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Causality and Price Discovery: An Application of Directed Acyclic Graphs  
 

Directed Acyclic Graphs (DAG’s) and Error Correction Models (ECM’s) are employed 
to analyze questions of price discovery between spatially separated commodity markets 
and the transportation market linking them together.  Results from our analysis suggest 
these markets are highly interconnected but it is the inland commodity market that is 
strongly influenced by both the transportation and commodity export markets. However, 
the commodity markets affect the volatility of the transportation market over longer 
horizons.  Our results suggest that transportation rates are critical in the price discovery 
process lending support for the recent development of exchange traded barge rate futures 
contracts. 
 

I Introduction 

To date, a large amount of research has been undertaken to evaluate the extent to 

which spatially separated markets are integrated.  The popularity of the subject matter is 

driven in part by the fact that finding continual deviations from the equilibrium level of 

integration might imply that riskless arbitrage opportunities exist.  However, despite the 

fact that freight rates are notoriously volatile, and the fact that over 5.5 billion tonnes, or 

98% of annual world trade is carried by sea, the role of the transportation market in 

testing for integration within the marketing channel has been largely ignored in the 

literature.1  A few notable exceptions do exist.  For instance, important research 

undertaken by Geraci and Prewo (1977) confirmed that it is vital to include transportation 

costs in the study of integration among spatially separated markets. Goodwin, Grennes 

and Wohlegant (1990) conclude that failing to account for volatile freight rates can lead 

to erroneous conclusions in empirical trade research.  They carefully demonstrate this 

point by finding stronger support for the Law of One Price only after they accounted for 

shipment costs. 
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Only a handful of studies have directly isolated the effect that volatile freight 

prices might have on the price discovery process.  These include Haigh and Holt (2000), 

Hauser and Neff (1990) and Haigh and Bryant (2001).  While the first contribution 

emphasized the importance of ocean freight volatility within the marketing channel, it 

was the latter contributions that isolated the extent to which domestic freight volatility 

(specifically volatile barge rates) contributed to the level uncertainty.  However, both 

studies failed however to discuss in any detail exactly how the prices were linked and did 

not assess in any detail issues relating to causality among the markets.  

Because of the importance of transportation rates in the price discovery process, 

there has always been considerable amount of interest in developing a forward/futures 

market for transportation services (Hauser and Buck, 1989).  Indeed, in May of 1985 the 

BIFFEX freight futures contract was launched at the London International Financial 

Futures Exchange (LIFFE).  The contract, based off an index of shipping prices compiled 

by the Baltic Exchange was designed to hedge freight price risk in the dry-bulk sector of 

the ocean shipping markets.  Indeed, because of its uniqueness (it was the only futures 

contract on a service) and because of its potential importance, several researchers have 

investigated its use from a hedging standpoint.  Examples include Thuong and Visscher 

(1990), Kavussanos and Nomikos (1999, 2000) and Haigh and Holt (2000).  These 

studies invariably conclude that the BIFFEX market is not a particularly effective 

hedging instrument and does not provide the price risk protection evidenced in other 

futures markets.  Each concludes that its weak performance as a hedging instrument is 

due to the fact that the contract was based on an index of shipping routes making the 



 2 

hedge less appealing and hence the trading volume lower.  As anticipated, in June 2001 

LIFFE announced that trading in the BIFFEX contract would cease in April 2002 because 

of low trading volumes.2  It seems therefore that there is no way to predict with any 

degree of accuracy whether or not a new futures contract will be successful, but it may be 

possible however to provide some quantitative indicators of how important that market is 

likely to be.  This could be especially true if that market is influential or highly 

influenced in the price discovery process within a marketing channel and causes a 

significant source of risk for traders in that market.3   

The current study makes contributions to the issue of evaluating the potential 

success of a futures contract from several angles.  Using recent high frequency price data 

we adopt a new framework to analyze the relationship between inland grain prices in 

Illinois, export grain prices at the U.S. Gulf and the barge market that links them 

together.  In particular, we employ Directed Acyclic Graph (DAG) theory which, to date, 

has been surprisingly underutilized in both the economics and finance fields.4  The 

unique methodology allows us to examine the causal pattern of contemporary 

relationships among the innovations in the three markets, based off of the familiar Error 

Correction Model (ECM).  Critically, our DAG analysis allows us to address the 

construction of the data-determined othoganization on contemporaneous innovation 

covariance, critical in providing sound inference in innovation accounting (Swanson and 

Granger, 1997) and is used here to assess the dynamic relationships between these 

markets.  From a practical standpoint, this assessment of both the degree of 

interconnectivity and direction of causation within the marketing channel will be of 
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practical use to physical traders in this marketplace and be of use to exchange 

administrators interested in assessing the potential role and success of a new derivative 

contract. 

Therefore it is also the objective of this study to focus on the importance of the 

barge market and explain in detail its role in the price discovery mechanism of the export 

marketing channel.  Indeed, data provided by the United States Federal Grain Inspection 

Service over the period May 6th 1999 – May 3rd 2001 (the same time period analyzed in 

this study) suggest a priori, the relative importance of the barge market.  For instance, the 

total amount of grain exported out of the U.S. within this time period was 258.84 million 

tonnes of grain on 16586 different vessels to a total of 131 different countries.  Of that 

total number, 134.26 million tonnes (51.9% of the total) was shipped out of the U.S. Gulf 

(the vast majority of which originated via barges along the Mississippi River) on 7187 

different vessels to 101 different countries. 5 Isolating the importance of the barge market 

is of particular interest here simply because trading in barge futures contracts for the 

particular stretch of river analyzed in this study began at the St. Louis Merchants 

exchange in December of 2000.6 

 The rest of the paper is organized as follows.  Section II provides an overview of 

the econometric methodologies employed in the paper.  Section III describes the data, 

and Section IV presents the empirical results.  The last section, Section V, concludes. 

II Econometric Methods  

 A considerable amount of research has attempted to evaluate the degree of 

interconnectivity between markets employing time-series techniques appropriate for non-
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stationary and cointegrated data.  In particular, much work on applied cointegration 

analysis has relied on Johansen’s multivariate approach (Johansen, 1988, 1991; Johansen 

and Juselius, 1990) and readers are directed to these papers for a more complete 

explanation of the methodology.  Examples of papers employing such techniques include 

Chowdhury (1991) and Goodwin and Piggott (2001).  

 First, assume an n-dimensional vector of nonstationary time series, tY , (n = 3 

here). Assuming all variables are non-stationary and the existence of cointegration, then 

as shown by Johansen and Juselius (1990) the data generation process can be written as 

error-correction representation as follows: 

∑
−

=
−− +Π+∆Γ=∆

1

1
1

k

i
ttitit YYY ε .       (1) 

 Equation (1) is nothing more than Vector Autoregression (VAR) (in first 

differences), with an inclusion of the lagged- level component, which is known as the 

Error Correction Term.  The combination is simply known as an Error Correction Model 

(ECM).  Π  is a (3x3) coefficient matrix that may be factored as 'αβ  if cointegration is 

present.  The β  matrix is a matrix of cointegrating parameters and the matrix α is a 

matrix of weights (also known as the speed of adjustment parameters) with which each 

cointegrating vector enters the n equations.   Hypothesis tests can also be conducted on 

these matrices.  However, as is the case of standard VAR’s, the individual coefficients 

associated with the ECM can be somewhat difficult to interpret, particularly those 

associated with the short-run dynamics captured within iΓ .7  Consequently, innovation 

accounting techniques may be the best way to describe the structure and 
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interdependencies among the prices within the export marketing channel (Swanson and 

Granger, 1997).  Therefore, given the ECM, impulse response analysis can be undertaken 

(based on an equivalent levels VAR) to summarize the dynamic interrelationships among 

the prices.  Undertaking the impulse response analysis in this way addresses the necessity 

of imposing the cointegrating relationships into the system, which has very recently been 

proven to be crucial in yielding consistent impulse responses and forecast error 

decompositions (Philips, 1998).   

 However, the basic problem of the orthoganalization of residuals from the ECM 

remains somewhat unresolved.  Most studies employing ECM or VAR’s have yet to fully 

address the problem associated with the contemporaneous relationships among variables.  

Despite this, innovation accounting techniques require that a causal assumption about 

contemporaneous correlation be made.  Early work in this area employed the Choleski 

factorization, with more recent applications concentrating on a ‘structural’ factorization 

suggested by Bernanke (1986) and Sims (1986) simply because researchers may not view 

the world as being recursive (Cooley and Leroy (1985)).  However, the problem with 

both the Bernanke (1986) and Sims (1986) approach is that it is assumed that the 

researcher has knowledge of the correct structural model (which is unlikely to be the 

case).  Directed graphs offer a solution to this problem. 

Directed Acyclic Graphs 

The literature on Directed Acyclic Graphs is extensive.  We refer the reader to 

Pearl (2000) and Spirtes, Glymour and Scheines (2000) for treatments.  Briefly, a 

directed graph is a picture representing causal flow between or among a set of variables.  
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We use letters (V1,V2,…,Vn ) to represent variables and lines (these lines are also called 

edges) with arrowheads at one end representing causal flows (e.g. V1àV2 is used to 

indicate V1 causes V2).  We focus on graphs with directed edges (the edge in the 

representation V1à V2 is called a directed edge).  More elaborate graphs involving 

undirected edges and bi-directed edges, while not resulting in directed graphs, are studied 

in the references cited above.    Further, we will be concerned with paths (a path is a 

series of variables connected by line segments) containing no cycles; where a cyclic path 

begins with a variable, say V1 and eventually returns to V1 (e.g.,  V1à V2à V1).  Graphs 

with no cycles are said to be acyclic.  Here we are interested in independence and 

conditional independence constraints put on variables under alternative causal flows 

between variables.  Directed graphs provide the visual representation of that flow; the set 

of independence or conditional independence conditions which are implied by that graph 

are not (necessarily) obvious.    

  Pearl (1986) proposes d-separation as a graphical characterization of the 

conditional independence relations entailed by a graph.  Verma and Pearl (1988) give a 

proof of this proposition.  D-separation is understood using three subsets of variables A, 

B and C in a graph, G.   For any path, say p between a variable in set A and a variable in 

set C, the set B is said to block the path p if there is a variable Vi on the path satisfying 

one of the following:  (i) variable Vi has converging arrow along the path and neither Vi 

or any of its descendants are in B; or (ii) Vi does not have converging arrows along path p 

and Vi is a member of set B.  Set B is said to d-separate A from C on graph G if and only 

if B blocks every path from a variable in set A to a variable in set C.    
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 The conditional independence restrictions can thus be read off of the graph by 

merely asking whether two variables are d-separated in a particular graph.  So, for 

example if we have a causal chain on four variables, X1àX2àX3àX4, and if we use 

correlation (denoted by D) to measure dependence; d-separation tells us that the following 

conditions hold 8:   

D( Xi ,  Xj ) Ö 0; i,j = 1,2,3,4 

D( X1 , X2 | Xj )  Ö 0 , j = 3,4 ;  D( Xj , X3 | X4 )  Ö 0 , j = 1,2 ;   D( X2 , Xj | X1 )  Ö 0 , j = 3,4; 

D( X3 , X4 | Xj )  Ö 0 , j = 1,2 ;  D( X1 , X2 | X3,X4 )  Ö 0  

D( X1 , X3 | X2 )  = 0 ; D( X1 , X4 | X3 )  = 0 ; D( X1 , X4 | X2 )  = 0 ; D( X2 , X4 | X3 )  = 0. 

  Recently Swanson and Granger (1997) examined the contemporaneous 

relationships among innovations (residuals) from a vector autoregression. Under a 

maintained hypothesis that causal flow on innovations follows a causal chain, they 

consider the constraints on partial correlation (on observed innovations) and the use of 

ordinary least squares (ols) regression for testing these constraints.  In particular, their 

Theorem 3.1 (page 361) makes three important points.  First, they establish the 

relationship between vanishing ols estimates and vanishing partial correlation between 

observed innovations from a first stage VAR, when the original innovations are generated 

as a (causal chain) recursive ordering.  That is to say, if we use ols regression of observed 

innovations ûit  on observed innovations ûjt and ûkt , where a recursive ordering generates 

the “true” innovations,  ukt à ujt à uit, the coefficient associated with  ûkt, call this êk*, 

will be zero if and only if the partial correlation between the true uit and ukt given ujt 

equals zero.   Second they show the asymptotic equivalence of ols estimates based on 

observed innovations and ols estimates based on true innovations for this recursive 
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ordering.  So a regression of observed innovations from series i (ûit) on observed 

innovations from series j (ûjt) and observed innovations from series k (ûkt) will yield 

asymptotically valid inference on the relationship between true innovations uit, ujt, and 

ukt.  Finally, they point-out the problem with using ols regression to make inferences on 

other partial correlation constraints, for the recursive flow (ukt à ujt à uit à uht ) due to 

the inconsistency of ols.  That is to say, this recursive causal flow suggests that the partial 

correlation between ûkt  and  ûjt  given ûht should be non-zero (see results given above 

based on d-separation) .  However an ols regression of ûkt on ûjt and ûht will be 

inconsistent, since innovations on h are themselves a function of innovations on k.    

Below we use the partial correlation (based on Spirtes, Glymour and Scheines (1993)) 

and not ols regression to test for causal relations between observed innovations in series.  

 Spirtes, Glymour and Scheines (1993) have applied d-separation in an algorithm 

(PC Algorithm) for building directed graphs.  PC algorithm is a sequential set of 

commands that begin with an unrestricted graph where every variable is connected with 

every other variable and proceeds step-wise to remove lines between variables and to 

direct "causal flow.” The algorithm is described in detail in Spirtes, Glymour, and 

Scheines (1993, p.117).9   

Briefly, the algorithm (we will summarize only the generic aspects of PC 

algorithm) begins with a complete undirected graph G on the vertex set X.  The complete, 

undirected, graph shows an undirected line between every variable of the system (every 

variable in X).  Lines between variables are removed sequentially based on zero 

correlation or partial correlation (conditional correlation).   The conditioning variable(s) 
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on removed lines between two variables is called the sepset of the variables whose line 

has been removed (for vanishing zero order conditioning information the sepset is the 

empty set).   Edges are directed by considering triples X  Y  Z, such that X and Y are 

adjacent as are Y and Z, but X and Z are not adjacent.   Direct lines between triples:  X 

 Y  Z as X → Y ← Z if Y is not in the sepset of X and Z.  If  X → Y, Y and Z are 

adjacent, X and Z are not adjacent, and there is no arrowhead at Y, then orient Y  Z as 

Y → Z.  If there is a directed path from X to Y, and a line between X and Y, then direct  

(X  Y) as: X →Y. 

 In applications, Fisher’s z is used to test whether conditional correlations are 

significantly different from zero.  Fisher’s z can be applied to test for significance from 

zero; where: 









−
+





 −−=

|)|,(1
|)|,(1|

ln3||
2
1

)),|,((
kji
kji

knnkjiz
ρ
ρ

ρ ,    (6) 

and n is the number of observations used to estimate the correlations, )|,( kjiρ is the 

population correlation between series i and j conditional on series k (removing the 

influence of series k on each i and j), and |k| is the number of variables in k (that we 

condition on).  If i,j and k are normally distributed and r(i,j|k) is the sample conditional 

correlation of i and j given k, the distribution of )),|,(()),|,(( nkjirznkjiz −ρ is 

standard normal.  PC algorithm and its more refined extensions are marketed as the 

software TETRAD II (Scheines, et al 1994). 

  As an alternative to PC algorithm we also investigate direct scoring on alternative 

causal models on observed innovations.  In our problem under study we have three 
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variables:  innovations on barge rates, soybean prices in Illinois and soybean prices at the 

Gulf of Mexico.  This gives us a manageable number (25) of alternative acyclic graphs, 

each of which can be scored using one of several statistical loss func tions.  It is of interest 

to see if the DAG selected by statistical scoring results in the same model as PC 

algorithm.   

III Description of the Data  

The data for this study cover a two-year time period, from May 6th, 1999 to May 

3rd 2001, totaling 520 daily observations for each of the time-series.  The mid point of the 

original daily closing Illinois and Gulf soybean bid prices were provided by the Illinois 

Department of Agriculture and the USDA Agricultural Marketing Service respectively.  

Grain barge rate data covering the same period were also collected for the stretch of river 

beginning south of Peoria.  Specifically, first, weekly barge rate information was 

collected from the USDA, Agricultural Marketing Service, Transportation and Marketing 

Division.  This weekly rate (Wednesday quote) reflects the current rate as a percent of the 

historic benchmark tariff rate (southbound barge freight call session basis trading 

benchmark (July 1979)).  From this figure the dollar per ton rate was obtained by 

multiplying the quoted rate (a percentage of the benchmark rate) by the historic 

benchmark rate associated with the south of Peoria region.  Such a data series was used 

by Haigh and Bryant (2001).  Daily rate data were also collected from a large grain 

trading company that transports grain on a daily basis along this stretch of the river.  The 

data cannot be shared for confidentiality reasons, but to ensure its reliability the 

Wednesday daily price from the grain trading company was compared with the USDA 
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price.  Because both series were found to be almost identical the daily grain and daily 

barge rates were used throughout.10   

Summary statistics on all the prices are presented in Table 1.  As one might 

expect, the average (mean) grain price at the Gulf is greater than that at Illinois, with the 

difference being slightly greater than the barge rate linking the two together.  Indeed, 

Figure 1 Panel A plots the daily grain prices at Illinois and the Gulf, and the spread (Gulf 

– Illinois) and the barge rate are presented in Panel B.  This graph also illustrates the 

strong degree of interconnectivity between these price series.  As can be seen in Table 1 

the degree of volatility varies among the price series with the grain price series exhibiting 

identical levels of uncertainty (as measured by the Coefficient of Variation). 

Interestingly, barge rate volatility is several times as great as the grain price volatility.  

Haigh and Byrant (2001) also found the excess volatility found in this market (relative to 

other markets).  The discussion above indicates that the barge prices and the grain prices 

are linked together.  However, it does not provide detailed evidence on the dynamics of 

these linkages as well as on the existence of causation among them.  It is those issues that 

we now turn to. 

IV Empirical Application 

Estimation of the Error Correction Model 

In order to implement our ECM we first check the order of integration of each of 

the price series within the marketing channel.  As can be seen from Table 2, each series is 

integrated of the first order confirming that the analyses will be conducted on the 

differenced price series.  The ECM was then estimated using the maximum likelihood 
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technique outlined by Johansen and Juselius (1990).  The lag length order was selected 

based on the Schwarz- loss criterion, (as shown in Table 3).11  Table 3 (top panel) presents 

the decision rule based on the trace tests for the number of cointegrating vectors.  Using 

critical values provided by Osterwald-Lenum (1992) we first fail to reject the null 

hypotheses on r ≤ 1and so the ECM is modeled with one cointegrating vector.  Residuals 

from this estimated ECM seem to be well behaved.  Specifically, Lagrangian Multiplier 

tests for first and fourth order autocorrelation are calculated using an auxiliary regression 

as described by Godfrey (1988, Chapter 5).  We reject both first and fourth orders of 

autocorrelation comfortably with p-values of 0.74 and 0.20 respectively.  We do however 

detect some evidence of remaining ARCH effects and reject the assumption of 

multivariate normality (at the 1 percent level of significance).  While ARCH or GARCH 

effects and deviations from multivariate normality do not seem to adversely affect 

inference on cointegration analysis (Gonzalo (1994) and Lee and Tse (1996)), it is 

unclear of their influences on DAG analysis.12  

We also test the individual elements of 'β against zero in the factorization 

Π='αβ  and investigate the possibility of weak exogeneity of each of the series (testing 

whether each element of the α vector is equal to zero) and the results are presented in the 

lower portion of Table 3.  In particular, the middle panel explores the possibility that one 

of the three series is not in the cointegrating space.  We firmly reject the null that price i 

is not present in the cointegrating space for each series.  With respect to the short-run 

adjustment toward the long run relationships, α , we also test for weak exogeneity on 

each market.  For each market we test for whether or not it responds to perturbations in 
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the cointegrating space.  Inspection of the lower panel of Table 3 suggests that both the 

Illinois and Gulf markets are weakly exogenous and the barge market does all the 

adjusting to the long-run equilibrium.  

Perturbations in our equilibrium relationship was found to be represented as zt = 

Illinois - .066(Barge)-1.061(Gulf), where zt represents stationary deviations in the long-

run equilibrium between the two sets of prices.  The t – statistic associated with the barge 

market suggests that the transportation market does respond to the export marketing 

channel equilibrium.  Put simply, if the price of the Illinois market is high relative to its 

long-run equilibrium, the barge market responds downwards in period t + 1.  This is an 

especially intuitive result given that one would expect the demand for barges to decrease 

(and hence prices fall) if the price of grain in Illinois increased.  The other part of the 

ECM framework that isolates the short run dynamics is through the Γ matrix (see 

equation (1)). Casual inspection of the reported t – statistics associated with this matrix 

suggests that the dominant market is the barge market (all parameter estimates and 

associated t - statistics are excluded to conserve space but are available upon request).  

The coefficient associate with the lagged differences from the barge market is significant 

on itself and the Illinois market.  Interestingly changes in the Illinois and Gulf markets in 

period t - 1 enter no market in period t with a statistically significant coefficient.   

Innovation Accounting  

As previously mentioned, the patterns of response and strengths of the 

relationships among the prices that make up the export marketing channel are quite 

difficult to decipher by focusing on the individual coefficients separately, either through 
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the speed of adjustment parameters, iα or through the short run dynamics matrix, Γ .  A 

more suitable way to summarize the dynamic relationships between these markets is 

through well-known innovation accounting techniques, applied to the ECM outlined in 

equation (7).  However, as previously mentioned, crucial to such analysis is the method 

used to treat contemporaneous innovation.  In this study we adopt the factorization 

known as the “Bernanke ordering”.  Write the innovation (residual) vector ( tν ) from the 

ECM as tt εν =A , where A is a 3 x 3 matrix and tε  is a 3 x 1 vector of orthogonal 

shocks.  As illustrated by Doan (1992, 8 – 10), a factorization is identified if there is no 

combination of i and j (i ≠ j) for matrix A where both { }ija and { } jia are non-zero where 

{ } ija is an element i,j of matrix A in this instance. Here we employ the algorithm 

presented in Spirtes et al. (1993) in order to place zeros in the A matrix. 

 Innovations from our ECM give us the contemporaneous innovation correlation 

matrix, Σ  (representing the innovations as iν ).  The equation below (7) presents the 

lower triangular elements of the correlation matrix on innovations (ν̂ ) from the ECM 

where the entries are presented in the order, Illinois, Barge and Gulf: 
















−=Σ

1.00   .049   919.
1.00  084.

00.1

)ˆ( tν .        (7) 

DAG theory points out that the off-diagonal elements of the scaled inverse of the 

)ˆ( tνΣ matrix are in fact the negatives of the partial correlation coefficients between the 

corresponding pair of variables given the remaining variable(s) in the matrix (Whittaker 
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1990, p.4). The off-diagonal elements of the scaled inverse of the )ˆ( tνΣ matrix, denoted 

by )ˆ(*
tνΣ , where the * indicates that we have scaled the inverse matrix: 
















−=Σ

1.00   .321   927.
1.00  327.

00.1

)ˆ(*

tν .        (8) 

For example, the partial correlation between innovations in prices in the Illinois 

market and the barge market, given innovations in the Gulf market is -.327.  Under the 

assumption of multivariate normality, Fishers z statistic can be applied to test for 

significance from zero (see Equation (6)).  In this case, the correlation between Illinois 

and the barge market (-.327) is significantly different from zero at all conventional 

significance levels (with an associated p - value = .000).  Interestingly, in this case all 

conditional partial correlations are significantly different from zero.  That is, the partial 

correlation between the Illinois market and the Gulf market given innovations in the 

barge market is .927 (p - value of .000) and the partial correlation between the barge 

market and the Gulf market given innovations in the Illinois market is .321 (again a p-

value of .000).  Curiously, the partial correlations between the Illinois and the barge 

market and the Gulf and the barge market are of the intuitively correct sign.  That is, one 

would expect an increase in Illinois prices to cause a decrease in barge prices (less 

demand for barges given the higher price of grain for export), a result found previously 

when we standardized the cointegrating vector on the Illinois price.  Moreover we find 

here that an increase in Gulf prices tends to cause an increase in barge prices; a result 

consistent with the notion that increase in demand for barges would drive these prices 

upwards given the higher export prices at the Gulf.  
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The theory of DAG’s as given in Spirtes et. al (1993) provides an algorithm for 

removing edges between different markets but also directs causal flow of information 

between markets.  The algorithm starts with a complete undirected graph (like the one 

shown in the top panel of Figure 2) where innovations in every market are connected 

with innovations in every market.  The algorithm then starts to remove edges based on 

simple correlations.  Indeed, in this analysis, it was found that the sample correlation 

between the Gulf market and the barge market was not significantly different from zero 

( GB,ρ = .0486 with a p -value of .2681), so we could remove the edge between the Gulf 

market and the barge market.  However, the edges between the Gulf market and the 

Illinois market and the correlation between the barge market and the Illinois market could 

not be removed.  As such, only the edges connecting the barge market to Illinois and the 

Gulf market and Illinois remain.  The next step of removing edges is based on the partial 

correlations. Here, correlations between the Gulf market and the Illinois market 

conditional on the barge market and between the barge market and the Illinois market 

conditional on the Gulf market are found to be non-zero.  Accordingly, we can not 

remove the edges Illinois  barge and Illinois  Gulf.  

 Edge removal, based on correlations and partial correlation results in the triple: 

Gulf  Illinois  barge, using the notation from Figure 2.  Since the edge between Gulf 

and barge was removed using the unconditional correlation test (recall GB,ρ = .0486 with a 

p - value of .2681), we can direct this remaining triple as: Gulf → Illinois ←barge, as we 

show in Panel B of Figure 2.  Here, Illinois is a collider – receiving information from 

both the Gulf market and the barge market.  As such (as a collider) it opens up the 
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information flow between the Gulf and barge markets.  Recall from Equation 8, the 

conditional correlation between the Gulf market and the barge market is .321 and has a p 

– value of .000. 

 As further evidence of the causal path shown in Panel B of Figure 2, we consider 

scoring all possible acyclic representations on information flow in contemporaneous 

time.  As we have three variables scoring all 25 alternative graphs is feasible.  These are 

labeled, 1, 2, …, 25 in Figure 3. We apply a modified Schwarz- loss metric to each 

acyclic graph. 13  The score for each model is given beneath each graph in italics. 

           SL* = log(|Σ*|) + klog(T)/T.   

Here Σ* represents a diagonal matrix consisting of the diagonals elements of the variance 

covariance matrix associated with a linear representation of the disturbance terms from an 

acyclic graph fit to innovations from the ECM.  

 Notice that the minimum SL* metric results from model 13:  B à I ßG.  The 

SL* statistic associated with this model is -.484.  This is the same model suggested by 

TETRAD II; although we’ll see below that at least one other model is not ruled out by 

our SL* scoring.     The edge I,G is clearly the most  important edge in the system.  

Notice the score associated with models 4 and 5. Here the I,G edge gives us the lowest 

single edge score (-.304). Compared to SL* measures for models 2, 3, 8, and 9, where the 

I,G edge is missing.  These latter models give SL* measures that are greater than +1.87.  

A qualitatively similar result is found from all two-edge models.  Within the set of two 

edge models (these are models 11,12,13,14,16,17,18,19,21,22,23 and 24), those that 

eliminate the I,G edge (models 18, 19, 22, and 23) have larger SL* metrics (in a 
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neighborhood of 1.7 to 1.8), relative to models that include the I,G edge. The latter 

models result in SL* metrics ranging over -.296 to -.484. 

 Choice between model 13 (B à I ßG) and model 21 (I à G ßB) is not clear-

cut, as both have the dominate I,G edge and both result in similar SL* metrics (-.484 for 

model 13 and -.482 for model 21).   Recall from our use of TETRAD II, that the B,G 

edge has an unconditional correlation of  .049 and associated p-value of 0.26.  While the 

I,B  has an unconditional correlation of -.084 with a p-value of 0.05.  So even the 

TETRAD II is choosing between these two candidate models based on relatively slight 

differences in p-values.   

Forecast error decompositions and impulse responses (one standard deviation 

shocks from the ECM’s) based on the DAG’s are provided in Table 4 and Figure 3 

respectively.  The forecast error decompositions allows us to consider which prices 

within the export marketing channel are statistically exogenous or endogenous relative to 

each other at differing forecast horizons.  As can be seen from Table 4 we analyze a 

forecast horizon up to 14 days – more than enough time for a barge to travel from this 

part of the Illinois River (South of Peoria) to the U.S. Gulf.  The impulse responses, 

which allow us to evaluate the dynamic paths of adjustment of each of the prices to 

shocks in the data series, are illustrated in Figure 3.  They too allow a 14-day window.   

 The first column in the output for the forecast error decompositions is the 

standard error of the forecast for each particular price series.  The remaining columns 

illustrate the error decompositions.  As usual, each row should add up to 100 (but may 

not here due to rounding).  As can be seen, the Illinois market is heavily influenced by 
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the Gulf market.  The Gulf explains 84.78% of the variation in the Illinois market after 

just one-day.  Recall, our results from the DAG analysis suggest that the Gulf market 

‘causes’ the Illinois market in contemporaneous time, and apparently continues to do so 

in the short run (1 day) out to the longer term of 14 days, where it still explains over 78%.  

The barge market has some influence on the Illinois market, although its effect is not as 

large as the Gulf’s.  Indeed, the barge market explains about 1.6% of the variation after 1 

day and finishes at about 3.9% after 14 days.  Once again, this result is consistent with 

the DAG analysis.  There, the barge market ‘caused’ the Illinois market in 

contemporaneous time.    The remaining portion of the variation is attributed to the 

Illinois market itself (13.6% after 1 day and about 17.7% after 14 days).   

Perhaps the most interesting finding is associated with the forecast error 

decompositions associated with the barge market.  Consistent with the DAG graphs 

analysis, the barge market is not influenced by either the Illinois or the Gulf markets in 

the very short run (1 day).  Indeed, after 1 day the barge market is exogenous, as it 

explains 100% of its own variation.  Over time, however, a different pattern emerges.  

While some of the variation can be explained by the Gulf market at time passes, the vast 

majority of the variation of the barge rate can be attributed to the Illinois market.  Indeed, 

after the 14 days have passed about 58% of the variation can be attributed to the Illinois 

market. Clearly, over time, the barge market is susceptible to large volatility shocks 

arising from the very market that it serves. 

The Gulf market is also 100% exogenous in the short run (1 day) a result 

consistent with the direction of causality in the DAG analysis.  Indeed, as time passes, 
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while not being completely exogenous, very little of the variation in the market is being 

explained by the domestic influences of the Illinois market and the barge market that 

connects the two together.  It seems to be a plaus ible hypothesis therefore that the Gulf 

market is being influenced by other global factors, but it in turn affects the Illinois market 

which then influences the barge market as time passes.  Put another way, the Gulf market 

does not seem to influence the barge market directly, but rather its informational effect is 

transmitted through the Illinois market and then onto the barge market shortly thereafter.   

Focusing our attention on the impulse responses in Figure 3 we see an identical 

pattern emerge.  For instance, the left-hand panel of the chart illustrates the response of 

each market to a shock in the Illinois market.  While the Illinois and Gulf markets are 

somewhat affected by a shock from the Illinois market, it is the barge market that is most 

heavily influenced, a finding consistent with the error decompositions.  Indeed, it is only 

after about the 14 days that the barge market stabilizes, yet still remains affected. Clearly 

a shock from the Illinois market creates considerable volatility in the barge industry, 

which could, if unhedged, be extremely detrimental to physical traders in this industry. 

Interestingly, the sign of the shock is as one might expect (negative), a result consistent 

with the finding of a negative conditional correlation between the markets.  That is, an 

increase in Illinois prices should correspond with a decrease in barge rates (as explained 

previously).  Note also that while the barge rate is affected by the Illinois price over time, 

it starts out at zero, a finding consistent with the DAG analysis whereby the Illinois 

market does not affect the barge market in contemporaneous time.  This can also be said 

about the affect of the Illinois market on the Gulf market.  An innovation in the barge 
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market has almost no affect the Gulf market (bottom graph of the middle panel), just like 

the innovation in the Illinois market had no affect.  Once again, the Gulf market can be 

deemed to be exogenous to the other domestic linkages.  However, as shown by the top 

graph in the middle panel, the Illinois market is somewhat affected by the barge market, 

and the sign of the response (negative) is, once again, consistent with earlier intuition.   

The last panel of the impulse response graph illustrates the response of the inland 

markets to a shock in the Gulf market.  As can be seen by the top graph, the Illinois 

market is immediately and strongly affected by a shock originating out of the Gulf.  This 

is a result found previously in both the DAG framework and the forecast error 

decompositions.  A shock to the Gulf market also has an affect on the barge market that 

feeds it.  However, consistent with the DAG analysis, it does not have an immediate 

affect.  However, as time passes, the barge market reacts positively, an intuitively 

pleasing result. 

V Concluding Remarks 

In recent years there has been a plethora of research looking at the level of 

interconnectivity between different yet related markets, but to date, no study has analyzed 

the degree of interconnectivity within a marketing channel in a truly dynamic manner. 

In this study, we apply Directed Acyclic Graphs (DAG’s) to make causal statements 

amongst three related markets in contemporaneous time.   We apply these results to the 

heretofore well-understand Error Correction Model to address issues surrounding 

dynamic patterns of price discovery using both forecast error decompositions and 

impulse responses. 
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Our results illustrate that information from the Gulf market is critical in the price 

discovery process over all time horizons.  While the globally influenced Gulf market does 

not heavily influence the barge market that connects it to its inland grain source at Illinois 

in contemporaneous time, it is somewhat affected as time passes.  However, it is the 

Illinois market that is immediately influenced by the Gulf.  This affect seems to ripple 

through to the transportation market as time passes, reversing the direction of causation 

from the barge market influencing the Illinois market in contemporaneous time, to the 

Illinois market heavily influencing the barge market out into the longer term.  It seems 

therefore, that over the longer term both the domestic and international markets heavily 

influence the barge market and shocks to these markets can greatly influence rates, 

negatively, or positively depending upon where the shock originates.  These shocks, 

whether they originate from the Gulf or inland cause excess volatility in the barge 

market, which could be detrimental to unhedged physical traders in this marketing 

channel. 

This paper has therefore, no t only shed light on the degree of interconnectivity 

between several important markets using unique econometric methods but also sheds 

some light on the importance of the barge market critical in linking markets together.  

Our results seem to support the existence of the newly developed barge rate futures 

contract, but like so many other futures contracts that are designed, time can only tell 

whether the market will be successful.   
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Table 1.  Descriptive statistics and correlation analysis on daily prices 
 Illinois Barge Gulf 

Mean 172.98 8.915 186.34 
Median 170.15 8.584 184.28 

Standard deviation 10.806 2.228 10.369 
CV 0.056 0.250 0.056 

3m  -0.181 -0.531 -0.503 

4m  0.377 0.505 0.186 
Min 147.17 5.336 161.11 
Max 202.95 16.008 213.41 

Unconditional Correlations  

 Illinois Barge Gulf 
Illinois 1   
Barge -0.3268 1  

Gulf 0.9700 -0.1003 1 
    

Summary statistics are presented for daily grain and barge prices for the period 6th May 1999 – 
3rd May 2001.  CV represents the Coefficient of Variation and 3m and 4m represent sample 
skewness and kurtosis respectively. 
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Table 2.  Augmented Dickey-Fuller (ADF) tests for order of integration on prices  
Test is on the estimated coefficient θ1from the following prototype model: 

∑
=

∆++=∆
K

1k
k-tk1-t10t X  X    X βθθ  

Price K HO: I(1) vs. HA: I(0) 
ADF 

HO: I(2) vs. HA: I(1) 
ADF 

Illinois 0 -2.354 -24.190 
Barge 1 -3.158 -18.960 
Gulf 0 -2.341 -23.728 
Critical values are taken from Fuller (1976). They are –2.57 (10%), -2.88* (5%) and –3.46 (1%). 
Therefore, based on these results are series are I(1). The optimal lag length (K) was based on the 
Schwarz Bayesian Criterion (1978). 
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Table 3.  Cointegration analysis of prices 
Trace tests on order of cointegrationa 

λtrace test statistic HO: critical value 
103.96 r = 0 29.68 
14.21 r ≤ 1 15.41 
4.93 r ≤ 2 3.76 

   
Tests for exclusion from the cointegrating vectorb 

 HO: 2

)1(χ  value 
Illinois 

Iβ  = 0 79.25 
Barge 

Bβ = 0 79.17 
Gulf 

Gβ =0 78.85 
Tests for weak exogeneityb 

 HO: 2

)1(χ  value 
Illinois 

Iα =0 1.11 
Barge 

Bα  = 0 7.57 
Gulf 

Gα = 0 1.85 

aTests are on eigenvalues with the Π matrix. The λtrace statistic is - ∑
+=

−
2

1

)),1ln((
ri

iN λ  where λi are 

ordered (largest to smallest) eigenvalues on Π.  Critical values for the λtrace statistics (at the 10% 
level) are from Osterwald-Lenum (1992). The optimal lag length (k) is based on the Schwarz 
Bayesian Criterion (1978). The sample size (N) is equal to 520. 
bTests are based on the following: T = N(ln(1-λR) – ln(1-λU), where λR is the eigenvalue 
calculated with the restriction and λU the eigenvalue calculated without the restriction.  With one 
cointegrating vector the critical 2

)1(χ  value is 3.84. Based upon these results all prices in the 
marketing channel appear to be a part of the cointegrating relationship, and both the Gulf and the 
Illinois prices are weakly exogenous. 
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Table 4. Forecast error decompositions  

Steps ahead 
(days) 

Std. Error Illinois Barge Gulf 

(Illinois)     
1 0.013 13.622 1.598 84.781 
2 0.018 11.586 3.689 84.725 
3 0.022 12.101 4.335 83.564 
7 0.033 14.465 4.545 82.138 
14 0.047 17.655 3.933 78.412 
(Barge)     
1 0.056 0.000 100.00 0.000 
2 0.086 1.990 97.786 0.224 
3 0.109 6.195 93.263 0.542 
7 0.171 31.405 66.670 1.924 
14 0.245 58.334 38.510 3.156 
(Gulf)     
1 0.012 0.000 0.000 100.00 
2 0.017 0.432 0.004 99.563 
3 0.020 0.356 0.032 99.611 
7 0.031 0.386 0.051 99.560 
14 0.043 0.415 0.057 99.527 
The decompositions for each step ahead are given for a Bernanke factorization of 
contemporaneous covariances, which treats each price series as exogenous in contemporaneous 
time.  The justification for this is based on the DAG on observed innovations from the error 
correction model shown in equation (7).  The decompositions may not sum to one hundred in 
each row due to rounding. 
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Figure 1.  Daily price data.  The sample period is 6th May 1999 – 3rd May 2001 (520 observations): 

Panel A.  U.S. Gulf and Illinois Soybean Prices. 
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Panel B. Gulf-Illinois Soybean Price Spread and Mississippi Barge Rate. 
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Figure 2.  Undirected and Directed Acyclic Graphs  
 
Panel A.  Complete undirected graph. 
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Panel B.  Directed graph (lines are significant at the 10% level). 
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Figure 3. Alternative Directed Acyclic Graphs on Innovations  on Illinois Grain Prices (I), Gulf Grain Prices (G) and Barge 
Rates (B) with Schwarz-Loss Statistics (in italics) on Error Correction Residual Covariance Matrix.   
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Each graph is scored (in italics) using a modified Schwarz loss metric:  SL* = log(|Σ|) + klog(T)/T; where Σ is the matrix of diagonal 
elements from the residual error covariance matrix, T is the number of observations (518) and k is the number of regressors in the 
three variable system.   
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Figure 4.  Impulse responses over 14 days from one standard deviation shocks. 
Innovation to: 
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Endnotes 

                                                                 
1  Source: Baltic Exchange, London, UK. 

2 Over its life, the BIFFEX contract has generated a varying degree of trading interest.  

For instance, at is peak in 1988 the volume reached 97335 contracts (or about 383 

contracts per day).  However, since November 1999, when the underlying index was 

changed for the last time (it has been changed a total of 13 times to try and generate 

trading interest) trading volume only reached an average of 17 contracts a day. Indeed, 

according to Carlton (1984), 31% of futures contracts introduced in the United States 

between 1921 and 1983 died within their first two years of trading. 

3 See Carlton (1984) for a description of the important features that a commodity traded 

on a futures exchange should possess in order to be successful. 

4 Only a handful of papers have employed DAG analysis in economics.  Examples 

include: Bessler and Akleman (1998) and Bessler and Fuller (2000). 

5 For soybeans in particular, which are analyzed in this study, the total tonnage exported 

out of the U.S. from all ports in this time period was 57.93 million tonnes on a total of 

3864 vessels to 44 different countries.  However, 40.07 million of those tonnes (or 69.2% 

of the total) left the U.S. Gulf at New Orleans from the Mississippi River on a total of 

1686 vessels to 39 different countries. 

6 Unlike the BIFFEX futures contract, the barge futures contract is not based on an index 

of prices.  Full details on the barge rate futures contract can be found at the Exchange 

web site: www.merchants-exchange.com.  To date, only one paper has attempted to 

analyze the feasibility of a futures market for barge freight (Hauser and Buck, 1989). 

That research, except for some static regression techniques, analyzed the potential role of 
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the market in a largely qualitative manner. The research did recommend that a barge 

futures contract be developed. 

7 Papers by Phillips (1994) and Toda and Philips (1994) illustrate that simply observing 

the loading vectors associated with the ECM may not be sufficient to properly 

define/distinguish between short and long run causation.  We recognize this limitation but 

point out that it is common for researchers to use the terms ‘short’ and ‘long’ run  in 

applied cointegration research.  We use these terms here but are aware of the inability to 

properly differentiate between these effects. 

8 Spirtes, Glymour and Scheines (1993) give the conditions, faithfulness and a causal 

Markov assumption, which allow us to use patterns in correlation structure to identify a 

graphical structure from data. 

9 It is worth noting that the PC algorithm assumes that there are no latent common causes 

of the three measured variables (Illinois, barge and Gulf prices).  In contrast, the related 

FCI algorithm does not make such an assumption and while the conclusions that it draws 

from this data are weaker than the conclusions that follow the PC algorithm they do not 

rely on the somewhat dubious assumption of no latent common causes.  The more 

complex FCI algorithm is documented in Spirtes, Glymour and Scheines (1993). 

10 These data (like all data used by the authors) are available upon request.  A small 

number of price quotes were missing in each of these markets.  On these days, the 

missing observations were replaced with the most recent price, thus construc ting a price 

series consistent with a random walk. 

11 We excluded the constant from inside the Π matrix due to its statistical insignificance. 
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12 Scheines et al. (1994) point out that statistical tests that are based on the assumption of 

normality should also be useful for distributions that depart from normality, although the 

authors provide no formal evidence on how sensitive Tetrad II is to deviations from 

normality.  The authors did apply Tetrad II to a set of variables (that were provided from 

a study on causes of publishing productivity). These variables were shown to violate the 

joint normality condition, but the authors discovered that Tetrad II provided reasonable 

suggestions (similar to the models that were provided by the original authors).  The 

authors did not discuss the presence/affect of (G)ARCH effects on the underlying data 

set. 

13 We apply a modification of Schwarz loss because scoring alternative models results in 

the same log determinant for every alternative acyclic model.  Alternative models merely 

move correlation from the diagonal elements to the off-diagonal elements in the residual 

covariance matrix from alternative models.  Accordingly we score alternatives using the 

determinant of the main diagonal of the residual covariance matrix.  See the note 

associated with Figure 3 for more details.   

 


