0.049 21b  0.173 0.055 

22b  1.038 0.030 22b  0.567 0.068 
      
Log-likelihood –6481.71 Log-likelihood 1097.18 

  Cash Equation Cash Equation 
  

3m  0.484 
 

3m  0.271 
 

4m  1.760  
4m  2.213  

      
Q(20) 20.099 (0.452) Q(20) 21.341 (0.377) 
Q2(20) 26.985 (0.136) Q2(20) 24.252 (0.232) 

    Futures Equation Futures Equation 
  

3m  0.403 
 

3m  0.011 
 

4m  2.646  
4m  2.366  

      Q(20) 13.249 (0.866) Q(20) 28.385 (0.101) 
Q2(20) 27.859 (0.113) Q2(20) 25.933 (0.168) 

    Covariance Equation Covariance Equation 
  Q2(20) 24.454 (0.223) Q2(20) 30.778 (0.060) 

    
 

Note:  3m  is sample skewness and 4m  is sample kurtosis.  ( )20Q  denotes 

the test statistic for twentieth-order serial correlation in the normalized 
residuals and ( )202Q  is the test statistic for twentieth-order serial correlation 
in squared normalized residuals.  Numbers in parentheses are asymptotic p-
values. 
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Table 2. 
Log- likelihood Estimates and Tests of Parameter Restrictions for the 

Bivariate GARCH Commodity Models 
 

tt εµ +=∆ p , ( )T
ttt fc ,=∆ p  

( )ttt HN ,~ 0Ωε  

BHBAAWWH t
TT

tt
TT

t 111 −−− ++= εε  
 

    
Model/Test 

 
Log-likelihood/LR Test 

No. of Parameters/ 
Degrees of Freedom 

   
   Cocoa Portfolio   
   

No GARCH, 0=µ  -7518.47 3 

Diag A  and B, 0=µ  -6647.06 7 

Full A and B, 0=µ  -6481.71 11 

Full A and B and 0≠µ  -6481.67 13 

   
LR Test A = B  = 0 2073.52 (0.000) d.f. = 8 
   
LR Test A and B Diagonal  330.79 (0.000) d.f. = 4 
   
LR Test 0=µ        0.08 (0.961) d.f. = 2 

   
Sugar Portfolio   
   No GARCH, 0=µ  824.63 3 

Diag A  and B, 0=µ  1042.45 7 

Full A and B, 0=µ  1097.18 11 

Full A and B and 0≠µ  1096.87 13 

   
LR Test A = B  = 0 549.09 (0.000) d.f. = 8 
   
LR Test A and B Diagonal 109.47 (0.000) d.f. = 4 
   
LR Test 0=µ      0.63 (0.730) d.f. = 2 

   
 

Note:  Values in parentheses are asymptotic p-values.  d.f. denotes degrees of freedom.  All 
restrictions are imposed on parameters of the A and B matrices from the conditional 
covariance structure. 
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Table 3. 
Descriptive Statistics for Hedge Ratios for Variance 

Minimizing DP-GARCH, GARCH 
and OLS/SUR Objectives, Four-Week Hedging Horizon 

 

    Cocoa Portfolio Sugar Portfolio 
         
          In- Sample 

      Hedge Model 
4−tb  3−tb  2−tb  1−tb  4−tb  3−tb  2−tb  1−tb  

DP–GARCH         
Avg. -0.918 -0.920 -0.921 -0.923 -0.778 -0.780 -0.781 -0.783 
SD 0.138 0.138 0.139 0.139 0.198 0.198 0.199 0.198 
Min -2.214 -2.128 -2.132 -2.136 -1.122 -1.125 -1.127 -1.129 
Max -0.064 -0.064 -0.065 -0.065 0.190 0.190 0.190 0.191 

         
GARCH  

GARCHb  GARCHb  

   Avg. -0.918 -0.778 
SD 0.005 0.198 
Min -2.124 -1.122 
Max -0.064 0.190 

   
OLS/SUR 

OLS/SURb  OLS/SURb  

    -0.899 -0.723 
    Out-of-Sample 
      Hedge Model 

4−tb  3−tb  2−tb  1−tb  4−tb  3−tb  2−tb  1−tb  

DP–GARCH   
Avg. -0.945 -0.947 -0.949 -0.950 -0.797 -0.801 -0.801 -0.801 
SD 0.081 0.080 0.080 0.081 0.180 0.179 0.184 0.184 
Min -1.208 -1.210 -1.213 -1.219 -0.968 -0.974 -0.976 -0.978 
Max -0.792 -0.794 -0.796 -0.797 -0.027 -0.042 -0.039 -0.049 

   
GARCH  

GARCHb  GARCHb  

   Avg. -0.945 -0.797 
SD 0.081 0.180 
Min -1.208 -0.968 
Max 0.792 -0.030 

   
OLS/SUR 

OLS/SURb  OLS/SURb  

   Avg. -0.900 -0.727 
SD 0.002 0.002 
Min -0.897 -0.723 
Max -0.903 -0.730 
    

Note: The annualized discount rate, r, is 0.10. Avg. denotes sample average, SD is the corresponding standard 
deviation of the average of the hedge ratios, Min is the sample minimum and Max is the sample maximum.  The 
GARCH hedge ratio GARCHb  represents the average hedge ratio that would be used by the trader over the four-week 

period, and is equal to the hedge ratio used at t - 4 by the DP-GARCH.  The OLS/SUR hedge ratio, SUROLSb / , used 

each week is not, like the GARCH counterpart updated each week. 
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Table 4. 
Summary Statistics for DP-GARCH, GARCH, and OLS/SUR 

Portfolios, Four-Week Hedging Horizon. 
 

    Cocoa Portfolio Sugar Portfolio 
   
    In Sample 

DP-GARCH   
Avg.  30228.77 2.248 
SD 18736.00 0.051 
Min 15688.70 0.833 
Max 231871.40 13.406 
GARCH      
Avg.  30461.37 2.501 
SD 20359.31 0.060 
Min 17147.21 1.002 
Max 274274.50 12.938 
OLS/SUR      
Avg.  30714.32 2.448 
SD 20001.74 0.070 
Min 16526.30 1.017 
Max 224806.90 21.257 
% Reduction in Variance of  
DP-GARCH Relative to: 

  

GARCH  0.769% 11.254% 

OLS/SUR  1.606%   8.897% 
       Out-of-Sample 

DP-GARCH   
Avg.  24211.25 2.055 
SD 5049.20 0.742 
Min 17327.74 1.120 
Max 40431.00 4.628 
GARCH      
Avg.  24211.13 2.227 
SD 5196.19 0.765 
Min 17148.44 1.355 
Max 36393.43 4.432 
OLS/SUR      
Avg.  23649.11 2.092 
SD 4582.61 0.719 
Min 16898.62 1.288 
Max 37134.67 4.543 
% Reduction in Variance of  
DP-GARCH Relative to: 

  

GARCH  -0.001%   8.370% 

OLS/SUR  -2.322%   1.800% 

 
Note: The annualized discount rate, r, is 0.10. (r was also adjusted to 0.01 and 
0.05 and results were qualitatively unchanged). Avg. denotes sample average 
variance, SD denotes the corresponding standard deviation of the average, Min 
is the sample minimum and Max is the sample maximum.  There are a total of 
810 weekly hedging periods in sample and 57 out-of-sample.  
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Table 5. 
Evaluating the Performance of the DP-GARCH and OLS/SUR 

Portfolios: Results from the Bootstrap Experiment 
 

    Cocoa Portfolio Sugar Portfolio 
      Scenario OLS variance = DP-GARCH variance 
  Percentage of times 37.10% 33.70% 

Avg. improvement - - 
SD - - 
Min - - 
Max - - 
      Scenario: OLS variance < DP-GARCH variance 
  Percentage of times 47.20% 48.90% 
Avg. improvement 32.28% 37.71% 
SD 14.51 12.30 
Min 10.64% 11.32% 
Max 78.18% 73.99% 
      Scenario: OLS variance > DP-GARCH variance 
  Percentage of times 15.70% 17.90% 

Avg. improvement 54.95% 95.92% 
SD 46.45 98.68 
Min 6.27% 18.54% 
Max 212.96% 608.67% 
   

 
Note: Percent of times represents: 1) Percentage of times that the DP-GARCH 
and OLS approaches are statistically equivalent (upper panel). 2) Percentage of 
times the OLS approach statistically outperforms the DP-GARCH approach 
(middle panel) and 3) Percentage of times the DP-GARCH approach statistically 
outperforms the OLS approach (lower panel). Avg. improvement denotes 
percentage improvement in variance reduction against the competing model 
(either DP-GARCH or OLS), SD denotes the corresponding standard deviation 
of that average improvement, and Min is the sample minimum and Max is the 
sample maximum improvement. 
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Figure 1.  Weekly Sugar DP-GARCH (b t-4, bt-3, bt-2, bt-1) GARCH (bGARCH) and OLS/SUR (bOLS/SUR) Optimal Hedging Ratios 
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Weekly optimal hedging for the DP-GARCH, GARCH and OLS/SUR hedging models: January 1985 – August 2000. The GARCH hedge ratio GARCHb represents 
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Figure 2.  Weekly Cocoa DP-GARCH (b t-4, bt-3, bt-2, bt-1) GARCH (bGARCH) and OLS/SUR (bOLS/SUR) Optimal Hedging Ratios 
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the hedge average hedge ratio that would be used by the trader over the four-week period.  It is equal to the hedge ratio used at t - 4 by the DP-GARCH user as it 
is assumed that the GARCH user uses weekly data to form the hedge ratio to be applied at t-4 and left in place until the commodity is purchased at the end of the 
horizon. The OLS/SUR hedge ratio, SUROLSb / ,used each week is not, like the GARCH counterpart, updated each week and is constant over the entire time -frame. 
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Figure 3.  Comparing the Variance of the DP-GARCH and OLS Sugar Model 
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Large graph: Weekly optimal hedging variances for the DP - GARCH (with confidence bands) and OLS models over the period 1992 – 1998.  Inserted graph 
displays the data for year 1995, and corresponds to the period of time that the variances are framed. 
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Figure 4.  Comparing the Variance of the DP-GARCH and OLS Cocoa Model 
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Large graph: Weekly optimal hedging variances for the DP-GARCH (with confidence bands) and OLS models over the period 1990 – 1996.  Inserted graph 
displays the data for year 1995, and corresponds to the period of time that the variances are framed.  
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Endnotes  

1.This branch of the hedging literature also uses the term dynamic because the assumption of 

constant conditional variances and covariances is relaxed via ARMA-like specifications for 

conditional second moments.  But in reality, these hedge ratios are typically not determined from 

a dynamic optimization set-up as applied to a multi-period hedging problem.  In this sense 

GARCH-derived OHRs are not dynamic, but rather may be thought of as time varying. 

2.ARCH is short for Autoregressive Conditional Heteroscedasticity while GARCH denotes 

Generalized ARCH.   

3.There are a variety of methods for determining OHRs. Collins (1997) questions the validity of 

many of these approaches including the MV framework; he also reviews the empirical evidence 

about hedging behavior when evaluating competing models.  In an attempt to explain ‘real life’ 

hedging behavior he concludes that the MV model is unlikely to fully capture a short hedgers 

true objective.  Indeed, the vast majority of competing models evaluated did not pass such a test.  

The purpose of this study is to combine techniques (DP and GARCH) used in previous research 

(from a long hedgers perspective) that have employed the MV methodology.  We therefore 

utilize the MV framework here, but we acknowledge that such an objective may not be truly 

optimal for all hedgers.  Also, while it is plausible that commodity markets are unbiased, there is 

some empirical evidence suggesting that, at least for some markets, futures prices do exhibit 

some persistence and/or biasedness.  See, e.g., Tong (1996); Rausser and Carter (1982); and 

Raynaud and Tessier (1984).   

4.Myers and Thompson (1989) suggest that lags should be included in the regression procedure 

in order to include conditioning information.  Pennings and Leuthold (2001) estimated hedging 

models with and without lags by using a procedure proposed by Britten-Jones (1999).  Because
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(1) Pennings and Leuthold (2001) found that including lags made no difference in their model; 

(2) because we wish to maintain the assumption of weak form efficiency; and (3) because we do 

not find any evidence of residual autocorrelation (see econometric results) we do not include lags 

in the mean regression equations.  We therefore maintain the MV set up.  

5.Most high-frequency asset price data are modeled in first difference form without any 

autocorrelation structure (the approach utilized here).  As noted by Fama (1965) this martingale 

behavior is often interpreted as being consistent with weak form efficiency.  This approach says 

nothing, however, about higher moments of asset returns, which are typically found to exhibit 

leptokurtosis.  Consequently, some studies employ a distribution such as Student’s t to account 

for the excess kurtosis (see Baillie and Myers, 1991).  In this study we follow Haigh and Holt 

(2000) and maintain the normality assumption, accepting its somewhat stringent assumptions.   

6.We focus on a weekly hedge for several reasons.  First, our original motivation and hence 

model was based on conversations with a large food merchandiser who suggested that a weekly 

horizon was reasonable given their large amount of transactions (see Footnote 13). Second, as 

shown by Castelino (1992), Geppert (1995) and Pennings and Meulenberg (1997), the hedging 

effectiveness of this type of model is likely to increase with time, and so it is expected (although 

not explored here) that the model is likely to improve over a longer time horizon.  We present the 

more conservative results based on this shorter (but more realistic) time-period.  Extending the 

time frame is left for future research.  

7.Indeed both the OLS and SUR models are nested within the GARCH framework (see 

econometric estimation results for full details). 



 36 

8.To simplify the model, we follow Mathews and Holthausen (1991) in assuming that the hedger 

knows 1−tb at the initial trade date.  If we did not make this assumption, 1−tb  would be stochastic 

and additional variance and covariance terms would be involved.  However, this assumption is 

not restrictive, as variance-covariance estimates based on historical relationships (like the 

GARCH framework) are relatively easy to forecast.  Moreover, to operationally use a hedge ratio 

that is a function of future hedge ratios the merchandiser must forecast future ratios and thus 

consider them to be non-stochastic.  

9.As pointed out by an anonymous reviewer complicated models that allow for more updating 

will incur higher transaction costs.  As Haigh and Holt (2000) show, incorporating transaction 

costs reduces the appeal of more complicated approaches but not by enough to reduce the 

incentive to utilize these techniques, particularly when the hedger is confronted with large cash 

transactions.  In the current analysis marginal transaction costs are unlikely to deter the 

representative hedger from employing a more sophisticated strategy.  Such may not be the case, 

however, for a farmer or a smaller corporate entity.  From an operational standpoint, 

incorporating transaction costs into a DP framework would require a numerical solution to the 

resulting recursion relations.  Therefore, incorporating transaction costs is left for future 

research.  

10.This time- line represents an in-sample comparison.  In the out-of-sample analysis all models 

experience some variability.  Therefore, unless the basis remains constant, the OLS hedge ratios 

will also change as new observations are added.  However, the concepts underlying model 

comparisons remain the same.  Results for OLS and basic GARCH (DP-GARCH) models are 

likely always going to differ, even if only slightly, due to the nature of estimation. 
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11.Baillie and Myers (1991) also undertook their analysis using a similar framework, thus 

employing a relatively parsimonious model.  We base our structure for the time series generating 

process on residual diagnostic results.  Because we find no evidence of residual autocorrelation 

in the markets studied here the MV framework may be appropriate. 

12.As suggested by an anonymous reviewer, simulations were conducted by using three different 

levels of interest rates, 1 per cent, 5 per cent and 10 per cent.  Varying the rate had no qualitative 

effect on model orderings; however, higher the interest rates eroded the performance of the DP-

GARCH and GARCH approaches relative to OLS.  Therefore, to provide conservative estimates 

of the relative performance of these models we employ the higher interest rate.  

13.Therefore, in this application, and over this hedging horizon, substantial gains, in terms of 

risk reduction appear to be available by adopting the DP-GARCH relative to alterna tives. Indeed 

according to a large U.S. based food manufacturer approximately $75 million dollars and $350 

million dollars are spent annually on sugar and cocoa purchases, respectively, in their 

manufacturing processes (and the food manufacturer regards itself as a large corporate 

commodity hedger).  According to this manufacturer, purchases and hedges are undertaken 

frequently.  Given the large amount of purchases it is unlikely that extra transaction costs 

associated with more complicated methods would deter a large hedger.  Transaction costs could, 

however, alter the risk management strategy of a smaller hedger. 

14.Collins (2000) undertakes out-of-sample analysis on a variety of competing models.  Similar 

to Collins(2000), we isolate the proportion of times our model outperforms potentially inferior 

models.  In our analysis, however, we investigate the conditions that arise when a model 

better/worse than a simpler approach.  While Collins (2000) suggests the naïve (i.e., one-to-one) 

hedge outperforms the risk-minimizing hedge most of the time, he did not investigate what



 38 

 happens when the market exhibits short-run unpredictable volatility (i.e., erratic basis behavior) 

as we do here. 

15.As shown by Pennings and Leuthold (2001), liquidity might also have an important bearing 

on hedging effectiveness, particularly in thinly traded markets.  Researchers might therefore take 

this into account when developing optimal hedging strategies.  For the commodities analyzed 

here trading volume between July 2000 and June 2001 was, for example, 1,408,945 cocoa 

contracts and 759,828 sugar contracts respectively.  While these markets are not traded as 

heavily as larger financial contracts like the FTSE (9,033,641 contracts traded), they experience 

heavier trading volume than other commodities like wheat, which had a trading volume of 

97,705 contracts.  We therefore conclude that liquidity may not be a serious issue in our 

application.  As pointed out by an anonymous reviewer, however, liquidity costs may be updated 

in manner similar to that for updating variances/covariances.  Such an updating scheme and 

would likely be more important in thinly traded markets.
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Appendix 

 
Derivation of the Cost and Variance Expressions at Time Period t – 1 and t – 2 and the 

Resulting Optimal Hedging Ratios. 
 
The cost function facing the merchandiser at t - 1 is 

( ),11 ttttt ffbcCost −+−= −−         (A1) 

where ct is the cash price in period t, ft is the corresponding futures price in period t, and bt-1 is 

the proportion of the cash purchase hedge in period t-1.  Therefore, the variance of cost, 1−tVar , 

may be written as 

  ( ) ( ) ( ) ( ), .2
1 1 12− − −= + +t t t t t t t tVar Cost Var c b Var f b Cov c f  

The first order condition for an extremum associated with the above is, after simplifying, 

  
( ) ( ) ( )1

1
1

, 0.−
−

−

∂
= + =

∂
t t

t t t t
t

Var Cost
b Var f Cov c f

b
    (A2) 

Solving (A2) for the OHR, 1−tb , yields 
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the optimal hedging ratio to be used at t–1.  At time t-2, the variance of cost is: 

 

( ) ( )( )
( ) ( ) ( )

( ) ( )
( ) ( )

2 2 1 1 2 2 1

2 2 2
2 1 2 1 2 2 1

2
1 2 2 2 1

2 1 2 1 2 1 2 1

1 2

( )

               

2 ,

2 2 ,

2

t t t t t t t t t t

t t t t t t t t

t t t t t t t

t t t t t t t t t

t t

Var Cost Var c b f f rb f f

Var c b Var f r b Var f

b Var f rb Cov f c

rb b Var f rb b Cov f f

b Cov c

− − − − − − −

− − − − − − −

− − − − −

− − − − − − − −

− −

= − + − + −

= + +

+ +

− +

− ( ) ( )
( )

1 1 2

2
1 2 1

, 2 ,

2 , .
t t t t t t

t t t t

f b Cov c f

b Cov f f
− − −

− − −

+

−

   (A4) 

where r is a discount factor.  The first order conditions corresponding to the minimization of 

(A4) with respect to 2−tb  and 1−tb are:
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   (A6) 

Expressions (A5) and (A6) represents a system of two equations in the two unknowns 1−tb  and 

2−tb .  Conveniently, given unbiased commodity markets the OHR at t - 2 is reduced to 
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This result holds because with unbiased markets—each series is represented by a martingale—so 

the futures price at t-1 may be represented as 

  1 2 1.t t tf f− − −= + ξ  

In this case the variance of ft-1, taken in t - 2, is simply 

  ( ) ( )2

2 1 2 1 .t t t tVar f E− − − −= ξ  

The futures price at time t can be written as 1 ,t t tf f −= + ξ and using the fact 

  2 1 ,t t t tf f − −= + ξ + ξ  

we have: 

  ( ) ( ) ( )2
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Therefore, from (A6) ( ) ( )1 2 1 1 2 12 2 ,− − − − − −=t t t t t t trb Var f rb Cov f f , which obtains the hedge ratio 

represented by 
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Using similar arguments it can also be shown that the hedging ratios at t–3 and t–4 are as 

presented in (5). 


