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Pricing and Hedging Calendar Spread
Options on Agricultural Grain Commodities

Adam Schmitz∗, Zhiguang Wang†, and Jung-Han Kimn‡

June 1, 2013

Abstract

The calendar spread options (CSOs) on agricultural commodities, most notably
corn, soybeans and wheat, allow market participants to hedge the roll-over risk of
futures contracts. Despite the interest from agricultural businesses, there is lack of
both theoretical and empirical research on pricing and hedging performances of CSOs.
We propose to price and hedge CSOs under geometric Brownian motion (GBM) and
stochastic volatility (SV) models. We estimate the model parameters by using implied
state-generalized method of moments (IS-GMM) and evaluate the in-sample and out-
of-sample pricing and hedging performances. We find that the average pricing errors of
the SV model are 0.79% for corn, 0.75% for soybeans and 1.2% for wheat; the pricing
and hedging performance of the SV model are mostly superior to the benchmark GBM
model, both in and out of sample, with only one exception where the out-of-sample
hedging error for the GBM model for market makers is slightly better than the SV
model.

1 Introduction

A calendar spread option (CSO) gives the owner the right but not the obligation to simul-
taneously buy and sell futures contracts with different expiration dates at a predetermined
strike price. Agricultural CSOs on corn, soybeans and wheat began trading in the summer
of 2009 on the Chicago Mercantile Exchange (CME).1 The trading of CSOs has steadily
increased to daily volumes of 512 contracts for corn, 546 for soybeans and 51 for wheat, as
investors have become more aware of risk management benefits of these options. The most
popular CSOs are the new crop-old crop options, establishing long and short positions on

∗Ph.D. candidate in the Department Mathematics and Statistics at South Dakota State University, Brook-
ings, SD 57007, USA

†Assistant Professor and Stahly Scholar in Financial Economics, Department of Economics at South
Dakota State University, Brookings, SD 57007, USA

‡Assistant Professor in the Department Mathematics and Statistics at South Dakota State University,
Brookings, SD 57007, USA

1The CME Group also offers Live Cattle and Lean Hogs CSOs which are settled in the same way as the
grain CSOs. In this paper, we focus on grain CSOs due to their superior liquidity.
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contracts for the new and old crops. The most actively traded new crop-old crop contracts
for corn, soybeans and wheat are July-December, July-November, and December-July con-
tracts, respectively, although other contract months are available.

The main motivation for trading CSOs is their ability to hedge the price uncertainty with
the rolling over of contract. Depending on the hedger’s positions in cash and futures, differ-
ent options strategies can help mitigate risk exposure. Consumers of grain, such as ethanol
producers that need to constantly fill their corn inventories, can buy a CSO put to minimize
the risk of falling nearby or rising deferred futures prices. This long put position creates a
floor for potential losses the producer could incur. On the other hand, suppliers, such as grain
elevators that hold the cash crop and need to short futures, can buy a CSO call option. This
position of short nearby futures and long the consecutive CSO call locks in the spread be-
tween the nearby and the deferred which again creates a floor for losses due to a narrowing of
the spread. If the spread widens, the supplier has exposure to the upside allowing for profit.2

Academic research on the pricing and hedging of agricultural CSOs has yet to match
agricultural businesses’ interest in these products, despite a number of studies on generic
spread options on financial assets, namely stocks. There is lack of theoretical and empirical
research on agricultural and calendar spread options on futures (as opposed to cash assets).
Past studies mainly aims to provide a pricing formula and to verify its accuracy through
Monte Carlo simulation. Ravindran (1993) and Kirk and Aron (1995) proposes an approx-
imation formula for pricing spread options under the Geometric Brownian Motion (GBM)
framework. Carmona and Durrleman (2003) survey different theoretical and computational
techniques for pricing spread options. Dempster and Hong (2002) and Hurd and Zhou (2013)
use the Fourier inversion for option pricing and implement the Fast-Fourier Transform (FFT)
to compute prices. Fang (2006), Lord, et al. (2008), and Leentvaar and Oosterlee (2008)
modify the Fourier technique found in Carr and Madan (1999) to increase computational
efficiency, especially for pricing multi-asset options.

We fill the gap in the literature of CSOs, particularly agricultural CSOs, by providing
a theoretical pricing/hedging solution and calibrating the proposed model to real market
data. We model the dynamics of futures prices using both the Geometric Brownnian Motion
(GBM) and a mean-reverting stochastic volatility model (SV). There has been an increase
in the need for market participants to understand and hedge risk associated with volatility
in the agricultural futures markets. To fulfill the market’s need for a volatility hedging prod-
uct, the CME group and Chicago Board Options Exchange (CBOE) introduced the corn and
soybean volatility indexes to the market in early 2011. In academia, stochastic volatility has
become an indispensable feature of financial asset prices as lead by Heston (1993). Schwartz
(1997) proposes three models using stochastic volatility model and stochastic convenience
yield in order to model copper, oil and gold. Trolle and Schwartz (2009) study the effects
of unspanned stochastic volatility on commodity derivatives based on the Heath, Jarrow,

2The CME group website provides a number of examples on how to utilize CSOs. Examples and
mechanics of CSO can be found at
http://www.cmegroup.com/trading/agricultural/files/IntroductionCalendarSpreadOptionsGrainsOilseedProducts.pdf.
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and Morton (1992) risk-neutral measure. Geman and Nguyen (2005) propose a two-factor
stochastic volatility model to study soybean stocks and price volatility.

As a comparison, we consider both a two-factor Geometric Brownian Motion (GBM)
model and a three-factor stochastic volatility (SV) model. We fit the CME data to the GBM
model by minimizing least squared errors and to the SV model by employing an Implied-
State Generalized Method of Moments (IS-GMM) proposed by Pan (2002). We find that
the parameter estimates for both models are intuitive. The volatility of the nearby futures
in both GBM models is higher than the volatility of the deferred, evidence of backwardation
in the futures volatilities. This is likely due to the fact that any new information affects the
front month futures more than the deferred futures. There is a nearly perfect correlation
between the nearby and deferred futures returns in the GBM model for the three products.
Although the correlation between the futures prices for the SV model is not as strong as for
the GBM model, it is still relatively high. The volatility half-time ranging from three to five
months largely coincides with the gap between the old and new crop months, which drives
the seasonality of the trading and possibly the behavior of grain market volatility.

Furthermore, we find both models generate less than 5 cents of pricing error on average
and with the SV model’s error being even less than 1 cent. More specifically, the SV model
produces the average percentage errors of 0.79% for corn, 0.75% for soybeans and 1.2% for
wheat. However, the pricing and hedging performance of the SV model are mostly superior
to the benchmark GBM model, both in and out of sample, with only one exception where
the out-of-sample hedging error for the GBM model for market makers is slightly better than
the SV model. The empirical results lend strong support for agribusinesses and the market
makers to adopt the SV model for pricing and hedging grain CSOs. Another implication
for the exchange (CME) is to employ the SV model, instead of the Black-Scholes-type GBM
model for determining the settlement prices.

The remainder of the paper is organized as follows: Section 2 states our model and the
propositions relevant to pricing the CSOs; Section 3 describes the data set and the estimation
procedures; Section 4 presents the parameter estimation results and analyzes the in-sample
and out-of-sample pricing errors and hedging capabilities; and Section 5 concludes this paper.

2 Models for Agricultural Calendar Spread Options

2.1 Geometric Brownian Motion vs. Stochastic Volatility Models

We first consider a correlated two-factor geometric Brownian motion (GBM) model as a
benchmark for futures price dynamics. The nearby and deferred futures prices follow a log
normal distribution with different volatilities that permit a simple term structure. The model
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is specified under the risk-neutral Q measure as follows:

d lnF (t, T1) = (−σ2
1/2)dt+ σ1dW1 (1)

d lnF (t, T2) = (−σ2
2/2)dt+ σ2dW2 (2)

E[dW1, dW2] = ρ dt. (3)

Here, F (t, T1), F (t, T2), σ1 and σ2 represent the prices and their (return) volatilities of the
nearby and deferred futures prices, respectively.

As a comparison, we augment the two-factor GBM model with a latent Heston-type
stochastic volatility (SV) to obtain a three-factor SV model.3 The well-known Heston (1993)
model features a mean-reverting process with a square root function of volatility in the
diffusion term. The three-factor SV model reads:

d lnF (t, T1) = (−σ2
1v/2)dt+ σ1

√
vdW1 (4)

d lnF (t, T2) = (−σ2
2v/2)dt+ σ2

√
vdW2 (5)

dv = κ(µ− v)dt+ σv

√
vdWv (6)

with µ being the long-run mean of stochastic variance vt and κ its mean reversion rate. The
correlation structure under the risk neutral measure Q are

EQ[dW1, dW2] = ρ12 dt (7)

EQ[dW1, dWv] = ρ1v dt (8)

EQ[dW2, dWv] = ρ2v dt. (9)

2.2 Pricing Options on Futures Contracts

For a nearby futures contract expiring at T1 and a deferred futures contract expiring at T2, the
CSO call’s payoff at time tmaturing at time T with strikeK is max{F (t, T1)−F (t, T2)−K, 0}.
The CSO price at time t is given by

Ct(F1, F2;K,T ) := EQ [
e−rT [F1 − F2 −K]+

]
=

∫
Ω

∫
Ω

e−rT
(
ef2 − ef1 −K

)
qT (f1, f2)df2df1 (10)

where fi = log(F (t, Ti)) = log(Fi) for i = 1, 2 are log futures prices and qT (f1, f2) is the joint
probability density of f1 and f2. Ω is the domain of (log) futures prices. The expectation can
be integrated through the Gaussian quadrature for the GBM model. The more general and

3More sophisticated model features, such as seasonality and term structure of cost of carry, have been
considered by Geman and Nguyen (2005), Back, Prokopczuk and Rudolf (2013), and Schmitz, Wang and
Kimn (2013) among others. We do not include these additional features, considering the following tradeoff
with a more complex model: (1) the lack of the closed-form solutions to the characteristic function and
the pricing formula; and (2) the challenge in terms of fast, reliable and efficient parameter estimation. Our
empirical results (pricing error as low as 1%) show that additional features would add little in modeling
agricultural CSOs.
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popular approach is to evaluate the probability via Fourier transform of the characteristic
function, which admits a closed-form for both models considered in this research.

As for the first approach, Ravindran (1993) and Kirk and Aron (1995) provide an approx-
imation based on the Black-Scholes formula for the GBM model. The Ravindran formula
for the call spread option reads:4

C(F1, F2;K,T ) = EF1 [CBS(F
∗, K∗, σ∗, T )|F2]

=
∑
i

win(xi)CBS(F
∗
1 , K

∗, σ∗, T ) (11)

F ∗
1 = F1 exp(ρσ1

√
Txi −

1

2
σ2
1ρ

2T )

K∗ = F2 exp(σ2

√
Txi −

1

2
σ2
2T ) +K

σ∗ = σ1

√
1− ρ2.

CBS is the well-known Black-Scholes formula. wi and xi are the Gauss-Legendre quadrature
weigts and abscissas in the range from -4 to +4. n(.) is the normal density function. Other
parameters are specified in Equations (1-3).

The Fourier-transformation-based approach has been widely adopted in the derivatives
pricing literature: Carr and Madan (1999) for single-asset options, Dempster and Hong
(2002), Hurd and Zhou (2013), Lord et al. (2008), Leentvaar and Oosterlee (2008) and Fang
(2006) for multi-asset options. The last three follow the same approach utilizing the property
of independent increments of any Lévy process. The evaluation of Equation (10) becomes a
multi-dimensional convolution method that takes the following form:

C(F1, F2;K,T ) = EQ [
e−rT [F (t, T1)− F (t, T2)−K]+

]
= exp(−rT )F−1{F{C(F1, F2;K,T )}ϕ(−u1,−u2)} (12)

where F and F−1 are the Fourier and inverse Fourier transforms, respectively. ϕ denotes
the characteristic function of the frequency vector (q1, q2).

The characteristic function of log futures prices at expiration for the GBM model is given
by

ϕgbm(u1, u2) = EQ[exp(iu1lnF1(T ) + iu2lnF2(T ))]

= exp

[
iu1 lnF1 + iu2 lnF2 −

1

2

[ (
σ2
1u

2
1 + σ2

2u
2
2 + 2ρσ1u1σ2u2

)
+i

(
σ2
1u1 + σ2

2u2

)
T
]]
. (13)

4In the interest of space, we do not reproduce Kirk’s approximation formula. These two formulae produce
numerically very similar results.
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The following proposition gives the closed-form characteristic function for the three-factor
SV model.

Proposition 1. For u1, u2, s1, and s2 ∈ R, T ≥ 0, v, σv, σ1, σ2 > 0, and ρ, ρ1, ρ2 ∈ [−1, 1],
the characterestic function for the SV model is given by

ϕsv(u1, u2) = EQ[exp(iu1 logF1(T ) + iu2 logF2(T )]

= exp

[
iu1lnF1 + iu2lnF2 +

(
2ζ(1− exp−θT )

2θ − (θ − γ)(1− exp−θT )

)
v(0)

−κµ

σ2
v

[
2 log

(
2θ − (θ − γ)(1− exp−θT )

2θ

)
+ (θ − γ)T

]]

with

ζ = −1

2

[(
σ2
1u

2
1 + σ2

2u
2
2 + 2ρσ1u1σ2u2

)
+ i

(
σ2
1u1 + σ2

2u2

)]
γ = κ− i(ρ1σ1u1 + ρ2σ2u2)σv

θ =
√
γ2 − 2σ2

vζ.

Proof. See Appendix.

The options value C(.;K,T ) is calculated using the Fast Fourier Transform (FFT) with
the discretization size of the log price (f1 and f2) and frequency domains (u1 and u2) in the
following:

fj,kj = fj,0 + kj∆j,

uj,kj = uj,0 + njλj,

kj, nj = 0, 1, ..., N − 1,

∀j = 1, 2 and with the Nyquist relation λ1 ·∆1 = λ2 ·∆2 =
2π
N

to avoid aliasing.
The discretization of Equation (12) yields the call option value:

C(F1, F2;K,T ) =
exp(−rT )

(2π)2

2∏
j=1

(−1)kjD−1{ϕnj
D [CkGk]} (14)

Gk =
2∏

j=1

Rj(kj)

with Rj(kj) = 1
2
for kj = 0, N − 1 and equal to 1 otherwise. The FFT computation is

performed on Nvidia Graphical Processing Unit (GPU) to take advantage of its massively
parallel structure. The put option value P (F1, F2;K,T ) can be easily obtained via the
put-call parity P (F1, F2;K,T ) = C(F2, F1;−K,T ).

6



3 Data and Methodology

3.1 Data

In this paper we focus on three most liquid grain CSOs, namely July-December Corn, July-
November Soybeans and December-July wheat CSO contracts. This type of option is often
referred to as the “old crop-new crop” option, allowing the buyer to hedge the price difference
in a rollover of the new incoming crop yield. We filter the data by including only those calls
that have a positive volume for the CSO and are the most near-the-money to ensure data
quality. The trading dates range from January 7, 2010, to September 27, 2012, for corn,
January 8, 2010, to May 29, 2012 for soybeans, and February 11, 2011 to September 24,
2012 for wheat. Interest rate data are obtained from the Federal Reserve St. Louis and are
interpolated to match the maturity of CSOs. Table 1 presents the descriptive statistics for
the years for the corresponding in-sample days for both nearby and deferred futures, and the
calendar spread option. We reserve the last 16 days for an out-of-sample time series analysis.

Table 1: Summary Statistics for Corn, Soybean, and Wheat Futures and CSOs

Grain Product Mean Std. Dev. Skew. Kurt. Min. Max. Op. Int. Vol.
Corn Nearby 6.65 0.58 -0.02 0.64 4.36 8.14 308,023 80,602

Deferred 5.86 0.50 0.35 -0.43 4.43 7.14 28,4347 41,479
CSO 0.23 0.13 2.16 9.84 0.01 1.11 1,244 143

Soybeans Nearby 13.45 0.96 -1.03 0.74 9.92 15.05 151,030 53,701
Deferred 13.01 0.79 -1.34 2.06 9.65 13.99 151,276 28,567
CSO 0.18 0.12 1.44 2.83 0.00 0.68 1,422 178

Wheat Nearby 7.78 1.08 -0.15 -1.42 6.18 9.27 188,312 45,291
Deferred 8.05 0.80 -0.04 -1.00 6.79 9.34 52,103 4,530
CSO 0.14 0.10 0.92 0.44 0.01 0.43 61 38

We first notice that, corn and soybean futures prices exhibit backwardation whereas
wheat futures prices experience contango during the sample period. This feature of the data
is consistent with the dominance of CSOs with positive (negative) actual spread for corn and
soybeans (wheat) as we shall see in Table 2. Furthermore, the volatility of the nearby con-
tracts is slightly higher than in the deferred. This can be explained by the fact the nearby is
much more heavily traded than the deferred and any new information will affect the nearby
price much more than the deferred.

Table 2 reports the number of observations according to the type of options and the
strike. For both corn and soybeans, positive strikes dominate trading while for wheat,
negative strikes are more prevalent. The dominance of calls with positive strikes in the corn
and soybeans is a direct result of the price of the nearby futures contract being consistently
above the deferred contract. The opposite is true for the wheat market: the dominance of put
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options with negative strikes . Market participants need to hedge the risk of this consistently
positive (negative) spread widening or narrowing. Also, in general, most trading activity in
options occurs near-the-money, where strikes are close to the calendar spread itself. For the
estimation purpose, we employ the most at-the-money options5, which amounts to 268 calls
for corn, 225 calls for soybeans and 85 puts for wheat.

Table 2: Distribution of CSOs by Strike K

Product Type K < 0 K = 0 K > 0 Total
Corn Call 0 2 647 649

Put 1 78 427 506
# 1 80 1074 1155

Soybeans Call 0 8 634 642
Put 17 53 333 403
# 17 61 967 1045

Wheat Call 11 6 39 56
Put 101 24 12 137
# 112 30 51 193

3.2 Methodology for Parameter Estimation

Parameter estimation for the GBM model is straightforward. We follow the traditional
approach based on the minimization of the sum of squared errors over the sample period
(see Bakshi, Cao and Chen 1997). The dollar error is defined as the difference between the
Ravindran model price and the near-the-money market price.6

Parameter estimation for the SV model is more challenging, which involves the estimation
of both the eight hyper parameters Θ := {σ1, σ2, ρ12, ρ1v, ρ2v, κ, σv, µ} and the implied state
variable vt. We largely follow Pan’s (2002) “implied state-generalized method of moments”
(IS-GMM) method, originally designed for options pricing on a single cash stock (index).
The unique advantage of this method is that it requires only a time series of the underlying
asset and one option price per day, while still reliably inferring the implied state (stochastic
volatility). This method ideally fits our current problem for which we are faced with 3-4
strike prices for each maturity. We adapt the IS-GMM method for the problem of multi-asset
options on agricultural commodities.

5The raw data consists of both floor and settlement close prices. The floor close represents the market’s
last trade while the settlement is a calculated value by the CME Group used for “mark-to-market” purposes.
We thank Dwight Sanders (session chair), Wade Brorsen, Scott Irwin, Aaron Smith and other NCCC-134
2013 Conference attendees for this suggestion.

6We use Ravindran’s pricing formula, as opposed to the FFT method, because it is extremely fast and
very accurate due to its closed-form solution.
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The IS-GMM estimation is conducted in a two-step procedure. In the first step, we
minimize the pricing error (the FFT-based model price minus the actual market price) by
changing the daily implied state using the root-finding secant method, conditional on a prior
of structural hyper parameters. This step provides a vector of implied state values for the
second step. The second step in the parameter estimation procedure is to use the daily
implied state values to estimate the seven parameters by fixing σ1 to be “1” for identifica-
tion purpose. Given the time series of the implied state, we use the GMM method with a
weighting matrix using the Bartlett kernel to estimate the hyper parameters. The detailed
procedure is outlined in Pan (2002).

A total of 13 moments are derived from the following characteristic function of the joint
distribution of log futures prices and stochastic volatility:

ϕ(u1, u2, u3) = exp [iu1f1 + iu2f2 + iu3v] .

More specifically, the 13 moments used in the GMM procedure include the first four moments
for each futures (total of 8) and the first two moments of volatility, one cross-moment between
futures, two cross-moments between futures and volatility. Their derivations are as follows:

Mk
j =

∂kϕ(u1, u2, u3)

∂uk
j

ik|u1=u2=0 with j = 1, 2 and k = 1, . . . , 4

Mcross =
∂2ϕsv(u1, u2, u3)

∂u1∂u2

i2|u1=u2=0

Mk
v =

∂kϕ(u1, u2, u3)

∂uk
3

ik|u3=0 with k = 1, 2

Mvcross =
∂2ϕ(u1, u2)

∂u3∂uj

i2|uj=u3=0 with j = 1, 2

Since the characteristic function ϕ is in closed-form, so are all 13 moments. The actual
derivation is performed by the symbolic math toolbox in Matlab R⃝.

4 Results

We present the parameter estimates from the minimization procedure for the GBM and SV
models. We conclude the section with an analysis of the in-sample and out-of-sample pricing
errors.

4.1 Parameter Estimates and Analysis

Tables 3 provides the parameter estimates and standard errors for the GBM model. The
σi’s measure the volatility for the two stochastic processes. We find that the volatility of the
nearby futures price is higher than the deferred futures price. The finding is consistent with
Table 1, the nearby futures contract had a higher volatility than the deferred futures contract.
These two results show that the nearby price changes more dramatically than the deferred.
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This characteristic is the well-known Samuelson Hypothesis first proposed in Samuelson
(1965) and detailed in Kalev and Duong (2008). The hypothesis states that volatility in-
creases as futures approach the expiration date. An explanation for this increase is that any
news, positive or negative, will affect the front month’s price more than the deferred months.

Our results for GBM show that there is an almost perfect positive correlation between the
nearby and deferred futures. This is reasonable given that the sole differentiating factor is
time to expiration. Any changes to the nearby month should also change the deferred in the
same direction. Positive news to hit the market should push both futures up while negative
information will force them both down so that, either way, they move in tandem. We find
that our estimates are significant having quite low standard errors for all three parameters.

Table 3: GBM Model Parameter Estimates

Grain σ1 σ2 ρ
Corn 0.511 0.409 1.000

(0.0309) (0.0352) (0.0019)
Soy 1.089 1.086 0.999

(0.0296) (0.0331) (0.0009)
Wheat 0.183 0.016 1.000

(0.0437) (0.0454) (0.0056)

Table 4: SV Model Parameter Estimates

Grain σ2 ρ12 ρ1v ρ2v κ σv µ
Corn 0.582 0.751 0.012 0.019 1.683 0.908 0.050

(0.000) (0.019) (0.000) (0.000) (0.021) (0.010) (0.028)
Soybeans 0.795 0.788 0.035 0.035 1.947 1.458 0.019

(0.000) (0.003) (0.000) (0.000) (0.000) (0.001) (0.003)
Wheat 0.794 0.733 0.156 0.154 2.277 1.128 0.012

(0.000) (0.004) (0.000) (0.000) (0.000) (0.001) (0.002)

Figure 1 shows the estimated values of the implied volatility state variable for the SV
model. It is clear that volatilities of all three futures show randomness over time, justifying
the existence of stochastic volatility. Daily implied volatility averages and standard devi-
ations are 0.0965 and (0.1289) for corn, 0.0296 and (0.0583) for soybeans, and 0.2852 and
(0.0177) for wheat.

Table 4 provides the parameter estimates and standard errors for the SV model. First,
note that all parameter estimates are statistically significant. For identification purposes,
we set σ1 equal to 1 and let σ2 fluctuate. As with the GBM estimates, the SV estimates of
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σ1 are higher than σ2 indicating backwardization in futures volatility and further evidence
of the Samuelson Hypothesis. The futures price correlation parameter ρ is large indicating
strong correlation between the futures prices, a similar result to the GBM estimate.

The correlation in the corn and soybeans markets between the futures price and volatil-
ity indicates a slight “inverse leverage effect.” This effect results in the increase in prices
as volatility increases as opposed to a decrease in prices as volatility increases which is
readily observable in equities. An increase in agricultural market volatility is most likely
a result in the decrease in the supply of a commodity. The decrease in supply triggers an
increase in price. Because both parameters have the same positive sign, both the nearby
and deferred futures in the corn and soybean markets move in tandem with volatility shocks.

The price-volatility parameters in the wheat market have different signs. The positive
sign for the nearby indicates an increase in price as volatility increase while the negative
sign in the deferred indicates the opposite reaction. During this time, the wheat market
experienced a protracted period of contango. As a result, a volatility shock will force the
nearby price higher and the deferred lower.

The speed of mean reversion in the volatility process is moderately slow. We use ln(2)/κ
to measure the half-time of mean reversion which range from three to five months. The old
crop-new crop CSO experiences consistent trading leading up to expiration after which trad-
ing is sparse for a period of time spanning approximately six months. This lack of trading
prolongs the half-time so that any shock requires months for voltility mean reversion.

The volatility of volatility, σv, is significantly higher than the nearby and deferred volatil-
ity σi with the exception of the nearby corn future. The estimation of the long run mean of
variance (µ) is consistent with the annualized volatility of the nearby and deferred futures.
The estimates range from 11% to 22% annualized volatility and is commensurate with the
annualized historical realized volatility which ranges from 26% to 41%.

4.2 Pricing Error Analysis

We compute the in-sample and out-of-sample relative pricing errors for the GBM and SV
models. The in-sample errors are from the data set used in parameter estimation. The
out-of-sample data set include any observations traded on the same day as the in-sample
observations but not used in parameter estimation. The dollar error for the ith observation
is defined as

|P̂i − Pi|

with P̂i the model option price and Pi the market option price. The percentage error is
defined as the dollar error divided by Pi.

Figure 2 presents the dollar and percentage errors for the GBM model. In general, the
GBM model produces high and erratic dollar and percentage errors for all three contracts.
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Figure 1: Daily Volatility

There are periods of relatively high errors indicating the inability of the GBM model to cope
with changes in market volatility.

Figures 3 and 4 present the dollar and percentage errors for the SV model, respectively.
On the left column of both figures, the SV errors with all observations included appear
largely zero, with a few exceptions. For ease of interpretation and readability, these outliers
for the SV errors have been removed for comparison (see the right column). Outliers in the
dollar error graphs are any observations that are greater than 0.01 or 1 cent. This results
in the removal of five observations from corn, six from soybeans, and one from wheat. Out-
liers in the percentage error graphs are any observations greater than 10−5 or 0.001 percent.
This results in the removal of twelve observations from corn, eleven from soybeans, and five
from wheat. The SV errors are, on average, dramatically lower than the GBM errors. The
pricing performance for the in-sample data set is much better for SV than GBM given the
consistently small pricing errors. This indicates that SV model copes better with changing
market dynamics than GBM. Therefore, latent volatility is a necessary component of market
dynamics of agricultural CSOs.

Tables 5 to 7 present the statistics for the in-sample errors for absolute and signed dollar
and percentage errors for GBM and SV models. Note that, even though the pricing error
outliers are included, the SV absolute dollar and percentage error means are considerably
less than the GBM means and also have lower standard deviations. Specifically, the per-
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centage errors for SV corn, soybeans and wheat are, respectively, 0.79%, 0.75% and 1.17%.
These errors are, on average, 4% of the GBM errors. These results indicate the SV model is
producing consistently lower absolute errors than the GBM model.

Table 5: In-Sample Errors for Corn July-Dec

Error Type Mean Std. Dev. Min Max
GBM $ -0.0187 0.0488 -0.2002 0.1022

SV $ 0.0003 0.0108 -0.1198 0.0957
GBM % -0.1219 0.3421 -0.9596 2.1184

SV % 0.0050 0.0608 -0.3603 0.5888
GBM Abs. $ 0.0413 0.0319 0.0000 0.2002

SV Abs. $ 0.0013 0.0108 0.0000 0.1198
GBM Abs. % 0.2497 0.2634 0.0000 2.1184

SV Abs. % 0.0079 0.0605 0.0000 0.5888

Note: At-the-money call options from January 7th, 2010 to September 27th, 2012, are used
for estimation. “Dollar” errors are defined as the absolute difference between the theoretical
model and empirically observed option prices. “Percentage” errors are defined as the Dollar
errors divided by the observed options price.

Table 8 presents the out-of-sample GBM and SV dollar errors categorized according to
signed moneyness. For wheat, the SV model produces better results for both puts and calls.
For the corn and soybean markets, the SV calls produce consistently smaller errors than
GBM calls with the exception of soybean deep out-of-the-money calls in which the GBM
average error (1.4 cents) is similar to the SV (1.6 cents). Compared to the GBM model, the
SV model generates smaller errors 67% of time and same errors 25% of time, and slightly
larger errors 8% of time for corn CSO puts. The SV model fares better than the GBM model
27% of time, while the difference between the two models is about 0.4 cents. In general, the
SV model is able to produce better out-of-sample dollar errors than the GBM model with
few exceptions, for which the difference is statistically and economically negligible.

Figure 5 presents the time-series absolute dollar errors. The time series data set is the
most at-the-money call for corn and soybeans and put for wheat for the last 16 days of the
entire data set. In general, the SV errors are lower than the GBM errors indicating that
the SV model is better at generating prices. The errors for both models are relative high
compared with the cross-sectional out-of-sample errors. Volatility input for the SV model is
the estimation for µ.

4.3 Hedging Error Analysis

We conduct simple delta hedge analysis from three perspectives: combined (comb), mar-
ket makers (MM) and agribusiness buyers (buyer). The calculation of delta is based on
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Figure 2: Absolute Dollar and Percentage Errors for the GBM Model
Note: In-sample absolute dollar and percent errors. “Dollar |$| errors on the left column are
the absolute difference between the theoretical and observed options prices. “Percentage

|%| errors on the right column are the dollar errors divided by the observed options prices.
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Figure 3: Absolute Dollar Errors for the SV Model
Note: In-sample absolute dollar errors. “Dollar errors are the absolute difference between

the theoretical and observed options prices. In the left column, all observations are
included. In the right column with ”outliers removed” (OR), five, six and one outlier(s)
with errors greater than 0.01 are removed for corn, soybeans and wheat, respectively, for

better scaling.
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Figure 4: Absolute Percentage Errors for the SV Model
Note: In-sample absolute percentage errors. “Percentage errors are the dollar errors

divided by the observed options prices. In the left column, all observations are included. In
the right column with ”outliers removed” (OR), twelve, eleven and five outliers with errors

greater than 10−5 are removed for corn, soybeans and wheat, respectively, for better
scaling.
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Figure 5: Out-of-Sample Time Series Dollar Pricing Errors
Note: The time series data set is composed of the last 16 days of the full data set. For corn
and soybeans, the most at-the-money calls are used. For wheat, the most at-the-money puts
are used. The volatility input for the SV model is 0.05 for corn, 0.019 for soybeans, and
0.012 for wheat. These values are the estimates fo rthe long-run volatility mean µ.
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Table 6: In-Sample Errors for Soy July-Nov

Error Type Mean Std. Dev. Min Max
GBM $ -0.0033 0.0380 -0.1594 0.1170

SV $ 0.0027 0.0174 -0.0000 0.1519
GBM % -0.0391 0.2279 -0.8349 0.4824

SV % 0.0075 0.0458 -0.0000 0.3543
GBM Abs. $ 0.0281 0.0258 0.0000 0.1594

SV Abs. $ 0.0027 0.0174 0.0000 0.1519
GBM Abs. % 0.1709 0.1553 0.0002 0.8349

SV Abs. % 0.0075 0.0458 0.0000 0.3543

Note: At-the-money call options from January 8th, 2010 to May 29th, 2012, are used for
estimation. “Dollar” errors are defined as the absolute difference between the theoretical
model and observed option prices. “Percentage” errors are defined as the Dollar errors
divided by the observed options price.

finite differences in CSO prices. The combined delta hedge takes the same number of
nearby and deferred contracts with opposite long/short positions to hedge the CSO, de-
fined as HC

Comb = Optmarket − ∆(FN − FD), where Optmarket, FN , FD, ∆ are the CSO
option price, nearby futures price, deferred futures price and the delta hedge ratio. Market
makers hedge out all delta risk using optimal, often different, numbers of nearby and de-
ferred contracts. The “MM” delta-hedged portfolio value with one call CSO is defined as
HC

MM = Optmarket−∆NFN +∆DFD. This hedge gives the proportion of nearby and deferred
futures needed to completely hedge the CSO. The efficacy of the MM hedge is given by the
distance from 0. The closer to 0 the hedge outcome is, the better the market maker is able
to create a complete delta hedge in which there is no market price risk.

Agribusinesses, on the other hand, need to hedge the rollover risk in the nearby contract,
while maintaining the exposure to the deferred contract. The “buyer” call hedge is defined
as HC

buyer = Optmarket/∆N − FN . This hedge gives the number of CSOs required to roll over
the nearby contract position into the deferred contract. Therefore, the efficacy of the buyer
hedge, however, is measured by how close the hedge is to the deferred price.

Based on the empirically computed hedge ratios, we report the hedging results in Tables
9, 10, and 11. For all three products, the combined SV hedge is better than the GBM given
that the values are all closer to 0 indicating that the SV model is better at hedging than the
GBM model. The wheat MM SV is closer to 0 than the GBM. The soybean buyer hedge is
closer to the average deferred futures price than the GBM. In sum, the SV model provides
more reliable hedging than the GBM model.
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Table 7: In-Sample Errors for Wheat Dec-July

Error Type Mean Std. Dev. Min Max
GBM $ -0.0001 0.0612 -0.1922 0.2169

SV $ -0.0012 0.0108 -0.0994 0.0000
GBM % 0.1265 0.5042 -0.5224 2.7111

SV % -0.0117 0.1079 -0.9943 0.0012
GBM Abs. $ 0.0395 0.0466 0.0001 0.2169

SV Abs. $ 0.0012 0.0108 0.0000 0.0994
GBM Abs. % 0.2269 0.4671 0.0003 2.7111

SV Abs. % 0.0117 0.1078 0.0000 0.9943

Note: At-the-money call options from February 11th, 2011 to September 24th, 2012, are
used for estimation. “Dollar $” errors are defined as the absolute difference between the
theoretical model and empirically observed option prices. “Percentage %” errors are defined
as the Dollar errors divided by the observed options price.

5 Conclusion

Agricultural CSOs help alleviate spread risk associated with rolling over futures contracts.
Both consumers and suppliers of grains, such as ethanol plants and grain elevators, are
interested in risk-managing the rollover risk through CSOs. Although there is theoretical
research on related spread options on cash assets, there is lack of theoretical and empirical
research aiming to understand the pricing and hedging of agricultural CSOs. We fill the
gap by solving the CSO pricing problem under the geometric Brownian motion (GBM) and
stochastic volatility (SV) models. We further employ the IS-GMM estimation, which has
not been applied to multi-asset or futures data, to overcome the data limitation. We find
the SV model can fit the market data extremely well, with less than 1% error on average for
corn and soybeans, 1.2% error for wheat. Furthermore, the pricing and hedging performance
of the SV model are superior to the benchmark GBM model, both in and out of sample,
with only one exception where the out-of-sample hedging error for the GBM model for mar-
ket makers is slightly better than the SV model. Our empirical results lend support for
agribusinesses and the market makers to adopt the SV model for pricing and hedging grain
CSOs. Another implication for the exchange (CME) is to employ the SV model, instead of
the Black-Scholes-type GBM model for determining the settlement prices. The research can
be extended in the following directions: (1) investigating the empirical performance of our
models on more CSO contracts; (2) adding a jump term and other model structures to the
SV model to see if the pricing and hedging performances are improved significantly.
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Table 8: Cross-Sectional Out-of-Sample Dollar Errors Across Strikes (m)

m < −0.5 −0.5 ≤ m < 0 0 ≤ m < 0.5 m > 0.5

Corn Call N 27 98 30 1
GBM 0.029 0.031 0.031 0.074
SV 0.018 0.017 0.016 0.014

Put N 15 122 45 0
GBM 0.014 0.032 0.042 -
SV 0.019 0.028 0.042 -

Soy Call N 2 38 73 49
GBM 0.015 0.016 0.018 0.014
SV 0.012 0.015 0.015 0.016

Put N 2 85 35 8
GBM 0.024 0.027 0.033 0.031
SV 0.033 0.030 0.029 0.033

Wheat Call N 0 0 16 21
GBM - - 0.039 0.027
SV - - 0.017 0.012

Put N 0 0 27 4
GBM - - 0.031 0.017
SV - - 0.028 0.023

Note: “Out-of-sample” observations are those options contracts which are not at-the-money
during the in-sample time period. “N” denotes the number of options. “Dollar errors are
defined as the absolute difference between the theoretical model and observed option prices.

Appendices

A Derivation of the Characteristic Function for the

Stochastic Volatility Model

Our objective is to find

EQ
t [e

iu1 logS1(T1)+iu2 logS2(T2)] = EQ
t [e

iu1s1(T1)+iu2s2(T2)]

From our previous paper’s derivation, let

Ψ(u1, u2, t, T0, T1, T2) = EQ
t1 [e

iu1s1(T1)+iu2s2(T2)]

Since we are pricing an option on a calendar spread, the underlying futures have two
different times to expirations: t1 and t2. The structure of the calendar option spread is such
that expiration coincides with the nearby future. Therefore, we denote time to expiration
for the option as t1 which is also the time to expiration for the nearby future.
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Table 9: CSO Hedging Mean and Standard Deviation: Corn

GBM In-Sample Out-of-Sample Calls Out-of-Sample Puts
Comb 0.2054 0.0918 0.1449

(0.0991) (0.0630) (0.0924)
MM -0.2913 -0.1818 0.0028

(0.1199) (0.1250) (0.0972)
Buyer -6.1442 -5.6083 6.0632

(0.5514) (2.6332) (0.7149)

SV In-Sample Out-of-Sample Calls Out-of-Sample Puts
Comb 0.1957 0.0835 0.1353

(0.0975) (0.0612) (0.0930)
MM -0.3509 -0.2388 0.0712

(0.0988) (0.1120) (0.0991)
Buyer -6.1505 -6.1099 6.1418

(0.5412) (0.5499) (0.5418)

Note: “Comb” is the combined delta hedge which is defined as HC
Comb = Optmarket−∆(FN −

FD). “MM” is the market maker’s delta hedge defined as HC
MM = Optmarket−∆NFN+∆DFD.

“Buyer” is the agribusiness buyer’s delta hedge defined as HC
buyer = Optmarket/∆N −FN . The

combined and market maker hedges are better the closer to zero. Buyer hedges are better the
closer to the average deferred futures price of 5.86. Standard deviations are in parentheses
and are under the mean of the hedge.

Assume the solution is of the form

Ψ(u1, u2, t, T0, T1, T2) = eA(T0−t)+B(T0−t)v(t)+iu1s1(T1)+iu2s2(T2)

Let τ = T0 − t. We can find dΨ(t, v, s1, s2) with the following

dΨ(t, v, s1, s2) = Ψtdt+Ψvdv +Ψs1ds1 +Ψs2ds2 +
1

2
Ψvv(dv)

2

+
1

2
Ψs1s1(ds1)

2 +
1

2
Ψs2s2(ds2)

2 +Ψvs1dvds1

+Ψvs2dvds2 +Ψs1s2ds1ds2
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Table 10: CSO Hedging Mean and Standard Deviation: Soybeans

GBM In-Sample Out-of-Sample Calls Out-of-Sample Puts
Comb 0.1829 0.0685 0.1821

(0.1019) (0.0533) (0.1667)
MM -0.1662 -0.1092 0.0906

(0.1394) (0.0975) (0.1862)
Buyer -13.0942 -13.1765 13.2980

(0.9044) (1.0660) (0.7693)

SV In-Sample Out-of-Sample Calls Out-of-Sample Puts
Comb 0.1795 0.0661 0.1779

(0.0989) (0.0508) (0.1664)
MM -0.2076 -0.1054 0.1569

(0.1749) (0.0972) (0.1638)
Buyer -13.0048 -12.9545 13.2926

(0.9268) (0.8272) (0.7825)

Note: “Comb” is the combined delta hedge which is defined as HC
Comb = Optmarket−∆(FN −

FD). “MM” is the market maker’s delta hedge defined as HC
MM = Optmarket−∆NFN+∆DFD.

“Buyer” is the agribusiness buyer’s delta hedge defined as HC
buyer = Optmarket/∆N −FN . The

combined and market maker hedges are better the closer to zero. Buyer hedges are better the
closer to the average deferred futures price of 13.01. Standard deviations are in parentheses
and are under the mean of the hedge.

In order to solve for EQ
t

[
dΨ(t)
Ψ(t)

]
we need to find EQ

t [dv], EQ
t [ds1], E

Q
t [ds2], , E

Q
t

[
(dv)2

]
,

EQ
t

[
(ds1)

2], EQ
t

[
(ds2)

2],EQ
t [dvds1], E

Q
t [dvds2], E

Q
t [ds1ds2]. Then we have:

EQ
t

[
dΨ(t1)

Ψ(t1)

]
= EQ

t

[(
−dA(τ)

dτ
− dB(τ)

dτ
v(t)

)
dt+B(τ)dv

+(iu1) ds1 + (iu2) ds2 + (B(τ))2 (dv)2

+
1

2
(iu1)

2 (ds1)
2 − 1

2
(iu2)

2 (ds2)
2

+B(τ) (iu1) dvds1 −B(τ) (iu2) dvds2

−
(
i2u1u2

)
ds1ds2

]
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Table 11: CSO Hedging Mean and Standard Deviation: Wheat

GBM In-Sample Out-of-Sample Calls Out-of-Sample Puts
Comb 0.3195 0.3260 0.1017

(0.1989) (0.1402) (0.0740)
MM -0.1345 -0.1637 0.2266

(0.1372) (0.1288) (0.1857)
Buyer -7.4987 -7.3307 7.5853

(0.6613) (0.7070) (0.6551)

SV In-Sample Out-of-Sample Calls Out-of-Sample Puts
Comb 0.3178 0.3241 0.1002

(0.1983) (0.1402) (0.0752)
MM -0.1296 -0.1522 0.2245

(0.1482) (0.1550) (0.1729)
Buyer -7.4885 -7.3074 7.5883

(0.6498) (0.7058) (0.5994)

Note: “Comb” is the combined delta hedge which is defined as HC
Comb = Optmarket−∆(FN −

FD). “MM” is the market maker’s delta hedge defined as HC
MM = Optmarket−∆NFN+∆DFD.

“Buyer” is the agribusiness buyer’s delta hedge defined as HC
buyer = Optmarket/∆N −FN . The

combined and market maker hedges are better the closer to zero. Buyer hedges are better the
closer to the average deferred futures price of 8.05. Standard deviations are in parentheses
and are under the mean of the hedge.

Replacing the expectation, we get:

EQ
t

[
dΨ(t)

Ψ(t)

]
=

(
−dA(τ)

dτ
− dB(τ)

dτ
v(t)

)
dt+B(τ)(κ(µ− v)dt)

+ (iu1) ((r1 −
1

2
σ2
1v)dt)

− (iu2) ((r2 −
1

2
σ2
2v)dt)

+ (B(τ))2 (σ2
vvdt)

+
1

2
(iu1)

2 (σ2
1vdt)

−1

2
(iu2)

2 (σ2
2vdt)

+B(τ) (iu1) (σ1σvvρ13dt)−B(τ) (iu2) (σ2σvvρ23dt)

−
(
i2u1u2

)
σ1σ2vρ12dt
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We now solve the following:
1

dt
EQ

t

[
dΨ(t)

Ψ(t)

]
= 0

We will collect all the terms associated with v and all of the constant terms and set each set
equal to 0. Then we have

0 =
−dA(τ)

dτ
+B(τ)κµ+ (iu1) (r1) + (iu2) (r2)

0 = −dB(τ)

dτ
v + (B(τ))2 (σ2

vv)−B(τ)κv +B(τ) (iu1) (σ1σvvρ1,v) + B(τ) (iu2) (σ2σvvρ2,v)

−iu1
1

2
σ2
1v − iu2

1

2
σ2
2v +

1

2
(iu1)

2 (σ2
1v)

+
1

2
(iu2)

2 (σ2
2v) +

(
i2u1u2

)
σ1σ2vρ1,2

Dividing by v, we have

dB(τ)

dτ
= B(τ)2σ2

v −B(τ)(κ− i(ρ13σ1u1 + ρ2,vσ2u2)σ3)

−1

2

[
σ2
1u

2
1 + σ2

2u
2
2 + i(σ2

1u1 + σ2
2u2)

]
+

− (ρ12σ1σ2u1u2)

B Derivation of B(τ )

Now we have a Ricatti equation in the form of:

dB(τ)

dτ
= αB(τ)2 − γB(τ) + ζ (15)

with

α = σ2
v

γ = κ− i(ρ13σ1u1)σv + ρ23σ2u2

ζ = −1

2

[
σ2
1u

2
1 + σ2

2u
2
2 + i(σ2

1u1 + σ2
2u2)

]
−ρ12σ1σ2u1u2

Now let
y(t) = B(τ)

and
dy(t)

dt
=

dB(τ)

dτ

This becomes
dB(τ)

αB(τ)2 − γB(τ) + ζ
= dτ
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Now we can use the following notation and rewrite as

αy2 − γy + ζ = α(y − y1)(y − y2)

Now
dy

(y − y1)(y − y2)
= αdt

Implement partial fraction decomposition to get

1

y − y1
− 1

y − y2
=

y1 − y2
(y − y1)(y − y2)

and
dy

y − y1
− dy

y − y2
= α(y1 − y2)dt

Now integrate ∫ y

y0

(
ds

s− y1
− ds

s− y2

)
=

∫ y

y0

α(y1 − y2)dt

which becomes

ln |y − y1| − ln |y0 − y1| − ln |y − y2|+ ln |y0 − y2| = α(y1 − y2)(y − y0)

By rearranging we get

ln

∣∣∣∣(y − y1)(y0 − y2)

(y − y2)(y0 − y1)

∣∣∣∣ = α(y1 − y2)(y − y0)

After exponentiating both sides we get

y − y1
y − y2

=

(
y0 − y1
y0 − y2

)
eα(y1−y2)(y−y0).

We find that

y1 =
γ − θ

2α

y2 =
γ + θ

2α
.

Then

α

(
γ − θ

2α
+

γ + θ

2α

)
= γ

and

α

(
γ − θ

2α

)(
γ + θ

2α

)
= ζ
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From this we get
γ2 − θ2

4α
= ζ

which means
θ =

√
γ2 − 4αζ.

Now

α(y1 − y2)t = α

(
γ − θ

2α
− γ + θ

2α

)
t

= −θt

and

y =
y1 − y1e

−θt

1− y1
y2
e−θt

=
2ζ(1− e−θt)

2θ + (γ − θ)(1− e−θt)

and we get

B(τ) =
2ζ(1− e−θT )

2θ − (θ − γ)(1− e−θT )

C Derivation of A(τ )

Now we have a

0 =
−dA(τ)

dτ
+B(τ)κµ+ (iu1) (r1) + (iu2) (r2)

with

B(τ) =
2ζ(1− e−θτ )

2θ − (θ − γ)(1− e−θτ )

Then we solve in the following way:

dA(τ)

dτ
= B(τ)κµ+ (iu1) (r1) + (iu2) (r2)

and ∫ T0

0

dA(τ)

dτ
=

∫ T0

0

[
B(τ)κµ+ (iu1) (r1) + (iu2) (r2)

]
dτ

= κµ

∫ T0

0

B(τ)dτ + (iu1) (r1)T + (iu2) (r2)T
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Now ∫ T0

0

B(τ)dτ = κµ

∫ T0

0

2ζ(1− e−θτ )

2θ − (θ − γ)(1− e−θτ )
dτ

Let

u = 1− e−θτ

du = θe−θτdτ

but
e−θτ = 1− u

so we have
du

θ(1− u)
= dτ

Now, when we replace, we have:∫ T0

0

B(τ)dτ = 2ζκµ

∫
u

(2θ − (θ − γ)u)

du

θ(1− u)

Rewrite the integral as∫ T0

0

B(τ)dτ =
2ζκµ

θ(θ − γ)

∫
u

(u− 2θ
θ−γ

)(u− 1)
du

Using Vieta’s formula we find

C

u− 2θ
θ−γ

+
D

u− 1
=

u

(u− 2θ
θ−γ

)(u− 1)

D =
1

1− 2θ
θ−γ

=
−1

(θ + γ)(θ − γ)

and

C =
2θ

θ + γ
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Now we have

2ζκµ

θ(θ − γ)

∫ T0

0

u

(u− 2θ
θ−γ

)(u− 1)
du =

2ζκµ

θ(θ − γ)

∫ T0

0

2θ
θ+γ

u− 2θ
θ−γ

+

θ−γ
−γ−θ

u− 1
du

=
2ζκµ

θ(θ − γ)

[
2θ

θ + γ
log

(
u− 2θ

θ − γ

) ∣∣∣∣T0

0

− θ − γ

θ + γ
log(u− 1)

∣∣∣∣T0

0

]

= −κµ

2α

[
2 log

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+ (θ − γ)T

]

Lastly, gathering the components back yields the characteristic function

Φ(u;T, v0) = exp

((
2ζ(1− e−θT )

2θ − (θ − γ)(1− e−θT )

)
v0 + (iu1) (r1)T + (iu2) (r2)T

−κµ

2α

[
2 log

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+ (θ − γ)T

])
.
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