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Cost of Immediacy during Large Price Movements: Evidence from 

Corn Futures Market 

Recent years have witnessed growing presence of intra-day large price movements in corn futures 

market. This paper focuses on the behavior of bid-ask spread, a gauge for the cost of immediacy, 

during various large price movements featuring dramatic price decline/increase in a short time 

period in corn futures market, from 2014 to 2017. We specify a vector autoregressive model (VAR) 

to model the dynamics in the top of the book and use impulse response functions (IRFs) to examine 

the dynamic behavior of the spread. Our results reveal a resilient spread which is expected to 

narrow substantially within 5 – 20 seconds and completely revert back to normal state within 15 

- 40 seconds once being shocked to widen. Along with the small average magnitude of bid-ask 

spread, our results suggest that corn futures market does not appear to experience significant 

liquidity deterioration over highly volatile periods, and that traders and hedgers who demand 

immediate execution can expect to do so at a reasonably and consistently low cost throughout the 

large price movement horizon. 

Key words: corn, futures market, bid-ask spread, liquidity cost, price movements, resiliency 

 

1 Introduction 

Bid-ask spread is a transactional property of markets relevant to practitioners. It measures 

the magnitude of the price concession paid for immediate order execution [Working and 

Larson, 1967, Stoll, 2000]. It is also closely related to the concept of liquidity in that a 

liquid market is characterized by small bid-ask spread [Kyle, 1985]. In electronic markets 

currently employed by agricultural commodity trading, participants supply or demand 

liquidity by submitting limit orders or market orders, respectively. Studies on agricultural 

commodity markets reveal generally reduced execution costs represented by small bid-ask 

spreads in electronic markets [Shah and Brorsen, 2011, Wang et al., 2014]. Nevertheless, 

the positive relationship found between bid-ask spread and price volatility [Bryant and 

Haigh*, 2004, Frank and Garcia, 2011, Shah and Brorsen, 2011, Wang et al., 2014] raises 

potential concerns about the liquidity costs, in recent years when markets have witnessed 

increased volatility due to the growing presence of intra-day large price movements in 

major agricultural commodity markets. In 2014, Chicago Mercantile Exchange (CME) 

raised the price limit for grains futures in response to the increasing number of days when 

prices hit the limit. In 2015, Commodity Futures Trading Commission (CFTC) identified 

’flash events’ in corn futures market characterized by a large round-trip of prices within 

one hour1. While the intra-day large price movements have received much attention from 

market participants as well as regulators, little evidence is provided regarding the bid-ask 

spread faced by hedgers and traders during these periods when their need for immediate 

                                                 
1 Remarks of Chairman Timothy Massad before the Conference on the Evolving Structure of the U.S. Treasury 

Market, October 21th 2015, available at https://www.cftc.gov/PressRoom/SpeechesTestimony/opamassad-30. 
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execution may be most pronounced. Moreover, while most existing literature has focused 

on the magnitude of the bid-ask spread, its dynamic response to an external shock is 

argued to be a more essential consideration in optimal execution strategies [Obizhaeva and 

Wang, 2013], and therefore warrants the attention from market participants. 

Prior to the transition to an electronic trading platform, the open out-cry futures markets 

recorded only transaction prices but not bid and ask quotes. Thus, the studies on open out-

cry agricultural commodity markets have largely relied on inferring the bid-ask spread 

based on transaction data [Thompson et al., 1987, Roll, 1984, Hasbrouck, 2004]. The 

inferred bid-ask spreads, however, are found to be sensitive to the choice of estimation 

method and when further analyses are conducted using the estimated bid-ask spread, 

sometimes counterintuitive results are generated [Frank and Garcia, 2011]. Several recent 

studies involve the use of electronically-traded data for agricultural commodities [Shah and 

Brorsen, 2011, Martinez et al., 2011], but still work with transaction-price based estimator 

for bid-ask spread. The only study on the observed bid-ask spread in agricultural 

commodity markets is conducted on a daily basis and uses data from 2008 - 2010, a 

particularly turbulent period that has witnessed possibly unusual market behavior [Wang et 

al., 2014]. However, focusing on daily patterns of bid-ask spread may overlook important 

aspects of liquidity costs, since over 40 % (50 %) of orders (in volume) placed by liquidity 

providers are executed within 1 minute in corn (soybean) futures market from 2012 - 2014 

[Haynes and Roberts, 2015]. While studies on agricultural commodity markets have 

revealed quick adjustments by the market in terms of price discovery and volatility using 

intra-day data [Lehecka et al., 2014, Adjemian and Irwin, 2016, Joseph and Garcia, 2018], 

little is known about the adjustment process of the quoted bid-ask spread in agricultural 

commodity markets and its interaction with other market dynamics. 

Using the Market Depth Data from Chicago Mercantile Exchange (CME) for corn futures, 

we obtain not only actual bid-ask spread at a higher granularity, but also market depth 

which documents the number of contracts available at the best quoted price level, the 

number of transactions and the time between market events, through the reconstruction of 

the limit order book. This allows us to simultaneously model an extensive set of market 

dynamics, taking into consideration the potential co-movement of spread and market depth 

as documented in Frank and Garcia [2011] who study livestock futures markets and use 

volume per transaction as a proxy for the depth. 

To our knowledge, this is the first study to explore the intra-day dynamic behavior of bid-

ask spread in corn futures market. Bid-ask spread is an important component of transaction 

costs. Anyone who wishes to trade immediately has to sell at a lower price and buy at a 

higher price than could be otherwise achieved by posting a limit order. Therefore, the bid-

ask spread measures the costs of immediacy faced by traders, and a persistently wider 

spread imposes larger costs and yields lower profits. Since it is most relevant for traders to 

understand the cost of immediacy when the immediacy is most needed, we focus on the 

intra-day periods characterized by large price movements and high volatility from Jan 4, 

2014 to May 31, 2017. We then construct a Vector Autoregressive Model (VAR) to model 
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the top of the book as well as transactions dynamics and generate impulse response 

functions (IRFs) to examine the dynamic behavior of the spread in face of different market 

orders acting as liquidity shocks. Despite large and rapid movements in price, the spread is 

found to be not only small on average, but also resilient in face of different liquidity 

shocks. The spread reverts to its steady state quickly when unexpectedly widened. While 

the adjustment speed of the spread varies according to when the large price movement is 

observed, our findings suggest that a higher-than-average liquidity cost decreases 

substantially in 5 - 20 seconds, and the impact completely dies out in no longer than 40 

seconds. As a result, market participants who want to trade immediately should be able to 

do so at reduced costs, even if the market is experiencing large price movements. Our 

study provides the existing literature on liquidity costs in agricultural commodity markets 

with evidence of a resilient bid-ask spread over extreme periods and provides useful 

information to market participants. 

2 Relevant Literature 

Studies on liquidity costs in agricultural markets have focused mostly on the bid-ask 

spread, a price concession paid by traders who demand immediate execution of their 

orders. Numerous studies on the old open out-cry markets for agricultural commodities 

have recognized the presence of scalpers, or equivalently market makers, who earn a return 

for providing liquidity. Thompson et al. [1987] argue that scalping is efficient because of 

the competition among scalpers in providing liquidity to off-floor traders, which minimizes 

the transaction costs in futures markets. They also find that liquidity in a market is the 

primary determinant of the size of bid-ask spreads, leading to smaller costs of trading in 

more heavily traded markets. Brorsen [1989] estimated the liquidity costs in the corn 

futures market using data on transactions and revealed a liquidity cost nearly equal to the 

tick size. With the introduction of the electronic trading platform to agricultural 

commodity markets, studies involving electronic data on transactions and quotes have 

emerged. Bryant and Haigh* [2004] find larger bid-ask spreads in cocoa and coffee futures 

after the trading was automated and argue that the anonymity in electronic trading 

increases the information asymmetry and results in wider spread. In contrast to their 

findings, Shah and Brorsen [2011] reveal considerably lower liquidity costs in the 

electronic wheat market compared to the open-outcry market. Frank and Garcia [2011] 

also identify significant competitive effect of electronic trading on liquidity costs in 

livestock markets. Using the observed bid-ask spread, Wang et al. [2014] recognize that 

electronic trading leads to low and stable liquidity costs in corn futures market. 

In addition to the overall assessment of the size of bid-ask spreads in agricultural 

commodity markets, it is also of broad interest to researchers and practitioners to 

understand when and how the spread varies. Stoll [1978] was among the first to discuss 

determinants of the bid-ask spread and proposed that it is positively correlated with the risk 

during the period when dealers are holding a position. Higher risk induces higher return 

demanded for liquidity provision, and therefore leads to wider bid-ask spread. This implies 
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a positive relationship between the price volatility, which adds risk to the value of the 

inventory, and the size of the bid-ask spread. Studies conducted on agricultural commodity 

markets largely support this view. Shah and Brorsen [2011] document a positive 

relationship between volatility and bid-ask spread in wheat futures markets. Wang et al. 

[2014] use a structural model to reflect the relationship between bid-ask spread and 

volatility, and report similar results. Our analysis builds on this literature by elucidating 

how the bid-ask spread behaves during extreme market events. 

3 Data 

3.1 Limit Order Book Data 

The data used in this study are the Market Depth Dataset (MDP) for corn futures from 

Chicago Mercantile Exchange (CME). We choose corn futures because it is one of the 

most actively traded agricultural commodities and thus provides a rich amount of 

observations. This dataset contains incremental messages that can be used to reconstruct 

the limit order book and transactions at millisecond resolution. The data spans from Jan 

4th, 2014 to May 31st, 2017. Contracts of corn futures are traded with five maturities per 

year: March, May, July, September and December. For each day, we choose the most 

traded contract which is considered to contain leading information in price discovery [Hu 

et al., 2017] and also receives the most attention from market participants. 

Corn futures are traded on the Chicago Board of Trade (CBOT) using a centralized 

electronic trading platform named CME GLOBEX. Corn futures contracts are traded in 

two sessions, 8:30 a.m. to 1:20 p.m. CT (morning session) and 7:00 p.m. to 7:45 a.m. CT 

(evening session). We use data from the morning session from Monday to Friday due to 

the low volume traded overnight. 

To construct the limit order book, the incremental update messages are used to determine 

the status of the limit order book after each event (order submission, cancellation or 

transaction). The messages contain information on the time at a millisecond granularity, 

the type of the update, the contract name on which the update happens, the position in the 

order book on which the update occurs and the remaining quantity and prices after the 

update. 

The MDP contains updates happening in both the outright market and the spread market. 

The CME Group supports implied functionality which is the ability to combine spread and 

outright markets into a consolidated book with the objective to increase liquidity. The 

outright limit order book contains ten depths on both bid and ask side for corn futures. The 

implied limit order book contains two depths on both bid and ask sides. The reconstruction 

methods for outright and implied books are the same. A more detailed procedure of 

merging outright and implied order book can be found in Arzandeh and Frank [2017]. For 
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the purpose of accounting for overall available liquidity faced by market participants, the 

consolidated limit order book is used in our analysis. Figure 1 provides the daily settlement 

price for the mostly traded corn futures contracts over the data period. The dashed lines 

correspond to the day of rolling to the first deferred contract. 

 

3.2 Identification of Intra-day Large Price Movements 

Large price movements occurring during different intra-day time intervals are not equally 

likely to be anticipated by the market, and therefore might induce different market 

reactions. Brooks et al. [2003] identify that the adjustment speed of price is significantly 

slower after an unanticipated event of information arrival compared to a scheduled one. 

Graham et al. [2006] find that the information processing is affected by whether the timing 

of the information is known in advance. Distinguishing between anticipated and 

unanticipated events is thus warranted.  

Therefore, to generate meaningful results, we identify the presence of large price 

movements separately during four different trading periods, namely, mid-day with or 

without USDA announcements as well as market opening and market closing. This is 

because large price movements happening in the middle of the day are less likely to be 

anticipated by the market relative to those observed during market opening and closing, 

with the exception of those caused by USDA announcements whose timing is fully 

anticipated by the public2. In the following subsections we present a detailed procedure of 

how the large price movements are identified during different intra-day time periods. 

Mid-day Large Price Movement on Non-announcement Days 

Inspired by the CFTC’s characterization of ’hourly flash events’ in corn futures market3, 

we apply a rolling window of 60 minutes and a threshold of at least 200 basis points (bps) 

change to search for mid-day large price movements on non-announcement days. For a 

corn contract with a price of 400 cents per bushel, for instance, 200 bps movement 

corresponds to a change of 8 cents per bushel in price, or $400 in total value of the 

contract. With the minimum price fluctuation for corn futures being 0.25 cents per bushel 

(1 tick), the 200 basis points movement results in a price movement of 32 ticks. 

To account for intra-day seasonality as discussed before, for each trading day, the first 15 

and the last 15 minutes of the morning session are excluded and separately considered in 

                                                 
2 With the absence of identifiable public information, the price volatility is found to be significantly higher during the 

market opening and closing period in the morning trading session [Lehecka et al., 2014], likely due to the clustering of 

private information that arrives overnight. This reflects intra-day seasonality and thus is largely anticipated by the 

participants. 
3 CFTC defines an hourly flash event to be the one where price moves at least 200 basis points within an hour but 

recovers to within 75 basis points of initial price within the same hour. 
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the following subsections. We use mid-quote at millisecond granularity as the price. The 

procedure is summarized as follows: 

(a) Roll the time window starting from each mid-quote observation and identify if there 

is a price movement larger than 200 basis points in this time window. 

(b) If a price movement larger than 200bps is found, record the time it reaches the 

minimum (maximum), and repeat (a) after this point. 

(c) If no large price movement is found, repeat (a) starting from the next mid-quote 

observation. 

This procedure identifies a total of 33 large price movements in the sample period, 

including 16 price decreases and 17 price increases. The days observed with mid-day large 

price movements constitute about 4 % of the total trading days in our data. The intervals 

from the starting of the price decrease (increase) to the minimum (maximum) point are 

then chosen as the samples for further analysis. The average magnitude of price 

movements for these identified events are 217 basis points. 

Mid-day Large Price Movements after USDA Announcements 

The USDA announcements such as WASDE, Crop Production, Grain Stocks, Perspective 

Planting and Acreage reports, are major reports affecting corn futures, and are well-known 

to cause large price movements [Isengildina-Massa et al., 2008, Lehecka et al., 2014]. 

During our data period, these reports are released at 11:00 a.m. CDT. Since the market 

adjusts quickly to the incoming information [Lehecka et al., 2014], the post-announcement 

period is chosen to be the 15 minutes after the USDA report release, or equivalently 11:00 

a.m. - 11:15 a.m. We drop 2015/08/12 because the corn futures price hit limit following the 

release of the USDA reports, resulting in potentially abnormal market behaviors4. 

Throughout our sample period, there are in total 51 announcement days and 20 have 

witnessed price movements over 200 basis points within 15 minutes after the 

announcement. We thus choose these 20 announcement days for further analysis. The 

average magnitude of price movements in this case is 319 basis points and the days chosen 

represent 2.5% of the total trading days. 

Large Price Movements during Opening and Closing 

The opening period is chosen to be the first 15 minutes of the trading session on each 

trading day, or equivalently 8:30 a.m. - 8:45 a.m. The closing period is chosen to be the 

last 15 minutes before the morning trading session ends5. Since the 15-minute price 

                                                 
4 On 2015/08/12 at 11:00 a.m., USDA released WASDE and Crop Production. Corn price plunged and hit price limit at 

around 11:08:52, with no selling happening for 3 seconds and best ask volume rising to over 1700, about 28 times higher 

than the previous 8 minutes. 
5 On July 6th, 2015, CME changed the closing time from 1:15 p.m. CDT to 1:20 p.m. CDT. Therefore, closing period is 

chosen to be 1:00 p.m. - 1:15 p.m. before the change and 1:05 p.m. - 1:20 p.m. after the change. 
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movement during market opening and closing is less likely to reach 200 basis points 6, we 

choose the 20 opening (closing) periods experiencing the maximum price movements. We 

calculate the magnitude of price movement during opening (closing) as the difference 

between the highest (lowest) price and the opening (closing) price. The average magnitude 

of the price movements in these selected days is 167 basis points during the opening period 

and 116 basis points during the closing period, representing the 2.5% of days in our 

sample. 

3.3 Summary of Identified Large Price Movements 

This subsection presents the summary of the identified large price movements with a focus 

on the bid-ask spread. Figure 2 shows the monthly distribution of the selected large price 

movements. 

Several months are observed to experience large price movements more than others: April 

when the corn is planted in its primary growing regions across the United States, June and 

July when the growth of the corn is in the most critical stage and October when the harvest 

is in process. Specifically, the number of mid-day large price movements evidently spikes 

in July, two months prior to the harvest season. This is consistent with the previous 

findings where corn futures trading in July tend to witness higher volatility than other 

periods throughout the year [Anderson, 1985, Kenyon et al., 1987]. In terms of price 

movements during opening and closing, April, June, July and October are found to have 

greater numbers than other months. September is the only month that contains large price 

movements only induced by the release of USDA reports in our data. 

Figure 3 records the second-by-second bid-ask spread averaging over the selected periods. 

The bid-ask spread is first aggregated to 1-second level using the mean within this second 

for each large price movement, and then averaged across those events. During the mid-day 

large price movements on non-announcement days, the mean bid-ask spread fluctuates 

around one tick, its minimum size, showing no significant sign of liquidity deterioration in 

terms of the tightness of the market. As shown in Table 1, the average bid-ask spread is 

$0.0026 per bushel during the mid-day large price movements, a magnitude close to one 

tick. 

On USDA announcement days, the bid-ask spread immediately jumps to a significantly 

higher level following the announcement, reaching over $0.0055 per bushel. The spread 

then decreases sharply, stabilizing in less than 200 seconds. The average bid-ask spread in 

this case is $ 0.0029 per bushel as shown in Table 1, slightly higher than other periods 

examined. Furthermore, Table 1 shows that the best bid and ask volume as well as the rest 

of the book depth is significantly lower than other periods. The combination of higher 

                                                 
6 There are only 2 opening periods and 1 closing period observed with over 200 bps movement from Jan 4th, 2014 to May 

31st, 2017. 
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spread and lower depth indicates relatively worse liquidity conditions than in non-

announcement days. 

The bid-ask spread during opening and closing does not exhibit distinctive patterns, except 

that the spread is found to be relatively higher when market just opens. The average spread 

is $ 0.0027 per bushel during opening and $ 0.0026 per bushel during closing. 

To conclude, the magnitude of average bid-ask spread observed during different large price 

movements turns out to be relatively small, close to its minimum value during most of the 

time, indicating an overall low cost of immediate execution faced by market participants 

during these periods. 

In the following section, we model the limit order book and transactions dynamics through 

a vector autoregressive (VAR) specification and examine the behavior of bid-ask spread 

during large price movements, providing information on the time profile of the spread in 

response to liquidity shocks. 

4 Method 

4.1 Model Specification 

In this section, we aim at exploring the dynamic behavior of bid-ask spread in the corn 

futures market, a purely order-driven market. This can be achieved by considering a vector 

autoregressive (VAR) specification that models the top of the book prices and quantities as 

a system, similar to Hasbrouck [1995] and Engle and Patton [2004]. In corn futures 

market, liquidity suppliers submit limit ask or bid orders specifying a price and a quantity. 

The dynamics of the spread are thus primarily determined by the differential behavior 

between best bid and ask prices. Incoming trades convey information on the underlying 

value that moves the best quoted prices [Hasbrouck, 1991], but existing theories suggest 

conflicting implications in terms of their impact on bid-ask spread. Glosten and Milgrom 

[1985] find that market orders cause the spread to fall, as the uncertainty regarding the 

information is partially resolved by the (direction of the) trade. In contrast, Easley and 

O’hara [1992] argue that trades lead to higher uncertainty for market makers regarding 

whether an information event has just occurred and thus results in wider spread.  

The spread is also argued to interact with the depth quoted by liquidity suppliers. Kyle 

[1985] predicts that times of greater information asymmetry lead to both wider spread and 

lower depth. Empirical evidence has confirmed a negative relationship between the spread 

and depth both in hybrid and order-driven markets [Lee et al. 1993, Ahn and Cheung 

1999], indicating that limit order traders actively manage both price and quantity 

dimensions of market liquidity. Our model is constructed in event time so as to avoid the 

loss of information in aggregating data and the ambiguity in choosing the sampling 
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frequency. The depth also partially captures the on-going realized volatility since it is 

shown to vary with it [Engle and Lange, 2001]. At last, following Lo and Hall [2015], we 

also include the duration between each event in the model to facilitate the conversion from 

event time to calendar time. 

The aforementioned consideration leads to a set of endogenous variables as follows: 

𝑥𝑡 = {𝑝𝑡
𝑎, 𝑝𝑡

𝑏 , 𝑣𝑡
𝑎 , 𝑣𝑡

𝑏 , 𝑑𝑡, 𝑏𝑢𝑦𝑡 , 𝑠𝑒𝑙𝑙𝑡}
′,  

where 𝑡 corresponds to an event time index indicating changes in the above variables 

resulting from either an incoming market order, a limit order submission or cancellation. 

We express the best bid and ask prices,  𝑝𝑡
𝑎 and  𝑝𝑡

𝑏 in logarithms, since taking logarithms 

not only helps reduce the influence of extreme values and mitigate heteroscedasticity, but 

also resolves the problem of bid and ask only moving in discontinuous fashion by tick size. 

𝑣𝑡
𝑎 and 𝑣𝑡

𝑏 represent the (displayed) number of contracts in logarithm associated with the 

best ask and bid 7 respectively and is considered the best quoted depth at event 𝑡. 𝑑𝑡 
indicates the clock time elapsed between each event measured in seconds and serves the 

purpose of converting the event time to the clock time, allowing us to present the results in 

a more intuitive way. Finally, 𝑏𝑢𝑦𝑡 and 𝑠𝑒𝑙𝑙𝑡 are indicators for buyer-initiated trade and 

seller-initiated trade, respectively, which take the value of 1 when a buyer (seller) -initiated 

trade occurs, and 0 otherwise. A detailed description of the variables can be found in Table 

2. 

We first check the stability of our system by conducting Augmented Dickey-Fuller (ADF) 

tests on the endogenous variables in vector 𝑥𝑡 for each large price movement period. As 

expected, the best bid and ask prices are found to be integrated of order one in 90 and 91 

out of 93 cases, respectively, as shown in Table 3. Other endogenous variables as well as 

the log spread calculated as the difference between log quote prices (𝑠𝑡 = 𝑝𝑡
𝑎 − 𝑝𝑡

𝑏), reject 

the null of unit root in all sample periods. This leads to use a vector error correction model 

(VECM) in which only best bid and ask prices are cointegrated with spread acting as the 

error-correction term. The other stationary variables just correspond to other cointegrating 

vectors constituted by themselves. As such, the model can be formally written as: 

Equation 1 

Δ𝑥𝑡 = 𝜇 + 𝛼𝛽
′𝑥𝑡−1 +∑Ψ𝑖Δ𝑥𝑡−𝑖

𝑝−1

𝑖=1

+ 𝜖𝑡 

with the cointegrating matrix 𝛽 being specified as: 

                                                 
7 The data do not include the iceberg orders which are not displayed to other market participants. Moreover, since there is 

only a marginal proportion (less than 5%) of transaction being executed beyond the posted best ask and best bid during our 

sample period. (See Table 4) 
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𝛽 =

(

  
 

1 0 0 ⋯ 0
−1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1)

  
 

 

where the constant term 𝜇 captures any potential non-zero mean remaining in both the 

equilibrium relationships and the differenced series (See Hendry and Juselius [2001], 

Section 6.1). 

The VECM we considered above embeds a reduced form VAR for the log spread, log mid-

quote return as well as the level of depths, duration and trade indicators, analogous to 

Engle and Patton [2004] and Lo and Hall [2015]. This representation is more appealing 

than the original VECM given that the log spread, which is of most interest to us, as well 

as the remaining variables, are stationary. It also allows the interactions between the spread 

and other market dynamics to be directly observed. To obtain the reduced form VAR, we 

apply a rotation matrix defined as below: 

𝑅 =

(

 
 

1 −1 0 ⋯ 0
0.5 0.5 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1)

 
 

 

 

Multiplying both sides of Equation 1 by 𝑅 yields: 

Equation 2 

𝑅Δ𝑥𝑡 = 𝑅𝛼𝛽
′𝑥𝑡−1 +∑𝑅Ψ𝑖𝑅

−1𝑅Δ𝑥𝑡−𝑖

𝑝−1

𝑖=1

+ 𝑅𝜖𝑡 

where 𝑅𝑥𝑡 = {Δ𝑠𝑡, Δ𝑞𝑡, Δ𝑣𝑡
𝑎, Δ𝑣𝑡

𝑏 , Δ𝑑𝑡, 𝛥𝑏𝑢𝑦𝑡, 𝛥𝑠𝑒𝑙𝑙𝑡}. Here, Δ𝑠𝑡 = Δ𝑝𝑡
𝑎 − Δ𝑝𝑡

𝑏 and Δ𝑞𝑡 =
0.5(Δ𝑝𝑡

𝑎 + Δ𝑝𝑡
𝑏) are changes in log spread and changes in the midpoint of log bid and ask 

prices (log mid-quote return), respectively. By construction, the changes in bid and ask 

prices are fully reflected in these two variables (Δ𝑠𝑡 and Δ𝑞𝑡), and the dynamics of log 

spread is explicitly modeled. Further manipulation of equation 2 leads to the implied VAR 

model: 

Equation 3 

𝑦𝑡 = 𝑐 +∑𝐴𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝑢𝑡 

where 𝑦𝑡 = {𝑠𝑡, Δ𝑞𝑡, 𝑣𝑡
𝑎 , 𝑣𝑡

𝑏 , 𝑑𝑡, 𝑏𝑢𝑦𝑡, 𝑠𝑒𝑙𝑙𝑡} and the transformation implies that the second 

column of 𝐴𝑝is zero. Derived from the original VECM, this re-specified VAR is a stable 

system that maintains the efficient parameterization and can be estimated equation by 

equation using OLS with the second column of 𝐴𝑝 removed [Lo and Hall, 2015]. 
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Instead of concatenating data, estimation of equation 3 is conducted for each large price 

movement observed during different intra-day periods to avoid potential structural breaks. 

To determine the lag number p, we use Ljung and Box [1978] to test for serial correlation 

in the residual series. The results indicate that inclusion of 14 lags is sufficient to remove 

the serial correlation in the residuals for post-USDA announcement large price movements 

when the quoting activities are most intensive. Similar procedure leads us to include 12 

lags during mid-day large price movements, and 8 lags for opening and closing price 

movements. We anticipate the heteroskedasticity in the residuals due to the presence of 

large price movements, and therefore use White-consistent estimator of variance-

covariance matrix for inference. 

4.2 Dynamic Behavior of Bid-ask Spread 

The dynamic behavior of the spread can be obtained from IRFs that measure the 

adjustment path of the expectation of 𝑦𝑡 in response to the occurrence of shocks in the 

multivariate system: 

Equation 4 

𝑓(ℎ; 𝜎𝑦) = 𝐸𝑡(𝑦𝑡+ℎ|𝑦𝑡 + 𝜎𝑦, 𝑦𝑡−1, ⋯ ) − 𝐸𝑡(𝑦𝑡+ℎ|𝑦𝑡, 𝑦𝑡−1,⋯ ) 

where ℎ indicates the number of future steps and 𝜎𝑦 indicates the changes in 𝑦𝑡 induced by 

the shocks. We compute the spread IRFs to different shocks defined below. 

4.2.1 Unexpected market orders as liquidity shocks 

In this section, we consider the liquidity shocks in the form of different types of 

unexpected market orders that result in the deviation from the system’s steady state. 

Emerging from the error term of the system, the unexpected market order induces changes 

in 𝑦𝑡 that cannot be explained by historical information, and thus could alter the 

subsequent market expectation of the spread through the dynamic interactions estimated in 

equation 3. Let 𝜎𝑦 be the shock vector representing the change in 𝑦𝑡 induced by the 

unexpected market order. Computation of the IRF in equation 4 requires defining the size 

of the shock (𝜎𝑦) and the state of the system before the shock occurs. All variables are 

initialized to their long-run equilibrium. Following Lo and Hall [2015], the long-run 

equilibrium is determined by the unconditional mean over all sample periods and the trade 

indicator is set to zero to represent a tranquil period. 

We design the unexpected market order to be similar to what we see in the market to 

accommodate representative situations. Due to the linearity of VAR model, the absolute 

magnitude of the shock vector is of less importance as it does not alter the shape of IRFs. 

Table 4 demonstrates the summary of different types of market orders during the sample 

period by type of large price movement. For each type, trades executed within the best bid 
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and ask are predominant. Such trades, on average, consume approximately 10% of the 

depth at best quoted prices. A small portion of transactions result in direct changes of 

prevailing best bid or ask price by executing against all available contracts, while a 

marginal portion walks down (up) the limit order book and is partially filled by the limit 

orders posted on second level bid or ask. 

Analogous to these three situations, we consider three representative shocks summarized 

as follows: 

1. Normal Market Orders (Scenario NMO): This scenario arises when an unexpected 

market order is executed within the best bid or ask level and consumes 10% of the 

depth at best bid or ask. 

2. Aggressive Market Order (Scenario AMO): This scenario arises when an unexpected 

market order is executed against all the depth available of the prevailing best bid or 

ask. This scenario is characterized by instantaneous changes in mid-quote and bid-ask 

spread as one of the best quotes moves one tick away from the top of the book. The 

exhausted level is replenished with the available depth at the previous second-best 

quote. 

3. Aggressive Market Order Walking through the L1 Depth (Scenario AMOW): This 

scenario arises when the unexpected market order is executed against all limit orders 

of best bid or ask as well as 50 % of those of the second-best quotes, i.e., ’walking 

through the first level of depth’. This results in not only the immediate change in mid-

quote and spread, but also the depth at the previous second-best quote that 

automatically becomes the current best one. 

Table 5 summarizes the shock vectors of each scenario introduced above. For each 

scenario, shocks caused by market buy order as well as market sell order are included. 

4.2.2 Impulse Response Functions 

This section presents the calculation of impulse response functions. We do not use 

orthogonalized impulse response function here since we are not interested in the casual 

relationships between variables, but rather the overall movements of the whole set of 

market dynamics in the system. Moreover, the contemporaneous relationships among the 

variables are captured by the construction of the shock vectors [Hautsch and Huang, 2012]. 

Since the system in equation 3 is stationary, then by Wold representation theorem, it can be 

equivalently expressed in a VMA(∞) form as follows: 

𝑦𝑡 = 𝑣 + Φ0𝑢𝑡 +Φ1𝑢𝑡−1 +Φ2𝑢𝑡−2 +⋯ 

where Φ0 = 𝐼𝐾 and for 𝑖 > 0, Φ𝑖can be calculated recursively using the equation below 

[Hamilton, 1994]: 
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Equation 5 

Φ𝑖 = 𝐴1Φ𝑖−1 + 𝐴2Φ𝑖−2 +⋯𝐴𝑝Φ𝑖−𝑝 

where {𝐴𝑗}𝑗=1
𝑝

 are the coefficients of the VAR model in equation 3. 

It is then straightforward to see that matrix Φℎ corresponds to 

𝜕𝑦𝑡+ℎ
𝜕𝑢𝑡

′ = Φℎ,  

thus Φℎ(𝑖, 𝑗), the element in row i column j in matrix Φℎ, represents the consequences of 

one unit increase in 𝑗-th innovation at time 𝑡 on the 𝑖-th endogenous variable at time 𝑡 + ℎ. 

Then the impulse-response function in equation 4 can be calculated using 

𝑓(ℎ; 𝜎𝑦) = Φℎ̂𝜎𝑦 

where Φℎ̂ is calculated by replacing the{𝐴𝑗}𝑗=1
𝑝

 in equation 5 by its OLS estimator {𝐴𝑗̂}𝑗=1
𝑝

. 

In particular, to obtain the impulse response function of the spread, we only need to focus 

on the first element of 𝑓(ℎ; 𝜎𝑦) for any ℎ. 

Taking into consideration the potential heteroscedasticity, we generate the confidence 

interval for the impulse response functions using the wild bootstrapping method proposed 

by Wu [1986]. The bootstrapping procedure is repeated for 1,000 times for each 

estimation. 

4.2.3 Converting Event time to Calendar Time 

Due to the tick data used in estimation, the impulse response function illustrates the 

dynamic adjustment path of the bid-ask spread to different shocks in event time. However, 

it is more informative to present the evolution of bid-ask spread in calendar time for a 

given shock. Because the high-frequency data used in our sample are irregularly spaced, 

additional steps are needed to convert the event time to calendar time. 

Since inter-event duration is endogenous in our model, it is possible to calculate the 

conditional expected duration at each update t. As suggested by Manganelli [2005], one 

can feed into the system the unconditional mean of original series of duration and compute 

the expected timing of future events by progressively cumulating these durations. Denote 

the unconditional mean of duration as 𝑑̅, then the timing of s-th event time is obtained by: 

𝐸(𝑑𝑡+𝑠|𝑦𝑡 + 𝜎𝑦, 𝑦𝑡−1, ⋯ ) = 𝑑̅ +∑[Φ𝑖]𝑘∙𝜎𝑦

𝑠

𝑖=1
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where [Φ𝑖]𝑘∙ represents the k-th row corresponding to the position of the variable duration 

in the model. Obviously, the expectation of the timing is conditional on the initial shock. 

 

5 Empirical Results 

5.1 Estimation results of VAR model 

This section presents the estimation results of the system of equations in 3. The estimated 

VAR system contains 7 equations that capture the extensive interactions among spread, 

mid-quote return, best quoted depth, duration and their lagged values. The estimation 

procedure is conducted for each large price movement period to avoid potential structural 

breaks generated by concatenating the data. This results in 33 separate estimations for mid-

day large price movements, 20 for post-announcement large price movements and 20 for 

large price movements in opening and closing respectively. For the sake of brevity, we 

report parameter estimates as follows. For each variable, we define a coefficient group 

which includes all coefficients related to the variable’s lag structure. We conduct a joint 

Wald-test on each coefficient group using the White-consistent estimator of the standard 

errors to determine the statistical significance of this coefficient group. Finally, we group 

the results by the four different types of large price movements (mid-day, post-

announcement, opening and closing), reporting the mean sum of each coefficient group, as 

well as the proportion of the coefficient groups being positively or negatively significant 

for each event-type. This allows us to summarize our results in a relatively concise fashion, 

and also maintain the possibilities for comparison across different types of large price 

movements. The summary of results can be found in Table 7. 

Overall, the estimated coefficients are largely consistent with our expectations and the 

findings of existing literature. The average adjusted 𝑅2 is high for log spread and log 

depths equations, above 0.9 in general, while lower for log mid-quote return and duration 

equations. The joint Wald-test identifies multiple significant coefficient groups in each 

equation and also the existence of several two-way Granger causality relationships that 

further justify the VAR specification of the system. Moreover, the magnitude of 

coefficients and the significance varies substantially across different types of large price 

movements, indicating that the market indeed behaves differently during large price 

movements observed in different intra-day time intervals. 

Specifically, the estimated coefficients in the equation of log spread (𝑠𝑡) show that the 

spread exhibits strong persistence: the coefficients associated with the lagged spread are 

positive and significant during all large price movements. The results also reveal a 

significantly negative correlation between the spread and the past value of the depth at best 

bid or ask. At the same time, equations of the best quoted depth (𝑣𝑡
𝑎 and 𝑣𝑡

𝑏) show that the 

depth is negatively affected by the lags of spread, indicating a two-way Granger causality. 

This is consistent with the findings of Lee et al. [1993] for NYSE and Ahn and Cheung 
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[1999] for SEHK that higher spread is accompanied by lower depth. In corn futures 

market, liquidity providers also adjust both the spread and depth during large price 

movements to manage their risks. The relationship, however, is weaker during closing 

periods relative to other large price movements. This is possibly due to both the perceived 

information risk by liquidity providers during a large price movement that could warrant a 

wider spread, and the typical requirement to close positions before market closing that 

might cause them to post a greater depth or reduce the proportion of iceberg orders [Esser 

and Mönch, 2007]. Interestingly, the coefficients associated with the trade indicators are 

positive but only significant in a limited proportion of large price movements, with the 

post-USDA announcement price movements having the greatest magnitude as well as the 

highest ratio of significance. This implies that liquidity providers infer higher degree of 

information asymmetry from trades arriving after the announcement and tend to widen the 

spread subsequently, but still to a very limited extent. Shang et al. [2016] also find that 

although the adverse selection component of bid-ask spread in corn futures market 

increases after USDA announcement, the total variation of the spread is minimal. 

Results of equation mid-quote return (Δ𝑞𝑡) show positive autocorrelation of mid-quote 

return except post-announcement large price movements. As expected, this short-run 

predictability of return is due to the sample featuring the directional large price movements 

and is not necessarily a sign of market inefficiency. The coefficients of trade indicators 

𝑥𝑡
𝑏and 𝑥𝑡

𝑠 lead to significant quote revision activities consistent with standard 

microstructure theories. The uninformed liquidity providers infer from the direction of the 

trade the current underlying value of the commodity and submit limit orders accordingly, 

which leads to a higher mid-quote return after a buyer-initiated trade and lower mid-quote 

return after a seller-initiated one. This effect is most pronounced during post-

announcement large price movements in terms of the magnitude of the coefficients 

associated with 𝑥𝑡
𝑏and 𝑥𝑡

𝑠 which are about three times larger than mid-day and opening 

price movements, and nearly ten times larger than closing. This corresponds to higher price 

impact of trades during times of higher information asymmetry. Moreover, significant two-

way associations between the return and the depth at best quoted prices are observed. 

Higher depth at best bid helps predict a higher subsequent return, while higher depth at 

best ask helps predict a lower return. This is consistent with Cao et al. [2009] that the 

imbalance between limit buy orders and limit sell orders contributes to price discovery. 

Furthermore, the past mid-quote returns are shown to relate to the current depth at best 

quoted prices (shown in equation 𝑣𝑡
𝑎 and 𝑣𝑡

𝑏) where a higher return would attract more 

limit sell orders and a lower return would attract more limit buy orders. This direction of 

Granger causality, however, is much less significant during post-announcement large price 

movements. 

By including duration in the system, we are also able to examine the relationships between 

the frequency of the limit order book updates and the observed market conditions. In 

equation duration (𝑑𝑡), the significant negative relationship between duration and the 

spread is most pronounced, indicating that book events tend to cluster after a wider spread 
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is observed. This effect is found to be greatest during mid-day large price movements. The 

duration is also negatively affected by the arrival of trade and positively affected by the 

depth. Therefore, the frequency of book updating increases either after an incoming market 

order or a depletion of the depth. 

5.2 Impulse responses of the spread 

In this section, we present the impulse response functions that capture the dynamics of 

spread during large price movements. The shocks are constructed to represent six types of 

unexpected market orders that cause a deviation of the spread from its steady state and are 

examined individually for each large price movement. The 95% confidence intervals are 

generated by Wild bootstrapping for each shock. As our model is constructed in event 

time, the impulse response is originally generated in event time, too. By recursively 

accumulating the expected duration as described in section 4.2.3, we calculate the time in 

seconds corresponding to each event time for each impulse response function. 

Due to space constraints, we generate average impulse response functions in calendar time 

for each type of large price movement: mid-day, post-announcement, opening and closing. 

This is done by taking average of the response of spread as well as the calendar time 

corresponding to each step. Therefore, the resulted impulse response function could be 

viewed as the average adjustment of the spread after the shock and the average time taken 

for the adjustment. Figures 4 to 7 display the average impulse response of spread for the 

four types of large price movements. 

Mid-day large price movements 

Figure 4 presents the average impulse responses of spread across 33 mid-day large price 

movements. The points on the horizontal line indicate the average number of events 

occurred before the impact of the shock is no longer significantly different from zero. Mid-

day large price movements are those where the price moves over 200 basis points within 

an hour during the middle of the trading session and are less likely to be anticipated by the 

market. As noted, occurrence of such large price movements in a time interval as short as 

one hour turns out to be rare for corn futures market (they are observed in only 4 % of the 

total trading days in our sample), and thus might be conjectured to be accompanied by 

heightened pressure for market liquidity as what multiple other markets have experienced8. 

The impulse response functions, however, indicate a resilient spread that reverts back to its 

normal level in a quick fashion. 

Specifically, in the scenarios where the unexpected buy or sell NMO order arrives (two top 

panels in figure 4), the spread has a tendency to widen subsequently, consistently with the 

information-based microstructure theory where the unexpected trade raises the information 

                                                 
8 ’Flash event’ in U.S. treasury futures market on October 15 2014 led to a significant strained liquidity according to 

the joint staff report (’The U.S. Treasury Market on October 15, 2014’). ’Flash crash’ on May 6, 2010 involving multiple 

U.S. financial markets resulted in liquidity crisis and trading halt. 
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asymmetry perceived by liquidity providers and leads to wider spreads. Such an increased 

liquidity cost is found to have a limited magnitude and little persistence. The change on the 

vertical axis indicates that after the shock, the extra cost of immediacy is only 

approximately 0.001 % of the current price, corresponding to 0.004 cents per bushel if the 

transaction happens at 400 cents per bushel. This impact fades substantially over the first 5 

seconds after the NMO, and the effect completely dies out in less than 10 seconds. 

The scenarios characterized by different aggressive market orders share a similar 

adjustment path and time profile, as shown in the lower panels in Figure 5. At time 0, the 

spread is unexpectedly widened by 1 tick as a result of the liquidity shock and is shown to 

drop sharply immediately. In 10 to 20 seconds, the spread has virtually returned to its 

steady state with hardly any visible difference remaining, implying that traders can expect 

to demand immediacy at a barely higher-than-average cost even after large and aggressive 

transactions being observed. On average, the adjustment process of the spread takes less 

than 35 seconds before incoming new liquidity completely offsets the initial deviation. 

This is consistent with Biais et al. [1995] who found evidence that investors quickly place 

limit orders within the best quotes if the spread is large to gain price and time priority. The 

behavior of liquidity providers in corn futures market does not seem to steer away from 

this principle even in the presence of mid-day large price movements. As a result, it is 

expected that frequent traders or hedgers, whenever demanding immediate execution, are 

very likely to incur a reasonably and consistently low cost throughout the price movement 

period. 

Post-announcement price movements 

USDA announcements usually induce large responses from the agricultural commodity 

markets. For corn futures, USDA announcements contain important information on yield 

and stocks, for example, and are found to be highly valued by market participants. In 

average, the price movement following the release of USDA reports turns out to be the 

largest among all trading periods, and its timing is well-known to the public. Figure 5 

presents the adjustment path of spread estimated from 20 announcement days with the 

magnitude of price movement being at least 200 basis points. In sharp contrast to the 

particularly volatile post-announcement period, the spread behaves resiliently. 

In the upper panel, the unexpected NMO induces a positive impact on the spread, about 2 

times the magnitude in mid-day large price movements. This implies higher information 

asymmetry perceived by the liquidity providers, as the same market order would be 

considered more likely to contain superior information. This is consistent with Kim and 

Verrecchia [1994] who point that the disclosure of public information allows some traders 

to make better forecast of the underlying value of the commodity than other traders, and 

that liquidity providers are unable to distinguish between these two groups of traders. The 

impact of a normal market order lasts significantly longer in event time than mid-day large 

price movements, an indication of deterioration of liquidity following the announcement. 
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However, it dissipates quickly in calendar time due to the active quoting activities 

clustering after the report release, and completely dies out in as short as 8-10 seconds. 

The aggressive market orders induce similar adjustment paths for the spread, as shown in 

the lower panels in the figure. Immediately after being widened, the spread decreases 

dramatically in only 5 seconds, indicating a quick attempt of liquidity providers to fill in 

the gap in only 5 seconds. This higher liquidity cost faced by traders, again, is short-lived 

as the spread completely returns to its normal level in less than 15 seconds. The results are 

consistent with Brooks [1994] who found that although the adverse selection component 

increases after the announcement, its duration is often short, and the bid-ask spread tends 

to revert back to normal level quickly. With such a resilient spread, hardly any difference 

is there in terms of when to trade, even if the USDA announcement surprises the market 

and induces a large price response. 

Opening and Closing price movements 

Unlike large price movements in the middle of the trading session, the price movements in 

the opening and closing are commonly observed and contribute to the intra-day seasonality 

of the return variability. The behavior of the spread during market opening and closing is 

of particular interest to practitioners as it helps them to make more informed decisions in 

day-to-day trading. Figures 6 and 7 show the average impulse response functions of the 

spread during opening and closing large price movements, respectively. 

Shown by the upper panels of these two figures, the impact of an unexpected NMO on the 

spread exhibits different magnitude, depending on whether it occurs at open or at close, an 

indication of different degree of information asymmetry perceived by the market. An 

identical liquidity shock induces a wider spread that lasts longer in both event time and 

calendar time during opening price movements than closing price movements, as liquidity 

providers tend to infer a higher probability of being adversely selected around market 

opening than around market closing. However, the impact of this shock is limited as for its 

magnitude and duration. The extra liquidity cost corresponds to additional 0.0015 % of the 

price during opening price disappears in less than 4 seconds, while the magnitude and 

duration of the extra liquidity cost is even smaller and shorter for closing price movements. 

In response to aggressive market orders that unexpectedly widen the spread by 1 tick, the 

adjustment path shows sharp and then steady decrease in the spread in both opening and 

closing price movements. The widened spread reverts to its steady state within 15 seconds 

or equivalently, 147 events in general, for different types of aggressive market orders 

during opening price movements, while the same process takes nearly 30 seconds (about 

225 events) to complete during closing price movements. This indicates a higher incentive 

for liquidity providers to act in response to a spread that is wider than expected when the 

market opens than when the market approaches the end of the session, probably because 

liquidity providers are less willing to enter positions and increase inventory towards the 

end of the day session. Nevertheless, the higher liquidity cost induced by the shock 
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witnesses a substantial drop in 5 - 10 seconds during both periods, recovering by over 99 

% towards its steady state. Since a persistently higher cost of immediacy is not likely to 

occur, traders would find limited difference in execution costs if trading at different time 

throughout opening and closing price movements. 

6 Conclusion 

Bid-ask spread is an important component of transaction costs in corn futures markets. It 

measures the price concession paid for immediate execution and is viewed as the common 

gauge of liquidity costs faced by traders. As corn futures market has witnessed a growing 

presence of intra-day large price movements and increased volatility in recent years, much 

attention has been drawn to market participants and regulators regarding the liquidity costs. 

In this paper, we focus on large price movements observed during the middle of the day 

session, after the USDA announcements, as well as in the market opening and closing 

periods from Jan 2014 to May 2017. These intra-day large price movements may feature 

intensive inflow of information, anticipated or not, and varying perception of the 

underlying price, during which the demand of immediate execution is most pronounced, 

but the supply is potentially under stress. 

Our findings first reveal an overall small bid-ask spread throughout different types of intra-

day large price movements. The spread is on average 0.01 or 0.02 cents larger than its 

minimum level of 0.25 cents/bushel, with a tendency to be slightly higher during post-

USDA announcement large price movements, reaching an average of 0.29 cents/bushel. 

This finding supplements Wang et al. [2014] who find a generally small bid-ask spread 

almost impervious to short-term changes in demand for spreading and trend-following 

trade activities in corn futures market from 2008 to 2010. 

To understand how the cost of immediate execution changes over time, we then study the 

dynamic behavior of the spread during the large price movements. Using a vector 

autoregressive specification, we model the top of the book as a system where liquidity 

provision is driven by public limit orders that determine the prevailing best bid and ask 

prices, and therefore the spread. Our estimation results reveal significant dynamic 

interactions among an extensive set of market variables including the log spread, log mid-

quote return as well as the log depths at best ask and bid, and are largely consistent with 

the predictions of existing microstructure theories. Using impulse response functions, we 

examine the dynamic behavior of the spread in face of representative market orders acting 

as liquidity shocks. We find that despite the large and rapid movement in price, the spread 

is resilient as it reverts quickly to the steady state once being widened unexpectedly. Our 

results suggest that a higher-than-average execution cost is expected to be short-lived, 

typically dropping substantially in 5 - 20 seconds and lasting no longer than 40 seconds, 

with the specific adjustment speed differing upon when the large price movement is 

observed. In contrast to other markets that have witnessed significantly deteriorated 

liquidity characterized by persistently increasing bid-ask spread accompanying large and 
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unexpected price movements, the corn futures market maintains not only a small bid-ask 

spread on average during the large price movements, but also a resilient one that responds 

fast to deviations from the expectation, leading to a consistently low liquidity cost no 

matter when execution.  

To conclude, we find little evidence of corn futures market suffering from significantly 

strained liquidity condition or growing difficulties to execute market orders even during 

periods of unexpected and rapidly developing price movements. Our analysis provides 

insights of how the liquidity cost behaves when the market is experiencing large price 

movements along with high volatility and can potentially help traders and hedgers in corn 

futures market to make more informed decisions.  
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Figure 1: Settlement price of mostly traded corn futures contracts 

Note: The dashed lines in Figure 1 indicates the time for rolling from the nearby contract to the deferred one. 

 

 

Figure 2: Monthly Distribution of Large Price Movements 
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Figure 3: Second-by-second Bid-ask Spread during different sample periods 

Note: The bid-ask spread is first aggregated to 1-second level using the mean within this second for each large 

price movement, and then averaged across those events, namely, 33 mid-day large price movements, 20 post-

announcement, opening and closing price movements respectively. 
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Figure 4: Average impulse responses of spread: 33 mid-day large price movements 

Note: The figure above presents average impulse responses of spread across 33 mid-day large price movements 

under different shocks. The points on the horizontal line indicate the average number of events occurred before 

the impact of the shock is no longer significantly different from zero. 
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Figure 5: Average impulse responses of spread: 20 post-announcement large price 

movements 

Note: The figure above presents average impulse responses of spread across 20 post-announcement large price 

movements under different shocks. The points on the horizontal line indicate the average number of events 

occurred before the impact of the shock is no longer significantly different from zero. 
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Figure 6: Average impulse responses of spread: 20 opening large price movements 

Note: The figure above presents average impulse responses of spread across 20 opening large price movements 

under different shocks. The points on the horizontal line indicate the average number of events occurred before 

the impact of the shock is no longer significantly different from zero. 



30 

 

 

Figure 7: Average impulse responses of spread: 20 closing large price movements 

Note: The figure above presents average impulse responses of spread across 20 closing large price movements 

under different shocks. The points on the horizontal line indicate the average number of events occurred before 

the impact of the shock is no longer significantly different from zero.  
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