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Comparing the Performances of the Partial Equilibrium 
and Time Series Approaches to Hedging 

 
Abstract: This research compares partial equilibrium and statistical time-series approaches to 
hedging.  The finance literature stresses the former approach, while the applied economics 
literature has focused on the latter.  We compare the out-of-sample hedging effectiveness of the 
two approaches when hedging commodity price risk using futures contracts.  For various 
methods of parameter estimation and inference, we find that the partial equilibrium models 
cannot out-perform a vector error-correction model with a GARCH error structure.  The partial 
equilibrium models’ unpalatable assumption of deterministically evolving futures volatility 
seems to impede their hedging effectiveness, even when potentially foresighted option-implied 
volatility term structures are employed. 
 
 
I.  Introduction 

Two broad strategies for optimally hedging risky market commitments have emerged in 

the academic literature and in practice.  The applied economics literature has focused on the use 

of statistical models of the observed time series of cash and futures prices in hedging.  Early 

development of this type of optimal hedging is found in Johnson (1960), Peck (1975), and Kahl 

(1983), among others.  Typically, this type of hedging considers an agent with a non-tradable 

position in a cash commodity, who plans to buy or sell some number of commodity futures 

contracts that will maximize her utility.  This traditionally involved choosing a level of hedging 

that would minimize the variance of changes in the hedger’s portfolio value by making static 

estimates of the variances of changes in the cash and futures prices and the covariance between 

those changes.  More recently, Cecchetti, Cumby and Figlewski (1988), Myers (1991), and 

Baillie and Myers (1991) have adopted the use of models of time-varying conditional variance 

for optimal hedging.  Noting that the use of differenced data will loose information about the 

long-run relationship between two time series, Kroner and Sultan (1993) incorporate the co-

integrating relationship between cash and futures prices into their model.  Gagnon, Lypny and 

McCurdy (1998) and Haigh and Holt (2000) extend these models to include multiple risks. 
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The finance literature on the other hand has typically stressed the use of partial 

equilibrium derivative pricing models for hedging.  This began when Black and Scholes (1973) 

and Merton (1973) noted that the seller of a derivative could form a risk-free portfolio by holding 

just the right quantity of the underlying security.  This quantity is determined by the rate a which 

the price of the derivative will change as the price of the underlying changes, referred to as the 

“delta.”  This type of hedging is therefore often referred to as “delta hedging.” 

In application, different types of hedgers have tended to make use of the two strategies.  

Holders of large derivative (especially option) portfolios generally have employed partial 

equilibrium hedging.  This is the realm of financial institutions and “financial engineers” that sell 

derivatives to their customers at a markup to the value of a portfolio with price dynamics that 

replicate, as closely as possible, those of the derivative.  Commodity producers and consumers, 

on the other hand, have more often used the time series approach.  A typical picture is that of the 

agricultural producer with a crop in the ground, who wishes to minimize the risk that the price of 

the output will fall before the harvest.  Despite their differences, these two types of hedgers face 

exactly the same problem: they each hold a position in one market (either underlying or 

derivative), and wish to take a position in the other market that will result in maximum benefit.  

Either hedger might use either of the two approaches to hedging, despite the traditional divide. 

Each approach has it own merits and drawbacks.  The time series approach does not 

require the imposition of theory a priori, thereby avoiding potential misspecification.  Also, 

available time series models can very effectively represent time-varying covariability among 

price series, a commonly observed market phenomenon that is central to the hedging problem.  

This approach does not, however, make use of all available information.  For example, time 

series hedging models consider neither the arbitrage activity that relates the price of a derivative 



 4

to its underlying security, nor theories regarding derivatives’ price variability (e.g. the 

Samuelson (1965) hypothesis that a futures contract’s volatility should increase as expiration 

approaches). 

By contrast, the partial equilibrium approach directly incorporates the arbitrage 

relationship(s) between the derivative and underlying instrument(s).  An additional benefit of this 

approach is the ability to use observed market prices to infer the expectations of market 

participants.  For example, option prices can be used to infer the future levels of volatility that 

knowledgeable industry participants are anticipating in an associated underlying market.  The 

adoption of the partial equilibrium approach comes at the price however of requiring various 

simplifying assumptions, which have varying degrees of implausibility.  Crucially, most partial 

equilibrium models do not incorporate the stochastically time-varying volatility that is widely 

acknowledged to exist in most financial and commodity markets. 

Given the above stated benefits and drawbacks of each of the two approaches to hedging, 

it is not immediately clear that one approach should be preferred in any given situation.  No 

previous research has directly compared the effectiveness of these two hedging strategies, and 

we thus undertake such an evaluation here.  We directly compare the in-sample and out-of-

sample hedging performance of the two approaches for a trader that is long physical crude oil, 

and uses a simple derivative with a linear payoff function (a futures contract) to hedge the 

associated price risk.  We assume that the hedger maximizes a mean-variance objective function, 

and hedging effectiveness is measured by the increases in the value of the objective function that 

the hypothetical trader realizes by implementing each strategy (relative to not hedging at all).  

Two partial equilibrium models that have been developed in the commodity contingent claims 

pricing literature are considered – the Schwartz (1997) one-factor model, and the two-factor 
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model of Gibson and Schwartz (1990).  Various strategies for estimating and inferring these 

models’ parameters are employed.  The competing time series model is a vector error-correction 

model, with a generalized autoregressive conditional heteroskedastic error structure. 

The rest of this paper is organized as follows:  In section II, we describe the hedging 

problem and the time series model.  In section III, we describe the partial equilibrium models, 

and describe how they can adapted for optimal hedging by an agent with mean-variance 

objective function.  This continuous time mean-variance hedging can be considered a 

generalization of delta hedging.  We also show how these models can be extended to allow for 

spatial and form differences between the commodity to which a hedger is committed and the 

commodity underlying the futures contract.  Section IV discusses the data as well as estimation 

and inference of the models’ parameters.  Section V reports the models’ hedging effectiveness, 

and the final section concludes. 

 

II.  Hedging Commodity Price Risk Using Time Series Models 

  We consider a hedger that is long a physical commodity, and wishes to optimally select a 

quantity of futures contracts to sell.  The hedge ratio, b, is the ratio of the size of the futures 

market position to the size of the cash market position.  The change in the hedger’s portfolio 

value over the discrete interval from time t-1 to time t is given by 

)()( 1111 −−−− −−−=− ttttttt FFbLLPP              (1) 

where tP , tL , and tF  represent portfolio value, the local cash price of the commodity held by the 

hedger, and the futures price, respectively, in period t.  Note that the commodity held by hedger 

does not necessarily correspond exactly to the commodity underlying the futures contract.  The 

hedger may be holding a different grade of the commodity than that specified in the futures 
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contract, or she may not be able to deliver her commodity against the futures contract at par 

value locally.  She may be implementing a cross hedge (i.e. holding a different commodity than 

that specified by the futures contract).  We therefore distinguish between a local cash price of an 

arbitrary commodity, and the price at the specified futures delivery location of the specified 

commodity.  We refer to the former as a local cash price tL  as above, and to the latter as the spot 

price tS . 

 We assume that the hedger maximizes a mean-variance objective.  This is equivalent to 

maximizing constant relative risk aversion utility when end-of-period terminal wealth is 

normally distributed (Hey 1979).  Furthermore, under such circumstances the mean-variance 

objective given below is the expected certainty equivalent income.  The hedger’s problem for 

each period is formulated as follows: 





 Ω∆−Ω∆ −−

−
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2

)|( 11
1

tt
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ttb
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λ
             (2) 

where E is the conditional expectation operator, tP∆  is the change in portfolio value from t-1 to t, 

1−Ω t   is the information available as of t-1, Uλ  is the coefficient of absolute risk aversion, and 

var() is the conditional variance operator.  Note that the risk-minimizing objective is a special 

case of equation (2) where ∞=Uλ .  Note that the conditional variance term in equation (2) can 

be expanded, using equation (1), as 

)|,cov(2)|var()|var( 111
2

11 −−−−− Ω∆∆−Ω∆+Ω∆ ttttttttt FLbFbL            (3) 

where cov() is the conditional variance operator.  The objective-maximizing hedge ratio is then 

given by 
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The second-order condition for this problem is the negative of the risk aversion coefficient 

multiplied by the conditional variance of changes in the futures price, and we are thus guaranteed 

a global maximum for a risk-averse hedger.   If we have ∞=Uλ , the first term in the numerator 

is zero and we have the minimum-variance hedge ratio.  For ∞>> Uλ0 , the optimal hedge ratio 

contains the minimum-variance component, and a speculative component.  If our hedger 

anticipates a decrease in the futures price, he will reduce the level of hedging below the 

minimum variance level to avoid losses in the futures market.  Likewise, an anticipated increase 

in the futures price will compel our hedger to increase the size of the futures position. 

 Calculating the optimal hedge ratio in equation (4) requires the time-series modeler to 

provide two types of information – the conditional expected futures price change and conditional 

variance and covariance forecasts.  Recent academic hedging research advocates obtaining the 

first piece of information using a vector error correction (VEC) model.  This an the appropriate 

modeling technique in the event that each of the two price series is found to follow a unit root 

process, but a linear combination of the two is found to be stationary (Engle and Granger, 1987).  

This linear combination is interpreted as representing a long-run equilibrium between the two 

levels series.  The VEC model is essentially a vector auto-regression model in which a deviation 

from the long-run equilibrium (the “error”) in one time period is subject to some degree of 

correction in the following time period.  A basic representation of a VEC for two variables is as 

follows: 

ttit

r

i
it yyy εαβππ ++∆+=∆ −−

=
∑ 1

1
0               (5) 

where ty  is the 12×  vector of observations at time t, 0π  is a 12×  parameter vector, each iπ  is a 

22×  coefficient matrix, β  is the co-integrating vector characterizing the long-run equilibrium, 
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α  is a 12×  coefficient vector, and tε  is a vector of innovations.  The inner product 1−tyβ  is the 

deviation from the long-run equilibrium, and α  characterizes the rate at which each of the two 

variables responds to this deviation.  Forming y using cash and futures prices, Equation (5) can 

then be used to generate forecasts of futures price changes – one of the components of the 

optimal hedge ratio above. 

The other pieces of information that are required to calculate the optimal hedge ratio in 

equation (4) are the conditional variances and covariance. These can be forecast using 

multivariate versions of the auto-regressive conditional heteroskedasticity (ARCH) model of 

Engle (1982) or the generalized ARCH (GARCH) model of Bollerslev (1986).  A GARCH error 

structure implies that the conditional second moment of the innovation vector of a model follows 

an autoregressive, moving average process – it is a function of past innovation vectors and past 

second moments.  Here we employ a GARCH(1,1) model with the diagonal vech 

parameterization of Bollerslev, Engle, and Wooldridge (1988).  The conditional distribution of 

the error from equation (5) is then given by 

1| −Ω ttε ~ ),0( tHN                 (6) 

vech AWH t +=)(  vech BT
tt +−− )( 11εε  vech )( 1−tH .            (7) 

Here, vech() is the column stacking operator that stacks the lower triangular portion of a 

symmetric matrix, W is a 13×  vector of constants, and A and B are a diagonal 33×  coefficient 

matrices.  Equation (7) can be used to form one-period ahead forecasts of the variance of futures 

price changes and the covariance between futures and cash price changes.  The VEC-GARCH 

model given by equations (5) through (7) thus provides a means by which a hedger can select the 

optimal level of hedging. 

 



 9

III.  Hedging Commodity Price Risk Using Partial Equilibrium Models 

 Early models for pricing contingent claims included only a single stochastic factor, the 

price of the underlying asset.  These models assumed that a risk-free portfolio consisting of a 

short position in the derivative contract and a long position in the underlying asset could be 

formed, and that this portfolio should earn the risk-free rate of return.  Ross (1978) noted that 

this assumption is inappropriate in the event that there are benefits to holding an actual asset, 

rather than merely holding a contract calling for future delivery.  When the asset is a commodity, 

the flow of these benefits is referred to as a convenience yield.  Kaldor (1939) describes this 

phenomenon, and it features prominently in the theory of storage developed in Working (1949) 

and Brennan (1958).  Consideration of the convenience yield motivated the development of the 

Brennan and Schwartz (1985) model for pricing commodity contingent claims, which assumed 

that a commodity’s convenience yield was a constant proportion of the spot price.  This 

assumption that the convenience yield could be specified as a deterministic function of a 

commodity’s spot price was investigated empirically in Brennan (1991), and Gibson and 

Schwartz (1991).  Both studies decisively concluded that such an assumption was inappropriate, 

and that the convenience yield should be specified as a second stochastic factor. 

Gibson and Schwartz (1990) thus developed a model for pricing commodity contingent 

claims with two stochastic factors, the first being the spot price of the commodity and the second 

being the instantaneous net (of storage costs) convenience yield of the commodity.  In this 

model, the holder of a commodity derivative faces not only the risk that the spot price of the 

commodity will change, but also the risk associated with changes in the convenience yield.  As it 

is not possible to hedge the latter risk, it is not possible to form a completely risk-free portfolio, 

and the Gibson-Schwartz (GS) model is one of incomplete markets. 
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 The GS model assumes that the spot price of a commodity S and associated instantaneous 

net convenience yield δ  follow the joint diffusion process given by 

11/ dzdtSdS σµ +=                 (8) 

22)( dzdtkd σδαδ +−=                (9) 

where µ  is the drift of spot price returns, 2
1σ  and 2

2σ  are the instantaneous variances of spot 

price returns and the convenience yield respectively, 1dz  and 2dz  are increments to correlated 

Brownian motions, with the multiplication rule dtdzdz 1221 ρ= , and 12ρ  being the correlation 

coefficient.  The convenience yield is assumed to revert at rate k to a long-run mean level α .  By 

Ito’s Lemma, the price ),,( τδSG of a commodity contingent claim that is a function of time, and 

a twice continuously differentiable function of S  and δ  then follows the diffusion 

dtSGGSGSGGdG SSSS 



 +++−−= µσσσρσ δδδτ

2
22112
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2
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1
 

[ ] [ ] 2211 dzGdzSGS δσσ ++              (10) 

where tT −=τ  is the length of time from the present (t) until expiration of the derivative (T), 

and XG  represents the partial derivative of G with respect to X.  Gibson and Schwartz present a 

no-arbitrage argument that leads to following partial differential equation that must be satisfied 

by the price ),,( τδSF  of a futures contract: 

( )[ ] 0))(
2
1

2
1

22112
2
2

2
1

2 =−−−+−+++ τδδδδδ λσδαδσσρσσ FkFrSFSFFSF SSS    

      (11) 

where r is the risk-free rate of return, and λ  is the market price of convenience yield risk.  The 

solution to equation (11), as reported in Hilliard and Reis (1998) is 
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We now turn to the task of adapting the GS model for use in hedging.  Using equation 

(12) to find the appropriate partial derivatives to substitute into equation (10), we find the 

diffusion followed by a futures contract to be 
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For a hedger whose local cash price corresponds to the spot price, changes in portfolio value are 

given by bdFdSdP −= .  Using this, applying Ito’s Lemma to equation (8), and using equation 

(13), we find that the short hedger’s portfolio dynamics are described by the diffusion 
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Defining another standard Brownian motion z and a parameter Pσ  such that 
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we can simplify equation (14) to 

dzdtdP PP σµ +=               (16) 

with drift  
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and instantaneous variance 
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This expression for the instantaneous variance of changes in portfolio value is analogous to 

equation (3) – the first term is the instantaneous variance of spot price changes, the second term 

is 2b  multiplied by the instantaneous variance of futures price changes, and the third term is 

b2−  multiplied by the instantaneous covariance between spot and futures price changes.  Armed 

with the above specification for the controlled stochastic process followed by the hedger’s 

portfolio, we are in a position to solve the continuous time version of the hedging problem given 

by equation (2).  In the context of the GS model, we find the following expression for the 

optimal hedge ratio: 
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where  

( ) ( )





 −−−−= − τλσ

δµµ k
F e

k
rF 12 .           (20) 

 Note that the above expression for the optimal hedge ratio has been developed for a 

hedger whose cash market commitment exactly corresponds to the commodity underlying the 
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futures contract (i.e. L = S).  This result is of limited usefulness, as many hedgers’ cash market 

commitments vary from the specifications of the futures contract.   The GS model can be 

augmented, however, to derive a more general formulation.  We define the difference between 

the hedger’s cash price and the spot price as 

 SLB −≡                (21) 

and we propose the following stochastic process for B: 

( ) 33dzdtBdB σβγ +−=              (22) 

where 2
3σ  is the instantaneous variance of changes in B, 3dz  is a third Brownian motion, and we 

add the multiplication rules dtdzdz 1331 ρ=  and dtdzdz 2332 ρ= .  We assume that B reverts to 

level β  at rate γ .  The mean-reverting nature of B is justified in the event that a stable long-run 

relationship between the cash and spot prices exists.  In the event that no such relationship 

existed, the futures contract would make an inappropriate hedging vehicle for the cash price 

concerned.  Changes in the hedger’s portfolio are then given by bdFdSdBdPA −+= , and we 

can follow a succession of steps similar to those above to arrive at the following diffusion: 

 dzdtdP APAPA σµ +=               (23) 
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The differences between expressions (18) and (25) are in the terms that represents the 

instantaneous variance of cash price changes and the covariance between cash and futures price 

changes.  The variance of cash price changes now reflects the interaction between the spot price 

and its difference with the local cash price.  The covariance term now contains portions that 

reflect the covariation of B with the other stochastic factors in the model.  This results in an 

expression for the optimal hedge ratio, analogous to equation (19), of 
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(26) 

This is a more general optimal hedge ratio that could be used by a hedger who does not plan to 

make delivery at the delivery location specified by the futures contract, or who is implementing a 

cross hedge.   

Schwartz (1997) presents a one-factor model for pricing commodity contingent claims, 

hereafter referred to as the S97 model.  Rather than arguing that a risk-free portfolio of a 

derivative and the underlying commodity can be formed, however, this model is developed by 

attaching a market price of (spot price) risk to the derivative.  The S97 model does not therefore 

follow in the spirit of Kaldor, Working and Brennan’s theory of storage as the GS model did, but 

instead follows Keynes (1930) and Hicks (1939) in emphasizing the role of risk and return in 
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determining the value of contingent claims.  In the S97 model, the spot price is assumed to 

follow the process 

( ) 11ln SdzSdtSkdS σµ +−= .             (27) 

 where as before 2
1σ  is the instantaneous variance of changes in the natural logarithm of the spot 

price, and the log of the spot price reverts to level µ  at rate k.  The price of a futures contract 

must satisfy, as discussed by Schwartz, the partial differential equation 

( ) τλµσ FSFSkFS SSS −−−+ ln
2
1 22

1            (28) 

where λ  is the market price of risk.  Schwartz gives the solution as 
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Following the discussion of hedging using the GS model, when C = S, we have the following 

process for the short hedger’s portfolio under the S97 model 

dzdtdP PP σµ +=               (30) 
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The optimal hedge ratio for the short hedger when L = S is then 
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Note that if we ignore the speculative component, the variance-minimizing hedge ratio is 

( ) )exp( τkFS .  Using equation (29), it is easy to see that this is identical to 1−
SF , demonstrating 
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that the adaptation of contingent claims models for mean-variance hedging that we outline here 

can be considered a generalization of delta hedging.  Augmenting the S97 for the case where 

SL ≠ , again using equation (21) and specifying  

 ( ) 22dzdtBdB σβγ +−= ,             (34) 

similar to before we find the diffusion followed by the hedger’s portfolio is 

dzdtdP APAPA σµ +=               (35) 

with 
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The optimal hedge ratio for the short hedger when SL ≠  is then given by 
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IV.  Data, Parameter Estimation, and Parameter Inference 

 The data we use are week-ending observations of the New York Mercantile Exchange 

(NYMEX) crude oil futures contracts, options on those futures, and the associated spot price.  

The futures and spot price data are observed over the period January 6, 1984 through June 21, 

2002.  We use option prices observed January 3, 1992 through June 21, 2002.  Option prices 

were available before 1992, but trading volumes were not sufficient for the purposes outlined 

below.  All data were provided by Commodity Research Bureau.  We divide the data into three 

periods.  The first time period, January 6, 1984 through December 27, 1991 (417 observations), 
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is used strictly for parameter estimation.  The second time period, January 3, 1992 through 

December 27, 1996 (261 observations), is used for both parameter estimation and the evaluation 

of in-sample hedging effectiveness.1  Out-of-sample hedging effectiveness is evaluated over the 

final time period, January 3, 1997 through June 21, 2002 (286 observations). 

 There is one NYMEX crude oil futures delivery per month.  The price data for individual 

futures contracts were used to construct a rolling nearby futures series (NEAR) that is used in the 

parameter estimation and evaluation of hedging effectiveness.  Where price changes were 

required, as in the unit root testing and VEC model estimation, care was taken to take changes of 

the individual futures series before selecting those changes that were nearby.  That is to say, we 

use nearby futures changes (NEARD) rather than a changes in the nearby futures series 

(DNEAR).  The latter series would result in roughly one out of every four observations being the 

composition of a change in a futures price and the spread between the expiring and new nearby 

futures prices (due to monthly contract expiration and the weekly observation frequency).  Such 

a series has no natural interpretation in the context of hedging, and an uncertain (at best) 

interpretation in the context of time series econometrics.  The NEARD series, however, contains 

no observations that are corrupted by futures spreads and is consistent with the futures price 

changes that an actual trader would realize.  The differenced spot price series (DS) contains the 

usual first differences of the spot prices (S). 

 Following Gibson and Schwartz (1990), we employ the annualized one-month forward 

convenience yield when estimating the stochastic processes underlying the GS model.  This is 

estimated using the price F1 of a nearby futures contract and the price F2 of the subsequent 

contract expiring using the following relation 
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where r1 is the one-month forward riskless interest rate. 

 We first discuss the in-sample time series analysis.  Augmented Dickey-Fuller (ADF) 

tests for unit roots were carried out on all series over the in-sample estimation period (January 6, 

1984 through December 27, 1996), with results presented in the first four rows of table 1.  Test 

results suggest non-stationary behavior, and differenced spot and nearby futures changes series 

are thus used for the remainder of the time-series estimation.  We test for the presence of 

cointegration between S and NEAR using the Engle-Granger (1987) methodology.2  Regressing S 

on NEAR and a constant results in the following potential cointegrating relation 

NEARSECT 001.1014.0 −+= .            (40) 

An ADF test statistic on the recovered ECT series, presented in the last row of table 1, strongly 

rejects the null hypothesis of a unit root, and we conclude that S and NEAR are indeed 

cointegrated. 

 Preliminary univariate analysis of the DS and NEARD series suggested the presence of 

GARCH effects as expected.  Bollerslev’s GARCH(1,1) process was then fitted to each series 

under the assumption of normality, with the results found in table 2.  Consistent with Baillie and 

Myers, no autoregressive terms in the mean equations were necessary to render the standardized 

residuals free of autocorrelation, as evidenced by the reported Ljung-Box tests on the 

standardized residuals for up to 12th-order autocorrelation.  The sample skewness and kurtosis of 

the standardized residuals from each model suggest no significant deviation from normality.  

Asymptotic standard errors for the conditional variance equation parameter estimates confirm the 

presence of GARCH behavior in the series, and the Ljung-Box test on the squared standardized 

residuals indicates that the GARCH(1,1) specification adequately represents this behavior. 
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 Based on the results of the univariate time series analyses, the multivariate VEC-

GARCH(1,1) model given by equations (5) through (7) was fitted to the DS and NEARD series 

under the assumption or normality.  The mean equations for each variable include the ECT 

recovered using equation (40).  Schwarz (1978) information criterion was employed in the 

specification of the mean equations otherwise, and it was determined that neither constants nor 

autoregressive terms were desirable.  Results are presented in table 3.  Residual diagnostics 

suggest no serious misspecification.  All parameter estimates are significant at the 1% level.  The 

speed of adjustment coefficients on the ECT suggest that deviations from the long-run 

equilibrium are subject to rapid correction, as expected given the frequency of futures deliveries 

used to construct the NEARD series.  The parameters estimates associated with the conditional 

variance dynamics ( iiiii WBA ,, ; 3,1=i ) are similar to those obtained in the univariate estimation.  

 The parameter estimates associated with the conditional covariance dynamics ( 22222 ,, WBA ) 

indicate substantial interaction between the two series. 

 The GS model parameters were estimated using an iterated seemingly unrelated 

regressions (SUR) procedure on the linear discrete approximations to equations (8) and (9).  The 

resulting annualized parameter estimates are 017.0−=µ , 177.0=α , 183.9=k , 349.01 =σ , 

157.12 =σ , and 431.012 =ρ .  The large estimate of k suggests a high degree of mean-reversion 

in the convenience yield, and the large estimate of 2σ  suggests that it is highly volatile as well.  

We refer to this method of parameter estimation as estimating the stochastic differential 

equations (SDEs). 

 In order to implement the optimal hedging scheme outlined in section III, an estimate of 

the market price of convenience yield risk in the GS model is also needed.  To accomplish this 

task, we follow Gibson and Schwartz (1990) by finding the least-squares fit of the futures pricing 
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formula in the GS model to the market data.  Specifically, for each available week-ending futures 

price observation for each delivery in the data set over the in-sample period, we collect the 5-

tuple ( )rSF ,,,, τδ .  We then use all such observations to find the value of λ  that minimizes the 

sum of squared pricing errors implied by equation (12), using the estimates of parameters other 

than λ  found by estimating the SDEs.  The value of λ  that we find is –0.132.  As discussed in 

Gibson and Schwartz (1990), finding a negative price of convenience yield risk is consistent with 

the fact that the partial derivative of the futures price with respect to the convenience yield is 

negative. 

 In addition to estimating the SDEs, it is also possible to directly estimate the parameters 

of the term structure of volatility (TSV) in the GS model, using market data observed during the 

recent past.  This provides a means by which the restrictive assumption of a constant TSV can be 

somewhat relaxed.  The TSV for the GS model is given by 

( ) ( ) ( ) 2
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Computing the annualized sample standard deviations of observed futures log price changes for 

the most recent 2 months of daily observations for the nth nearby futures series provides us with 

a pair ( )τσ ,ˆ F  where τ  is the average length of time until expiration.  Collecting these pairs for 

the 12 nearest nearby futures price series provides 12 observations with which we find the values 

of 1221 ,, ρσσ  and k  that result in the best fit, in the least squares sense, of equation (41) to the 

market data.  This exercise can be carried out at any point in time to arrive at a TSV that reflects 

more recent market activity, rather than a very long run average TSV found by estimating the 

SDEs.  The estimated TSV might be thought of as the generalization of what is commonly 

referred to as “historical volatility.”  Rather than estimating the annualized volatility of only the 
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spot or futures price using a moving window of observations, however, the entire TSV is 

estimated.  This provides a second means that a hedger might use arrive at the GS parameters 

needed to calculate the optimal hedge ratio.  As an example, figure 1 presents the GS term 

structure of volatility found by estimating the SDEs, and the TSV found by direct estimation on 

June 21, 1996 (a date chosen to illustrate an example of a high level of volatility in nearby 

futures).  In both cases, the TSV is a decreasing function of time until maturity, as predicted by 

the Samuelson hypothesis.  The functional form for the TSV in the GS model does not require 

this, however; gentle increases at longer times until maturity are permitted and are observed over 

some intervals in the data set. 

 In addition to the two parameter estimation methods discussed above, it is also 

theoretically possible to infer the TSV from observed futures option prices if a closed-form 

solution for those prices is available for a given model.  In the case of the GS model, the value C 

at time t, of a European call option with strike price X, expiring at time T1, on a futures contract 

with price F, expiring at time T, is given in Hilliard and Reis (1998) as 

[ ])()(),,,,( 11
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N(d1) represents the standard normal distribution function evaluated at d1.  To infer the TSV on a 

given date, the price for one approximately at-the-money option on each futures contract was 

collected (where available).  All such available option prices and the corresponding values of F, 

X, r, T, and T1, were then used in attempts to find the values of 1221 ,, ρσσ  and k  that provided 

the best least-squares fit of (the highly non-linear) equation (42).  Just as the direct estimation of 

the TSV can be thought of as a generalization of “historical volatility”, the option-implied TSV 

can be thought of as a generalization of “implied volatility”.  Unfortunately, in many cases as 

few as 5 observations were available for this task, and the inferred parameter values were often 

unreasonable.  Given that this task could not be performed reliably with the available data, we do 

not use option-implied term structures of volatility for hedging in the context of the GS model. 

We now turn to the estimation of the parameters of the S97 model.  The linear discrete 

approximation of equation (27) was estimated over the in-sample estimation period using 

ordinary least squares, resulting in the following annualized parameter estimates: 038.3=µ , 

993.2=α , 334.1=k , and 347.01 =σ .  The market price of risk in the S97 model was 

estimated using a procedure analogous to that used to estimate the market price of convenience 

yield risk in the GS model.  The resulting in-sample estimate of the market price of risk λ  is 

0.025.  In addition to estimating the SDE of the S97 model, it is again possible to directly 

estimate the TSV.  The TSV for the S97 model is given by 

 ( ) 11 ,; σστσ τk
F ek −= .              (45) 

Again pairs ( )τσ ,ˆ F  were collected for the 12 nearest nearby futures series, and the natural 

logarithm of Fσ̂  was regressed on τ  to arrive at least squares estimates for k  and 1σ .  In the 

case of the S97 model, we find that it is possible to reliably infer the TSV using observed futures 

option prices.  The solution for European options on futures in the S97 model is given in 
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Clewlow and Strickland (1999).  The solution is equations (42) and (43) again, but equation (44) 

is replaced with 

[ ])(2)(2
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σ .           (46) 

 The term structures of volatility estimated/inferred using the three methods outlined 

above for the S97 model on June 21, 1996 are presented in figure 2.  Note first that in all cases 

the TSV is a strictly decreasing function of time until maturity as dictated by its exponential 

decay functional form.  The directly estimated TSV indicates a higher level of volatility at all 

times until maturity than the option-implied TSV.  As it happened, the option-implied TSV 

indicated much higher levels of volatility one or two months earlier.  This highlights the lagged 

effect that an increase in the general level of volatility will have on the TSV that is directly 

estimated using a moving window of historical data.  The option-implied TSV, on the other 

hand, is calculated using data observed on a single day and can therefore adjust instantly to 

changes in market conditions. 

Careful examination of the dynamics of the implied TSV, however, reveals a more subtle 

problem.  We found the S97 option-implied TSV displayed a teetering behavior – an increase in 

implied spot price volatility was generally accompanied by a decrease in the implied volatility of 

futures far from maturity and vice versa.  Evidence of this is presented in figure 3.  Over a six 

week period, the implied spot price volatility increased roughly 8%, while the implied volatility 

of futures one year from expiration decreased about 4%.  This phenomenon seems difficult to 

justify economically, and more likely results from the assumption of a constant TSV.  In actual 

practice, option traders anticipate mean reversion in volatility levels - an increase in spot price 

volatility is likely to die out as time passes.  As discussed in Hull and White (1987), the prices of 

options in a stochastic volatility environment should be a function of the expected levels of 
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volatility of the underlying over the life of the option.  A short-term increase in spot price 

volatility has a large impact on the average level of volatility over the life of option that is 

nearing expiration, but a relatively small impact on the average level of volatility expected over 

the life of an option far from expiration.  A significant increase in the premiums for options on 

nearby futures may therefore be accompanied by only a modest increase in the prices of options 

on distant futures.  A significant increase in nearby option prices necessarily results in an 

increase in the value of 1σ  in the fitted TSV, but the rate of decay of volatility k must also 

increase if the distant option prices have not risen by much.  This results in the observed 

teetering behavior. 

  

V.  Hedging Effectiveness 

 We consider the problem of a hypothetical crude oil trader with mean-variance utility that 

wishes to take an optimal position in crude oil futures using equation (4).  Following Gagnon, 

Lypny, and McCurdy (1998) and Haigh and Holt (2000), the hedger’s risk aversion parameter is 

set at two.  We assume that the cash position is 100,000 barrels, and that this position is hedged 

using the nearby futures contract.  We further assume that the hedger’s cash position corresponds 

to the specifications of the futures contract (i.e. L = S).  Optimal hedge ratios in the time series 

hedging scheme are formed in each period by using the appropriate elements of the conditional 

variance-covariance matrix tH .  When employing partial equilibrium hedging, hedge ratios are 

formed using either equation (19) or equation (33) after any appropriate parameter estimation or 

inference.  Two methods of parameter estimation are devised above for the GS model: 1) simply 

estimating the SDEs and 2) directly estimating the TSV each time a new hedge ratio is formed.  

These two methods of parameter estimation are also available when using the S97 model, and we 
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additionally are able to infer the TSV from futures option prices.  We thus have five competing 

partial equilibrium hedging schemes. 

 The time paths of hedge ratios generated by the VEC-GARCH and GS models during the 

last 18 months of the in-sample period are presented in figure 4.  As expected, the hedge ratios 

generated by the GS model with SDE parameters estimates are fairly stable relative to those 

generated by the VEC-GARCH and GS model employing a freshly estimated TSV each period.  

Nonetheless, the paths of the VEC-GARCH and GS with SDE parameter estimates are similar – 

steady in late 1995, then dipping in the spring and summer of 1996 and then increasing in late 

1996.  Over the portion of the in-sample period for which we evaluate hedging effectiveness, the 

correlation coefficient between these two models’ hedge ratios is 0.53, while the correlation 

between the hedge ratios from the VEC-GARCH and the GS model with an estimated TSV is –

0.10.  The time paths of the optimal hedge ratios generated by the three S97 models over the 

same time period are presented in figure 5.  All three consistently follow a saw tooth pattern due 

to the functional form of the TSV in the S97 model.  Ignoring the speculative component of 

equation (33), and assuming the ratio of the spot price to the futures price is approximately one, 

the optimal hedge ratio is then approximately )exp( τk .  This is greater than one before futures 

expiration, and decays to one at the time of expiration.  As one might expect after examining 

figures 4 and 5, the S97 hedge ratios are highly correlated with one another, but not with the GS 

or VEC-GARCH hedge ratios. 

 To evaluate in-sample hedging effectiveness, the realized levels of certainty equivalent 

income (CEI), based on the realized price changes and conditional variances and covariances 

from the VEC-GARCH model, are evaluated for each week over the period January 3, 1992 

through December 27, 1996.  The average level of CEI is then calculated for each of the six 
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hedging models.  Table 4 presents these averages, as well as that realized for the unhedged cash 

position.  CEI increases are large in all cases, demonstrating the excellent hedging performance 

of NYMEX crude oil contract in the present context.  The VEC-GARCH model delivers the 

greatest CEI increase.  Among the partial equilibrium models, there is no clear-cut pattern.  

Neither the GS nor S97 models’ performance dominates the other.  Also, neither of the two 

available methods of parameter estimation is clearly superior.  Hedging using the GS model with 

estimated SDEs results in hedging performance that is very similar to hedging using the S97 

model with estimated term structures of volatility.  The S97 model with option-implied terms 

structures of volatility provides the second worst hedging performance, despite the attempt to 

glean insight into the future volatility conditions expected by option traders.   

 Previous optimal hedging literature considers not only in-sample hedging effectiveness, 

but stresses the need to evaluate out-of-sample hedging effectiveness as well.  This provides a 

fair test of how an optimal hedging scheme is likely to perform in real-world conditions.  To 

evaluate out-of-sample hedging effectiveness, we re-estimate each model each period using all 

available data at that point in time for each of the models, and then use each to make one period 

ahead forecasts of the components of the hedger’s optimal hedge ratio.  The resulting CEI in 

each period is assessed using the ensuing actual price changes in the following week and the 

conditional variances and covariances recovered from a final VEC-GARCH model estimated 

using the entire data set.  Again the CEIs from each period are averaged for each hedging model 

and for the unhedged case.  Results are presented in table 5.  These results are very similar to 

those found in the in-sample period.  The VEC-GARCH model results in the largest CEI 

increase.  Again the S97 model with estimated TSV and the GS model with estimated SDEs 
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deliver similar performance, roughly tying for second place.  The remaining three models again 

share the dishonor of being the three worst performing.   

To determine if the superior hedging effectiveness of the VEC-GARCH model is 

attributable to superior futures price forecasting (associated with the speculative component of 

the hedge ratio) or the superior variance and covariance forecasting, the out-of-sample forecasts 

of nearby futures one-week price changes are evaluated.  All models delivered very similar root 

mean squared errors (RMSEs) of their forecasts, however the VEC-GARCH model provides the 

worst forecasts.  The RMSE of the VEC-GARCH forecasts is $1.161 per barrel, while the partial 

equilibrium models’ RMSEs are tightly distributed around an average of $1.154 per barrel.  It 

therefore appears that the superior hedging performance of the VEC-GARCH model is due 

entirely to superior modeling of conditional variance and covariance dynamics. 

 Overall, the VEC-GARCH hedging model, which allows time-varying variances and 

covariance, provides the best hedging performance, despite producing the most variable hedge 

ratios (as measured by sample standard deviation).  The partial equilibrium models’ hedge ratios 

are less variable, but perform worse.  This suggests that the hedge ratios generated by the partial 

equilibrium models are not sufficiently reflecting changes in volatility conditions.  The cause of 

the inferior performances of the partial equilibrium hedging models thus appears to be the 

unrealistic assumption of a constant TSV.  Attempts to compensate for this shortcoming by 

frequently estimating or inferring the TSV do not result in consistently improved hedging 

effectiveness, and in no case is the performance of the VEC-GARCH model matched.  

Estimating the TSV suffers from the problem of employing a moving window of historical data, 

and any change in volatility conditions is reflected with somewhat of a lag.  Inferring the TSV 

from futures options prices (only practical for the S97 model) is still done in a constant TSV 
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context, and suffers from the teetering effect described earlier.  All methods of updating the 

parameters of the term structures of volatility in the partial equilibrium models also come at the 

expense of a significant increase in computational complexity. 

 In a sense, the hedging problem formulated here is the easiest possible for the partial 

equilibrium models.  The assumption is made that the hedger’s cash position corresponded with 

the futures contract specifications (i.e. L = S).  We thus employed the optimal hedge ratios in 

equations (19) and (33) rather than those from the augmented models in equations (26) and (38).  

For many hedgers this will not be the case, and the use of the augmented models would be 

necessary.  This would likely result in hedging performance that fell further short of that of the 

VEC-GARCH model, for the following reason.  The use of an augmented partial equilibrium 

models would add another layer of constant variance-covariance assumptions – likely 

exacerbating the problem that led to the poor performance when L = S.  On the other hand, the 

case where SL ≠  presents no special problem for the time series model, as one would simply 

employ the appropriate local cash price series rather than the spot price series, and proceed as 

usual with a model that fully incorporates conditional variance and covariance dynamics. 

 

VI.  Conclusions 

 This research compares the performances of time series and partial equilibrium based 

optimal hedging models for trader that is long in a cash commodity market, and maximizes 

mean-variance utility using futures contracts.  We find that the time series approach delivers 

superior hedging performance to that of each of the other models considered.  This appears to be 

due to the partial equilibrium models’ unpalatable assumption of a constant volatility term 

structure.  The constant volatility term structure framework hampers even the seemingly 
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promising technique of inferring option market participants’ expectations regarding future 

volatility conditions. 

 This research considers only a single type of derivative, however.  These results suggest 

that the attractiveness of employing a simple partial equilibrium model (i.e. one that does not 

incorporate stochastic volatility) when hedging a commodity market cash position using futures 

contracts (or vice versa) is questionable.  Few would doubt the usefulness of partial equilibrium 

models in hedging a position in a derivative with a non-linear payoff function (e.g. an option), 

however.  The conclusion then is that different types of hedging models are suited to different 

tasks, and the best approach in still other situations is uncertain.  Furthermore, this research 

considers only a single hedging objective.  When commodity producers or consumers purchase 

options they generally think of them as being similar to insurance contracts.  This suggests that 

they may be maximizing utility of a form other than that employed here (and in much of the 

optimal hedging literature).  These issues illuminate the necessity of further research. 

 



 30

References 
 
Ballie, R. T., and R. J. Myers. “Bivariate GARCH Estimation of the Optimal Commodity 
Futures Hedge.” Journal of Applied Econometrics, 6 (1991), 109-124. 
 
Black, F., and M. Scholes. “The Pricing of Options and Corporate Liabilities.” Journal of 
Political Economy, 81 (1973), 637-654. 
 
Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of 
Econometrics, 31 (1986), 307-327. 
 
Bollerslev, T., R. F. Engle, and J. M. Wooldridge. “A Capital Asset Pricing Model with Time-
Varying Covariances.” Journal of Political Economy, 96 (1988), 116-131. 
 
Brennan, M. J. “The Supply of Storage.” American Economic Review, 48 (1958), 50-72. 
 
Brennan, M. J. “The Price of Convenience and the Valuation of Commodity Contingent Claims.” 
In D. Lund and B. Oskendal (Eds.), Stochastic Models and Option Values.  Amsterdam, 
Netherlands: North-Holland, 1991. 
 
Brennan, M. J., and E. S. Schwartz. “Evaluating Natural Resource Investments.” The Journal of 
Business, 58 (1985), 135-157. 
 
Cecchetti, S. G., R. E. Crumby, and S. Figlewski. “Estimation of the Optimal Futures Hedge.” 
Review of Economics and Statistics, 70 (1988), 623-630.  
 
Clewlow, L., and C. Strickland. “Valuing Energy Options in a One-Factor Model Fitted to 
Forward Prices.” Working paper, University of Technology, 1999. 
 
Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of 
U.K. Inflation.” Econometrica, 50 (1982), 987-1008. 
 
Engle, R. F., and C. W. J. Granger. “Cointegration and Error Correction: Representation, 
Estimation and Testing.” Econometrica, 55 (1987), 251-276. 
 
Fuller, W. A. Introduction to Statistical Time Series. New York, NY: Wiley, 1976. 
 
Gagnon, L., G. J. Lypny, and T. H. McCurdy. “Hedging Foreign Currency Portfolios.” Journal 
of Empirical Finance, 5 (1998), 197-220. 
 
Gibson, R., and E. S. Schwartz. “Stochastic Convenience Yield and the Pricing of Oil Contingent 
Claims.” Journal of Finance, 45 (1990), 959-976. 
 
Gibson, R., and E. S. Schwartz. “Valuation of Long Term Oil-Linked Assets.” In D. Lund and B. 
Oskendal (Eds.), Stochastic Models and Option Values. Amsterdam, Netherlands: North-
Holland, 1991. 



 31

 
Haigh, M. S., and M .T. Holt. “Hedging Multiple Price Uncertainty in International Grain 
Trade.” American Journal of Agricultural Economics, 65 (2000), 603-605. 
 
Hey, J. D. Uncertainty in Microeconomics. New York, N. Y., New York University Press, 1979. 
 
Hicks, J. R. Value and Capital. Oxford, England: Oxford University Press, 1939. 
 
Hilliard, J. E., and J. Reis. “Valuation of Commodity Futures and Options Under Stochastic 
Convenience Yields, Interest Rates, and Jump Diffusions in the Spot.” Journal of Financial and 
Quantitative Analysis, 33 (1998), 61-86. 
 
Hull, J. C., and A. White. “The Pricing of Options on Assets with Stochastic Volatilities.” 
Journal of Finance, 42 (1987), 281-300. 
 
Johansen, S. “Statistical Analysis of Cointegrating Vectors.” Journal of Economics Dynamics 
and Control, 52 (1988), 169-210. 
 
Johnson, L. L. “The Theory of Hedging and Speculation in Commodity Futures.” Review of 
Economic Studies, 27 (1960), 139-151. 
 
Kahl, K. H. “Determination of the Recommended Hedging Ratio.” American Journal of 
Agricultural Economics, 65 (1983), 603-605. 
 
Kaldor, N. “Speculation and Economics Stability.” Review of Economic Studies, 7, 1-27, 1939. 
 
Keynes, J. M. A Treatise on Money. London, England: Macmillan, 1930. 
 
Kroner, K. F., and J. Sultan. “Time Varying Distributions and Dynamic Hedging with Foreign 
Currency Futures.” Journal of Financial and Quantitative Analysis, 28 (1993), 535-551. 
 
Merton, R. C. “The Theory of Rational Option Pricing.” Bell Journal of Economics and 
Management Science, 4 (1973), 141-183. 
 
Myers, R. J. “Estimating Time-Varying Optimal Hedge Ratios on Commodity Futures Markets.” 
The Journal of Futures Markets, 11 (1991), 39-53. 
 
Peck, A. E. “Hedging and Income Stability: Concepts, Implications, and an Example.” American 
Journal of Agricultural Economics, 57 (1975), 410-419. 
 
Ross, S. A. “A Simple Approach to the Valuation of Risky Streams.” The Journal of Business, 
51 (1978), 453-475. 
 
Samuelson, P. “Proof That Properly Anticipated Prices Fluctuate Randomly.” Industrial 
Management Review, 6 (1965), 41-49. 
 



 32

Schwartz, E. S. “The Stochastic Behavior of Commodity Prices: Implications for Valuation and 
Hedging.” Journal of Finance, 52 (1997), 923-974. 
 
Schwarz, G. “Estimating the Dimensions of a Model.” Annals of Statistics, 6 (1978), 461-464. 
 
Stock, J. H. “Asymptotic Properties of Least-Squares of Co-integrating Vectors.” Econometrica, 
55 (1987), 1035-1059. 
 
Working, H. “The Theory of Price of Storage.” American Economic Review, 39 (1949), 1254-
1262. 



 33

Table 1  Results from augmented Dickey-Fuller tests on price dataa 

 
  Series K  1θ    
 Spot Price 0 -2.907  
 Spot Price Changes 0 -28.819  
 Nearby Future Price 2 -2.973  
 Nearby Futures Price Changes 1 -16.474  
 ECT 3 -11.458  
a Tests for the presence of unit roots, using an intercept but no time trend.  The critical value –
3.43 (1%) is given in Fuller (1976).  The optimal lag length (K) was chosen using the Schwarz 
(1978) information criterion. 
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Table 2  Parameter estimates and residual diagnostics for the univariate GARCH(1,1) 
modelsb 
  
      DSPOT     NEARD     
 µ   -0.006 (0.027)  0.057 (0.028)  
 ω   0.051 (0.013)  0.089 (0.019)  
 α   0.184 (0.037)  0.200 (0.038)  

 β   0.764 (0.042)  0.679 (0.052)  
         
 Log-likelihood  -197.416   -182.392   
         
 m3  -0.330   -0.069   
 m4  2.180   2.504   
 Q(12)  17.541 (0.130)  17.249 (0.140)  
 Q2(12)  6.745 (0.874)  9.581 (0.653)  
b The model is given by: 

ttx εµ +=  

 
1

2
1

2
1 ),0(~|

−−

−

++=

Ω

ttt

ttt

hh

hN

βαεω

ε
 

The numbers in parenthesis beside the parameter estimates are asymptotic standard errors.  m3 
and m4 are the sample skewness and sample kurtosis, respectively, of the standardized residuals.  
Q(12) and Q2(12) denote Ljung-Box test statistics for 12th-order autocorrelation in the 
standardized and squared standardized residuals, respectively, with the numbers in parenthesis 
being the associated p-values. 
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Table 3  Parameter estimates and residual diagnostics for the multivariate GARCH(1,1) 
modelc 
  
α 1 -0.572 (0.102) 
α 2 0.299 (0.106) 
W1 0.078 (0.006) 
W2 0.069 (0.001) 
W3 0.070 (0.005) 
A11 0.121 (0.011) 
A22 0.093 (0.009) 
A22 0.096 (0.011) 
B11 0.761 (0.014) 
B22 0.785 (0.011) 
B33 0.786 (0.018) 
   
Log-likelihood 412.628  
   
DSPOT equation   
    m3 -0.264  
    m4 2.417  
    Q(12) 17.157 (0.144) 
    Q2(12) 11.972 (0.448) 
   
NEARD equation   
    m3 -0.150  
    m4 2.795  
    Q(12) 17.067 (0.147) 
    Q2(12) 15.493 (0.216) 
c The model is given by: 

ttt ECTy εα +=∆ −1 ; ( )Tttt NEARDDSPOTy ,=∆  
 1| −Ω ttε ~ ),0( tHN  
 vech AWH t +=)(  vech BT

tt +−− )( 11εε  vech )( 1−tH  
The numbers in parenthesis beside the parameter estimates are asymptotic standard errors.  m3 
and m4 are the sample skewness and sample kurtosis, respectively, of the standardized residuals.  
Q(12) and Q2(12) denote Ljung-Box test statistics for 12th-order autocorrelation in the 
standardized and squared standardized residuals, respectively, with the numbers in parenthesis 
being the associated p-values. 
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Table 4  In-sample hedging effectivenessd 

 
    Average CEI   

 Unhedged -5.648E+09  
 S97 (estimated SDE) -1.018E+09  
 S97 (estimated TSV) -9.537E+08  
 S97 (inferred TSV) -1.058E+09  
 GS (estimated SDEs) -9.498E+08  
 GS (estimated TSV) -1.143E+09  
 VEC-GARCH -8.380E+08  
d CEI is certainty equivalent income. 
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Table 5  Out-of-sample hedging effectivenesse 

 
    Average CEI   

 Unhedged -9.370E+09  
 S97 (estimated SDE) -2.908E+09  
 S97 (estimated TSV) -2.723E+09  
 S97 (inferred TSV) -2.989E+09  
 GS (estimated SDEs) -2.773E+09  
 GS (estimated TSV) -2.954E+09  
 VEC-GARCH -2.281E+09  
e CEI is certainty equivalent income. 
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Figure 1  The term structure of volatility (TSV) of crude oil in the Gibson-Schwartz model using 
different parameter estimation techniques 
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Figure 2  The term structure of volatility (TSV) of crude oil in the Schwartz 1997 model using 
different parameter estimation and inference techniques 
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Figure 3  The option-implied term structure of volatility (TSV) of crude oil in the Schwartz 1997 
model observed on two dates 
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Figure 4  Partial time paths of the in-sample optimal hedge ratios generated by the VEC-GARCH 
and Gibson-Schwartz (GS) models 
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Figure 5  Partial time paths of the in-sample optimal hedge ratios generated by the Schwartz 
1997 (S97) model 
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Endnotes 
 
                                                 
1 In-sample hedging effectiveness is not evaluated over the entire in-sample estimation period 
because option trading volume was insufficient to carry out the inference of the term structure of 
volatility in the S97 model.   
2 Unfortunately, available implementations of Johansen’s (1988) cointegration methodology 
perform data differencing automatically when forming the vector auto-regression.  In the present 
context, given the series NEAR, an implementation of the Johansen methodology would then 
generate and subsequently employ the unacceptable differenced nearby series DNEAR described 
above.  Hypothesis testing on the coefficients of the cointegrating vector within the Engle-
Granger framework can be misleading (Stock 1987), however we carry out no such testing.  The 
Engle-Granger methodology does provide a consistent estimate of a single cointegrating vector, 
however, which is all that we require here. 


