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Forecasting Urea Prices 
 

Over the past decade the price of urea has been quite volatile, especially after 2008. The 
high price volatility and the relatively slow transportation in the urea fertilizer industry 
make production planning and inventory management difficult. In this study, we construct a 
urea price forecasting model and compare its performance with Fertilizer Week, a 
commercial forecast. To construct forecast models, autoregressive (AR), seasonal 
autoregressive (SAR), and autoregressive-generalized autoregressive conditional 
heteroskedasticity (ARGARCH) models with/without exogenous variables such as Henry 
Hub natural gas, Brent oil, and U.S. corn prices are used with various rolling windows. 
Autoregressive model with exogenous variable (ARX) using the window size of 48 months 
outperforms our other models. There is no statistical difference between ARX with the 
window size of 48 month and Fertilizer Week even though Fertilizer Week is better based on 
forecasting accuracy measures. The combination model using the two models is statistically 
better than Fertilizer Week alone.  
 
 
Key words: Fertilizer, forecasting, ARX, GARCH, MDM test, encompassing test, 
forecasting accuracy, optimal forecasting conditions. 
 
 
Introduction  
 
Urea is one of the most important solid nitrogen fertilizers1 in the United States, with yearly 
consumption increasing as much as 2.72% between 1992 and 2011(USDA 2013a). The 
price of urea has risen since 2002 and also fluctuated dramatically (Casavant et al. 2010) as 
shown in Figure 1. The price fluctuation has been more severe after 2008. For example, the 
average annual price volatilities of urea are 23.3%2 between 2003 and 2007, while between 
2009 and 2014 it increases to 36.1% (Fertilizer Week 2014). This high price volatility and 
the relatively slow transportation in the urea fertilizer industry make production planning 
and inventory management difficult. 
 

To manage the urea fertilizer price volatility, a price risk management tool is 
required. Futures contracts have been tried for fertilizer, but were unsuccessful due to high 
basis risk since transportation cost occupies a large portion of the fertilizer price. Often 
purchases are conducted in advance of the sale in order to take advantage of backhauls. The 
fertilizer cash market is also not active enough to support a futures contract. Moreover, 
fertilizer is provided by a few private companies and there exists only limited market 
information. Forward contracts are available and there is a swaps market in France, but 
these risk management tools can be expensive.  
 

1 Urea occupies the highest proportion in nitrogen fertilizer and nitrogen shows the highest consumption of 
plant nutrients in the U.S. (USDA 2013a). 
2 The annualized price volatilities are calculated as the standard deviation of monthly returns multiplied by 
the square root of the number of trading month in the year. 
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In this situation, an accurate urea price forecast is useful. Now, some commercial 
publications such as Fertilizer Week3 by CRU group and FMB by Argus Media are meeting 
this need by providing fertilizer price forecasts. However, there exists little academic 
literature regarding forecasting urea prices.  
 

The objectives of this study are to suggest an appropriate forecasting model for 
granular urea price in the U.S. New Orleans market. The procedures to achieve the goal are 
(1) to construct forecasting models using various methods and check properties for optimal 
forecast, (2) to evaluate the selected model compared to that of Fertilizer Week, and (3) to 
check the possibility to improve forecasting accuracy using the composite model by 
combining our forecasts and those of Fertilizer Week. 
 

 
Methodology 
 
Model Identification 
 
Autoregressive Moving Average Models 
 
For short-term forecasting, the autoregressive moving average model (ARMA) is 
commonly used (Whitle 1951; Box and Jenkins 1976): 
 
(1)  𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝑣𝑣𝑡𝑡,  
(2)  𝑣𝑣𝑡𝑡 = ∑ 𝜑𝜑𝑚𝑚𝑣𝑣𝑡𝑡−𝑚𝑚𝑀𝑀

𝑚𝑚=1 − ∑ 𝜂𝜂𝑠𝑠𝜖𝜖𝑡𝑡−𝑠𝑠𝑆𝑆
𝑠𝑠=1 + 𝜖𝜖𝑡𝑡,  

(3)  𝜖𝜖𝑡𝑡~𝐼𝐼𝐼𝐼(0,𝜎𝜎2), 
 
where 𝑦𝑦𝑡𝑡, 𝜇𝜇 and 𝑣𝑣𝑡𝑡 indicate the dependent variable, the intercept, and the mean equation 
error, respectively, 𝜑𝜑𝑚𝑚 and 𝜂𝜂𝑠𝑠 are the coefficients of AR and MA terms, 𝑚𝑚 and 𝑠𝑠 
indicate the lag number for autoregressive and moving average terms, and 𝜖𝜖𝑡𝑡 is normally 
and independently distributed with a mean of 0 and a variance of 𝜎𝜎2. The autoregressive 
moving average model only uses its own past information. However, there might be other 
appropriate time series data which capture the influence of external factors and increase 
forecast accuracy. To consider the other pertinent time series in our forecasting model, an 
autoregressive moving average model with exogenous variables (ARMAX) is used. The 
ARMAX model can be expressed by adding the exogenous variables to the mean equation 
in (1) as:  
 
(4)  𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝒙𝒙𝒕𝒕′𝜷𝜷 + 𝑣𝑣𝑡𝑡,  
 
where 𝒙𝒙𝒕𝒕 is a vector of explanatory variables. There is a possibility of seasonality. To 
account for possible seasonality, a seasonal autoregressive moving average (SARMA) 
model is estimated, which can be expressed by redefining equation (2) as 
 
(5)  𝑣𝑣𝑡𝑡 = ∑ 𝜑𝜑𝑚𝑚𝑣𝑣𝑡𝑡−𝑚𝑚𝑀𝑀

𝑚𝑚=1 − ∑ 𝜂𝜂𝑠𝑠𝜖𝜖𝑡𝑡−𝑠𝑠𝑆𝑆
𝑠𝑠=1 + ∑ 𝜓𝜓𝑖𝑖(𝑣𝑣𝑡𝑡−𝑖𝑖∗𝑤𝑤 − 𝜑𝜑1𝑣𝑣𝑡𝑡−𝑖𝑖∗𝑤𝑤−1)𝐼𝐼

𝑖𝑖=1  
−∑ 𝜉𝜉𝑗𝑗�𝜖𝜖𝑡𝑡−𝑗𝑗∗ℎ − 𝜂𝜂1𝜖𝜖𝑡𝑡−𝑗𝑗∗ℎ−1�

𝐽𝐽
𝑗𝑗=1 + 𝜖𝜖𝑡𝑡,  

3 Fertilizer Week is a kind of commercial publications by CRU group which provides fertilizer prices and 
market information and also forecasts monthly fertilizer prices. 

2 
 

                                                           



 
where 𝜓𝜓𝑖𝑖, and 𝜉𝜉𝑗𝑗 are the coefficients of seasonal AR and seasonal MA terms, 𝑤𝑤 and ℎ 
are the seasonal length for autoregression and moving average terms. 
 
Generalized Autoregressive Conditional Heteroskedasticity Models 
 
ARMA models assume homoskedasticity which means the variance does not change over 
time. However, variance of time series data is often non-constant. To account for the 
heteroskedasticity, the generalized autoregressive conditional heteroskedasticity (GARCH) 
model by Bollerslev (1986) is used. In a GARCH model, the conditional variance is a 
function of the past values of squared errors and lagged conditional variances. The 
distribution of the error term in equation (3) can be redefined as 
 
(6)  𝜖𝜖𝑡𝑡|Ψ𝑡𝑡−1~𝑁𝑁(0,𝜎𝜎𝑡𝑡2) 
  𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖2𝑞𝑞

𝑖𝑖=1 + ∑ ρ𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑝𝑝
𝑗𝑗=1 + ∑ 𝜂𝜂𝑘𝑘𝑇𝑇𝑘𝑘(𝑡𝑡)

𝑚𝑚
𝑘𝑘=1    

  𝜖𝜖𝑡𝑡

�𝜎𝜎𝑡𝑡2
~𝐼𝐼𝐼𝐼(0,1), 

 
where Ψ𝑡𝑡−1 denotes all available information at time 𝑡𝑡 − 1, 𝜎𝜎𝑡𝑡2 is the conditional error 
variance, 𝑇𝑇𝑘𝑘(𝑡𝑡) indicates year dummy variables. The coefficients in equation (6) should be 
positive to obtain a positive conditional variance.  
 
Rolling Window Regression 
 
In time series data, structural change is frequently observed. To account for the possibility 
of structural change, rolling window regression is applied with various window sizes at the 
estimation step. Rolling window regression is a recursive regression to generate estimates 
for every window of a given size in the series as 
 
(7)  𝑦𝑦𝑡𝑡(𝜆𝜆) = 𝒙𝒙𝒕𝒕(𝜆𝜆)

′ 𝜷𝜷 + 𝑣𝑣𝑡𝑡(𝜆𝜆)  𝜆𝜆 = 1,⋯ ,𝑛𝑛 − 𝑤𝑤 + 1 
 
where 𝜆𝜆 is the ordinal number of 𝑤𝑤-time unit window, and 𝑛𝑛 indicates the total number 
of observations. The coefficient 𝛽𝛽 is often used to assess the stability of a model over 
time. For example, if 𝛽𝛽 is non-constant it shows an unstable market. There is a trade-off 
relationship between sensitivity and volatility of the parameters in window size. The 
considered windows, 𝑤𝑤, are 36, 48, 60, 72, and 814 months.      
 
Properties for Optimal Forecast 
 
Diebold and Lopez (1996) suggest four criteria for optimal forecast models, but only two 
are relevant here since only one-step-ahead forecasts are considered. The two relevant 
properties are unbiasedness and efficiency of forecasting error (Granger and Newbold 
1986). A forecast is unbiased if its average deviation from the actual value is zero. 
Unbiasedness can be identified with the significance of the mean forecast error by using a 
regression of the error on a constant term (Holden and Peel 1990) as 

4 81 months is the longest possible window size since the time span of in-sample is 81 months. 
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(8)  𝜖𝜖𝑡𝑡 = 𝛾𝛾 + 𝑒𝑒𝑡𝑡, 
 
where 𝜖𝜖𝑡𝑡 is forecast error, 𝛾𝛾 indicates a constant term, and 𝑒𝑒𝑡𝑡 is white noise error term. 
The null hypothesis of an unbiased forecast is 𝛾𝛾 = 0. When the null hypothesis is rejected 
with 𝛾𝛾 > 0, the forecast overestimates all actual series and vice versa. Forecast efficiency 
implies that the forecast error is not related to information available at the time the forecast 
is made (Nordhaus 1986; Holden and Peel 1990; Barrionuevo 1996). This condition is 
tested by measuring the correlation between the forecast term and its error term, and 
between the forecast error at the current period and that at the previous period (Pons 2000) 
as 
 
(9)  𝜖𝜖𝑡𝑡 = 𝛼𝛼1 + 𝛽𝛽𝐹𝐹𝑡𝑡 + 𝑒𝑒𝑡𝑡,  
 
(10)  𝜖𝜖𝑡𝑡 = 𝛼𝛼2 + 𝜌𝜌𝜖𝜖𝑡𝑡−1 + 𝑒𝑒𝑡𝑡,  
 
where 𝐹𝐹𝑡𝑡  denotes the forecast at time 𝑡𝑡. When 𝛽𝛽=0 in equation (9) and 𝜌𝜌=0 in equation (10), 
forecast efficiency holds. There exist three inefficient cases: when 𝛽𝛽≠0 and 𝜌𝜌=0 the 
inefficiency is caused by the fact that the forecast is not the minimum variance model, 
when 𝛽𝛽=0 and 𝜌𝜌≠0, the inefficiency arises because the past errors repeat in the present, and 
when 𝛽𝛽≠0 and 𝜌𝜌≠0 the inefficiency is partly from the fact that the forecast does not use all 
useful information when it is conducted and partly from the errors of the past are repeated 
in the present (Pons 2000). 
 
Adjustment of Heteroskedasticity and Different Forecast Horizons 
 
Since the urea price volatility has increased overtime, a heteroskedasticity adjustment is 
needed. To adjust the heteroskedastic error terms of all models conditional error variance 
from a GARCH (1, 1) model with a random walk assumption5 as 
 
(11)  𝑒𝑒𝑡𝑡(𝐻𝐻) = 𝑒𝑒𝑡𝑡

𝜎𝜎𝑡𝑡
, 

  
where, 𝑒𝑒𝑡𝑡(𝐻𝐻) and 𝑒𝑒𝑡𝑡 indicate the adjusted error term and the error term from an forecast 
model, respectively, 𝜎𝜎𝑡𝑡 denotes the conditional error variance.  
 

When one forecast has a different forecast horizon, the forecast error should be 
adjusted to compare its forecasting performance with the other models. The adjustment of 
different forecast horizons is conducted as  
 

(12)  𝑒𝑒𝑡𝑡(𝑎𝑎𝑎𝑎𝑎𝑎) = 𝑒𝑒𝑡𝑡(𝐻𝐻) ∗ �
1
𝑘𝑘
, 

   

5 A random walk model assumes no difference between the values at 𝑡𝑡 and 𝑡𝑡-1 as 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = 𝜖𝜖𝑡𝑡, where 𝜖𝜖𝑡𝑡 
indicates a white noise error term. Hyndman and Koehler (2006) also use the weighted error terms based on 
the random walk assumption to get a measure of forecast accuracy such as mean absolute scaled error. 
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where, 𝑘𝑘 denotes the proportion of the forecast horizon out of the standard forecasting 
horizon. For example, if the forecast horizon is 2 weeks and the standard forecasting 
horizon is 4 weeks then 𝑘𝑘 is equal to 0.5.  
 
Measures of Forecast Accuracy 
 
To evaluate the performance of the constructed forecasting models, two different statistical 
measures were applied: mean absolute error (MAE) and root mean squared error (RMSE). 
Those forecast accuracy measures are defined as  
 
(13)  𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ �𝑒𝑒𝑡𝑡(𝑎𝑎𝑎𝑎𝑎𝑎)�𝑛𝑛
𝑡𝑡=1 , 

 

(14)  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ 𝑒𝑒𝑡𝑡(𝑎𝑎𝑎𝑎𝑎𝑎)

2𝑛𝑛
𝑡𝑡=1 , 

 
Modified Diebold Mariano Test 
 
To test the null hypothesis of no difference in the accuracy of two competing forecasts 
Diebold and Mariano (DM) (1995) suggest a parametric test. Given two time series 
errors, 𝜀𝜀0,𝑡𝑡 and 𝜀𝜀1,𝑡𝑡, the specified loss functions, 𝑔𝑔�𝜀𝜀0,𝑡𝑡� and 𝑔𝑔�𝜀𝜀1,𝑡𝑡�, and the loss 
differential 𝑑𝑑𝑡𝑡 = 𝑔𝑔�𝜀𝜀0,𝑡𝑡� − 𝑔𝑔�𝜀𝜀1,𝑡𝑡�, the null hypothesis of equal expected forecast accuracy 
is 
 
(15)  𝐻𝐻0: 𝐸𝐸[𝑑𝑑𝑡𝑡] = 𝐸𝐸�𝑔𝑔�𝜀𝜀0,𝑡𝑡� − 𝑔𝑔�𝜀𝜀1,𝑡𝑡�� = 0,   
 
and the test statistic is  
 
(16)  𝐷𝐷𝐷𝐷 = 𝑑𝑑�

�𝑉𝑉�(𝑑𝑑�)
, 

 
where 𝑉𝑉��𝑑̅𝑑� is an estimate of the asymptotic variance of 𝑑̅𝑑. Diebold and Mariano propose 
estimating the variance using the truncated kernel with a bandwidth of (ℎ − 1) for 
ℎ-step-ahead forecasts. Failing to reject the null hypothesis can be interpreted as the two 
models are not statistically different. On the other hand, the smaller loss model is the better. 
The asymptotic variance is estimated as  
 
(17)  𝑉𝑉��𝑑̅𝑑� = 1

𝑇𝑇
[𝛾𝛾�0 + 2∑ 𝛾𝛾�𝑘𝑘ℎ−1

𝑘𝑘=1 ], 
 
where 𝛾𝛾�𝑘𝑘 is an estimate of the 𝑘𝑘-th autocovariance of 𝑑𝑑𝑡𝑡, given by 
 
(18)  𝛾𝛾�𝑘𝑘 = 1

𝑇𝑇
∑ �𝑑𝑑𝑡𝑡 − 𝑑̅𝑑��𝑑𝑑𝑡𝑡−𝑘𝑘 − 𝑑̅𝑑�.𝑇𝑇
𝑡𝑡=𝑘𝑘+1  

 
The DM test statistic has an asymptotic standard normal distribution. Harvey, Leybourne, 
and Newbold (1997) suggest the modified Diebold Mariano (MDM) test to improve small 
sample properties with a 𝑡𝑡-distribution, rather than the standard normal. The MDM statistic 
is obtained as  
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(19)  𝑀𝑀𝑀𝑀𝑀𝑀 =
�𝑇𝑇+1−2ℎ+ℎ(ℎ−1)

𝑇𝑇

𝑇𝑇
𝐷𝐷𝐷𝐷. 

 
Forecast Encompassing Test 
 
Even though one forecast will be superior to the others based on forecast accuracy 
measures, it is useful to test whether competing forecasts may be combined to construct a 
composite forecast superior to all the original forecasts (Diebold 2007). The forecast 
encompassing can be examined following Harvey, Leybourne, and Newbold (1998) as 
 
(20)   𝜀𝜀0,𝑡𝑡 = 𝜙𝜙 + 𝜆𝜆𝑡𝑡�𝜀𝜀0,𝑡𝑡 − 𝜀𝜀1,𝑡𝑡� + 𝜏𝜏𝑡𝑡, 
 
where 𝜀𝜀0,𝑡𝑡 and 𝜀𝜀1,𝑡𝑡 are the forecast error terms of the hypothesized model and the competing 
one, 𝜆𝜆𝑡𝑡 indicates the weight, which the alternative should hold in constructing a composite 
forecast and minimizes the mean squared forecast error and vice versa for 1 − 𝜆𝜆𝑡𝑡 (Sanders 
and Manfredo, 2004). A failure to reject the null hypothesis (𝜆𝜆𝑡𝑡 = 0) implies the 
hypothesized forecast encompasses the competing one.  
 
Data  
 
To choose appropriate explanatory variables for constructing a urea price forecasting 
model, three factors are considered: supply, demand, and transportation. Natural gas price 
is selected as a supply factor since the raw material of urea is natural gas. In detail, urea is a 
composite between carbon dioxide and ammonia which is extracted from natural gas.  
Corn price is considered as the demand factor since corn production is the largest use of 
urea6. The U.S. is one of the largest urea importing countries with about 80%7 of the 
imported volume coming from overseas using marine transportation. This form of 
transportation mainly uses intermediate fuel oil (IFO). Based on this fact, oil price is used 
for the transportation cost factor. 
 

To construct a urea price forecasting model, the monthly average prices of granular 
urea, Henry Hub natural gas, Brent oil, and the U.S. average corn price are used (see Figure 
2). The free-on-board (FOB) bulk price of granular urea traded in the U.S. New Orleans 
spot markets were purchased from Fertilizer Week. The prices of the natural gas and Brent 
oil were gathered from the U.S. EIA (2015a and b) and the U.S. average corn price was 
obtained from the USDA’s (2015a) Agricultural Prices. To compare the performance of our 
forecast model the forecasted price from Fertilizer Week is used. It includes some missing 
values since CRU Group did not issue forecasts for parts of the time period8. Also, 
Fertilizer Week is issued at the end of previous month or early in the month, implying the 
forecasting horizon is shorter than one month. For example, Fertilizer Week for June 2014 

6 The average proportion of nitrogen fertilizer consumption for corn, wheat, and cotton are 42.1%, 12.1%, 
and 3.5% from 2006 to 2010 (USDA 2013a). 
7 The U.S. imported 7.65 billion tons in 2012. In detail, the overseas countries export urea to the U.S.as much 
as 6.06 billion tons and Canada and Mexico do as much as 1.58 billion ton (USDA 2014a). 
8 Fertilizer Week issued its forecast of the urea price from April to September 2008, November 2008, from 
January to May 2009, from July 2009 to June 2010, and April 2013 to the present.  
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was issued on June 3, 2014. To account for the different forecast horizon of Fertilizer Week 
to those of the constructed forecasts, the forecast horizon adjustment is conducted.   

 
To test for unit roots in price levels and log difference of all data, the augmented 

Dickey-Fuller (ADF) test is used. The ADF test failed to reject the null hypothesis of a unit 
root at the 5% significance level for all price level data9. However, the null hypothesis of a 
unit root is strongly rejected at the 1% level for the monthly log difference. Monthly log 
differences of all data are used from August 2001 to June 2014. In-sample and out of 
sample are decided based on the point when Fertilizer Week started to issue its urea 
forecast, May 2008.  
 

Summary statistics for all time-series data are presented in Table 1. The means and 
standard deviations are measured as the percentage change of price from the prior month. 
Brent oil indicates the highest mean as much as 1.0%, but Fertilizer Week shows the lowest 
mean of -1.6%. Fertilizer Week forecasts are the most volatile with a standard deviation of 
14.7% and the corn price is relatively stable with a standard deviation of 5.5%. Urea 
indicates the highest percentage change of price as much as -56.6%.  
 
Results 
 
To choose the optimal lags for constructing forecasting models the corrected Akaike 
information criterion (AICC) and Schwarz Bayesian Criteria (SBC) are considered and the 
alternative lags are up to 12 months for autoregressive moving average terms and 
explanatory variables and 36 months for seasonal autoregressive moving average terms. 
The optimal lags for each model which indicate the lowest criterion are shown in Table 2.  
 

Tables 3, 4, and 5 indicate the test results for unbiasedness and efficiency as optimal 
forecast properties. The mean forecast error, 𝛾𝛾, is shown in Table 3 and the results indicate all 
forecasts are unbiased. Also, there is no overestimation/underestimation pattern. In Tables 4 
and 5, there are the results for the efficiency tests of the forecasts. From the results for 𝛽𝛽 in 
Table 4, forecasts incorporate all available information at the time the forecast is conducted 
(𝛽𝛽=0) at the 5% level. However, ARG with window size 36 and ARGX with window size 48, 
60, 72, and 81 are inefficient since the past errors are repeated in the present (𝜌𝜌≠0) as shown 
in Table 5.  
 

Table 6 illustrates the comparison of MAE, a mean-type forecasting accuracy 
measure, compared to a naïve no-change forecasting model only when Fertilizer Week is not 
issued in out-of-sample period. All models are superior to the naïve model with MAE less 
than 0.766. The models with exogenous variables show smaller MAE compared to the model 
without exogenous variables and it means the exogenous variables improve forecasting 
accuracy. The appropriate window sizes are 48 months for the models with exogenous 
variables and 72 months for the AR and the SAR models, and 60 months for the ARG model. 
The most appropriate forecasting model is the SARX with a window size of 48 months with 
a MAE of 0.553.    
 

9 Given a unit root in price level data, the cointegration test is conducted among urea price and explanatory 
variables, but the null hypothesis of cointegration is rejected. 
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Table 7 indicates the comparison of RMSE, a variance-type forecasting accuracy 
measure, compared to a naïve no-change forecasting model only when Fertilizer Week is not 
issued in out-of-sample period. The lowest RMSE of 0.795 is for the ARX model with the 
window size of 48 months. Comparing pair forecasts with/without exogenous variables such 
as AR versus ARX or SAR versus SARX, the models with exogenous variables indicate 
lower RMSE and it means the inclusion of exogenous variables reduces forecast error 
variance. Based on the results in Table 6 and Table 7, the SARX and ARX with a window 
size of 48 months are chosen as the competitive models to 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 forecasting 
model. 
 

Table 8 shows the results for forecast accuracy measures and for two kinds of MDM 
tests only when 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is issued. The forecast accuracy measures indicate 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is outperforming than the ARX and SARX. However, the results of two 
MDM tests show no statistical difference between Fertilizer Week and the two models. 
Based on the forecast accuracy measures and MDM tests, the ARX with window size of 48 
months is chosen as a candidate for constructing a combination model with Fertilizer Week. 
 

The forecast encompassing regression (Table 9) shows significant estimated weight 
for both Fertilizer Week and the ARX, indicating that neither forecast encompasses the 
other, and each contains unique information at the 1% level. The results imply that 
forecasting accuracy can be improved by using both Fertilizer Week and ARX rather than 
either alone. For example, the combined model using 66.8% of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 and 33.2% 
of the ARX brings about the minimum forecast error. 
 

Table 10 indicates results for forecasting accuracy measures and MDM tests for the 
composite model using Fertilizer Week and the ARX with a window size of 48 months. As 
indicated in Table 8 and Table 10, the composite model outperforms Fertilizer Week based 
on the forecasting accuracy measure. In addition, the MDM test based on the squared-error 
loss function supports that the composite model is statistically different to Fertilizer Week 
and encompasses Fertilizer Week at the 10% level. 
 
Conclusion 
 
This study constructs various forecasting models for the free-on-board (FOB) bulk price of 
granular urea traded in the U.S. New Orleans spot markets using a variety of methods and 
rolling window sizes, tests the optimal forecasting properties such as unbiasedness and 
efficiency, and evaluates the performance for the constructed models, Fertilizer Week, and 
the combination model based on forecasting accuracy measures, two types of MDM tests, 
and encompassing tests.  
 

Using the tests for the optimal forecasting conditions, forecasts from all 
constructed models and Fertilizer Week are unbiased and incorporate all available 
information at the time the forecasting is made. However, inefficiency is observed in ARG 
model with a window size of 36 and ARGX model with a window size 48, 60, 72, and 81 at 
the 5% level since forecast errors are autocorrelated. 
 

Based on the comparison among the constructed models using forecasting 
accuracy measures, the SARX for MAE and the ARX for RMSE with a window size of 48 
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months show the lowest values. The models with exogenous variables provide smaller 
accuracy measures than models without exogenous variables. All models show the MAE 
and RMSE values less than that of no change naïve model indicating they are superior to a 
no change naïve model.  
 

In comparison between the constructed models and Fertilizer Week even though the 
forecast accuracy measures indicate Fertilizer Week outperforms ARX and SARX with 
window size 48, the two MDM tests show no statistical difference between Fertilizer week 
and the two models. The ARX is chosen as a candidate for constructing a combination model 
with Fertilizer Week based on the forecast accuracy measures. Neither of Fertilizer Week and 
ARX forecast encompasses the other and each contains unique information. The results 
imply the desirability of a combination model using both Fertilizer Week and the ARX 
rather than either alone. When comparing the combination model to Fertilizer Week the 
combination model shows lower forecast accuracy measures and the MDM test based on 
squared-error loss supports that the composite model is statistically different and it shows 
improved forecasting performance at the 10% level.  
 
 The combination forecast model can explain about half of the variability of 
percentage changes. Therefore, the forecasting model can successfully reduce the risk 
faced by those in the fertilizer industry. 
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Table 1. Descriptive Statistics from September 2001 to June 2014 

  Urea  Brent Oil  Natural Gas  Corn  Fertilizer Week 
N  154  154  154  154  34 
Mean 0.008 0.010 0.003 0.006 -0.016 
St. dev. 0.109 0.086 0.132 0.055 0.147 
Max. 0.371 0.180 0.380 0.144 0.428 
Min. -0.566 -0.311 -0.407 -0.154 -0.532 

  

Table 2. Optimal Lags for AR Terms, Explanatory Variables, ARCH, and GARCH Terms 

Model  Autoregressive  Explanatory Variable  ARCH GARCH 
  Natural Gas Brent Oil Corn  

AR  (1, 3, 6, 12)  . . .  . . 
ARX  (1, 2, 4, 6, 12)  1, 6 1, 3 6  . . 
SAR  (1, 3, 6)*, (12)**  . . .  . . 
SARX  (1, 2, 4, 6)*, (12)**  1, 6 1, 3 6  . . 
ARGARCH  (1, 3, 6, 12)  . . .  1 1 
ARXGARCH  (1, 2, 4, 6, 12)  1, 6 1 6  1 1 
Note: *, ** indicate the autoregressive lags and seasonal autoregressive lags, respectively. 
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Table 3. Forecast Bias Test on Mean Forecast Error (𝜸𝜸) 
𝑤𝑤 AR ARX SAR SARX ARG ARGX  FW 
36 -0.008 -0.007 -0.008 -0.004 -0.017 -0.021  -0.016 

(-0.64) (-0.58) (-0.70) (-0.39) (-1.09) (-1.49)  (-0.64) 
48 -0.011 -0.006 -0.012 -0.006 -0.020 -0.009   (-0.89) (-0.50) (-0.95) (-0.56) (-1.34) (-0.68)   60 -0.008 0.000 -0.009 -0.001 -0.015 -0.009   (-0.68) (-0.04) (-0.73) (-0.12) (-1.19) (-0.65)   72 -0.011 -0.007 -0.011 -0.007 -0.018 -0.014   (-0.88) (-0.56) (-0.92) (-0.53) (-1.36) (-0.98)   81 -0.012 -0.008 -0.013 -0.007 -0.019 -0.015   (-0.98) (-0.60) (-1.01) (-0.57) (-1.46) (-1.06)   Note: t-value is presented in parentheses. 
     None is significant at the 5% level. 
 

Table 4. Forecast Efficiency Test (𝜷𝜷) 
𝑤𝑤 AR ARX SAR SARX ARG ARGX  FW 
36 0.013 0.068 0.013 0.069 -0.266 -0.252  -0.783 

 (0.10) (0.57) (0.10) (0.59) (-1.07) (-1.71)  (-1.58) 
48 -0.034 0.062 -0.001 0.053 -0.230 -0.121   

 (-0.26) (0.50) (0.00) (0.43) (-1.10) (-0.86)   
60 -0.013 0.061 -0.009 0.067 -0.070 -0.157   

 (-0.09) (0.46) (-0.07) (0.49) (-0.53) (-1.09)   
72 -0.005 0.050 0.020 0.057 -0.028 -0.255   

 (-0.04) (0.35) (0.14) (0.39) (-0.18) (-1.75)   
81 -0.005 0.062 0.021 0.086 -0.027 -0.234   

 (-0.03) (0.42) (0.15) (0.56) (-0.18) (-1.52)   
Note: t-value is presented in parentheses. 
     None is significant at the 5% level. 
 

Table 5. Forecast Efficiency Test (𝝆𝝆) 
𝑤𝑤 AR ARX SAR SARX ARG ARGX  FW 
36 0.079 -0.102 0.092 -0.063 0.304* -0.190  0.313 

 (0.69) (-0.87) (0.81) (-0.55) (2.74) (-1.68)  (1.56) 
48 0.003 -0.145 0.034 -0.149 0.189 -0.338*   
 (0.03) (-1.26) (0.30) (-1.30) (1.66) (-3.13)   60 -0.027 -0.187 -0.021 -0.180 -0.044 -0.358*   
 (-0.23) (-1.64) (-0.19) (-1.58) (-0.39) (-3.34)   72 -0.015 -0.169 -0.004 -0.156 0.014 -0.323*   
 (-0.13) (-1.47) (-0.04) (-1.36) (0.13) (-2.95)   81 -0.006 -0.170 0.005 -0.166 0.019 -0.319*   
 (-0.05) (-1.49) (0.04) (-1.46) (0.17) (-2.93)   Note: t-value is presented in parentheses. 
     * indicates statistical significance at the 5% level. 
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Table 6. MAE Only When No Fertilizer Week Exists 
𝑤𝑤 naïve AR ARX SAR SARX ARG ARXG 
81 0.766 0.641 0.624 0.649 0.627 0.680 0.639 
72 0.766 0.638 0.607 0.644 0.623 0.672 0.632 
60 0.766 0.648 0.611 0.659 0.622 0.646 0.609 
48 0.766 0.662 0.564 0.655 0.553 0.708 0.606 
36 0.766 0.659 0.630 0.656 0.625 0.702 0.663 

         

Table 7. RMSE Only When No Fertilizer Week Exists 
𝑤𝑤 naïve AR ARX SAR SARX ARG ARXG 
81 1.041 0.842 0.829 0.850 0.850 0.853 0.859 
72 1.041 0.838 0.809 0.849 0.830 0.853 0.847 
60 1.041 0.837 0.824 0.858 0.832 0.829 0.834 
48 1.041 0.848 0.795 0.845 0.808 0.866 0.830 
36 1.041 0.853 0.837 0.852 0.812 0.915 0.928 

         

 Table 8. Forecasting Accuracy and MDM Test Results Only When Fertilizer Week Exists 
𝑤𝑤 MAE  RMSE  MDM1  MDM2 

ARX SARX FW  ARX SARX FW  ARX SARX  ARX SARX 
48 0.690 0.692 0.495  0.955 0.962 0.695  1.287 

(0.104) 
1.284 

(0.104) 
 1.031 

(0.155) 
1.072 

(0.146) 
Note: MDM1 and MDM2 are calculated using the absolute error loss function (𝑔𝑔(𝑒𝑒) = |𝑒𝑒|) and the squared-error 
     loss function (𝑔𝑔(𝑒𝑒) = 𝑒𝑒2), respectively. 
     p-value is presented in parentheses. 
     None is significant at the 10% level. 
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Table 9. Encompassing Regression (Preferred Model is Fertilizer Week to ARX) 
MODEL  𝑤𝑤  Estimated weight 

  𝜆𝜆  1 − 𝜆𝜆 
ARX  48  0.668**  0.332** 

  (7.23)  (3.59) 
Note: The t-values for the test statistics are presented in parentheses. 
     ** indicates statistical significance at the 1% level. 
 

Table 10. Forecasting Accuracy and MDM Test Results for the Composite Model 
compared to Fertilizer Week 
𝑤𝑤  MAE  RMSE  MDM1  MDM2 
48  0.411  0.575  1.151 

(0.129) 
 1.369* 

(0.090) 
Note: MDM1 and MDM2 are calculated using the absolute error loss function (𝑔𝑔(𝑒𝑒) = |𝑒𝑒|) and the squared-error 
     loss function (𝑔𝑔(𝑒𝑒) = 𝑒𝑒2), respectively. 
     p-value is presented in parentheses. 
     * indicates statistical significance at the 10% level. 
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Figure 1. Granular Urea Prices in New Orleans Spot Markets  
 

 

Source: Fertilizer Week (2014) 
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Figure 2. Price Index for Urea, Natural Gas, Brent Oil, and Corn 
 

 
Note: Price index is calculated based on the price on January, 2005. 
Source: Fertilizer Week (2014) for urea, US EIA (2015a) for natural gas, US EIA (2015b) for Brent oil, and USDA  
       (2015a) for corn.  
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