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A DYNAMIC MINIMUM VARIANCE HEDGE

Sergio H. Lence, Kevin L. Kimle, and Marvin L. Hayenga®

Most theoretical models of hedging are static, in the sense that they assume the decision
dker to be myopic (Johnson; Stein; Holthausen; Benninga, Eldor, and Zilcha). A myopic
cision maker is concerned only about two points in time: the present and some future "terminal”
‘date. In other words, a myopic agent is such that his decision horizon equals his planmng horizon,
‘which is equal to one period.! Static hedging models have been widely used to estimate optlmal
: edgcs but they implicitly impose the stringent restriction that the decision maker cannot revise
either his cash (i.e., physical) or his hedging position between the time of placing the hedge and
" the time when it is liquidated. Decision makers in real-world situations, however, face a far more
‘complex scenario. After the hedge is originally placed, the decision maker generally receives new
" information and has the opportunity of modify his cash position and adjust (possibly liquidate) the
'Eanding hedge. In addition, it may well be the case that when the original terminal date arrives it is
no longer optimal to liquidate the cash and/or the futures position.

Corn storage can be used as an illustration. Assume that at harvest (November) a farmer
st decide whether to store or not, and how much to hedge. A static model will then postulate a
rtain fixed decision horizon, say eight months, at the end of which (i.e., July) the farmer will
liquidate both the cash and the futures position. Then, according to the mean, variability, and
possibly hlgher moments of the random returns in July, the farmer will decide how much to store
and hedge in November. But such a model ignores the opportumucs to adjust the cash and futures
sitions between harvest and July. An opportunity may arise in April to liquidate both the cash
d futures positions at a much higher return than could be expected if carried through July.
ternanvely, a profitable opportumty to roll over the hedge from July to Septembcr may arise.
- In summary, the static hedging model is a very restrictive representanon of the actual
rage-hedging decision problem, because this process is dynamic in nature. A priori, models
owing the decision maker to revise his cash and futures positions after making his initial decision
‘should perform better than the static paradigm. Anderson and Danthine, Karp, Hey, Martinez and
Zering, Mathews and Holthausen, and Howard and D'Antonio are among the authors who have
telaxed the static assumption. But the models by Anderson and Danthine, Karp, and Martinez and
Zering are too complex to use in practical applications. Hey, on the other hand, makes the
‘unreasonable assumption that prices follow a constant distribution from period to period. The
odels by Mathews and Holthausen, and Howard and D'Antonio avoid the shortcomings of the
0 ther studies, but instead they are overly restrictive in that they allow updating in the futures
6smon but not in the cash position. The agent revises his original hedge between the current and
the terminal dates, but his cash position is assumed to either stay at the original level during all that

riod (Mathews and Holthausen), or to grow at a nonstochastic rate (Howard and D'Antonio).

The previous discussion highlights the need for a dynamic hedging model which allows for
pdates of both cash and futures positions, but which is still tractable enough for use in practical
pplications. Such a model is derived and discussed in the following section. Next, this model is
pplied to corn storage, and compared to static hedges and to the Mathews-Holthausen hedge: In
he final section we summarize the main conclusions of the study.

*SerUio H. Lence, Kevin L. Kimle, and Marvin L. Hayenga are, respectively, Postdoctoral Research
ociate, Research Assistant, and Professor, Depanmcnt of Economics, Iowa State University, Ames.

IMerton (p. 656) defines decision horizon as "the length of time between which the investor makes
uccessive decisions, and it is the minimum time between which he would take any action,” and planning horizon as
the maximum length of time for which the investor gives any weight in his utility function."
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The Theoretical Model

We will derive the optimal size of the current hedge for a decision maker who wants to |
optimize an objective function dependent upon his wealth at a future terminal date, and who can
revise both his cash and futures positions at least once between now and the terminal date.2 We
will denote the current date by t=0, the terminal date by t =T, and the "revision" dates by t e
through t = T-1. Note that static models are characterized by the absence of updates between
t =0 and t = T; therefore, myopic agents act as if the current date were the next-to-terminal t

i.e., static models assume t = 0="T-1.
To avoid the problems that arise from random input prices and/or stochastic output i

atra and Ullah, Hartman, Ratti and Ullah, Wright, Stewart, Perrakis

dynamic framework (B
lved in speculative storage and futures tradi

will consider the case of a competitive firm invo
speculative storage we mean that the firm stores a particular commodity with the purpose of

making a profit from the possible rise in its cash price.3 Hence, from the perspective of the
date t = 0, we can define wealth at the terminal date t =T as J
(1) WT=1rTW0+rT'1 7rl+r'r'2ﬂ:‘,_+...+r21::1-_2+-r751._1+1r,r
where Wy denotes monetary wealth at the end of the terminal date, s the per-period interes|
factor raised to the power T-t (i.e., equals one plus the per-period interest rate), and Wy

represents initial monetary wealth. 7, is the realized profit from having stored and hedged
respectively 7, ; and H. .l commodity units in the period spanning between dates t-1 and &

2 m={p-r Py * el + (Fe1e- £ H )

where: p, = cash price at date t
I, , = amount stored from date t-1todate t, [, ; 20
c(-) = variable storage cost per unit of commodity (excluding interest), ¢(-) 2

c"()z20
% T futures price prevailing at date t-1 for delivery atdate T21
f, , = futures price prevailing at date t for delivery at date T2t
H,, = proportion of storage (I, ) hedged in the futures market at time t-1 and liqu

t, for delivery at datet2t

The quantity H, ; is a hedge ratio because it is the proportion of the physical position bein
the actual amount sold in the futures market is given by the product H I, Expression
implicitly imposes the restriction 7, = 0 whenl = 0; therefore, any profit (or loss) fro

speculative futures position (i.e., a futures position different from zero when | =0) 1 pr

This poses no problem, however, because in the derivation of the dynamic hedge we W

that the only purpose of using futures is to minimize the risk of the cash position, in W
decision maker will never adopt a purely speculative futures position. Expression 2
include fixed costs because these will not affect the solution.

2To maintain consistency, we assume that revisions are made to re-optimize the original Obj 3
vantage of the better information available as time passes by. The hed%lﬂh&,-
of Chd

of terminal wealth to take ad
_generally differ from the initial hedge only because of the arrival of new information, not because

agent's objective function.
3we make this distinction clear, becau

the risk of random commodity prices.

se a firm providing storage services for a known fee WO
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A benchmark in the hedging hterature is the static minimum variance hedgc ratio (SMV) 4

e SMV is the propomon of the cash position to be hcdged in order to minimize the variance of

crmlnﬁl wealth, for a given cash position. The SMV is important because it represents the

: pumum hedge ratio for myopic agents who are extremely risk-averse (Ederington; Kahl;
Schwarz, Hill, and Schneeweis; Witt, Schroeder, and Hayenga). Another reason for the relevance

;". the SMV is that it is the opumal static hedge ratio when futures prices are unbiased, regardless
of the risk attitude of the myopic decision maker (Benninga, Eldor, and Zilcha). This case is very

o8 .ponant because there is evidence that futures are unbiased (Baillie and Myers, Martin and

" Garcia). But perhaps the most unportant reasons for its mdespread acceptance are that the SMV is
‘easy to estimate empirically, and that it is tractable enough to use in real-world situations.

Given the desirable characteristics of the SMV discussed above, and that our goal is to

" obtain a tractable dynamic hcdgc we will derive a dynamic minimum variance hedge ratio (DMV)
‘as an analogue of the SMV ratio. A fundamental difference between the SMV and the DMV

" models is that in the latter it is necessary to postulate a decision rule to calculate the cash position.

" The SMV's objective function is to choose the hedge that minimizes the variance of terminal

wealth given a certain cash position; therefore, most of the SMV literature does not address the

“problem of how the decision maker chooses his cash position. Mathews and Holthausen's

dynamlc minimum variance hedge ratio (MHMYV) does not require a cash decision rule either,

‘ because it is a hedge ratio for a given cash position that is left unmodified between the current and

" the terminal dates. In our notation, Mathews and Holthausen impose the restriction t

Iy=1,=...=1p, where [ is given. Similarly, Howard and D'Antonio assume /, = & [

; (t =1,..., T-1), where « is a known positive constant. In contrast, we want the DMV to

"specifically allow for I/l (t = 1,..., T-1) to be random, and therefore it is necessary to know how

the agent updates the cash posmon (ie., Iy,..., I;) even if I is predetermined.

: To keep the model simple, we postulatc that storage at each decision time 1 <t <T-1is
“chosen according to the following scheme:’

a. IfE(p,, () > [p, + c(0)], then [, > O satisfying E (p,,,) = {p, + [c() + I, ' )]}
b. I, =0 otherwise

‘where E () is the expectation operator conditional on the information available at date t. In
words, (3) means that the decision maker at date t chooses a cash position (/,) that maximizes the
difference between the discounted expected cash pnce and the costs of buymg and storing the
%'ommodlty If the discounted expected cash price is not sufficient to cover the costs of buying and
bstonng, then the best decision is to store nothing. Expression (3) implies that the decision maker
chooses storage in order to maximize the expected value of terminal wealth.
%’- The storage decision rule (3) may be too naive in some circumstances because it says that
the only requirement to store is to at least "break even' ' by doing so. However, it is easy to modify
&(3) to accommodate such circumstances. This modification can be accomplished by requiring the
discounted expected price to exceed the costs of buying and storing plus a certain positive
threshold margin per unit dependent on the particular preferences of the decision maker.

Another possible objection to the storage decision rule (3) is that it assumes that the
demsxon maker is able to buy the commodity. This assumption is unrealistic in the case of many

"

4The SMV is generally referred to as the minimum variance hedge, or the risk-minimizing hedge. We add
the quahfier “static" to emphasize that the SMV is derived from a static model.

5Note that total variable cost is given by [/, c(! )} because c(/,) is per-unit variable cost. Therefore,
marginal cost equals el) +1.c (I[)] When /, = 0, marginal cost reduces to c(0).
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farmers, who are primarily concerned with the decision to store their own crop, or wh
limitations or prohibitively high transfer costs make grain purchasing and storaée m 0S¢ storgg
this instance, a preferred storage decision rule for dates 1 St <T-1is Praciens

| i . ;
(3% a Ifl,>0and max;|[E(pr) -7 lpl; (r+ P+ )c(0)] >0for0<i<T
then /, > 0 satisfying I, = min(/, ,, I ), where -
* Tei A
[" = argmax (max[Bpry) - py- P+ + o+ ) eD) 1)
b. I,=0 otherwise

The scheme (3') simply states that the decision maker stores only if he has beginnin
addition he expects to profit by storing up to sometime later within the planning horig ]
stores, he will do so up to the point where expected profits are maximized if that sto zon
exceed beginning stocks, or up to the amount of beginning stocks otherwise i
To remain consistent with the SMV framework, we postulate that at e:ach decis
0 <t £ T-1 the agent decides how much to hedge in order to minimize the variance ofls't
wealth, given a particular cash position. In other words, we hypothesize that at each d
the decision maker first chooses how much to store according to (3) [or (3"), and the;
what proportion to hedge in order to minimize the variance of terminal wealti! In Sue
assume that at any decision date the agent chooses the cash position yielding tl’.lc mas
expected terminal wealth, and immediately after doing so selects the fiSk-minimiz 3
Given the optimum cash position [, the objective at the current date t=0 isg.
hedge ratio H,, that minimizes the variance of terminal wealth conditional on the informa
currently available, ie., :

4) min HOVaIO(WT)

The solution to this problem is obtained by backward induction. If the agent were al
variance of terminal wealth would be

(5)  Varp,(Wp = Varp,(7)
2 2 '
=1, [Varp (pp) + Hy " Varp  (fr4) -2 Hp ) Covy, (pr. £

by application of (1). The first order condition (FOC) corresponding to the minir
with respect to Hr_, is :

6 WD g e Ve @p-20
AL, 105 T-1 Y& U T ovr, (P fr D1 =0
which yields
« Covp (pp frp)
! T-1\P1 11
Ul - By = TR )

as the DMV for an agent standing at T-1. Note that expression (7) is also thefo
ratio when t=0="T-1. e

'Con.sidcr now the optimal decision for an agent at date T-2. The variance of
wealth in this instance is given by :
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2
=} VarT-z(”r-1) + Var (%) + 2 r Covy,(7p s Tor)
2. 2 2
=r"Ip, [Varp,(pry) +Hro Varp 5(fr.y 1.0 - 2 H12 Covy,(Pr.1» froi11)]

+ Var () + 27 I, [Covry(Pr.y» #p) - Hr Covpy(fy 110 7))

b over, (WD _ 2, 2 |
___8_15_2___1‘_ =r IT-Z [2 HT-2 VarT-z(fT-l.T-l) -2 COVT_z(pT_1, fT-l,T-l)]
T-2

-2rlp, Covy,(fr 1y 7) = 0

He = Covy,(Pr.y> f1.1 7.1) 4 Cov,(fr.1 110 %r)
e Varg ,(fr 1.1) rip, Varp,(fry 1)

B! .
s the DMV for a decision maker standing at date T-2.
|| By repeating the above procedure, we finally obtain®

. _ Covy(py, f1 ) . Covg(, 4, m,) o Covy(f; 1, Torq) B Covy(f, 1, 7o7)
0 T Vary(fy) T rip Varg(fyy) T2 L Vary(f, ) r Ig Varg(f; )

2

s the DMV at the current date t = 0.

... From (11), it can be seen that the DMV at t = 0 has two components. The first component

Y

s a standard SMV [the first term in the right-hand side of (11)], which follows from the risk
uction attributable to the relationship between cash and futures prices at date t = 1. The second
;omponent comprises the terms including Cov,(f, ). These terms reflect the contribution of
"[26 DMYV to risk reduction by accounting for the relationship between next date's futures price

fy.4) and posterior profits (7). Note that these terms are discounted, the more so the further into
;f;;::futurc the profit considered (i.e., the closer is 7, to date T). The rationale for such discounting
§ that the further into the future is a particular profit, the smaller is its share of terminal wealth, and
herefore the smaller is its proportional contribution to the variance of terminal wealth. Finally, all
},_ie Covy(f, ;, ) terms are divided by the current storage (/) because, other things equal, a larger
lurrent storage increases its share of terminal wealth, and consequently the larger is its contribution
o the variance of terminal wealth relative to the storage and hedging decisions taken at dates t = 1
hrough t = T-1.

Comparison with Previous Models
As we already mentioned, the motivation for deriving the DMV is that other hedging
nodels used in empirical applications either allow for no updates, or only allow for hedging
ipdates. Given the derivation of the DMV presented in the previous section, it is of interest to

6See Appendix A for the derivation of expression (1 1).
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co‘mparc the DMV with the alternative hedging models to better understand its advantages oy
them. :

" The most popular hedging model is the standard SMV, which is represented by

Covy(py fr.1)
(12) Hy= -——-—A—Varo(f_r‘T)

It can be shown that the standard SMV is nested in the DMV when it is assumed that (i) the '-;,

date is the next-to-terminal time or (ii) that the first revision date is the terminal time. We will Js

thern as SMV Case (i) and SMV Case (i), respectively.
In the SMV Case (i) we have, for example,

January
SMV: | - -
t=0=T-1 '
January March May July
DMV: I | e |--
t=0 t=1 t=2 t=3=T-1

Therefore, in this interpretation the standard SMV is like a DMV with the restrictions that the
no "mark to market" and that [, = [ and H, = H, for t = March, May, and July. In other'wa
the standard SMV does not allow for storage and hedging updates in March through Jul
ignores "marking to market." Note also that in this instance the SMV hedge has to be p
the September futures contract or any later contract, whereas the DMV in January can
with the March futures contract or any later contract. b

Case (ii) of the standard SMV is exemplified by

January March
SMV: ! - I
t=0 t=1=T
January | March May July
DMV: |-- it At -1 fommes

t=0 t=1 t=2
In this alternative interpretation, the standard SMV follows from the DMV by impOSIin§
restrictions 7, = 0 and H, = 0 for t = March, May, and July. This means that in this1
standard SMV assumes that the cash and futures positions will both be liquidated
that there will be neither storage nor hedging from March through September. ;i 8

A more sophisticated type of SMV is the “margin return” SMV. This hedge
because it does not allow storage and hedging updates, but it does take into accoufl
that occur as a result of "marking to market." In our notation, this hedge ratio i
imposing the restrictions /, = [ and H, = H, in expression (2), which yields

(13)  m = {p-r[p. +cUpl+ (f.y, - fi) Hol Lo

for t = March, May, and July. A close look at the "margin return" reveals tha
the standard SMV, but without the restriction of no "mark to market." ;
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‘Finally, the MHMV is a dynamic hedge ratio because it allows hedging updates, but it does
mit storage updates (Mathews and Holthausen). In such instance, I, =/, and profits can be

ted by

7, = (P~ 7 [Py + €U + (e~ i) Hid o

' md of (2), for t = March, May, and July. The advantage of the MHMYV over the SMVs is that

coounts for hedging revisions, but it is more restrictive than the DMV in that storage updates are
srecluded.

In summary, well-known applied hedging models are special cases of the DMV because
¢an be derived from the DMV by imposing specific restrictions. Hence, we can conclude that
“DMYV is a more general hedging model than any of the alternatives discussed in this section.

Empirical Results

- In this section, we will compare the empirical estimates of the DMV, the SMVs, and the

VMV, The DMV is considerably more tractable than other dynamic hedging models, but still is
more complex to estimate than either of the alternative applied hedging models. Hence, it is
important to know how different the DMV hedge position may be, and what factors may affect
ch difference in practice, in order to better assess the trade-off between its added complexity and
expected superior performance as a hedging tool.
. To compare the hedge ratios from the alternative models, we considered hedging com with
a two-month decision horizon,’ and two alternative planning horizons (four and six months). The
terminal dates were selected to match the delivery months for corn in the Chicago Board of Trade,
e.o., March, May, July, September, and December. For example, if the terminal date is December
“and the planning horizon is four months, then t = 0 = August, t = 1 =T-1 = October, and t = T=
" December. If the terminal date is December but the planning horizon is six months instead of four,
then t = 0 = June, t = 1 = August, t = 2 = T-1 = October, and t = T = December. The futures
prices are the settlement prices on the first Thursday of the month, taken from the Wall Street
Journal. Cash prices are cash prices for North-Central Iowa on the first Thursday of the month,
. reported by the Iowa State University Market News. The interest rate is the annual average of the
' interest rate for one-year T-bills, obtained from the Federal Reserve Bank of Kansas City. The
| period analyzed comprises the crop years 1978/79 through 1990/91.
' To simplify the calculations, we assumed that the decision maker has a fixed storage
capacity of Q units of com. We hypothesize that per-unit variable storage cost (c) is finite
onstant up to capacity (0 </, £Q), and is infinite above capacity (/, > Q). The specific figure

ed in the calculations is ¢ = 0.035 cents per bushel over a two-month period.?
The results are summarized in Tables 1 and 2 (see Appendix B for a detailed explanation of
the estimation procedure). Table 1 contains the hedge ratios for a decision maker with a four-
month planning horizon. It can be observed that the values for the DMV are similar to the values
of either of the SMVs. This similarity holds when the data were pooled in estimating the hedge
ratios or individually estimated for each terminal date ("Aggregate" indicates the pooled estimates).
The most dissimilar hedges are those placed in March; in this instance, the SMV Case (i) is 13
percent greater than the DMV and the SMV Case (ii) is 19 percent smaller than the DMV. The
MHMYV. on the other hand, is the hedge ratio that exhibits greater differences with respect to the
others. The most important insight from Table 1, however, is that the major differences are not

TThis means that storage and hedging decisions are revised bimonthly. ‘
8This figure is an average of the on-farm storage costs provided by lowa State University extension
specialists.




136

Table 1. Estimated hedge ratios corresponding to a four-month planning horizon

Current  Terminal Standard SMV MHMV DMV Percentage Years with

Date (0) Date(T) Case (i)  Case (ii) Storage at (Date T-1)
May September 1.02  0.89 1,15 0.93 8 (Jul)
March July 0.85 0.61 1.00 0.75 31 (May)
January =~ May 0.78 0.74 0.80 0.79 92 (Mar)
November March 0.43 0.38 0.25 0.46 38 (Jan)
August December 0.92 0.98 0.95 0.95 38 (Oct)
Aggregate Aggregate 0.88 0.82 1.00 0.86 42 (Agg)

Table 2. Estimated hedge ratios corresponding to a six-month planning horizon

Current Terminal  Standard SMV MHMV DMV Percentage Years with

Date (0) Date (T) Case (i) Case (i) Purch. No Storage at (Date T-1)

Purch. Purch. No Purch. (T-1)

Mar Sep 103 056 101 051 051 31 31 (May)
Jan Jul 085 078 099 099 101 92 100  (Ma)
Nov May 057 037 © 006 032 069 38 77 (Jan)
Sep Mar 062 079 051 084 093 23 46  (Nov)
June  Dec 093 087 08 080 087 15 31 (Aug)

Aggregate Aggregate  0.87 0.78 0.76 0.75 0.83 40 57  (Agg)
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among the alternative hedge ratios but rather among the different storage periods for each hedge
" [atio. For example, the DMV equals 0.95 when the current date is August, but only 0.46 when the
irrent date is November.

There are at least two possible explanations for the noticeable seasonal differences among
the hedge estimates. The first is that the unpooled data consist of only thirteen observations for
each estimated hedge, which leads to less precise estimates. The second is that, in fact, the hedge
ratios do change throughout the year. Evidence in this sense is provided by Baillie and Myers,
who estimated SMVs for corn by means of a bivariate GARCH model and obtained hedge
estimates covering the range of almost zero up to 1.5.

The existence of seasonal differences in the hedge ratios is particularly important in the case
of the DMV because the frequency of profitable opportunities to store vary substantially during the
" year. For example, Table 1 reveals that the decision maker would have stored from J uly to
" September in only 8 percent of the years, compared to 92 percent of the years for March to May.

- Therefore, the expected loss in the objective function from choosing the SMV Case (ii) rather than
- the DMV in May is minimal because there is a very high probability of liquidating both cash and
- futures positions in July.>-10 Similarly, the expected loss in the objective function from choosing
~ the SMV Case (i) rather than the DMV in J anuary is small because most years the agent will store
. from March to May.!! In contrast, the expected losses in the objective function from selecting the
" most appropriate SMV instead of the DMV are highest in March, November, and August, because

neither Case (i) nor Case (ii) of the SMV capture well the actual probabilities to continue storing at

the first revision date.

Table 2 reports the results for the six-month planning horizon. In this instance there are
two types of DMV: one allowing for purchases, and the other not permitting purchases [i.e.,

. storage is determined by expressions (3) and (3"), respectively]. The DMVs are more dissimilar

- with respect to the SMVs than in the case of a four-month planning horizon. For example, the
SMV Case (i) ranges from 102 percent greater to 26 percent smaller than the purchase-allowed
DMYV (in March and September, respectively). Similarly, the SMV Case (ii) ranges from 16
percent greater to 21 percent smaller than the purchase-allowed DMV (in January and November,
respectively). As in Table 1, the differences across terminal dates for each hedge ratio are greater
than the differences among hedge ratios for each terminal date. We should note, however, that the
relatively small number of observations in the unpooled estimates may exaggerate the actual
differences in the hedges, because the number of covariance estimates involved in the DMV is
considerably larger.

Our analysis reveals that a commodity with marked seasonality in prices such as corn may
offer quite different opportunities to store during the year, and that the hedge ratios may have a
substantial seasonality. This result suggests that there are circumstances in which there are larger
| Potential gains from employing the DMV instead of the most appropriate standard SMV. These
| situations arise when the probability of continuing storing at the revision dates is close to 0.5.

" When that probability is close to 1 there is little loss to expect by using the SMV Case (i) rather

- than the DMV. Similarly, if that probability is close to 0 the potential losses from employing the

' SMV Case (ii) instead of the DMV are relatively small. Note, however, that employing the SMV

- Case (ii) when the probability of continuing storing is close to 1 or the SMV Case (i) when the
probability is close to 0, leads to the worst decision. Therefore, analyzing the seasonality of the

9Recall that the SMV Case (ii) is like a DMV in which the cash and futures positions are liquidated at the
first revision date with probability 1, and that the SMV Case (i) is like a DMV in which the cash and futures
positions remain unchanged through the whole planning horizon with probability 1.
ut note that the opposite is true for the SMV Case (i), i.e., the expected loss in the objective function
is large if the SMV Case (i) is chosen in May. ‘

UBut the expected loss in the objective function is large if the SMV Case (ii) is chosen in J anuary.
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storage opportunities gives an important clue as to the circumstances in which it may be more
important to estimate the DMV, and as to which SMYV is the most appropriate to use [i.e., Case ¢
when the probability to continue storing is close to 1, and Case (ii) when that probability is cloga
0. %
As a final observation, we should also note that to estimate the DMV itis nccessa:y{ b
carefully analyze the opportunities to profit from storage. This is a very important byprodu
DMYV estimation, as those opportunities constitute the main reason to be involved in storag
However, this point is typically ignored in the standard hedging literature.
Conclusions e
A dynamic hedging model is presented. The model is developed in analogy to the ;=
traditional static minimum variance hedge ratio (SMV), and for this reason is called the dynam
minimum variance hedge ratio (DMV). The DMV is more complex than the SMV, but it is ¢ |
substantially simpler than other dynamic hedging models available in the literature. The most
important characteristics of the DMV are that it allows for updates of both cash and futures &
positions, and that it is relatively tractable for practical applications. g
It is shown that the SMV is a special case of the DMV under two alternative scena
First, the SMV equals the DMV if no hedging and storage updates are allowed within the plann
horizon [SMV Case (i)]. Second, the SMV is identical to the DMV if there is a zero probal
storing beyond the first revision date [SMV Case (ii)]. The advantage of choosing the D
instead of the most appropriate type of SMV is greater when (a) the probability to continug §t@
at the first revision date is neither close to zero nor close to one, and (b) the value of the DM
differs substantially from that of the appropriate SMV. ' [ 3
The estimation of the DMV is illustrated with an application to corn storage asst
and six-month planning horizons. In the four-month planning horizon scenario, empl
DMV to hedge corn does not lead to large potential gains in efficiency compared to us
appropriate SMV. This result is attributable to the similar values obtained for the DM
appropriate SMV, the only exception being the hedges placed in March. In the six-mon
horizon, in contrast, using the DMV is potentially important because of the larger differ
among the DMV and the SMVs, and the greater frequency of probabilities to continue
revision dates differing from near O or near 1. ,

1

Appendix A: Derivation of Expression (11) ;
By proceeding in the same way as to obtain (5) and (8), we finally obtain th
terminal wealth from the standpoint of the current date t = 0 as 1

(A1) VargWey) = Vary(r 7 + o +7 T + )

= e Varg(m) + ... + r Vary(np ) + Varg(rp) +2 e Caiig

b WL Covg(my, opy) +2 P! Cov(m,, o7) + 2
1

$ B Covy(7my, op_y) +2 P Covy(my, ep)+ .-
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T2, 2 2
(A1) Var.;,(WT)="7 I,” [Varg(p,) + Hy Varg(fy 1) - 2 Ho Covo(py, £y )]

2 T-3
$ ot F Vary(zp ) + Varg(7p) +2 r Iy [Covy(py» M) - Hy Cov(f |, )]
T 5
4= e - 2 r IO [COVO(pl, 751‘_1) & HO COVO(fI.l, 71'1-_1)]

g T-5
+2 771 I [Covy(py, i) - Ho Covglfy 1» Al +2 77 Covy(7ty, 7)
{J o2 Covy(7, op_q) +2 yor Cov(my, Bep)+ ... +2 1 Covy(7r . p)

;. _ ; FOC corresponding to the minimization of (A1") with respect to H is
b ovar,Wp 2T 2 i
(A2) __a_l(;__'r_ =r" 71y (2 Hy Varg(f; ) - 2 Covo(py, £y P)1- 277 7 I Cove(fy 4, 7))
- 0 .
- -2 I‘T IO COVQ(fl‘p 751‘-1) -2 rT ; IO C‘Wo(fl.p TET) ot

!'g_lving (A2) for H, yields expression (11).

S Appendix B: Application of the DMV to Corn Storage

- To emphasize the operationality of the DMVs, these hedge ratios were estimated by means
e 'i?it_‘:me Microsoft Excel spreadsheet except for the ARIMA model (B1). The spreadsheet is

* available from the authors upon request. The procedure to calculate the DMV corresponding to

~ date T-3 (Hq.3 ) under the storage decision rule (3) is as follows:

f. Select the futures contracts used for hedging at the current and at the revision dates.
§£ep 2, Fit models to estimate the conditional forecasts of cash and futures prices.
In this application we used monthly data for the K = 13 years from 1978/79 (k=1)

ftluough 1990/91 (k = K). We fitted the following ARIMA model to predict cash prices:
- 12 12 24
::(B].) (1 = B) (1 i B ) (1 & ale B ) ptk = (1 = ﬁ24k B ) a"k’ k = l,.-., K

%._ii}vhere B is the "backshift" operator (i.e., B py = P,;)» and a, is n.i.d. (O, Gakz). The subscript
* k highlights that the ARIMA model was updated every year, to incorporate the new data available.
~ We also fitted several ARIMA specifications to forecast futures prices, but the current
 futures price performed better than any of them. Hence, we used

3 B2) f,=f, .+
. (where u, is n.i.d. (0, 6"), to calculate the conditional forecasts of futures prices.

- Step 3. ‘Estimate the variances of futures prices at t and the covariances between futures and

b cash prices at t conditional on the information at t-1.
Following the procedure advanced by Peck, we employed expressions (B1) and (B2) to
obtain the conditional forecasts needed for the estimation of the conditional variances and

- covariances:

1 K 2
(B3) Varp,(fr;pD =g ké'l(fT-i,Tk' frimo

s

HiETRD
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1 K
(B4) CovpprpfriD =g gl[PT-ik - B P10l i - Freien o)

fori=0, 1,2, and where Er ;,(pr_y) is calculated by means of (B1).

Step 4. Obtain the ex ante optimum storage decision at each revision date.
The ex ante optimum storage was obtained by applying expression (3), i.e.,

(BS) a. IT-l-jk =Qif ]E'I‘-l-jk(p'l'-jk) >re (pT-l-jk +c)forj=0,1
b I = 0 otherwise

Step 5. Obtain the DMV corresponding to T-1. _
The DMV for T-1 was estimated by employing the variance and covariance conditional on
the information in T-1, which were computed in Step 3.

Covy Py f1.7)

Ho ' =
®B6) A, Varp,(fr 1)

Step 6. Calculate the realized profits at T.
The realized profits at the terminal date were found by using the optimal storage and
hedging at T-1 (from Steps 4 and 5, respectively):

B7) A =[P~ 7 P + O + Eroymx - frmd) Hpy"Vpyy

Step 7. " Compute the expected profits at T conditional on the information at T-2.
By application of the results in Maddala (p. 365), the expectation of profits at T conditional
on the information at T-2 was calculated as!?

(B8)  Erpy(mp) = Q (1- ry) Stdp o (Pr.1i) [Pro 11k q’(hT-z,T-ik) + O(hry 1.110]

where: Ap, 1y = Ep g (op J/I(1- 1) Stdp 5y (Pr-110)]
X = Eg(Prerid) - i P *+©)
&(-) = cumulative distribution function of the standard normal distribution
() = density function of the standard normal distribution

The values of Ep ,, (x1 ;,) and Stdy 5, (pr.,) were obtained from the ARIMA model (B1).

Step 8. Obtain the covariance between futures at T-1 and profits at T, conditional on the
information at T-2.
Given the realized profits and the conditional expected profits derived in Steps 6 and 7,
respectively, this conditional covariance was obtained as

M=

(B9 Covpar,r )= & I, (r.im~ framd U Bradmy)]

k

1}

12The derivation of expression (B8) is omitted to save space, but it is available from the authors upon

request.
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.‘ 9. Calculate the DMV at T-2.
The DMV corresponding to date T-2 was computed employing the variance and
covariances conditional on the information at T-2 (from Steps 3 and 8, respectively):

L5 H P COVT-Z(PT-I’ fT-l.T) COVT-2(fT-1,T’ 75[‘)
10) L Varp ,(fr ) 1) re Q Varg (7, )
% 10. Compute the realized profits at T-1.

- The realized profits at date T-1 were obtained using the optimal storage and hedging at T
derived in Steps 4 and 9, respectively:

{ B11) 7ryy = [Pk - i (P + ©) + (frp i - froymd Hrpoie | Ip oy

fep 11. Calculate the expected profits at T-1 and T conditional on the information at T-3.
Using formulas analogous to expression (B8), these conditional expectations are

A

B 2) Era(r0) = Q (1- 1) Stdp 3, (Pr.oy) Uip 3 1 Py 3 700) + 0Cr 3 7.0
(B13) Ep;(ny)=Q(1-1) Stdp 311 [rrs 11ic Pl ppid + 0(hr 3 1.00)]

Ao
;ﬁefe: hr.3 126 = ErseCop /(1= 1) Std 31 (pr.o)]
o h13 116 = Era G/ [(1- 1) Stdy 5 ()]
tep 12. Obtain the covariances between futures at T-2 and profits at T-1 and T, conditional
. on the information at T-3.

= - Given the expected profits conditional on the information at T-3 (from Step 11), the
;f'Or;ditional covariances were calculated as follows:

M=

1
(B14) Covyy(fr, 1 mp ) = K 2 $rom - framd [y - By (op )]
e k

1
K
(\:BIS) COVT-3(fT—2,T’ mr) = "'Ilz kg‘l (fT-?..,Tk - fT-3.Tk) [Tﬁrk - ]ET-3k(7BI'k)]

Step 13. Calculate the DMV at T-3.

it

& The DMV corresponding to date T-3 was computed by means of the variance and
Covariances conditional on the information at T-3 (from Steps 3 and 12, respectively):

=

&
:j:('Blﬁ) Hoy' = Covys(Pro fro7) i Covrs(fry 1 7ory) " eovm(f’r-z."r» r)
; ' Varps(frar) re Q Varp5(fr, 1) e Q Varps(fr, 1)

To obtain the DMV at date T-3 under the storage decision rule (3", it is necessary to
replace Steps 4 and 11 with Steps 4' and 11' below.
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Step 4'. Obtain the ex ante optimum storage decision at each revision date.
Application of expression (3) yields

(B5") a. Ip, = Qif Ep  (Po) > i (Proyc + ¢) and I, > 0
b. I = 0 otherwise

: 2
(BS") a. Iy = Qif Epy(Prid) > T Pk + ©) OF Erp(Prid > 7 P+ (r+ e
b. IT-Zk = 0 OthchiSC
instead of (B5).

R -

Step 11°. Calculate the expected profits at T-1 and T conditional on the information ar;f
Under the storage decision rule (3'), expressions (B12') and (B13") must be Cmpléji
instead of (B12) and (B13), respectively:13 5

(B12) Eq 3 (mrr.y) = Q (- ) Sty 3 (Pr.a0) lhr3 1.0 Plhpy 1) + 0lhp37.90))]
if hr3 1o 2 iy

= Q (1- 1) Stdy 3 (P12 o3 ok ka1 + 0kpa )]
if by 1.

(B13) Eqpa (7 = Q (1- 7)) Stdr 3 (P11 (A3 1.1 Pl 10 + 031,001 Pl

.“;

2
where: k13 19 = Er~31c(y',1;-2k)/ [(1-ry 3 Stdr 3 (P11
Yic = BaPraad -7 Py - (r+r)e
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