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Tests of the Difference between In-Sample and Post-Sample Hedging Effectiveness 

 

 

Hedging effectiveness is proportional price-risk reduction achieved by hedging.  Typically, 

hedging studies estimate hedging effectiveness for the sample period then use estimated hedge 

ratios to simulate hedging and estimate hedging effectiveness in a “post-sample” period.  This 

paper derives the statistical properties of the sample-period effectiveness estimator and the 

statistical properties of the difference between the sample-period and the post-sample period 

estimators.  We find that the bias associated with the sample-period estimator is negligible and 

that a difference between the sample estimator and the post-sample estimator ties directly to 

changes in the structural parameters of the hedge-ratio regression.  We develop tests for 

structural change and demonstrate those tests with an empirical example.   

 
Keywords: effectiveness, forecasts, hedging, out-of-sample, post sample, simulation. 
 

 

Introduction 

 

Hedging studies typically specify a price-risk minimization problem; compile spot and futures 
price data; then estimate hedge ratios by subjecting part of the data to regression analysis.  
Hedging effectiveness, defined as the proportion of price risk eliminated by hedging, is reported 
as the regression R-square.  These studies then apply the estimated hedge ratios to the remainder 
of the data to simulate hedged outcomes in a post-sample period as described by Lien(2007).1  
Comparing the variance of simulated unhedged post-sample outcomes with the variance of 
simulated hedged post-sample outcomes provides an estimate of the price-risk reduction 
expected from implementing the hedging strategy during a non-sample period.  A comparison of 
the in-sample and the post-sample hedging effectiveness indicates the robustness of the hedging 
strategy.  Given the prevalence of these comparisons, their fundamental assumptions merit 
scrutiny.  That is the purpose of this paper.   
 
While the comparison of in-sample and post-sample hedging effectiveness might be construed as 
a test for bias in the in-sample effectiveness estimator, this notion is flawed.  The in-sample 
effectiveness estimator is in fact biased (Marchand, 1997; Lien, 2006), but determining the 
direction and magnitude of the bias requires the parameter’s actual value and the estimator’s 
expected value, neither of which are part of the in-sample / post-sample effectiveness 
comparison.  The in-sample and post-sample hedging effectiveness estimates are simply 
observations of two random variables.  Finding that they differ is not especially enlightening.  
Knowing each estimate’s mean and variance, and knowing the statistical significance of their 
difference is more useful.   
 
Second, the comparison of in-sample and post-sample hedging effectiveness might be construed 
as an evaluation of the robustness of the hedging strategy.  This notion is also flawed.  A robust 
hedging strategy requires an unchanged cash-futures price relationship in moving from the 
sample period to the post-sample period.  Structural change will reduce the hedging strategy’s 
effectiveness in the post-sample period and hence will make it appear less robust.  This notion of 
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robustness is better expressed as a test for parameter equality between the sample and post-
sample periods.  A simple comparison of two hedging effectiveness estimates lacks the statistical 
foundation provided by such a test.   
 
Finally, detecting a difference between in-sample and post-sample hedging effectiveness is less 
informative than identifying the causes of the difference.  For example, suppose that price risk in 
the post-sample period increases due to some structural shock and that the prescribed hedging 
strategy continues to be optimal though less effective.  Should we conclude that the hedging 
strategy is faulty because it removes a smaller portion of a greater amount of price risk?  
Thoughtful analysis of the hedging strategy’s performance during different periods requires a 
decomposition of the effectiveness statistic and then an inter-period comparison of the 
components.   
 
This paper addresses these shortcomings.  Our objective is to examine the statistical properties of 
the in-sample and post-sample hedging effectiveness estimators.  We specifically focus on their 
probability distributions, biases, and standard deviations.  We utilize mathematical statistics 
results, extend these results so they apply to hedging effectiveness, and then verify our 
extensions with thousands of simulated random draws of given-size samples.   
 
We proceed by summarizing hedging objectives, hedge ratio estimation methods, and the 
hedging effectiveness statistic.  Next, we consider the sampling distribution and the bias of the 
in-sample hedging effectiveness statistic.  Then, we turn our attention to the post-sample 
effectiveness statistic and its relation to the in-sample statistic.  This comparison suggests a 
series of tests that identify statistically significant discrepancies between the in-sample and post-
sample effectiveness measures.  We then provide an empirical application to demonstrate the 
workings of the suggested analysis.  We end with some general conclusions.   
 

 

Theoretical Background 

 

Hedging behavior assumes that an agent seeks to minimize the price risk of holding a necessary 
spot (or cash) market position by taking an attendant futures market position (Johnson, Stein).  

The profit outcome (π) of these combined positions is  

 

(1) π = xs (p1 - p0) + xf (fM1 - fM0), 
 
where xs is the agent's necessary cash market position, p is the commodity's cash price, xf is the 
agent's discretionary futures market position, fM is the M-maturity futures contract's price, and 
subscripts 0 and 1 indicate initiating and terminating transaction times.  The optimal futures 

position, xf*, is the value of xf that minimizes the variance of π.  This minimum occurs when 

xf*/xs = -σ∆p,∆s / σ2
∆f.  

 

The risk minimizing hedge ratio (xf*/xs) is estimated by 1β̂  in the regression  

 

(2) ∆pt = β0 + β1 ∆fMt + εt, t = 1, 2, … T  
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where ∆ represents differencing over the hedging horizon, εt represents stochastic error at time t, 

and T represents the number of observations used in estimating of β0 and β1.2  The risk 

minimizing futures position is xf
* = - 1β̂ xs.   

 
Anderson and Danthine (1980, 1981) generalized this approach to accommodate multiple futures 
positions.  In this case, xf, fM1, and fM0 in (1) represent vectors of length k and hedge ratios are 
the parameters in the multiple regression  
 

(3) ∆pt = β0 + ∑ =
ε+∆β

k

1j tjtj f , t = 1, 2, 3,  … T, 

where ∆fjt is the change in the price of futures contract j over the hedge period, and jβ̂  is the 

estimated hedge ratio indicating the number of units in futures contract j per unit of spot position. 
 

For commodity processors the profit outcome is π = y py,1-x px,0 + xf (fM1 - fM0).  In this case, 
input purchases (x) and output sales (y) are temporally separated by hedge horizon H but 

connected by product transformation with yt = κ xt-H.  Hedge ratios result from fitting  
 

(4) py,t - κ px,t-H = β0 + ∑ =
ε+∆β

k

1j tjtj f , t = 1, 2, 3,  … T. 

 
This specification has been applied to soybean processing (Dahlgran, 2005; Fackler and McNew; 
Garcia, Roh, and Leuthold; and Tzang and Leuthold), cattle feeding (Schafer, Griffin and 
Johnson), hog feeding (Kenyon and Clay), and cottonseed crushing (Dahlgran, 2000; Rahman, 
Turner, and Costa).   
 
Ederington defines hedging effectiveness (e) as the proportionate price-risk reduction available 
through hedging, or  
 

(5) e = [ V(πu) – V(πh) ] / V(πu)  
 

where V is the variance operator, πu the agent's unhedged outcome (xf = 0) and πh is the agent's 

hedged outcome (xf = - 1β̂ xs).  Lindahl observes, “The most popular measure of hedging 

effectiveness is commonly called R2 … ”.  If hedge ratios are estimated with regressions (2), (3), 
or (4), then the regression R2 is the hedging effectiveness estimator.  However, if (2), (3), or (4) 
is augmented, then we shall see that the effectiveness estimator is related to, but is not the R2.   
 
R2 is an estimator of the coefficient of determination, defined by Marchand (p. 168) as follows.  
Let [ Y : X ] = [ Y : X1, X2, …,Xk ] be distributed as a k+1 variate normal with covariance 

matrix Σ.  Let S be the covariance matrix obtained from a sample of size T where T > k > 1.  

Partition Σ and S as 








Σσ

σσ
=Σ

XXXY

YXYY
 and 








=

XXXY

YXYY

SS

SS
S  where σYY and SYY are scalars.  The 

multiple correlation coefficient between Y and [ X1, X2,…,Xk ] is 2/111 )( XYXXYXYY σΣσσ=ρ −−  and ρ2 

is the coefficient of determination.  The analogous sample quantities are 2/111 )( XYXXYXYY SSSSR −−=  
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and R2.  Marchand points out (p. 173) that R2 is a biased estimator of ρ2 because E(R2) > ρ2, but 

as T → ∞, E(R2) = ρ2.   
 
Determining the magnitude of the bias in R2 requires its probability distribution, which follows 
from the probability distribution of the regression F statistic.  For (2), (3), or (4)  
 

(6a) F = 






 −−

−
=

−− k

kT

R

R

kTSSE

kSSR 1

1)1/(

/
2

2

,  

 

is used to test whether the noncentrality parameter, εεσ−−=λ /)X()'X( βXXβ' = )1/(T 22 ρ−ρ , 

of the numerator chi-square is zero.3  The F statistic follows the well-known F distribution so the 
cumulative distribution for R2 results from restating the probabilities   
 

(6b) α
α
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α
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where )(,

1 αλk

kTf −−  is the numerical value that has probability α of a smaller value of a noncentral 

F random variable with k (numerator) and T-k-1 (denominator) degrees of freedom, and 

noncentrality parameter λ.  Thus, given α, T, k and ρ2, we can compute F-values and construct 
the cumulative distribution function (CDF) for R2. 
 
Chattamvelli provides a more general result.   
 

"If 
2

1nχ and 
2

2nχ  are independent central chi squared random variables with n1 and 

n2 degrees of freedom, then F = (
2

1nχ /n1) / (
2

2nχ /n2) has an F distribution and 

B=n1 F / (n2 + n1 F) = 
2

1nχ  / (
2

1nχ +
2

2nχ ) has a beta distribution.  When both of the 

2χ  are noncentral, F has a doubly noncentral F distribution.  When only one of 

the 2χ  is noncentral, F has a (singly) noncentral F distribution.  Analogous 

definitions hold for the beta case."  

 

If εt ~ NID(0, 2

εεσ ), then the regression F statistic is composed of the requisite independent chi 

square random variables, and the regression R2 has a singly noncentral beta distribution with n1= 

k, n2 = T - k - 1, λ1 = T ρ2 / (1-ρ2), and λ2 = 0.  (6b) expresses this CDF.   
 
Pe and Drygas derive the probability density, moments, and cumulative distribution of a doubly 

noncentral beta random variable.  They define X1 and X2 as independent noncentral χ2s with ni 

degrees of freedom and noncentrality parameters λi (i = 1, 2), so Z = X1 / (X1+X2) is a doubly 

noncentral beta distribution with parameters n1, n2, and λ1, λ2.  When λ2 = 0 the probability 
density, moments, and cumulative distribution functions simplify to   
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where 
( )

!i
e);i(p

i

22
1

11
λλ

−
=λ , i=0, 1, 2, … is a Poisson pdf, Β(a,b) represents the complete beta 

function, and ΒZ(a,b) represents the incomplete beta function.  The similarities among (7a), (7b) 
and (7c) include a Poisson weighting applied to corresponding central beta functions.  (7b) 
indicates that the moments of R2 are expressed by an infinite series, a result that is consistent 
with Muirhead’s claim that “The exact moments of R2 … are notoriously complicated.”   

 

(7a) generates probability density functions (pdfs) for R2 (represented by z) given n1, n2 and λ1 = 

λ1(T, ρ2).  Figure 1 shows these pdfs for ρ2 of 0.2, 0.5, and 0.9 and T of 15, 52, and 202.  We see 
in figure 1 that the variance of R2 declines as sample size increases, that R2 is an upward-biased 

estimator for ρ2, and that the bias in R2 diminishes as the sample size increases.  (7b) was used to 

compute the bias and standard deviation of R2 assuming various sample sizes and ρ2s.  These 
results, shown in table 1,  indicate that the bias is positive and diminishes as the sample size 
increases.  For the sample sizes shown, the bias is less than one standard deviation.     
 
The preceding R2 distributional results provide the foundation for hedging effectiveness 
distributions.  Combining the Ederington's effectiveness definition (5) with the hedging 
strategies derived from the regression models (2), (3), or (4) gives  
 

(8) e = 
})]p(Ep{[E

})]ˆp(Eˆp{[E})]p(Ep{[E
2

tt

2

tt

2

tt

∆−∆

−∆−−∆−∆−∆ β Δfβ Δf tt . 

 

where ∆∆∆∆ft represents either a scalar or a vector with β̂  defined accordingly.  The variances are 

for differences between actual and expected outcomes, or more simply, the variances are for 
unanticipated outcomes.  In this regard, R2 potentially overstates hedging effectiveness because 
if the cash-price changes display systematic behavior such as seasonality or serial correlation, 
then these systematic components are present in the expected outcome whether or not hedging 

occurs.  To isolate systematic behavior, the general hedge ratio regression, Y = X ββββ + εεεε, in (2), 
(3), or (4) is restated as εZφMαY ++=  where the K columns of X are partitioned as k1 

deterministic and/or conditioning variables in M, and k2 futures price changes in Z.  In addition 
to a column of ones for the intercept, M might also contain dummy variables representing 
seasonal spot price behavior or lagged spot prices to account for serially correlated errors 
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(Meyers and Thompson).  The elements of M form anticipations so the unanticipated outcomes 

are αMY ˆ−  without hedging and φZαMY ˆˆ −−  with hedging. 

 
The hedging effectiveness estimator that accounts for systematic spot price behavior, is   
 

(9) 
)αM(Y)'αM(Y

)φZαM(Y)'φZαM(Y)αM(Y)'αM(Y

ˆˆ

ˆˆˆˆˆˆ
e

−−

−−−−−−−
=  

 
]YM'M)M(M'[IY'

]YM'M)M(M'X'X)[X(X'Y'
1

11

−

−−

−

−
= . 

 
Analogous to Marchand's definition of the coefficient of determination, e is an estimator for   

2

Zy

1

ZZyZ

1

yy )( σΣσσ=η −−  where εZφMαYy +=−≡ .  (9) indicates that R2 and e differ unless M is 

simply a column of ones.  Otherwise, R2 overstates hedging effectiveness by over-allocating 
degrees of freedom (K-1 instead of K-k1) and sums of squares to the numerator, and by under-
allocating degrees of freedom (T-1 instead of T-k1) and sum of squares to the denominator.  

Thus, in addition to the upward bias that R2 displays in estimating ρ2, it also potentially 
overstates hedging effectiveness by failing to recognize systematic spot price behavior. 
 

The statistical properties of e follow from the statistical properties of εt and analysis of variance 

definitions.  Let SSR( α,α,α,α, φφφφ ) = βXX''βY'Y ˆˆˆˆ =  and SSE= ]YX'X)X(X'[IY' 1−−  so Y'Y = SSR( 

α,α,α,α, φφφφ ) + SSE.  Searle (p. 247) shows that (a) SSR( α,α,α,α, φφφφ ) = SSR( φφφφ | αααα ) + SSR( αααα ), where SSR( 

αααα ) = Y'M(M'M)-1M'Y, and SSR( φφφφ | αααα )  = Y'[X(X'X)-1X' - M(M'M)-1M']Y, (b) SSR( φφφφ | αααα ) is 

independent of both SSR( αααα ) and SSE, and (c) SSR( φφφφ | αααα ) / σ2 has a non-central χ2 distribution 

if εεεε ~ MVN( 0, σσσσ2 I ).  These definitions establish that  
 

(10a) 
)KT/(

)kK/(

)KT/(SSE

k/)(SSR
F 12

−−

−−
=

−
=

−

−−

]YX'X)X(X'[IY'

]YM'M)M(M'X'X)[X(X'Y'α|φ
1

11

 

 
has a noncentral F distribution with k2 numerator degrees of freedom, T-K denominator degrees 

of freedom, and λ = ββββ' [X' X     - X'M (M'M)-1 M'X] ββββ  / / / / σ2 = T η / ( 1 – η), and that  
 

(10b) 
Fk)KT(

Fk

)(SSRSSE

)(SSR
e

2

2

+−
=

+
=

α|φ

α|φ
 

 

is a singly noncentral beta random variable with corresponding degrees of freedom and λ.4  
Thus, (7a), (7b), and (7c) express the pdf, moments and CDF for hedging effectiveness where 

n1=k2, n2 = T – K, and λ = T η / ( 1 – η).  (10b) provides an expression for computing hedge 
effectiveness based on the F statistic for the for the hypothesis that the hedge ratios are zero.   
 

The preceding relies on the classical regression assumption of nonstochastic X, making λ1 = 
2/ σ−− )φZ(Z)'Z(Zφ'  constant for all samples.  This assumption is untenable in our context 

because it requires identical observations of futures-prices changes in the sample and the post-
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sample periods5.  In reality, the futures price changes in Z are beyond the experimenter’s control 
and we observe a different Z in each sample.  If Z is assumed to be generated by a MVN 

process, and if Z and εεεε are jointly independent, and if YM'M)(M'Z 1−= , then λ1 = 
2/ σ−− )φZ(Z)'Z(Zφ'  is a chi-square random variable with T-k1 degrees of freedom.   

 

(7a) through (7c) are conditional on λ1 so the pdf is g(z | n1, n2, λ1).  If λ1 is random, then f( z | 

n1, n2 ) = 1

 

0 221121 d )n ,n |  h( ) ,n ,n | z g( λλλ∫
∞

 where h( . ) is a chi-square density with T-k1 

degrees of freedom.  Substitution and integration gives the analogs to (7a) through (7c),  
 

(12a) 
),i(

)z1(z
)k,;i(g)n,n;z(f

2

n

2

n

12/n12/ni

0i
121

21

21

+Β

−
η=

−−+∞

=

∑ , 
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(12c) 
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where 
( )

( )
i)(

2

kT

2

kT

1
2

1kT

1

1

)1(
  !i

i
)k,;i(g ηη−

Γ

+Γ
=η

−

−

−

, 
φΣφ+σ

φΣφ
=η

ZZ

2

ZZ

'

'
, and ZZΣ  represents the stochastic 

regressor’s covariance matrix.  The probability density, expected values, and cumulative 

distribution are again weighted sums of beta functions.  However, when λ1 is random the weights 

applied to the beta functions are more dispersed than when λ1 is fixed.  As a result, z (which 
generally represents e or R2) is more dispersed.   
 

Figure 2 shows CDFs generated by (12c) for sample size 15, η = 0.3, and for sample size 100, η 
= 0.7.  To validate (12c), figure 2 also shows the corresponding empirical cumulative distribution 

of e for 100,000 randomly drawn samples of Z and εεεε.  The correspondence between the CDF 
(from 12c) and the empirical cumulative distribution (generated from the random draws) 

supports (12c) as the hedging effectiveness probability model when Z and εεεε are stochastic.  
Figure 2 also shows the CDF for nonstochastic regressors (i.e., 7c).  The fixed-regressor CDF is 
steeper that the stochastic-regressor CDF indicating that stochastic regressors impart additional 
variability on hedging effectiveness.   
 

Comparing E(e) from (12b) to η gives the effectiveness estimator’s bias when futures prices are 

stochastic.  Table 2 shows the bias and standard deviation of e for various sample size and η 

combinations.  The bias is generally positive when η ≤ 0.5 and negative when η > 0.5.6  This 
contrasts with the non-stochastic regressor assumption where the bias is positive for all values of 

η (table 1).  Table 2 also reveals that (a) the absolute value of the bias is smaller with stochastic 
regressors than with non-stochastic regressors (compare to table 1), and (b) the bias is small 
relative to the standard deviation of hedging effectiveness.   
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Having determined the statistical properties of the in-sample hedging effectiveness estimator, we 
now turn to the post-sample hedging effectiveness estimator.  To begin, represent the hedge ratio 

regression as iiiiiiiii εφZαMεβXY ++=+=  where i = 1 indicates the sample period with T1 

observations, and i = 2 indicates the simulation or post-sample period with T2 observations.  

Define ii

1

iii Y'M)M'(Mα −=ˆ and ii

1

iii Y'X)X'(Xβ −=ˆ for each period ( i = 1, 2).  Let e2|1 

represent the post-sample hedging effectiveness estimate computed by applying period 1 hedge 
ratio estimates to period 2 data.  From (8), 
 

(13a) )(V̂/)](V̂)(V̂[e u2h2u21|2 ππ−π=  

 

where 2V̂  indicates a variance estimated in the post-sample period, πu = xs ∆p, πh = xs ∆p + xf ∆f 

with xf = -xs 1φ̂ .  Then  
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)αα(M'M)'αα( 122212αα 12

ˆˆˆˆQ
ˆˆ

−−=
−

, and )(SSEˆˆ
222 ααM'M'αY'Y 2222 =− .  (13d) expresses 

e2|1 in terms of post-sample regression estimates.  Specifically, e2 is the hedging effectiveness 

estimate from the post sample regression, 22 βα ˆ and ˆ are defined above, and SSE2(αααα) is the sum of 

squares for an unhedged position in the post-sample period.  
12 ββ ˆˆQ

−
, 

12 αα ˆˆ
Q

−
, (

12 ββ ˆˆQ
−

- 
12 αα ˆˆ

Q
−

), 

and )(SSE 2 α are all positive-define quadratic forms so e2|1 = e2 if and only if 0Q ˆˆ =
− 12 ββ

 and 

0Q
ˆˆ

=
− 12 αα

.  Otherwise, e2|1 is less than e2.  

 
The distribution of e2|1 is unknown but it is composed of random variables with known 

distributions under the εεεε ~ MVN assumption.  Specifically, e2 has a non-central beta distribution 

with a random non-centrality parameter.  Further, each of the quadratic forms 
12 ββ ˆˆQ

−
, 

12 αα ˆˆ
Q

−
, 

(
12 ββ ˆˆQ

−
- 

12 αα ˆˆ
Q

−
), and SSE2(αααα) consists of random variables7 surrounding the inverse of their 

covariance matrix, so the realization of these quadratic forms has a chi-square distribution with 
the appropriate degrees of freedom.  Hence, (13d) indicates that the procedure for analyzing 
differences between the in-sample effectiveness estimate (e1) and the post-sample effectiveness 
estimate (e2|1) is to test the sources of a difference between e2 and e2|1, and then to test for a 
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significant difference between e1 and e2.  (13d) specifies hypotheses to test and the statistic to use 
for each test.  We will see that this procedure amounts to testing for structural change in the 
hedge-ratio regression model between the sample and the post-sample periods.   
 
First, the systematic behavior of spot prices could change between the sample and post-sample 

periods.  (i.e., 21 αα ≠ ).  
12 αα ˆˆ

Q
−

 in (13d), suggests testing H1: 12 αα ˆ= .8  The test statistic, F = 

)]kT/()(SSE[ / ]k/Q[ 1221ˆˆ
−

−
α

12 αα
 is distributed as a central F random variable with k1 and T2-k1 

degrees of freedom under H1.   
 
Second, after allowing for systematic spot-price behavior change between the two periods, the 

optimal hedge ratios could also change (i.e. 12 φφ ≠ ).  The expression 
1212 ααββ ˆˆˆˆ QQ

−−
−  in (13d) 

suggests testing H2: 12 φφ ˆ=  while allowing 21 αα ≠ .  The test statistic, F = 

)]KT/()(SSE/[}k/]QQ{[ 222ˆˆˆˆ −−
−−

β
1212 ααββ

 is distributed as a central F random variable with k2 

and T2-K degrees of freedom under H2.9   
 
If neither H1 nor H2 is rejected, then the difference between e2 and e2|1 is not significant.  In the 

extreme case, if 12 ββ ˆˆ = , then e2|1 = e2. 10  This exposes a third source of a difference between e1 

and e2|1, namely the difference between e1 and e2.  Testing H3: η1 = η2 determines whether this 
difference is significant.  The methodology for this test is well established (Papoulis, Snedechor 

and Cochran) as it derives from testing the equality of correlations (i.e., H0: ρ1 = ρ2).  Note that 

(a) R2 is the squared correlation between Yt - Y  and tŶ - Y , (b) because of least squares 

estimation, R ≥ 0, hence, (c) R is the positive root of R2.  Similar arguments apply to hedging 

effectiveness except that the Yt deviations are from the conditional mean, Mt α̂ .  Hence, the 
positive root of hedging effectiveness is a conditional correlation.  The test for equality of two 
correlations applies the Fisher Z-transformation to each correlation so Zi = ½ ln( (1+ei) / (1 - ei) ) 
and z = (Z1 - Z2)/[(N1-3)-1 + (N2-3)-1]½ is approximately normally distributed.   
 

If we reject H3, then η1 and η2 could differ for two reasons.  First, the regression error may be 

heteroscedastic vis-à-vis the sample and post-sample periods.  We test H3a: 
2

2

2

1 σ=σ  with an F-

test.  Second, η1 and η2 could differ because, after correcting for systematic behavior, the 

variability of the hedged outcome (i.e., φΣφ' ZZ ) may be heteroscedastic vis-à-vis the sample 

and post-sample periods.  This variability shift may be due to a change in volatility of one or 
more of the futures prices or due to a change in co-volatility among the futures prices.  This 
change in the covariance structure of futures prices is more likely to occur in a cross-hedging 
application than in a direct-hedging application.  Regardless of the source, an F-test of H3b: 

2ZZ,221ZZ,11 φΣ'φφΣ'φ =  is appropriate.   

 

 

An Empirical Application 

 
We have shown that the comparison of e1 and e2|1 is equivalent to testing for changes in the 

structural parameters ααααi, ϕϕϕϕi, σσσσi
2, and ΣΣΣΣzz,i between the sample period (i=1) and the post-sample 
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period (i=2).  The rigor that is missing in the simple comparison of these two statistics is brought 
to bear in testing for parametric change for each source of the e1, e2|1 difference.  We demonstrate 
our tests with an application to Brazilian ethanol inventory hedging that uses Chicago Board of 
Trade ethanol and Chicago Mercantile Exchange Brazilian real (R$) futures contracts.11  A 
typical hedge ratio model for this application is  
 

(14a) ∆(pt rt) = β0 + β1 Q1t + β2 Q2t + β3 Q3t + β4 ∆rTt + β5 ∆fTt + εt   
 
where pt is the Brazilian fuel ethanol spot price (R$/liter) at time t, rt is the R$ spot exchange rate 
($/R$) at time t, Qit is a dummy variable representing quarter i at time t (1 if quarter i, 0 
otherwise), rTt is the T-maturity R$ futures contract price ($/R$) at time t, fTt is the T-maturity 

ethanol futures contract price ($/gal) at time t, ∆ represents an eight-week hedge horizon, and 

εt = ρ εt-1 + νt.  This model illustrates multi-contract hedging, and the presence of quarterly 
dummies and serial correlation permits a contrast between R-square and hedging effectiveness.   
 
Table 3 summarizes the data used to estimate (14a).  The Brazilian ethanol spot prices are 
weekly averages.  We treat these averages as midweek prices and match them with Wednesday 
futures prices to avoid weekend-related volatility effects.   
 
The March 24, 2005 start of U.S. ethanol futures trading determines the start of the daily ethanol 
futures price series.  We use the nearby futures contract as the hedge vehicle if its last trading 
day is at least one week beyond the hedge termination date.  Otherwise, we use the next nearby 
maturity.  This one-week maturity buffer avoids potential price volatility increases related to 
contract maturity.  Figure 3 shows our spot and futures prices.  The spot price spike in the first 
half of 2011 is due to a brief inter-harvest sugarcane shortage (Jelmayer, 2011).   
 
We consider the nearby Brazilian real futures contract as a potential hedge vehicle.  We again 
use the nearby contract if last trading day is at least one week beyond the hedge termination date.  
We do not require ethanol and R$ futures maturities to match.  While this pairing is attractive as 
both contracts have maturities for all months and nearly matching last trading days12, this 
correspondence is not universal as the R$ has only four maturities per year through April 2007 
and ethanol’s last trading day was the business day prior to the 15th of the month through the 
August 2006 maturity.   
 
Finally, to model the practice of using sample results to estimate post-sample effectiveness, we 
divide our data into a 2005-2010 sample period and a 2011-2013 post-sample period.  The post-
sample period contains the 2011 price spike (figure 3).  Because of the spacing of our 
observations and the serial correlation implicit in the model, this spike affects two observations.  
Rather than deleting these two observations and creating a missing value gap in a serially 
correlated time series, we account for the errors with dummy variables.   
A model that represents parameter differences between the two periods is  
 

(14b) ∆(pt rt) = β0 + β1 Q1t + β2 Q2t + β3 Q3t + β4 ∆rTt + β5 ∆fTt +  

  Dt (δ0 + δ1 Q1t + δ2 Q2t + δ3 Q3t + δ4 ∆rTt + δ5 ∆ftTt ) + δ6 D2011.1,t + δ7 D2011.2,t + εt   
 

 εt = ρ εt-1 + ψ Dt εt-1 + νt 
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where Dt = 1 for observations in 2011 through 2013, 0 otherwise, and D2011.1,t and D2011.2,t 

represent dummy variable for the first and second observations in 2011.  δi and ψ represent 
changes in the base period parameters in the post-sample period.   
 
Table 4 summarizes estimation results for (14b).  In period 1 we observe the following.  The 
quarterly effects are significant as the first and second quarters differ from the fourth (base) 
quarter with p-values of 0.016 and 0.038, respectively.  Serial correlation is significant as 
indicated by the p-value of 0.001.  The hedge ratios for both the R$ and the ethanol futures are 
significant and of the expected sign with p-values of 0.0002 and 0.006.  The regression R-square 
is 0.528 while hedging effectiveness is 0.442. 
 
Period 2 begins with the price spike.  The t-values for the parameters associated with this price 
spike are 6.89 and -8.50.    After accounting for these two outliers, we observe statistically 
significant changes in the quarterly effects with an increase in the fourth quarter’s effect (p-value 
of 0.047) and a decrease in the second quarter’s effect (p-value of 0.015).  The change in the 
serial correlation is not significant (p-value of 0.692) and likewise, the changes in the R$ and 
ethanol hedge ratios are not significant.  Compared to the sample period, the post-sample period 
displays a larger R2 (0.960) and a smaller hedging effectiveness (0.197).  The R2 increases 
because dummy variables account for the 2011 price spike while effectiveness decreases because 
hedging does not mitigate the variability created by this unanticipated shock. 
 
Table 4 also shows the post-sample results where period 1 estimates are simulated in period 2 
(Simulation 2 | 1).  This case shows a reduction in R2 from 0.528 in period 1 to 0.184 in period 2 
as the period 1 model does not anticipate the price spike in period 2.  Hedging effectiveness also 
declines from 0.442 in period 1 to 0.135 in period 2.  Our analytical framework permits 
statistical tests of sources of this difference.  We first test whether the expectation of the 

unhedged outcomes changed (i.e., test H1: 12 αα ˆ= ).  The F-statistic for this test of 33.11 (= 

[(0.9514-0.0505)/(20-13)]/0.0505/13) has an associated p-value of less than 0.0001 so H1 is 
rejected and we conclude that our expectation of the unhedged outcome in period 2 is 
significantly different from that in period 1.   
 
We next test whether the optimal hedge ratios changed between the two periods (i.e., H2: 

12 φφ ˆ= ) after allowing for the change in the expected unhedged outcomes.  For this test, 

)αα(M'M)'αα( 122212
ˆˆˆˆ −− = 0.9514 - 0.0505 with 7 degrees of freedom and 

)ββ(X'X)'ββ( 122212
ˆˆˆˆ −−  = 0.8221 - 0.0406 with 9 degrees of freedom so the resulting F-

statistic of 0.687 (= [(0.9514 - 0.0505 -0.8211 + 0.0406 )/2] / [(0.8211 + 0.0406) / 11] ) with a p-
value of 0.523 does not lead to a rejection of H2.  Hence, there is no evidence that a change in the 
optimal hedge ratios caused the reduction in post-sample hedging effectiveness.   
 
Perhaps the observed decline of hedging effectiveness from the sample period (0.442) to the 
post-sample period (0.135) occurs because hedging with period 2 estimates would have been less 

effective in the post sample period.  Hence, we test H3: η1 = η2.  The test statistic of 0.3288 is 
asymptotically standard normal and has a p-value of 0.7423 so we cannot reject H3.13  
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Although we do not reject H3: η1 = η2 we can nonetheless test for constancy of the individual 

components of effectiveness ( )/( 2σ+φΣφ'φΣφ' ZZZZ ) with H3a: 
2

2

2

1 σ=σ  and H3b: 

2ZZ,221ZZ,11 φΣ'φφΣ'φ = .  The F statistic for H3a of 1.131 (=0.00417/0.00369) has an associated 

p-value of 0.435 so we find no evidence of heteroscedasticity.  Likewise, the F statistic for H3b of 
9.603 ( = (0.216624-0.120933) / (0.050531 - 0.040566) ) has a p-value of 0.0943 which does not 
lead to the rejection of the null hypothesis at the five percent significance level.   
 

 

Summary and Conclusions 

 
This paper has focused hedging effectiveness and is motivated by a lack of context when 
comparing a sample estimate of hedging effectiveness with an out-of-sample simulation-based 
estimate of hedging effectiveness.  Such a comparison provides no indication of the source of the 
difference and provides no basis for determining the statistical significance of the difference.   
 
Many researchers consider the regression R2 as the measure of hedging effectiveness.  We have 
argued that the regression R-square overstates hedging effectiveness whenever the spot price 
displays systematic effects such as seasonality, serial correlation, or day of the week effects.  
Similarly, reporting R-square as the estimate of the more narrowly defined hedging effectiveness 
assumes that other spot price relationships with conditioning variables such as inventory levels 
or planted acreage are controlled by hedging, when they obviously are not.    
 
Despite the deficiencies of the regression R2 as a hedging effectiveness estimator, the statistical 
distributions for R2 are useful for deriving similar distributions for hedging effectiveness 
estimators.  We discovered that the distributions derived in the mathematical statistics literature 
did not match those obtained from simulation analysis because classical regression analysis 
assumes fixed regressors.  This assumption is untenable for describing the generation of futures 
prices as exemplified by a post-sample period with futures prices that differ from the sample 
period.  Hence, we derived the pdf, CDF and moments function for the effectiveness estimator 
that assumes stochastic futures prices and we verified our functions against simulated random 
draws.   
 
The pdf, CDF, and moments function are useful but rarely employed.  The CDF, for example, 
permits the construction of confidence intervals for the underlying hedging effectiveness 
parameter and the moment function permits the determination of the bias associated with a given 
effectiveness parameter and sample size.  We used the moments function to show that the 
effectiveness estimator is biased, that the bias is small relative to its standard error (table 2), that 
the bias is positive or negative depending on the sample size and effectiveness parameter (table 
2), and that the bias is smaller with stochastic regressors than with fixed regressors (table 1 vs 
table 2).  The finding of negligible bias for the in-sample hedging effectiveness estimator 
counters one justification for reliance on the post-sample estimator.   
 
With these statistical results, we sought a method for evaluating the difference between the 
estimated, sample-period, hedging effectiveness (e1) and post-sample effectiveness estimator 
(e2|1).  While the distribution functions apply to effectiveness estimators for the sample (e1) and 
the post-sample (e2) periods, the corresponding functions for the post-sample estimator (e2|1) 
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remain elusive but are composed of mixtures of beta and F distributions.  We found that e2|1 is 
unambiguously less than the corresponding e2.  Our approach identifies sources of a difference 
between the in-sample and the post-sample hedging effectiveness estimators and permits easily 
testing each source for statistical significance.  These tests relate directly to changes in the 
regression parameters between the sample and the post sample periods.   
 
Finally, we provide an empirical illustration of how using sample-period hedge ratios as a 
hedging strategy in the post-sample period results in drastically less effective hedging (e1 = 0.442 
vs. e2|1 = 0.135).  Our methodology ties the post-sample effectiveness estimator to post-sample 
structural change in the underlying hedge-ratio model.  In our example we determined that the 
apparent decline in hedging effectiveness was not due to hedge ratios that were clearly 
suboptimal in the post-sample period but rather was due the an increase in the variability of 
unhedged outcomes.  This finding is clearly a cautionary note that indicates that when evaluating 
hedges in terms of effectiveness, we must not treat the variability of the unhedged outcome as 
given.  In fact, the stability of the hedge ratios is more important than stability of hedging 
effectiveness because hedge ratio stability tells us that we are receiving the greatest amount of 
risk reduction, regardless of the proportion removed.  The results presented in this paper 
generally devalue the post-sample estimator in favor of  the in-sample estimator.   
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Figure 1.  Probability densities for R2, for various ρ2 and degrees of freedom. 
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Figure 2.  Theoretical versus simulated effectiveness CDFs and error  

(N = 15 and η = 0.3 and N = 100, η = 0.7). 
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Figure  3.  Brazilian anhydrous ethanol cash price and nearby CBOT ethanol futures price. 
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Table 1.  Biases and standard errors for R2 with non-stochastic regressors. 
 
    

 N  ρ2  
  0.1   0.3   0.5   0.7   0.9  
 Bias(e) SE(e) Bias(e) SE(e) Bias(e) SE(e) Bias(e) SE(e) Bias(e) SE(e) 
 15 0.0599 0.1477 0.0443 0.1781 0.0351 0.1558 0.0266 0.1023 0.0117 0.0345 
 25 0.0348 0.1129 0.0257 0.1394 0.0206 0.1215 0.0157 0.0799 0.0070 0.0273 
 50 0.0170 0.0791 0.0126 0.0993 0.0102 0.0863 0.0078 0.0569 0.0035 0.0196 
100 0.0084 0.0557 0.0062 0.0705 0.0050 0.0611 0.0039 0.0404 0.0017 0.0140 
200 0.0042 0.0393 0.0031 0.0499 0.0025 0.0433 0.0019 0.0286 0.0009 0.0099 
400 0.0021 0.0278 0.0015 0.0353 0.0013 0.0306 0.0010 0.0202 -0.0004 0.0070 
    



 

18 

Table 2.  Biases and standard errors for hedging effectiveness with stochastic regressors. 
    

 N  η  
  0.1   0.3   0.5   0.7   0.9  
 Bias(e) SE(e) Bias(e) SE(e) Bias(e) SE(e) Bias(e) SE(e) Bias(e) SE(e) 
 15 0.0536 0.1468 0.0238 0.1877 0.0029 0.1826 -0.0078 0.1408 -0.0063 0.0594 
 25 0.0308 0.1132 0.0130 0.1487 0.0009 0.1420 -0.0048 0.1059 -0.0035 0.0424 
 50 0.0149 0.0801 0.0060 0.1068 0.0002 0.1004 -0.0024 0.0730 -0.0017 0.0283 
100 0.0073 0.0567 0.0029 0.0761 0.0001 0.0709 -0.0012 0.0509 -0.0008 0.0195 
200 0.0036 0.0402 0.0014 0.0540 0.0000 0.0501 -0.0006 0.0358 -0.0004 0.0136 
400 0.0018 0.0284 0.0007 0.0383 0.0000 0.0354 -0.0003 0.0252 -0.0002 0.0096 
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Table 3.  Data sources and descriptions. 
  

Brazilian Ethanol - Spot  Anhydrous fuel ethanol, $/liter, weekly, Feb 21, 2000 to present. 
 
    Source:  CEPEA  (Center for Advanced Studies on Applied 

Economics)  
 
Brazilian Real - Spot  Noon buying rates, R$/$, daily, Feb 22, 1995 to present. 
 
    Source:  Federal Reserve Bank of New York 
 
Ethanol - Futures  CBOT, 12 maturities/year, $/gal, daily March 24, 2005 to present. 
 
    Source:  Advanced Commodity Service - barchart.com 
 
Brazilian Real - Futures  CME, 12 maturities/year, $/R$, daily, April 2, 2007 to present.  
 
    Source:  Advanced Commodity Service - barchart.com 
 
    CME, Mar, Jun, Sept, Dec contracts, $/R$, daily, Dec 1, 1995 to  
     present. 
    Source:  quandl.com 
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Table 4.  Nonlinear OLS estimation results. 
  

 

Summary of Residual Errors 

Period Obs SSE(αααα, ϕϕϕϕ) (df) )(V̂ hπ  SSE(αααα) (df) )(V̂ uπ  R-Sq eff 

1 (2005-10) 36 0.120933(29) 0.004170 0.216624(31) 0.006988 0.528 0.442 

2 (2011-13) 20 0.040566(11) 0.003687 0.050531(13) 0.003887 0.960 0.197 

Total 56 0.161500(40) 0.004038 0.267154(44) 0.006072 0.872 0.395 

Simulation 2 | 1 20 0.822090(20) 0.041104 0.951419(20) 0.047571 0.184 0.135 

Parameter Estimates 

   Approx Approx 

Parameter Variable Estimate Std Err t Value Pr > |t| 

 

Period 1 (2005-2010) 

β0 Intercept -0.0373 0.0180 -2.07  0.0445 

β1 1st quarter 0.0706 0.0280  2.53  0.0156 

β2 2nd quarter 0.0523 0.0244  2.14  0.0382 

β3 3rd quarter -0.0111 0.0273 -0.41  0.6874 

β4 ∆R$ futures 1.1408 0.2826  4.04  0.0002 

β5 ∆ethanol futures  0.0868 0.0302  2.88  0.0064 

ρ serial corr -0.5418 0.1542 -3.51  0.0011 

Period 2 (2011 - 2013) adjustments 

δ0 Intercept 0.0615 0.0301  2.05  0.0474 

δ1 1st quarter -0.0890 0.0507 -1.75  0.0871 

δ2 2nd quarter -0.1143 0.0450 -2.54  0.0151 

δ3 3rd quarter -0.0462 0.0614 -0.75  0.4561 

δ4 ∆R$ futures -0.3571 0.8539 -0.42  0.6781 

δ5 ∆ethanol futures 0.0227 0.1002  0.23  0.8223 

δ6 price spike part 1 0.6570 0.0953  6.89  <.0001 

δ7 price spike part 2 -0.6591 0.0775 -8.50  <.0001 

φ serial corr 0.1569 0.3937  0.40  0.6924 
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Endnotes 

                                                 
 
1  In considering this methodology, we designate the estimation period as the in-sample period and the period 

where estimation results are used for simulation as the post-sample period.   
 
2  Chen, Lee, and Shrestha (2003) review other hedging objectives that lead to other estimation procedures.  We 

restrict our attention to those that that seek to minimize risk, defined as the variance of the hedged portfolio 
outcomes.  Also note that (2) precludes neither heteroscedastic nor serially correlated errors as data 
transformation can be applied to (2) to impart homoscedasticity and serial independence on the resulting model. 

 
3   λ and ρ2 are related as follows. β−−=−−=Σ −− )XX()'XX(T)YY(E)'XX(T 11

XY , 

)XX()'XX(T 1
XX −−=Σ − and εε

− σ+β−β=σ )XX(')X-(X 'T 1
YY .  By these definitions, 

)T/(T 112
εε

−
εε

−
εε σ+λσλσ=ρ  and the claimed result follows. 

 
4  The cumulative probability distribution of e also follows from (10b).  The second expression can be stated in 

probability terms as  α=
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where α is the probability of a larger F value. 

 
5  The inappropriateness of the fixed-regressor assumption became apparent during the simulation of random 

samples in an attempt to compare the known CDF of the in-sample effectiveness estimator with unknown post-
sample effectiveness estimator.  While fixed regressors might be acceptable as conditioning data for the sample 
period, using these same conditioning data in the post-sample period is clearly unrealistic.  

 
6  As error degrees of freedom approach zero, effectiveness → 1.0 but we do not delve into this region.  
 
7  Assumed multivariate normal.   
 
8  Note that the inverse of the covariance matrix (M2’M2) in the quadratic form indicates that the proper test is that 

the period 2 ααααs are equal to the numerical values already obtained in period 1, not the more general test of the 

hypothesis that αααα1111 = αααα2222.  The same cautionary note applies to testing H2: 12 φφ ˆ=  

 
9   This statistic compares the period 2 normalized sum of squares attributable to period 1-period 2 differences in 

all parameters ( 
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β  i = 1, 2) less the period 2 normalized sum of squares attributable to period 1-period 2 

differences in the systematic parameters ( iϕ̂  i = 1, 2).   

 

10  Equivalent to 
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11  R$ indicates the Brazilian currency, the real, thus avoiding confusion with the word real as in “real price”. 
 
12   The ethanol contract currently matures on the third business day of the month while the R$ currently matures on 

the last business day of the previous month. 
 
13 We use the respective error degrees of freedom in lieu of N1-1 and N2-1 as we apply the test for equality of two 

correlations (Papoulis).   


