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Price Discovery, Volatility Spillovers and Adequacy of Speculation  
in Cheese Spot and Futures Market 

 
Practitioner’s Abstract: We investigate price discovery, volatility spillovers and impacts of 
speculation in the dairy sector. Examining the time series properties of cheese cash and implied 
futures price we find that the unit root hypothesis is strongly rejected for cash prices, while unit 
roots cannot be rejected for nearby futures prices in the framework that carefully controls for 
rollovers. To explain this result, we built a model that illustrates the time series properties of the 
nearby futures price series for a futures contract written on a second-order stationary cash 
series and identified the mean-reverting nonlinear dynamics that will occur at rollovers. Given 
the time series properties of the cash and futures series we propose an error-correction model 
using spreads between cash and the second nearby futures instead of the cointegration vector. 
To account for volatility dynamics we propose an extension of the BEKK variance model that we 
refer to as GARCH-MEX. That model does not restrict the sign of the additional regressors on 
the conditional variances, and can easily insure positive-definiteness of the conditional 
covariance matrix. We find that the flow of information in the mean model is predominantly from 
futures to cash, while volatility spillovers are bidirectional. It is possible that cash prices that 
include unfilled bid/offers react differently to increases in volatility in futures prices than sales 
cash prices, indicating that liquidity in the cash market is reduced with increase in conditional 
volatility of the futures price. Utilizing GARCH-MEX model we find strong evidence against the 
hypothesis that excessive speculation is increasing the conditional variance of futures prices. If 
anything, speculation may in fact be inadequate, and further research with daily speculative 
positions and high-frequency futures prices is needed to identify the effect of increased 
speculation on realized volatility of futures prices, bid-ask spread and magnitude of slippage.  

 
JEL Codes: G13, Q13, C22 
 
Keywords: implied cheese futures, unit root tests, volatility spillovers, speculation, GARCH-
MEX 

1. Introduction 

There has been considerable interest in recent years concerning the overall performance of 
commodity futures markets, and the extent to which futures activity has led to price instability in 
cash markets.  Much of the recent work in futures/cash price relationships has focused on the 
first moment of the price distribution and deep (large volume) markets (e.g. Irwin, Sanders and 
Merrin, 2009; Sanders, Irwin and Merrin, 2010; Hamilton, 2009; Gilbert, 2010).  However, 
equally important are the relationships between the second and higher moments of futures/cash 
price distributions.  Specifically, does price action in the futures market result in increased 
instability (volatility) in cash markets?  As noted by Witherspoon (1993), market composition 
may impact market stability, and, as noted by Fortenbery and Zapata (2004), this may be more 
apparent in thin markets.  

Dairy markets are unique for several reasons, not the least of which is the relative age of the 
futures markets for dairy.  Dairy futures markets have existed since 1993, but underwent 
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continual re-design through the early 2000’s. The re-designs were in response to both changes in 
dairy market structure, and changes in dairy policy.  Early work on dairy suggested that there 
were problems with the relationships between dairy futures and cash markets (Fortenbery and 
Zapata, 1997).  In later work, it appeared that the issues had resolved themselves (Fortenbery, 
Cropp and Zapata, 1997; Thraen 1999).  However, recent price action has again called into 
question the relationship between futures and cash markets for dairy, the impacts of technical 
innovation in the dairy sector on price performance, and the role of public policy in promoting 
price stability.  Past work on price performance is dated given recent changes in both production 
and price policy. 

This paper investigates price action and performance in dairy markets in several ways.  First, the 
actual relationship between cash and futures price is studied.  Both futures and cash markets have 
undergone significant changes over the last ten years, and their relationship to each other has not 
been examined recently.  Futures changes include changes in futures contract design, delivery 
specifications, and the actual dairy commodities traded.  On the cash side, the closing of the 
Green Bay Cheese Exchange, its replacement by a cash market in Chicago, and changes in both 
cash market structure and technology adoption in production may have impacted the cash/futures 
relationships.  

We open the essay with a brief review of literature examining the information flow between cash 
and futures markets and the impact of speculators activity on both. In the second section, we 
describe the daily wholesale cash market for cheese as well as futures contracts for cheese and 
other dairy futures. A technique for calculating ‘implied’ cheese futures price for the period 
before actual cheese futures contract started trading is then discussed. Time series properties of 
cash and nearby futures cheese price are evaluated next. The fourth section discusses in further 
detail the concepts of causality as they are commonly used in the applied econometrics literature. 
An error-correction model with a GARCH-BEKK variance structure is then proposed as an 
appropriate analytical framework given the results of unit root tests, followed by the discussion 
of empirical results. To examine the influence of speculators on price volatility new GARCH 
model is proposed that nests BEKK variance structure while allowing flexibility in the direction 
of impact of additional regressors included in the variance model. We apply this model to 
evaluate the adequacy of speculation in the Class III milk futures. Paper concludes with policy 
implications and suggestions for further research. 

1. Literature review 

Do futures markets, by facilitating speculation, increase cash price volatility? Early work by 
Working (1960, Feb) in onion futures demonstrated that speculative support at harvest time 
reduced both seasonal price range and price adjustments at the end of the marketing year, as 
needed adjustments were better anticipated and incorporated in prices earlier. Gray (1963) 
extended Working’s analysis to include seasonal patterns in onion cash prices after the trade in 
onion futures was prohibited. He found that pronounced seasonality in cash prices, reduced 
during the years of intense futures trading, had returned after onion futures were discontinued.  

 

In addition to reductions in seasonality and earlier anticipation of adjustments needed at the end 
of a marketing year, futures may reduce year-to-year price fluctuations. Whereas the first two 
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effects are mediated through the impacts of futures prices on storage decisions, the last effect 
will be present if the futures prices are perceived as reliable guides to production planning, and 
farmers engage in what Working (1962) calls anticipatory hedging.  

 

Powers (1970) investigated live beef and pork belly markets around the time futures contracts 
were first introduced for these commodities. He modeled weekly cash prices as the sum of two 
components assumed to be uncorrelated: the systematic component associated with fundamental 
economic conditions and the error or random component which represents noise and disturbance 
in the price system. He employed a variate difference method to separate systematic and random 
components, and then calculated the variance of the random part separately for four year periods 
before and after the introduction of futures markets. For both commodities he analyzes, he found 
that the variance of the noise decreased after futures contracts were introduced, but offered no 
statistical evidence that reduction can be attributed to information services performed by the 
futures market. Taylor and Leuthold (1974) examined the impact of new futures market on the 
variance of average annual, monthly and weekly of livestock cash prices, and found that while 
weekly and monthly variances decreased, the effect on annual variability was not statistically 
significant. They conjecture that the differential effect of futures market introduction on different 
frequencies may be due to a contract design, as livestock contracts at that time did not trade for 
horizons sufficiently long to influence the behavior of livestock breeders, given the long 
reproductive cycle of cattle. Brorsen, Oellerman and Farris (1989) extended the analysis to daily 
live cattle cash price variability. In their theoretical model, faster information assimilation was 
enabled by the introduction of a futures market, and the transmission of that information to the 
cash market resulted in increased daily variability in cash prices, and a reduction in cash price 
autocorrelation. Empirical analysis encompassing periods before and after live cattle futures 
were introduced confirmed their hypotheses. They concluded that live cattle futures improved 
the cash market efficiency, but increased short-term price risk.  

 

Cox (1976) proposed that introducing of a futures market may attract a new set of traders who 
acquire and process information in order to predict future cash prices, but do not handle the 
physical commodity. Speculators participating in the futures market may be more informed 
about the future supply and demand conditions than commercial parties. If that is the case, the 
addition of a futures market will enable the cash market to more quickly absorb the most recent 
information. The testable hypotheses emerging from Cox’s work are twofold. First, the addition 
of a futures market will change the time series properties of the cash prices, with autoregressive 
components in cash price process fading in importance. In addition, expected prices will be more 
reliable predictors of future cash prices, i.e. the variance of the price-forecast error will decrease.  

 

Turnovsky (1983) adds to the literature by showing that in the case where producers are risk 
averse, introduction of a futures market will affect not only the information set based on which 
the expectation of future spot prices are made, but also the slopes of the supply and inventory 
demand functions as they depend on the degree of price stability. He found that under a wide 



4 
 

range of behavioral assumptions the futures market reduces both cash price volatility and long 
run average spot price.  

 

Newbery (1987) extended Turnovsky’s basic idea that futures markets can insure against risk, 
and thus increase the supply of otherwise risky activities. He built a model in which farmers 
must choose among two competing plant breeds, one that produces less output but with no 
uncertainty and another that is risky, but produces higher average yield. Once hedging with 
futures becomes available farmers may trade some price risk for increased production risk. If a 
sufficient number of producers exhibited such behavior, then the volatility of cash price may in 
fact increase. In his study the futures market did not destabilize cash price through speculative 
activities but through the impact on producer decision-making.  

 

The price discovery function of the futures market is the ability of the futures prices to quickly 
absorb new price-relevant information and transmit it through to the cash prices. Price discovery 
has been the subject of a vast empirical literature, and some examples include Garbade and 
Silber (1983), Oellerman and Farris (1985), Schroeder and Goodwin (1991), Fortenbery and 
Zapata (1993, 1997), Zapata and Fortenbery (1996), and Yang and Bessler (2001). In early work, 
dynamic models in either price levels or differenced prices were utilized. With development of 
time series methods that can appropriately address nonstationarity of prices, researchers have 
started using co-integration models to analyze price discovery. Of particular interest for the 
present study are articles analyzing the price discovery in thin markets. In such settings, 
Brockman and Tse (1995), Fortenbery and Zapata (1997), Mattos and Garcia (2006) and Ivanov 
and Cho (2011) find that price discovery can be hampered by the lack of liquidity or institutional 
constraints. This is manifested as either lack of cointegrating relationship between cash and 
futures market or lower information share of futures market in the price discovery process.  

 

Impact of speculation on price levels and volatility dynamics has been recently investigated in 
several papers. For example, in his testimony before the U.S. Senate, Masters (2008) argued that 
institutional investors are among the major factors affecting commodities prices, and Gilbert 
(2010) argues that index futures investment was the principal channel through which monetary 
and financial activity have affected food prices in the second half of 2000s. However, Irwin, 
Sanders and Merrin (2009) argue that bubbles in futures prices are not likely, and find that 
speculative positions do not Granger cause futures price changes.  Earlier work by Streeter and 
Tomek (1992) finds that volatility of soybeans futures decreases as Working’s T index of 
speculation increases. Du, Yu and Hayes (2011) find a positive impact of speculation on crude 
oil price volatility. Using more detailed data, Brunetti and Büyükşahin (2009) and Brunetti, 
Büyükşahin and Harris (2011) find that increased speculative activity does not destabilize 
financial markets, and in fact predicts lower realized volatility in crude oil and other markets 
they analyze. However, Tang and Xiong (2010) find that futures prices of different commodities 
in the US became increasingly correlated with each other and this trend was significantly more 
pronounced for commodities in the two popular GSCI and DJ-UBS commodity indices. 
Büyükşahin and Robe (2011) note that correlations between the returns on commodity and on 
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equity indices increase significantly amid greater activity by speculators in general and one type 
of traders in particular – hedge funds. These results may indicate that while speculators overall 
help increase market liquidity, they increase the sensitivity of commodity prices to 
macroeconomic shocks.  
 

2. Data  

In this paper, we are interested in evaluating information flows between spot and futures markets 
in the dairy sector. While we are ultimately interested in price discovery for milk price, there is 
in fact no national spot market for fluid milk. Given that the fluid milk prices are linked to the 
prices of milk used in cheese production, the second best approach to investigating cash-futures 
relations seems to be to look at the cash and futures markets for cheese. This section describes 
the aspects of the milk pricing environment in the U.S. that are relevant to my research question.  

Pricing of milk in the U.S. is highly regulated under Federal Milk Marketing Orders (FMMO). 
Three main objectives of the FMMOs are: 1) insuring market price stability, 2) preventing 
processors from exercising market power over milk producers and 3) insuring adequate supply 
and orderly marketing of fluid milk.  

The primary instrument FMMOs use to achieve these objectives is to set minimum prices that 
handlers of Grade A milk must pay to farmers. The fundamental principle currently used to 
determine minimum milk price is measure the value of milk as a function of milk ingredients that 
have desirable nutritional qualities: milk protein, butterfat, and milk solids (lactose, whey 
proteins, minerals, lactic acid). 

Values of the principal milk components are inferred from derived dairy products like cheese, 
butter, dry whey and non-fat dry milk. Finally, in order to calculate a minimum price of milk, a 
standard composition of milk in terms of percentages of each ingredient is assumed. In 
particular, the standard used by the USDA assumes that milk used for the production of cheese 
consists of 3.5% butterfat, 2.99% protein and 5.69% other solids. The USDA differentiates 
between milk used for cheese production and milk used in production of dry products. The 
former is referred to as Class III milk, and the latter Class IV milk. Similarly, milk used for fluid 
consumption is termed Class I milk, and its minimum price exceeds the price of manufacturing 
milk. For milk produced for consumption, the ‘ingredient’ that carries the additional value is the 
location of marketing.  

The flowchart in Figure 1 presents the procedure the USDA uses to arrive at the Class III and 
Class IV manufacturing milk prices. First, major producers of butter, dry whey, nonfat dry milk 
and cheese are surveyed weekly. Monthly averages of these prices, with weeks weighted by 
volume, are used to infer the average monthly price of the ingredients. In particular, let B

tP be the 

average surveyed price of butter in month t . Then the value of butterfat is calculated as  

  B B B
t t tbf P C Y    (1) 

where B
tC is the USDA’s estimate of the national average cost of manufacturing a pound of 

butter, termed make allowance in industry jargon, and BY is the yield, i.e. the pounds of butter 
that can be manufactured from one pound of butterfat. This is assumed equal to 1.20. Make 
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allowances for dairy products change very infrequently, and only after a lengthy administrative 
process that involves public hearings where manufacturers present arguments on what should be 
deemed a fair assessment of production costs. Currently, the butter make allowance stands at 
$0.1715. This value changed only 4 times since the beginning of 2000. Similar to butterfat, the 
value of other milk solids is inferred from a surveyed value of dry whey:  

  W W W
t t ts P C Y    (2) 

where W
tP is the price of dry whey and W

tC is the dry whey make allowance, currently set at 

$0.1991 per pound. Although the name of the final product may indicate that it contains nothing 
but solids, it is the fact that dry whey does contains some moisture. USDA formula assumes that 
yield WY equals 1.03, i.e. a pound of other milk solids will make 1.03 pounds of dry whey. 

Calculating the value if nonfat milk solids, tnfs  , proceeds in exactly the same fashion. The 

nonfat dry milk make allowance, currently at $0.1678/lbs, is deducted from the surveyed price 
for nonfat dry milk, and the difference is then multiplied by 0.99.  

The dairy product that serves as the base for the calculation of the protein price is cheddar cheese 
that is 4 to 30 days old, sold in 40 pound blocks or 500 pound barrels. Cheese yield depends 
nonlinearly on the amount of protein and butterfat in milk, as the interaction of these components 
is recognized as an important contributor to yield. The following formula accounts for that effect 

     0.9 1.17C C CP C C CPB
t t t t t tpr P C Y P C Y bf            (3) 

where C
tP is the surveyed price of cheese, C

tC is the cheese make allowance, currently at 

$0.2003/lbs, CPY is the cheese yield from protein, and CPBY is the multiplier accounting for 
interaction effects between protein and butterfat. The assumed ratio of protein to butterfat in 
cheese is 1.17 which explains the last multiplier.  

After the prices of all ingredients have been calculated, arriving at the final Class III and Class 
IV prices is a simple two-step process. First, the price of skim milk is calculated for both classes. 
For Class III, the skim milk price is calculated as the weighted average of protein and other 
solids. 

 3 3.1 5.9t t tC skim pr os     (4) 

Similarly, the Class IV skim milk price is  

 4 9.0t tC skim nfs   (5) 

Finally, Class III and Class IV milk prices are obtained by adding a butterfat price to skim milk 
prices.  

 
3 0.965 3 3.5

4 0.965 4 3.5
t t t

t t t

C C skim bf

C C skim bf

   
   

 (6) 
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Unlike prices for particular ingredients, the prices for skim milk and final class prices are 
expressed as U.S. dollars per hundredweight (100lbs). At each step of the process, derived prices 
are rounded to four decimal points.  

The Chicago Mercantile Exchange (CME) operates a spot market for cheese that trades each 
business day from 10.45-10.55 a.m. Cheese trades in carloads weighing between 40,000 and 
44,000 pounds, packed as either 40lbs blocks or 500lbs barrels. Cheese may not be less than four 
days or more than 30 days of age on the date of sale. This market is often regarded as thin, given 
that only a handful of trades occur each day, and on 40% of the trading days no sale occurs at all. 
Nevertheless, it is precisely this market that serves as a the price discovery center for many cash 
dairy products, and the weekly NASS national survey price for cheese exhibits a 0.99 correlation 
with the previous week average spot cheese price.  

Perhaps due to the thinness of the CME cash cheese market, it is a custom to report the last bid 
or last offer as the daily closing price if they remained uncovered or unfilled. This renders public 
data on spot cheese prices problematic for econometric analysis, as the prices are often not 
transaction prices and are not indicative of the current market equilibrium price. 

To address this issue,we have obtained the intraday cash market data that specifies each price 
quote as either sales, bid or offer, and have used only the last sales price of the day in my 
analysis. If no trade has occurred on a particular day, we use the last observed transaction price 
from an earlier date.  

Next, we need to obtain a cheese futures price. Although cheese futures were among the first 
dairy futures contracts created in the early 1990s, the contracts were discontinued after the 
federal milk marketing order reform of 2000. Since 2000 on there were no cheese futures 
available, until new cash-settled cheese futures contract started trading in July 2010. As 
presented in the second essay of this thesis, the correlation between announced Class III price 
and the monthly average NASS survey cheese price is 0.95, which means we could use Class III 
futures, appropriately scaled, as a proxy for cheese futures prices. However, if we seek to pin 
down current market expectation of the price of cheese in the future, then such an approach is 
still imperfect and subject to substantial measurement error, as it disregards the changes in 
expectations regarding prices of other milk components that enter the Class III milk price 
formula: namely, butterfat and other milk solids.  

From 2000 until September 2005, the only dairy futures contracts publicly available where Class 
III and Class IV milk and a deliverable butter contract. We can use the butter contract to infer the 
implied futures price of butterfat. To calculate the implied futures price of cheese, we would 
need to know the implied futures price of protein, in addition to butterfat. Using Class III and 
Class IV futures and the implied price for butterfat, we calculate the implied futures price for 
Class III and Class IV skim milk. In order to obtain an implied protein price, we need implied 
futures price for other milk solids. Class III and IV skim milk prices are functions of butterfat 
and other milk solids, and butterfat and nonfat milk solids respectively. Using only the implied 
skim milk prices we cannot uniquely identify the implied futures price of the three ingredients 
that enter the formulas for skim milk prices. However, if we make an assumption about the 
future price ratio of nonfat milk solids to other milk solids then we can use implied Class III and 
Class IV skim milk price to estimate the conditional expectation of implied futures price for 
other milk solids as well as protein.  
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In particular, we assume that the ratio of the monthly announced average price for nonfat dry 
milk and dry whey is an AR(1) process. When calculating conditional expectations of the 
implied cheese futures at time t , we only use the observations of dry whey and nonfat dry milk 
prices available on that date in fitting the coefficients of the stated AR(1) regression. In this way 
the conditional expectation of the implied futures cheese price is obtained using only information 
available to traders.  

Measurement errors using this approximation method arises from two sources. First is 
uncertainty regarding the ratio of nonfat dry milk to dry whey prices. The other potential source 
of error comes from the fact that the butter contract is not cash-settled against the NASS survey 
price. Instead, physical delivery is required at certified warehouses. This may be cause for 
additional differences at settlement between the CME cash cheese price and the implied cheese 
futures price calculated using the butter futures contract.  

In September 2005 cash-settled butter contract was introduced. From that point on we use the 
cash-settled butter contract in calculating the implied cheese futures price. In May 2007, a dry 
whey contract was introduced. This allows us to identify the implied futures price of other milk 
solids, and consequently the last source of measurement error is removed. Figure 3 compares the 
implied cheese futures obtained using all three approximation methods and, for the period after 
July 2010, actually observed cheese futures prices. While there is some difference between the 
implied cheese futures price in the early months of 2007 as obtained using various approximation 
methods, all methods give very similar results for the predominant part of the past four years. In 
particular, we find that the absolute difference between implied and observed cheese futures is 
never higher than 2 cents per cwt., which probably reflects the transaction costs of riskless 
arbitrage (i.e. bid-ask spread, assuming that exchange members can trade without paying any 
transaction fees) combined with the effects of rounding to four decimal points at each step in 
deriving the various class milk prices.  

This results in a total sample period that spans July 11, 2000 (the first day Class IV contract 
traded) through April 4, 2011, the last day for which cash price data was available to us. The 
total number of observations is 2670. 

 

2. Time Series Properties of Cheese Cash and Futures Prices.  

In order to appropriately model the information flow between cash and futures markets, it is 
important to understand the time series properties of both cash and futures price series. In 
particular, when prices are non-stationary, estimating models in price levels may result in 
spurious regressions. On the other hand, if prices are co-integrated, estimating models with 
differenced series will result in a misspecified model, and the cointegration framework should be 
utilized instead. 

In this section we evaluate the time series properties of cheese cash and futures prices. We find 
that the null hypothesis of unit roots presence is strongly rejected for cash prices. Results are 
mixed for nearby futures prices, and vary with data frequency, horizon to maturity and the 
method of constructing lagged prices in regressions used for estimating Augmented Dickey-
Fuller tests. Further, the simple difference between concurrent cash and nearby futures price is 
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strongly mean-reverting. In what follows we review the theoretical predictions for time series 
properties of cash and futures prices and build a simple model to illustrate the kind of 
nonlinearities that a nearby futures price series may exhibit when a cash price series is second-
order stationary. The patterns observed in unit-root results closely match predictions of the 
illustrative model.  

2.1. Unit root tests 

I employ three types of unit root tests: the Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF) 
with automatic lag selection based on AIC criteria and the Phillips-Perron test (PP). For the 
Dickey-Fuller (1979) test for unit roots in the absence of serial correlation we estimate a 
regression with an included constant term but no time trend. The null hypothesis assumes that 
true process is a random walk.  

The estimated regression is:  

 1t t ty y u      (7) 

with the assumed true process under the null hypothesis of  

  2
1 , ~ 0,t t t ty y u u N    (8) 

Under the null hypothesis,   ˆˆ ˆ1 /   has a non-standard distribution, and for large samples 

critical values for rejecting the null at 10%, 5% and 1% confidence level are -2.57, -2.86 and -
3.43 respectively.  

Augmented Dickey-Fuller tests (Said and Dickey, 1984) correct for serial correlation in residuals 
by including higher-order autoregressive terms in the regression. Similar to equation (7) above, 
we estimate an autoregression that includes a constant term. The null hypothesis is that the data 
are generated by a unit root autoregression with no drift.  

The estimated regression is  

 1 1 2 2 1 1 1...t t t p t p t ty y y y y                      (9) 

where 1t t ty y y    . The true process is assumed to be the same specification as in (9) with 

0  and 0  . The OLS t test for 0  has a non-standard distribution and critical values are 
the same as in Dickey-Fuller test listed above. To select the appropriate lag structure, we 
estimate the model with 0 through 20 lags, and choose the specification with the lowest AIC 
criteria.  

Finally, we also estimate the Phillips-Perron (1988) tests for unit roots in presence of serial 
correlation. The estimated regression is  

 1t t ty y u      (10) 

with the true process assumed to be:  
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 1t t ty y u   (11) 

The test statistic used in this test is  

      1/2 ˆ2 2
0, 0,
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


    (12) 

where 1
,

1
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T
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t j

T u u 


 

  , ˆtu are OLS sample residuals from the estimated regression, 
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q

T T j T
j

j

q
  



 
    

 is the Newey-West estimator of error 

variance with q lags chosen based on minimial AIC criteria in the ADF lag selection process. 

Critical values for tZ are the same as in Dickey-Fuller and Augmented Dickey-Fuller tests.  

RATS 8.01 was used for these tests as it provides the user with easy-to-use commands for the 
tests as well as selecting the optimal lag structure to be used in the ADF and Phillips-Perron 
tests.  

It has been noted that results of unit-root test may vary with data frequency (Tomek and Wang, 
2007), so we estimate these tests for both daily and weekly data frequency. In addition, since 
CME cash market for cheese is not very liquid, and sales transactions do not occur on about 40 
percent of trading days in the sample, we construct an irregular frequency data keeping only 
those days when the cash market did in fact record a sales transaction either in 40lbs cheese 
blocks or 500lbs cheese barrels.  

Perhaps due to low cash market liquidity, it is a custom in the cheese industry to report the last 
uncovered offer or last unfilled bid as the closing cash price for the day. While our primary cash 
price series only contains sales records, it may be of interest to examine if any of the results 
regarding cash/futures information flow are sensitive to the choice of cash price series (i.e. 
closing sales price vs. closing prices that may be a bid or offer). For that reason, we perform unit 
root tests on these publicly reported closing cash prices as well, and denote them with a (B/O) 
suffix to differentiate from the regular sales price series. In addition, we account for potential 
seasonality in cash prices by testing for the presence of unit roots in the residuals from 
regressions of cash prices on quarterly indicator variables rather than testing for unit roots in 
cash prices directly. 

I examine the sensitivity of ADF test results to the specification of lagged prices in the estimated 
regression. Recall that the futures price series is always an n-th nearby series, i.e. concatenation 
of segments taken from different futures contract months at the time when those contracts were 
the n-th contract to maturity. Denote by i

tf a futures price on time t for a contract expiring at iT . 

Then jth-nearby is a sequence of futures prices that can be represented as  
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    1 1 1 1 1 1 1

1 1 1 2
1 1 2 1... , ,..., , , ,..., , ...

i j i j i j i j i j

i i i i i i i
j t t T T T T TF f f f f f f f

           

   
     (13) 

For example, the 2nd nearby futures price series is constructed by taking the prices of the 
February contract in the month of January, the March contract in the month of February, etc. 
Notice that in such a nearby series from time to time two consecutive prices will correspond to 
different contract months. For example, when the January contract settles, the 2nd nearby futures 
price will be the one from March, while one day earlier, i.e. on the last day the January contract 
traded, the 2nd nearby futures price will refer to a February contract futures price. As a 
consequence, using inbuilt software commands that do not account for this information will 
produce differenced prices for equation (9) that are occasionally corresponding to different 
contract months. To check if this is influencing the test results, we estimate a regression that 
insures that differenced prices always come from the same contract month, but is other otherwise 
equivalent to regression estimated by the inbuilt RATS command, i.e. the number of lags are 
determined via AIC criteria. In particular, we estimate the following regression  

 1 1 2 2 1 1 1...t t t p t p t tf f f f f                      (14) 

where 1
i i

t t tf f f    and right hand side variable 1 1
i

t tf f  .  

Finally, to account for possible sensitivity to the choice of rollover date, we perform unit root 
tests of nearby series that are constructed by rolling over included contracts on the days when the 
1st nearby contract expires, as well as on the day when the 1st nearby has 3 trading days to 
maturity left. 

Results of the unit root tests are presented in Table 1. The null hypothesis of unit roots is 
strongly rejected for cash cheese prices. This holds true irrespective of the data frequency used, 
whether 40lbs blocks or barrels are examined, and whether the series is based on sales prices or 
publicly reported daily closing prices that may include unfilled bids and uncovered offers.  

 The situation is more complex in unit root test results for nearby futures prices. The ADF test 
for unit roots rejects the null for the second nearby futures series at a 5% confidence level 
irrespective of the data frequency used, while data frequency seems to matter for the 3rd, 4th and 
5th nearby series. Irrespective of the rollover procedure used, tests done with weekly data are 
more likely to reject a unit root. The Phillips-Perron statistics are generally higher for weekly 
data frequency than those obtained using daily and sales only frequency. For daily and sales-only 
data, with the exception of the 1st nearby contract, the ADF test statistic falls as time-to-maturity 
increases, i.e. the ADF t-statistic is higher for the 2nd nearby than for the 3rd nearby, etc. The 
most striking result is the difference in t-statistics from the regular ADF regression that does not 
account for contract rollovers in constructing differenced prices, and the equivalent regressions 
that do. When regressions like (14) are estimated, the t-statistics next to lagged price of the same 
contract are very small, and the null hypothesis of unit roots is never rejected. This happens 
regardless of data frequency, time to maturity horizon and rollover method used. Regressions 
(14) evaluate the time series properties of within-contract segments, ignoring dynamics at 
contract rollovers. Therefore, these results suggest that unit root results based on ADF 
regressions may be driven by the nature of the price changes at the rollover time. In particular, 
this indicates that nearby futures price series are nonlinear - martingales within each contract 
segment, and mean-reverting at contract rollovers. As rollovers occur more frequently for weekly 
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data the explanation offered above is consistent with unit roots tests more strongly rejecting the 
null for weekly data series.  

Of special interest is evaluating the time series properties of the cash-futures price spread, 
denoted ,n td and defined as the difference between contemporaneous average cash prices and n-th 

nearby futures price , ,n t t n td c f  . In this context the cash price is a simple average of blocks 

and barrels cash sales prices for a particular day. Results are reported for spreads calculated 
using second and fifth nearby futures, and spreads are always found to be strongly stationary. If 
the fifth nearby futures were indeed nonstationary, and if the cash price was truly stationary, then 
no linear combination of the two series could be stationary. The fact that the null is strongly 
rejected for spreads using the fifth nearby futures is additional evidence suggesting there are 
nonlinearities in the nearby futures prices.  

There are three questions that naturally arise as a reaction to these results. First, what does 
economic theory suggests about the time series properties of cash and futures commodity prices? 
Second, what kind of nonlinearities should we expect in nearby futures prices, when cash prices 
are stationary? And finally, what is the appropriate way to model information flows between 
cash and futures markets in the face of observed stationarity in cash prices and nonlinearities in 
nearby futures prices. The first two questions are answered in the next subsection, while the 
model specification issues are left for the next part of the paper. 

2.2. Economic theory and time series properties of agricultural cash and futures prices 

Early studies of cash/futures linkages used regression in price levels or differenced series (e.g. 
Oellerman and Farris, 1985). However, in many commodities, and especially when using daily 
data, researchers have found that both cash and futures contain unit root (e.g. Schneider and 
Goodwin, 1991; Ivanov and Cho, 2011). These findings have been disputed both on theoretical 
and statistical grounds. As far as theory is concerned, it has been claimed that agricultural price 
theory does not support the hypothesis that all shocks to prices are persistent (Tomek and Wang, 
2007). Furthermore, misspecified models that do not account for structural breaks may bias the 
results towards accepting the null hypothesis of unit root presence, and unit roots test that have 
low power will not be effective in differentiating between integrated and stationary, but highly 
persistent time series (Geweke and Porter-Hudok, 1983).   

 

Theoretical priors regarding time series properties of cash and futures prices are remarkably 
different. As far as cash price is concerned, the fundamental property of prices emerging in 
perfectly competitive markets is the necessity of zero long-run economic profit for the marginal 
producer. That condition implies that profit margind will be a mean-reverting time series. 
Consequently, if the long-run industry average cost curve is flat (a case of constant returns to 
scale), any permanent shift in the demand function will produce only temporary shock to cash 
prices, while permanent changes in input costs will shift the long-run average cost curve and thus 
induce a structural change in cash price series. Even with constant long run average costs, if 
production cannot adjust quickly to demand shocks in the short run, cash prices may exhibit high 
a degree of persistency and rather slow reversion to long-run averages. Finally, if returns to scale 
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are either decreasing or increasing, shifts in demand will manifest as permanent shocks to cash 
price series.  

While the time series properties of cash prices are argued based on production theory, the time 
series characteristics of futures price series emerge from finance theory. If the futures market is 
efficient (i.e. if futures prices fully account for all available information) then prices within a 
single contract will be martingales if the marginal risk premium is zero, submartingales if 
marginal risk premium is positive (i.e. futures are downward biased and traders having long 
position are rewarded), and supermartingales if the marginal risk premium is negative (i.e. 
futures are upward biased and traders having short position are rewarded). In each case, by 
deducting the marginal risk premium we can arrive at a martingale series whose direction of 
change cannot be predicted based on concurrently available information. From this it follows that 
whether the risk premium is present or not, efficient futures prices will be nonstationary, i.e. all 
shocks to futures prices are permanent.  

Suppose now that there exists a second-order stationary cash price series for some commodity, 
and that a futures contract is written on that commodity. Assume further that there is no basis at 
futures contract expiry, i.e. the terminal futures price equals the cash price prevailing at contract 
expiry. Finally, assume that futures prices are efficient and embody no risk premium. What will 
be the time series properties of an n-th nearby futures price series?  

Let  be the unconditional mean of the cash price, and 2
c be the unconditional variance. By the 

Wold decomposition theorem (Wold, 1954) we know that there exists the unique fundamental 
moving average representation of the cash price stochastic process:  

 
0

t i t i
i

c   





   (15) 

where 0 1.   Denote futures price at time t for a contract that expires at time T by T
tf . Efficient 

futures prices that do not incorporate risk premiums will be unbiased predictors of cash prices at 
contract expiry:  

  T
t t Tf E c  (16) 

Using Wiener-Kolmogorov prediction formula (Hansen and Sargent, 1980) we can express 
futures prices at time t as 

 
 

0

T
t t T t i t iT t

i

L
f

L


    



  


 
    

 
  (17) 

where the annihilation operator   replaces all negative lag values by zero. An alternative, and 

equivalent expression for (17) is  

 T
t i T i

i T t

f   



 

    (18) 
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We first exploit notation in (18) to show that under the assumptions of this model, any change to 
futures prices of a single contract must come from unanticipated information shocks 1t  . First, 

express 1
T

tf  using Wiener-Kolmogorov formula as  

  1 1 1 11
( 1)

T T
t i T i i T i t t T t tT t

i T t i T t

f f         
 

       
    

         (19) 

Since  1 0t tE     it follows that 1
T T

t t tE f f    and we have established the martingale property 

of futures prices of the same contract. If in addition fundamental moving average coefficients 
increase in absolute value as their index decreases (this would be the case for AR(1) models for 
example) then the conditional variance of futures prices  

 2 2
1 1

T
t t T t cVar f         (20) 

will be increasing as time to maturity decreases. This is the well-known “Samuelson Effect“. 
From the analysis undetaken above, it would be wrong to conclude that because prices within a 
single futures contract are martingales that such must also be true for an n-th nearby futures price 
series. Let the first nearby futures price series be constructed by rolling contracts over one day 
before the delivery date:  

  31 1 2 2

1 1 2 21 1 1 1,..., , ,... , ,...TT T T T
T T T TF f f f f f   (21) 

Let us take a closer look at the MA representation of futures prices around the rollover date:  
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


 (22) 

The difference in consecutive futures prices of this nearby series at rollover time is 

  1

1 11
1

k k

k k k k k k k k

T T
T T T T T T T i i T i

i

f f     

 



    


     (23) 

Only the first part of the difference, 
1k k kT T T 
  , is not known at time 1kT  , while the second part, 

the infinite sum, is fully known at that time. It follows that  

  1

11 1 1
1

k k k

k k k k k k k

T T T
T T T T T i i T i T

i

E f f f  





     


         (24) 

 The first nearby futures price series will not have the martingale properties, and changes in the 
nearby price sequence at rollover time are partially predictable. To give a simple example, 
suppose that current first nearby contract is the March contract, and tomorrow the first nearby 
contract will be the futures price for delivery in April, i.e. rollover is to occur tomorrow. Then 
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the expected change in the first nearby price series is the simple difference between today's price 
for April delivery and today's price for March delivery.  

We can extract some further insight from (24). If it so happens that the  cash price at time 1kT  , 

1
1

k kT i T i
i

c   







  is above the long run mean  , then the sum 
1

ki T i
i

 




 will be positive. When 

fundamental moving average coefficients are monotonically declining in absolute value, i.e. 
, , 0i ji j a i j     then the infinite sums from expression (22) can be ordered in absolute 

value: 

 
1

1 1
k k

k k

i T i i T i
i T T i

   




 

 
  

   (25) 

If condition (25) holds, and 
1kTc 

 then  

1
1

0
k k kT T i i T i

i

  




  


  . In other words, the 

predictable component in the first nearby price change at contract rollover will be mean-
reverting. In addition, because cash price is assumed to be second-order stationary, moving 

average coefficients are square summable, i.e. 2

0
i

i






  . This implies that  

 lim 0i i   (26) 

Since for a fixed t kk T t   it follows that 
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   

         
 

 (27) 

In words, the long-run expected value of the first nearby futures price series is the unconditional 
mean of the cash price. This characteristic is shared with any second-order stationary series: if a 
variable is second-order stationary then forecasts of the variables value far into the future will 
eventually converge to an uninformed prior which is the unconditional mean of the variable. 
That must be so since any shocks that explain current deviations of that variable from its 
unconditional mean will eventually die out. The result that the long-run forecast of the first 
nearby futures price series is the unconditional mean of the cash price stands in sharp contrast to 
characteristics of series that exhibit martingale properties. For such a series,  limk t k tx x   , 

i.e. all shocks are permanent, and the long-run forecast is equal to the last observed value of the 
variable. 

The argument that the first nearby price series will be mean-reverting at contract rollover carries 
forward to the n-th nearby series. Let us compare the first and an n-th nearby price series at 
rollover. For the first nearby series, price change at rollover time is given in (23).  Since futures 
prices are assumed unbiased predictors of future cash prices, we can rewrite (23) as  
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 1

11 1
k k

k k k k k k

T T
T T T T T Tf f E c E c

           (28) 

Similarly, for the n-th nearby price series, 1

11 1
k n k n

k k k k n k k n

T T
T T T T T Tf f E c E c  

            . From (26) it 

follows that  

 1
1lim 0k n k n

k k

T T
n T Tf f  
    (29) 

In other words, the predictabile part of price change for n-th nearby contract at rollover time will 
be smaller the higher the n is. Mean-reverting changes at contract rollover will be most 
pronounced  in the first nearby, less so in the second nearby, and even less in the third nearby 
price series, etc.  

In conclusion, we have illustrated using a simple example that when the cash price series is 
second-order stationary, futures prices for a specific contract will be a martingale, but not a 
random walk, as random walk assumes constant variance of shocks, and in we expect to see the 
Samuelson effect, i.e. increases in futures price volatility as time to maturity declines. 
Furthermore, the n-th nearby futures series will be nonlinear, having martingale properties within 
each contract segment, and mean-reverting changes at contract rollover. When fundamental MA 
coefficients are monotonically declining in absolute value, mean-reverting change at contract 
rollover will be less prononuced for further horizon series.  

Suppose that we apply unit root tests that assume linearity in the variable being tested and posit 
as a null hypothesis that the process contains a unit root, e.g. a Dickey-Fuller type test or 
Phillips-Perron test. Based on these insights we would expect to see the following: 

1) The null hypothesis will likely be rejected for cash prices 
2) The null hypothesis will likely not be rejected for a single contract futures price series 
3) The null hypothesis will be more likely to be rejected for n -th nearby than for 1n  -th 

nearby. 
4) The more observations there are between rollover periods, the less likely the null 

hypothesis will be rejected. Consequently, reducing data frequency increases the 
likelihood of rejecting the null hypothesis. 

The results we obtained for unit root tests applied to cheese cash and nearby futures prices are 
consistent with these predictions. In particular,  

1. The null is always rejected for cash prices 
2. Regressions like (14)  that test for unit root presence in contract segments, and ignore 

dynamics at contract rollovers never reject the null hypothesis. 
3. For daily and sales-only data frequencies, test statistics for ADF and Phillips-Perron tests 

mostly decline from 2nd to 5th nearby series, although we not test if they are statistically 
significantly different.   

4. Unit roots are rejected for all tested nearby series when weekly frequency is used, but 
tests fails to reject unit roots for a majority of the nearby series when higher data 
frequency is employed.   



17 
 

We should also notice that not all predictions of the model above hold for cash markets. In 
particular, for daily and sales-only data the test statistic used in the ADF test is higher for second 
than for the first nearby series, indicating a stronger mean-reversion at rollover time for the 
second series. This should not be surprising, however, as we have shown in another part of the 
thesis that volatility of futures prices declines dramatically in the last 4 weeks of contract life. 
This may be due to formula-based contract settlement procedure. In conclusion, my simple 
forecasting model demonstrates a high ability to explain observed patterns in unit-root tests 
results. 

3. Information flows between cheese cash and futures markets 

When examining the information flow between cash and futures markets, it is standard practice 
to use the cointegration framework developed by Johansen and Juselius (1990). Bessler and 
Covey (1991) were among the first to introduce this method to commodity price analysis. 
Examples relevant for this chapter include Fortenbery and Zapata (1997) and Thraen (1999), 
papers that applied co-integration to analyses of dairy futures and cash markets. In this section, 
we first define the concepts of causality as they are commonly understood and used in modern 
applied econometrics. Next we discuss causality in mean, better known as ‘Granger causality’, 
causality in variance and second-order causality as well as testable restrictions on model 
parameters that correspond to these concepts. We then propose an error-correction model 
incorporating GARCH structure on errors as a framework to examine information flows between 
cheese cash and futures markets. Given the apparent stationarity of cheese cash prices, coupled 
with nonlinearities in nearby futures prices, we build a model similar to an error-correction 
model, with the role of cointegrating vector taken by the spread between cash and the 2nd nearby 
futures price. The addition of a GARCH error structure allows us to examine volatility spillovers 
between the cash and the futures markets. In addition, the GARCH structure results in a 
framework that allows us to perform a preliminary examination of the role of speculators on 
market volatility when available data on trader positions has low frequency.  

1. Concepts of causality 

Operational definitions of causality are summarized in Granger (1980). Consider a universe in 
which all variables are measured at prespecified time points at constant intervals 1, 2,...t   We 

are interested in the possibility that a series ty causes another series tx . Let nI be an information 

set available at time n , consisting of terms of the series tx  

 : ,   0n n jI x j   (30) 

 Denote an information set that includes information on both series tx and ty with nJ   

 : ,   0n n j n jJ x y j    (31) 

Let  1 |n nF x I be the conditional distribution of 1tx   given nI  with conditional mean 

 1 |n nE x I .  

Non-causality in distribution occurs if ny does not cause 1nx  with respect to nJ , or 
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    1 1| |n n n nF x I F x J   (32) 

In other words, knowing the history of variable y does not improve probabilistic forecasts of the 
variable x . For the sake of completeness, we should state that Granger defined non-causality and 
causality differently. Let n be the universal information set, i.e. a set containing all the 

information in universe available at time n . Then ny is said to cause 1nx  if  

    1 1| |n n n n nF x F x y      (33) 

The difference between the concepts of non-causality and causality is large, if we adhere strictly 
to definitions (32) and (33). The former equation requires us to observe only histories of the 
series tx and ty while the latter expression stipulates omniscience.  Given the definitions above, 

rejecting non-causality is necessary, but not sufficient to demonstrate causality. In defining the 
non-causality in mean and variance, we follow the exposition by Comte and Lieberman (2000).  

Non-causality in mean occurs if ny does not Granger cause 1nx   in mean, denoted as 1

G

n ny x  , 

or 

    1 1| |n n n nE x I E x J   (34) 

Given some information set n , the conditional variance of the one-step ahead forecast will be 

  2

1 1 |t t n nE x E x 
       

. Non-causality in variance was first introduced in Granger, Robins 

and Engle (1986). We follow Comte and Lieberman (2000) in differentiating between non-
causality in variance and second-order non-causality. 

Non-causality in variance happens when variable ny does not cause 1nx  in variance, denoted 

1

V

n ny x  , or 

      2 2

1 1 1 1| |n n n n n n n nE x E x I I E x E x J J             (35)  

Second-order non-causality, denoted 1

GRE

n ny x  , is obtained if  

      2 2

1 1 1 1| |n n n n n n n nE x E x J I E x E x J J             (36) 

Unlike non-causality in variance which fully restricts the information set used in forecasting, in 
second-order non-causality information from ny  is allowed to be utilized in calculating the 

conditional mean of 1tx  , but not the expected square deviation from the conditional mean. In 

this terminology, the concept of causality in second moments, as introduced by Granger, Robins 
and Engle (1986), corresponds to second-order non-causality. The relationship between non-
causality in mean, non-causality in variance and second-order non-causality is as follows: 
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 1 1 1  and   
V G GRE

n n n n n ny x y x y x  
     
 

 (37) 

It suffices to show that ny Granger causes 1nx  in the mean to establish variance causality. This 

renders second-order non-causality a more interesting concept, for it is neither necessary nor 
sufficient for causality in means to exist for second-order causality to be present.  

Testing for second-order non-causality 
Cheung and Ng (1996) propose a two-step approach where the first step consists of estimating 
univariate time series models that allow for a time-varying conditional mean and variance, i.e. a 
univariate GARCH(1,1) model. In the second stage, residuals of the univariate models are 
squared and standardized by dividing with the conditional variance. The square-standardized 
residuals are then utilized in a cross-correlation function (CCF) to test for the presence of 
causality in variance. The authors argue that this method may be superior to multivariate 
GARCH modeling because it is simpler to implement, and does not rely on correctly specifying 
the functional form of inter-series dynamics.  

Comte and Lieberman (2000) show that in GARCH models with a BEKK conditional covariance 
structure, second-order non-causality is equivalent to specific restrictions on ARCH and GARCH 
parameters. Consider a BEKK representation of a bivariate GARCH(1,1) model as suggested by 
Engle and Kroner (1995). The conditional covariance, tH is given by the formula  

 0 0 1 1 1t t t tH C C A A G H G   
       (38) 

with  

 
1,11 21 11 12 11 12

21 22 21 22 21 22 2,

t

t t
t

h h a a g g
H A G

h h a a g g





      

                   
 

In the covariance matrix tH , 11h is the conditional variance of the first series, 22h is the 

conditional variance of the second series and 12 21h h is the conditional covariance between the 

series. Given that expressions for ARCH and GARCH in the conditional covariance are written 
in (38) as a quadratic form, it will help our intuition to rewrite it in a simpler way. 
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  

      
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22 3 22 1, 1 22 12 1, 1 2, 1 12 2, 1 22 22, 1 22 12 12, 1 12 22, 12 2t t t t t t th c a a a a g h g g h g h               

 (39) 

Let tx be indexed as the first and ty as the second series in the model above. Comte and 

Lieberman show that the second-order non-causality and coefficients of the BEKK GARCH(1,1) 
correspond as given below.  
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 1 21 210, 0
GRE

n ny x a g     (40) 

One reason Cheung and Ng opted to pursue a cross-correlation function approach was that at the 
time, asymptotic theory was not worked out for multivariate GARCH. In fact, Comte and 
Lieberman warn us in 2000 that while it was a common practice to employ likelihood-based 
tests, such as Wald, Lagrange multiplier test or likelihood ratio test to evaluate statistical 
properties of restrictions on GARCH parameters, the asymptotic distributions of these tests in the 
general multivariate GARCH(p,q) were still unknown. Fortunately, Comte and Lieberman 
(2003) and Ling and McAleer (2003) prove both consistency and asymptotic normality of quasi-
maximum likelihood estimator. That enables us to use the standard approach in testing second-
order non-causality. In particular, to test the restrictions of (40) we need to estimate both 
restricted and unrestricted model. Under the null hypothesis of second-order non-causality, 
critical value of the test statistic will be given by  2 2,0.95 5.9915   

3.2.Model for evaluating information flows between cash and futures cheese prices.  

In previous section the time-series properties of cash and nearby futures price were evaluated. 
Given the results, it makes little sense to pursue a standard cointegration approach, for cash price 
is clearly not an integrated process, and nearby futures price seems to be a nonlinear 
concatenation of unit-roots within-contract segments and mean-reverting changes at contract 
rollovers. The basic idea of cointegration is that if two integrated variables get too far apart, at 
least one of them will adjust to bring the variables closer together. A framework that allows the 
difference between cash and futures cheese price to carry valuable forecasting information seems 
like a rather reasonable approach. We have seen that such spreads exhibits strong mean-reverting 
characteristics, so the model that naturally presents itself is the following:  

 

1 11 1 1 11 1 1 1 1 1

2 21 1 2 21 1 2 2 1 2

... ...

... ...

i i
t t p t p t p t p t t

i i i
t t p t p t p t p t t

c c c f f d

f c c f f d

      

      
    

    

            

              (41) 

where 1 1 1
i

t t td c f    , and all futures prices are for the second nearby contract, with i being the 

contract month/year index of the second-nearby contract at time t . In the above model, 
information flow between the two markets can arise from two effects. First, short-term dynamics 
may be important. For example, if the futures market closes the day higher than yesterday, that 
may help predict the direction of cash cheese prices the following morning. The predictive power 
in this example may originate from several different causal mechanisms. First, it may be that 
futures prices have discovered new information, and the cash price will incorporate it in the next 
trading session. Alternatively, it may be that traders in both markets get the information at the 
same time, but if futures market is open for trading, and cash market already closed for the day 
then the first lag of the changes in futures prices could have predictive power simply due to 
differences in market trading hours. This could happen even if no additional price discovery in 
futures markets took place. The other source of information flow may come from the spread 
between the cash and the second nearby futures price. Second nearby contracts have time to 
maturity between 22 and 44 trading days. The cheese futures contract is financially settled 
against the USDA announced national average monthly cheese price that will closely match the 
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average of CME cash prices observed from 30 to 10 trading days to maturity. If the spread 
between the cash and futures price is large, one of these two variables will have to eventually 
adjust and reduce the spread. If futures prices accurately anticipate the average cash price near 
the contract expiry, then the spread between cash and the futures price will have forecasting 
power in predicting changes in cash prices.  

Given the definition of Granger non-causality in mean, we can state that futures prices do not 
Granger cause cash prices if the following restrictions on model coefficients hold:  

 1

1

0, 1,..,

0
i i p


  


 (42) 

For non-causality from cash to futures prices the same restrictions are to be applied to the 
corresponding coefficients in the second equation of the model (41).  

In addition to forecasting price changes, we are interested in volatility dynamics and spillovers 
between the two markets. One approach would be to add the BEKK structure to errors as in (38). 
In addition to spillovers, we are interested in evaluating the impact of speculative activity on 
volatility levels and dynamics. A standard method to include additional regressors to BEKK 
variance model is to expand the structure to what is called BEKK-X: 

  1
0 0 1 1 1 1

2

~ 0,      't
t t t t t t

t

N H H C C A A G H G D Dx


 
    

         
 

 (43) 

Given that the coefficients next to the additional regressor enter variance equation (43) as a 
quadratic form, the sign of the coefficients for the impact on variance of both cash and futures 
prices is always restricted to be positive. To see that, expand 1' tD DS  as follows 

 
2 2

11 11 11 21
1 1 12

21 22 21 22 21 22 22

0 0
' t t t

d d d d
D Dx x x

d d d d d d d
  

     
      
     

 (44) 

It turns out that the BEKK specification can only test if the increase in an additional regressor in 
the variance equation is associated with an increase in the conditional variance of cash and 
futures prices. As such, a hypothesis that speculation may reduce the conditional variance of 
futures price cannot be easily tested with this model specification, and an alternative model 
structure needs to be developed.  

One possibility would be a bivariate EGARCH model introduced first by Koutmos and Tucker 
(1996) to evaluate dynamic interactions between spot and futures in the stock markets. Following 
Nelson (1991), it is the logarithm of the conditional variance in their EGARCH model that is 
modeled as a linear function of past conditional log-variances and magnitude of realized shocks 
in the previous period. Exponential form allows this modeling approach to admit additional 
regressors in the variance equation while preserving the positive definiteness of the conditional 
covariance matrix. Similar models were used by Tse (1999), Bhar (2001), Zhong, Darrat and 
Ottero (2005) and Bhar and Nikolova (2009).  
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While variations of the bivariate EGARCH model used by these authors allows for high degree 
of flexibility, the exponential form may present estimation problems. In addition, it may be of 
help to have a model that nests a BEKK model with means as in (41) and variance model as in 
(38) as a special case where additional regressors in the variance equation are found to have no 
influence on the variance dynamics.  

In what follows, we expand the BEKK model without imposing a particular sign on the 
coefficient of the additional regressor in the variance equation, while preserving the positive-
definiteness of the conditional covariance matrix. Let the mean model be as in (41).  

We introduce additional regressors in the variance equation through an exponential function that 
multiplies the BEKK structure. In a standard BEKK model, we have 

  1
0 0 1 1 1

2

~ 0,      t
t t t t t

t

N H H C C A A G H G


 
   

        
 

    (45) 

We can expand the variance model in the following way  

  1

2

~ 0,      t
t t t t

t

N H H X H


 

 
 

  (46) 

where tH is given by the expression in (45), the symbol  stands for Hadamard product, i.e. 

element-by-element multiplication, and the matrix tX is defined as  

 
1 1

12 1 2 1
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e
X

e e



 



 

 
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 

 (47) 

Due to the BEKK form, tH will be positive definite, and to insure positive definiteness of tH it 

will suffice to impose the following restriction on the parameter 12 : 

  12 1 2

1

2
     (48) 

As we shall demonstrate, restriction (48) is equivalent to restricting the impact of additional 
regressors to have influence only on conditional variances of the two series, but not on their 
conditional correlation. Denote the elements of tH as  

 11,

12, 22,

t
t

t t

H

 
 

  
 


   (49) 

Since the exponential form is used for all elements of tX , the diagonal elements of tH will be 

positive. To insure positive definiteness of tH  and it will be sufficient that the determinant of the 

tH  matrix is positive.  
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  1 1 2 1 12 1
2

11, 22, 22, 0t t tx x x
t t t tH e e e            (50) 

With restriction (48) this is reduced to  

  1 1 2 1
2

11, 22, 22,
t tx x

t t t tH e        
 
    (51) 

The positive range of the exponential function together with positive-definiteness of tH imposed 

by the BEKK structure jointly guarantees that tH will be positive-definite. In practice, we 

recommend starting with the unrestricted version given in (47), and after the model is estimated 
checking for positive-definiteness of the conditional covariance matrix for each observation. If 
that is violated for any data point, the stated restriction will resolve the problem.  

I propose that this new GARCH model be called GARCH-MEX, or BEKK-MEX, where MEX 
stands for multiplicative exponential heteroskedasticity induced by additional regressors. 
GARCH-MEX may be estimated in two variations, depending on whether a researcher believes 
that the impact of an additional regressor is exhausted in the present period or propagated 
forward through the GARCH structure. In the first case, we would model the variance with  
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 (52) 

and in the second case, the BEKK structure for tH  would be modified to  

 0 0 1 1 1t t t tH C C A A G H G   
       (53) 

In words, specification (53) allows the impact of additional regressors to influence future 
variances through the GARCH structure. 

GARCH-MEX has four important characteristics: 

1) If additional regressors do not explain volatility, i.e. 1 12 2 0     , the model collapses 

to a standard BEKK model. 
2) Since the exponential function is always positive, signs of coefficients 1 2,  do not need 

to be restricted as in (44). 
3) The covariance matrix is always positive definite, as demonstrated in (51). 
4) With restriction (48) additional regressors impact only conditional variances of individual 

series, but not conditional correlation directly.  
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 (54) 
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However, conditional correlation is time-varying, and in specification (53) influenced by 
additional regressors indirectly, through impacts on lagged conditional variances that enter the 
BEKK structure.  

The complete model for evaluating information flows between cash and futures prices, and the 
influence of speculators on volatility dynamics is as follows: 

 1 11 1 14 4 11 1 14 4 1 1 1
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 (55) 
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 (56) 

 
1 1 1 1

12 1 12 1 2 1 2 1

t t

t t t t

S c

t S c S c

e
X

e e

 

   

 

   



 

 
  
 

 (57) 

In the MEX matrix, we have used lagged cash prices in addition to a measure of speculative 
adequacy, to control for possible confounding if speculative activity coincides with cycles in 
milk prices.  

The model can be estimated in several variations. First, prices can be expressed as either levels 
or logarithms. Second, data frequency can be daily, ‘sales-only’ or weekly. However, for daily 
and ‘sales-only’ frequencies we cannot estimate the impact of speculators as that data is only 
available on a weekly basis. We test 14 different measures of speculative adequacy which are 
described in the next section. We may test both variations of GARCH-MEX model, i.e. allowing 
additional regressors to have an effect that propagates dynamically through the GARCH 
structure as in (56) or restrict the BEKK structure to 

 0 0 1 1 1t t t tH C C A A G H G   
       (58) 

Finally, we may impose the restriction  
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 (59) 

to test if conditional correlation is impacted by speculative activity and cash price levels.   

3.3.Measures of speculative adequacy 

To evaluate the impact of speculators on cheese markets, we use a measure of speculative 
activity in Class III milk futures prices. We chose Class III milk futures as it is the most liquid 
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dairy futures market, and tied to cheese futures through a no-arbitrage condition that connects 
futures prices for butter, cheese, whey and Class III contracts. In the absence of trading costs, 
cheese futures price can be represented as simple linear combinations of butter, whey and Class 
III milk prices. Thus, whichever variable influences the conditional variance of Class III milk 
futures, it will influence the conditional variance of cheese futures price as well. Data for 
speculators’ position are obtained from Commitments of Traders (COT) report published weekly 
by the Commodity Futures Trading Commission (CFTC). COT only presents data for selected 
markets that the CFTC considers to be important to monitor closely, and cheese futures are not 
currently included in the COT report.  

A classical measure of speculative adequacy is called Working’s T, and was introduced by 
Working (1960, May). Denote commercial (hedging) long positions with LH , SH is the 

commercial short position, LS is the noncommercial (speculative) long, and SS speculative short 

positions, all measured by the amount of contracts held. When short hedging exceeds long 
hedging, Working’s T is calculated as  
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 (60) 

If the hedging position is net long, i.e. L SH H then the formula becomes  

 1 L

S L

S
T

H H
 


 (61) 

To calculate T, all open interest (excluding noncommercial spreading) has to be allocated to 
these four categories ( LH , SH , SS , LS ) . That means that nonreportable positions, for which we 

have no information relative to their speculative or hedging nature, have to be allocated to the 
above categories. Working’s T measures the ‘adequacy’ of speculation. The minimum value is 
equal to 1. Markets with T-index less than 1.15 are considered to have insufficient liquidity 
(Irwin and Sanders, 2010).  

There are at least nine ways to allocate nonreportable positions in the calculation of Working’s 
T-index. First, we may allocate them in such way as to obtain the upper or lower bounds of the 
index as in Peck (1980). We denote these calculations as “upper bound” and “lower bound”. 
Another approach would be to base the allocation rules on informal feedback based on personal 
conversations from brokers managing accounts of traders in class III milk. It was suggested to 
me by Mr. Phil Plourd, the manager of a company that was among the first to offer risk 
management services to dairy sector, that it might be reasonable to treat all nonreportable short 
positions as commercial, and split nonreportable long positions equally between the speculative 
and hedging categories. Working’s T calculated in such way is reffered to as “industry”. Irwin 
and Sanders (2010) follow Rutledge (1977) and allocate nonreportable positions to the 
commercial, noncommercial and index trader categories in the same proportion as that which is 
observed for reporting traders. Denote index obtained using their method as “proportional”.  

The problem with this approach is that it ignores the similarity between position profiles of 
nonreportables and the stated three categories. To illustrate this point with a simple example we 
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shall ignore the role of index traders for a moment and assume all reportable positions are 
classified to the noncommercial and commercial categories only. If commercials represent the 
predominant percentage of open interest, the above approach would classify most nonreportables 
as commercials. However, it may be the case that commercial traders have a very strong net-long 
positions, while both non-commercials and nonreportables have strong net-short position. In that 
sense, nonreportables seem to have a position profile that is more like non-commercials than like 
commercials.  

For example, consider the situation in Class III milk futures market on September 12, 2000. 
Ignoring noncommercial spreading positions, the relative noncommercial short position 
measured as / ( )S S SS H S was only 13.24%, and the relative noncommercial long position, 

measured as / ( )L L LS S H was even lower, only 5.90%. According to the Irwin and Sanders 

approach, only 13.24% of nonreportable shorts and 5.90% of nonreportable long positions would 
be allocated to noncommercials short and long positions respectively. Now consider the 
percentage net-long positions for all trader groups. Define relative net-long position for a 
particular group as  

 % 100
L S

NL
L S Spr


 

 
 (62) 

where L stands for long, S for short, and Spr for spreading.  

On 9/12/2000, the percentage net-long position was -29.68% for noncommercials, 13.7% for 
commercials and -29.77% for nonreportable positions. According to this metric, nonreportables 
were very similar in their position profile to noncommercials, and it may make sense to allocate 
more than just a marginal fraction of those contracts to the noncommercial group.  

Consider a following allocation rule. Let %, %NL NLH S and %NLNR be percentage net-long 

positions for commercial, noncommercial and nonreportable positions in that order. The 
percentage of nonreportable contracts allocated to the noncommercial category is  

 
 

   

2

2 2

% %

% % % %
NL NL

NL NL NL NL

NR H

NR H NR S





  
 (63) 

In the example above, 0.999  and practically all nonreportable positions would be allocated to 
noncommercials.  

However, the relative net-long position does not capture the full picture. For example, on 
6/26/2007 nonreportables where -8.51% net-long, much like commercials traders which where -
9.51% net-long, while noncommercials traders where 28.36% net-long. The distance measure 
would indicate we should assign almost all contracts to the commercial category, for the position 
profiles match closely. However, a closer look at the Figure 5 reveals that nonreportable 
positions where strongly negatively correlated with commercial traders position both before and 
after this date. If nonreportables were really small commercial traders, wouldn’t they be moving 
similarl to that category? Consider a measure 
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Where ,N t is the correlation between noncommercial and nonreportable net-long positions over 

the previous three months, and ,C t measures the correlation over the same period between 

commercial and nonreportable net-long positions. t is bounded between -1 and 1. A value close 

to 1 would indicate that ,N t is high and positive, and ,C t is strong and negative, and therefore 

would suggest that nonreportables behave like noncommercials. If t is close to -1 situation is 

reverse and nonreportables take positions similar to commercials. When t is close to zero either 

correlations are of the same sign, or are both rather small. In that case, past comovements offer 
us little clue as to the composition of nonreportables, and the distance metric t seems like a 

measure of choice. Finally, a composite assignment rule that takes into account both static 
(position distance) and dynamic (comovement) factors is presented in the equation (65). The 
percentage of nonreportable contracts assigned to the noncommercial category is denoted as t
and calculated as follows 

  1
1

2
t

t t t t

       
 

 (65) 

  

In words, the primary assignment criteria is based on dynamics. When comovements are not very 
informative, the distance metric is given higher weight. Finally, it should be stated that the 
applicability of this method rests on the implicit assumption that risks faced by reportables and 
nonreportables is not negatively correlated. Given that the available data does allow us to test 
this directly, this approach can at best be used as just one of several robustness checks, rather 
than a definitive solution in itself. Denote the Working’s T calculated based on this rule as 
“dynamic”. While Working originally excluded the noncommercial spreading contracts from the 
calculation of the T-index, it may make sense to test if results are robust to the inclusion of 
spreading contracts in noncommercial long and short positions. For all except “industry” based 
T-index calculations we develop a variation of the method that includes spreading contracts as 
indicated above. We denote such measures with the letter ‘S’ in parenthesis following the 
original notation.  

Finally, besides Working’s T, we may measure the speculative impact by a simple percentage of 
open interest held by the speculators. We may measure that with either speculative long or short 
positions divided by the total open interest, as well as the sum of speculative short and long 
positions divided by twice the open interest. As above, spreading may be included or excluded, 
which is indicated by ‘(S)’ where appropriate.  

4. Model results 

To start, we first estimate the mean model (55) without explicitly modeling the volatility 
dynamics in model residuals and ignoring the speculative influence on price dynamics. Results 
using all three data frequencies and both price levels and log-prices are presented in tables 2 and 
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3. Results are consistent and suggest that short-term dynamics in cash prices do not influence the 
direction of futures prices. Futures prices seem to have one-day momentum dynamics as the 
coefficient of differenced futures prices lagged once is significant. In both model specifications 
cash prices adjust to the cash-futures spread. However, weak evidence of futures prices adjusting 
to the spread is found only when using publicly reported closing cash prices that may be bids or 
offers (not transactions), and that seems to be the only observable difference between the model 
specifications. It seems that the data frequency only influences the magnitude of the spread 
coefficient in the cash equation. The coefficient is -0.068 for daily frequency and -0.33 for 
weekly frequency. The relative magnitude closely resembles the change in frequency – one week 
contains 5 trading days, and the coefficient in the weekly equation is about 5 times as big as the 
one in the model estimated using daily frequency. 

The next topic of interest includes the volatility spillovers between cash and futures markets. We 
estimate the standard BEKK model using weekly frequency and price data in levels. Results are 
reported in Table 3. Several results are interesting. First, when the mean model was estimated 
without a specified variance structure, we found very little evidence that futures prices adjust to 
the spread between cash and futures. That adjustment coefficient is now found to be significant. 
Next, we find that volatility spillovers are bidirectional. Coefficients 21 and 21 capture the 

spillovers from futures to cash markets. We see that both coefficients are negative, although only 

21 is significant. To measure the sign of an average impact of these spillovers, we calculate the 

share of the cash conditional variance attributable to futures for each observation, and take an 
average. We find that on average, volatility spillovers are negative. Estimating the model for 
cash data that include unfilled bids and uncovered offers, we find that this result is reversed and 
that volatility spillovers are positive. While this analysis is preliminary, and robustness of these 
results needs to be further checked, it is interesting to consider what this would really mean in 
practice. Cash markets for cheese are very thin, and not more than a handful of sales occur per 
one trading session, and often it is the case that no sales happen. This result could indicate that in 
turbulent times price discovery in cash markets is done via bids/offers, while sales are few. That 
would make sense, since this is a surplus market. In thin markets, an agent that is one of the few 
sellers with a surplus of cheese to sell and believes that price will continue to increase is likely to 
wait and try to capture a better price in one of the following trading sessions. A recent 
Government Accountability Office study (2007) of the cheese spot market brings further 
examples that fit well with this story:  

“Between January 1, 1999, and February 2, 2007, the closing price for block cheese 
fluctuated based on unfilled bids and uncovered offers on at least 17 percent of the 
trading days. During the same time period, the barrel market closing price fluctuated 
based on unfilled bids and uncovered offers 28 percent of trading days. 

• Between March 1, 2004, and April 16, 2004, block cheese prices increased from $1.49 
to $2.20 per pound, or 48 percent, on the CME spot cheese market based primarily on 
unfilled bids to buy cheese, with only four carloads of block cheese bought or sold during 
this period. 

• Between October 26, 2004, and November 19, 2004, block cheese prices rose from 
$1.57 to $1.80 per pound, or 14 percent, with completed transactions for only three 
carloads of cheese completed during this period." 



29 
 

In conclusion, my reading of these results is that higher volatility in the futures market translates 
to higher volatility in cash market if we look at closing prices that may be bids or offer quotes. 
But when it comes to sales prices, they are less likely to follow as fast, and sales cash forecast 
variance declines in times of high volatility in the futures. 

Finally, we estimate the full model (55)-(57). We have estimated four variations of the model. 
Model 1 imposes restriction (58), i.e. effects of additional regressors does not enter the GARCH 
structure in the subsequent period, while Model 2 allows such effects to be present as in equation 
(56). For both model versions, we first allow the conditional correlation to be directly impacted 
by speculators, and check if the conditional covariance matrix was positive definite at each data 
point after the estimation is completed. Results from estimation that insures positive definiteness 
of the covariance matrix ex ante by restricting correlation via (59) are also presented. To further 
check robustness of the results, we estimate the model for 14 alternative measures of speculative 
influence described in the previous section. It needs to be noted that these robustness checks 
cannot completely compensate for the potential measurement errors that can arise from the fact 
that imputed, rather than observed cheese futures prices were used prior to July 2010.  

Results, presented in Table 4, reveal that Working’s T index in the Class III milk futures are on 
average much lower than any of the twelve agricultural futures markets analyzed recently by 
Irwin and Sanders (2010). For example, they find that average T-index for corn was 1.15, 1.17 in 
soybeans, 1.44 in CBOT wheat, 1.86 in feeder cattle, and 1.14 in cocoa. Using their method, we 
find that T-index is only 1.03 in the class III milk futures. My alternative calculations based on 
dynamics of nonreportable positions bring the T-index up to 1.10, and in fact the theoretical 
upper bound obtained by allocating all of the nonreportables to noncommercial traders is 1.16. 
Irwin and Sanders state that value of 1.15 would be historically considered an inadequate amount 
of speculation to efficiently meet hedging demands and facilitate the transfer of risk.  

We find that Model 1 with unrestricted correlation almost always fails to converge. Overall, the 
highest likelihood is obtained using variation 2 of the model with unrestricted conditional 
correlations. In each case the conditional covariance is found to be positive definite for all 
observations. In most specifications, likelihood ratio test rejects restricted correlation version of 
model 2 in favor of unrestricted correlationFor conditional variance of the futures price, 
coefficients of speculative adequacy are always either negative or not statistically significantly 
different from zero. This constitutes strong evidence that there is no excessive speculation in the 
Class III milk prices. In fact, according to standards suggested by Irwin and Sanders (2010), it 
could be that speculation in Class III milk futures market is inadequate. My current results 
indicate that on a weekly frequency, more noncommercial presence would predict lower 
conditional variance of the futures prices.  

  

5. Conclusions and directions for future research 

The task of this essay was to examine price discovery, volatility spillovers and impacts of 
speculation in the dairy sector. We have developed a method that allows for the calculation of 
implied cheese futures prices for a period before cheese futures actually started trading. Evidence 
for periods when cheese futures did trade suggests that utilized approximation methods perform 
very well. Examining the time series properties of cheese cash and implied futures price we find 
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that the unit root hypothesis is strongly rejected for cash prices, while unit roots cannot be 
rejected for nearby futures prices in the framework that carefully controls for rollovers. To 
explain this result, we built a model that illustrates the time series properties of the nearby 
futures price series for a futures contract written on a second-order stationary cash series and 
identified the mean-reverting nonlinear dynamics that will occur at rollovers. Given the time 
series properties of the cash and futures series we propose an error-correction model using 
spreads between cash and the second nearby futures instead of the cointegration vector. To 
account for volatility dynamics we employ the GARCH-BEKK structure. We find that the flow 
of information in the mean model is predominantly from futures to cash, while volatility 
spillovers are bidirectional. It is possible that cash prices that include unfilled bid/offers react 
differently to increases in volatility in futures prices than sales cash prices, though this result may 
not be robust and further research is needed to identify if liquidity in the cash market is reduced 
with increase in conditional volatility of the futures price. We propose an extension of the BEKK 
variance model that we refer to as GARCH-MEX. That model does not restrict the sign of the 
additional regressors on the conditional variances, and can easily insure positive-definiteness of 
the conditional covariance matrix. Utilizing that model to evaluate the impact of speculation we 
find strong evidence against the hypothesis that excessive speculation is increasing the 
conditional variance of futures prices. If anything, speculation may in fact be inadequate, and 
further research with daily speculative positions and high-frequency futures prices is needed to 
identify the effect of increased speculation on realized volatility of futures prices, bid-ask spread 
and magnitude of slippage.  

Strong desirability of higher liquidity is clearly seen in the dairy futures products. CME offers 
seven dairy futures products, but Class III milk has by far the highest open interest, volume and 
is probably the only dairy futures market to attract speculative interest. While processors hedge 
their input prices with class III milk, most dairy farmers are interested in protecting their milk 
mailbox prices which depend on both Class III and Class IV futures prices. In fact, in the second 
quarter of 2011, the minimum price of fluid milk was calculated using Advanced Class IV, not 
Class III milk prices. However, Class IV milk futures did not attract significant additional 
volume, and Class III milk futures remain the center for price risk transfer. Several dairy groups 
have recently proposed legislative measures that would simplify milk pricing. From a price risk 
management point of view, simplifying the milk pricing process could enhance the price 
discovery role of the futures prices, bring new hedging interest to the futures contract and 
consequently attract more speculative capital. My results indicate more speculative presence 
could lead to a more stable futures market.  

The finding of bidirectional volatility spillovers could indicate that cash prices do also help 
discover the price levels in the futures market. However, since the cash market trades for only 
ten minutes in the morning, if the new information is incorporated in the futures market by the 
end of the day, then a model that uses only daily closing data will fail to uncover the information 
transmission arising from lagged cash price, as the information flow occurs at a higher 
frequency. However, this market setting can also be turned to a researcher’s advantage. Given 
that the cash market is open for only short periods of time each day makes it rather easy to 
uncover information flows from cash to futures if high-frequency futures prices are used. For 
example, one dairy broker (Schalla, 2011) summarized in his blog the events of one particularly 
turbulent day in the cheese markets, following several weeks of increases in cheese blocks prices 
on the spot market, mostly on unfilled bids and with little or no sales transactions: 
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 “9:05 a.m. – July Milk opens the day trading session at $20.13/cwt., off 4 cents from the 
day before. 

 10:45 a.m. – Heading into the daily cash cheese session, July drops a minimal 4 cents 
from the open to $20.09.  

 10:48 a.m. – Cash cheese session closes with no action seen in either the Block or Barrel 
market.  This spooks the milk market, and the July contract free-falls to $19.87, 22 cents 
lower than just three minutes earlier.” 

By focusing on activity of the futures markets immediately after the close of the cash market we 
can identify the information contribution of the cash market. Should we find it to be substantial, 
that will be an additional cause for worry. The CME cash market is very thin, and agents trading 
on this market may exhibit market power that is inconsistent with perfect competition that 
agricultural cash markets are usually taken to be. A previous study of the National Cheese 
Exchange (NCE) undertaken by Mueller et al. (1996) found the presence of cash price 
manipulation. Shortly afterwards NCE was closed and cheese spot trading moved to the Chicago 
Board of Trade. While a recent GAO (2007) study indicates that safeguards against market 
manipulation are stronger at CBOT than they were at the NCE, further analytical study of cash 
market behavior is needed.  

In conclusion, while the specifics of milk pricing, the nature of milk production, and the thinness 
of cash and futures cheese markets presented me with interesting challenges in evaluating the 
market characteristics, the overall conclusion is actually quite simple – effective price discovery 
needs deep and liquid futures as well as cash markets. Any proposed policy change should be 
evaluated by its potential to simplify and deepen market based price discovery and risk 
management. If there is any excessive volatility in milk prices, it is more likely to be a 
consequence of overregulation which leads to fragmented and thin markets, rather than animal 
spirits of profit-seeking speculators. 
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Butterfat Value 

Other milk solids 

Nonfat milk solids 
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Class III Milk 

Class IV Milk 

Note: Surveyed national average cash price of butter is used to infer value of butterfat. Protein value is calculated using survey price of 
cheese and imputed value of butterfat. Other milk solids are imputed from surveyed cash price for dry whey, and nonfat milk solids are 
imputed from surveyed cash nonfat dry milk price. Class IV skim milk price is obtained from imputed nonfat milk solids. Class IV milk 
price is obtained from imputed butterfat value and class IV skim milk value. Imputed other milk solids and imputed protein value are used 
to calculate class III skim milk price. Finally, class III skim milk price together with imputed butterfat value give us Class III milk price.  

Figure 1. Flowchart diagram of classified milk pricing in Federal Milk Marketing Orders
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Regression 

Note: Butter futures are used to infer butterfat value. Class IV milk futures and implied butterfat values are used to infer implied values of 
nonfat milk solids. Class III milk futures and implied butterfat value are used to obtain the implied Class III skim milk price. Implied 
nonfat milk solids price and projection coefficients obtained using past nonfat dry milk to dry whey cash price ratios are used to obtain 
fitted other milk solids. Correlation between nonfat milk solids and other milk solids is 0.77.  Combining Class III skim milk and other 
milk solids give us protein price. Finally, butterfat value and protein value give a best guess of implied futures cheese prices.  

Figure 2. Calculating implied cheese futures price
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Figure 3. Implied vs. observed cheese futures 

 

Note: Three different methods were used to calculate cheese futures price implied from other dairy futures prices.  

1. ICF-BDEL (7/11/2000-9/19/2005) uses deliverable butter, and Class III and IV milk futures 
prices as well as forecasted ratio of nonfat dry milk to dry whey. 

2. ICF-BCASH (9/20/2005-3/20/2007) is similar to ICF-BDEL, but cash-settled butter is used 
instead of deliverable butter. 

3. ICF-WHEY (3/21/2007-8/3/2010) uses Class III, cash-settled butter and dry whey futures 
prices. 

4. CHEESE-FUT (8/4/2010- ) are observed cash-settled cheese futures prices. 
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Figure 4. Average absolute value of cheese cash-futures spread, as a function of time to maturity.  
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Table 1: Unit root tests 

Note: Reported numbres are t-statistics used for unit-root tests. In all tests, intercept is included in the estimated 
regression. Unit-root test are run using inbuilt commands of RATS 8.01 software. Null hypothesis in all tests is that 
unit root is present. Significance at 10%, 5% and 1% is indicated with one, two, and three stars respectively. For 
augmented Dickey-Fuller (ADF) and Phillips-Perron tests optimal lag length is determined using AIC criteria. For 
cash prices, deseasonalized series is used in tests. “Reg t-stat” is the t-statistic from regression equation that should 
be used in ADF test. 

 Rollover: at expiry Rollover: 3 days to expiry 
 Dickey-

Fuller 
ADF (lags) Phillips 

Perron 
Reg. t-
stat. 

Phillips-
Perron 

Reg. t-stat. 

Daily        
  Cash – 40# Blocks  -3.67***   (4) -3.35** -3.67***       -3.35*** -3.67*** 
  Cash - Barrels  -3.16**   (19) -3.58*** -3.16**       -3.58*** -3.16*** 
  Cash – 40# Blocks (B/O)  -3.81***   (8) -3.34** -3.81***       -3.34** -3.81*** 
  Cash – Barrels (B/O)  -3.63***    (8) -3.12** -3.63***       -3.11** -3.63** 
  Futures: 1st nearby -2.87** -2.87** (0) -2.87**  0.15     -2.88**  0.15 
  Futures: 2nd nearby -2.73* -2.92** (1) -2.83*  0.65     -2.83*  0.65 
  Futures: 3rd nearby -2.67* -2.55 (1) -2.58* -0.05     -2.58* -0.05 
  Futures: 4th nearby -2.58* -2.23 (8) -2.41 -0.10     -2.40* -0.10 
  Futures: 5th nearby -2.35 -2.32 (19) -2.22  0.03     -2.22  0.04 
  Diff: Cash – Futures 2nd n. -11.36*** -11.36*** (0) -11.36***      -11.36***  
  Diff: Cash – Futures 5nd n. -4.87*** -5.50*** (2) -5.19***      -5.19***  
Sales-only        
  Cash – 40# Blocks  -3.42** (28) -3.31** -3.42**     -3.44*** -3.42** 
  Cash – Barrels  -3.14** (0) -3.15** -3.14**     -3.15** -3.14** 
  Cash – 40# Blocks (B/O)  -3.77*** (6) -3.42** -3.77***     -3.42** -3.77*** 
  Cash – Barrels (B/O)  -3.62*** (7) -3.28** -3.62***     -3.28** -3.62*** 
  Futures: 1st nearby -2.41 -2.53 (2) -2.45  0.91     -2.88**  0.19 
  Futures: 2nd nearby -2.75* -3.10** (15) -3.02**  0.75     -3.05**  0.57 
  Futures: 3rd nearby -2.68* -2.63* (5) -2.72* -0.04     -2.81* -0.14 
  Futures: 4th nearby -2.54 -2.54 (2) -2.54 -0.28     -2.49 -0.12 
  Futures: 5th nearby -2.26 -2.26 (7) -2.28 -0.38     -2.31 -0.10 
  Diff: Cash – Futures 2nd n. -13.36*** -7.35*** (15) -13.79***      -11.65***  
  Diff: Cash – Futures 5nd n. -4.29*** -3.70*** (23) -4.54***      -4.67***  
Weekly        
  Cash – 40# Blocks  -3.69*** (1) -3.49*** -3.69***     -3.49*** -3.69*** 
  Cash - Barrels  -2.67* (10) -3.23** -2.67*     -3.23** -2.67* 
  Cash – 40# Blocks (B/O)  -3.69*** (1) -3.32** -3.69***     -3.32** -3.69*** 
  Cash – Barrels (B/O)  -3.49*** (4) -3.28** -3.49***     -3.28** -3.49*** 
  Futures: 1st nearby -2.31 -3.24** (4) -2.53 0.86     -2.93**  1.11 
  Futures: 2nd nearby -2.68* -2.95** (1) -2.83* 0.59     -3.02**  0.35 
  Futures: 3rd nearby -2.70* -2.58* (1) -2.66* 0.06     -2.73*  0.01 
  Futures: 4th nearby -2.60* -3.39** (8) -2.81* 0.13     -2.78* -0.20 
  Futures: 5th nearby -2.32 -3.24** (8) -2.64* -0.17     -2.38 -0.38 
  Diff: Cash – Futures 2nd n. -11.36*** -9.69*** (4) -11.53***      -11.39***  
  Diff: Cash – Futures 5nd n. -5.35*** -5.66*** (1) -5.54***      -5.37***  
  COT: Noncom. % OI long -3.91*** -3.15** (3) -3.69*** -3.15**     -3.69*** -3.69*** 
  COT: Noncom. % OI short -3.56*** -3.79*** (4) -3.63*** -3.79***     -3.63*** -3.63*** 
  COT: Noncom. % OI net l. -3.06** -3.05** (4) -3.02** -3.05**     -3.02** -3.02** 
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Table 2a. Simple error-correction model: Comparing results across data frequency and cash series type 

 Daily Sales-only Weekly 
 Trans. Bid/Offer Trans. Bid/Offer Trans. Bid/Offer 

Dep. Variable: tc        

  1tc    0.023  0.152*** -0.005  0.094*  0.054  0.095 
  2tc    0.108**  0.041  0.044  0.066*  0.09* -0.053 
  3tc    0.037**  0.046  0.034  0.011 -0.001 -0.066 
  4tc    0.056**  0.059**  0.057**  0.085** -0.016  0.031 
  1tf    0.202***  0.178***  0.334***  0.164***  0.223***  0.223*** 
  2tf    0.109***  0.120***  0.173***  0.089  0.054  0.176** 
  3tf    0.061*  0.032  0.092***  0.049 -0.066  0.048 
  4tf    0.022  0.031  0.035 -0.014 -0.028  0.044 
  2

1 1
nd

t tc f   -0.082*** -0.079*** -0.132*** -0.118*** -0.365*** -0.369*** 

Dep. Variable: tf        
  1tc    0.016  0.053  0.018  0.022 -0.013  0.080 
  2tc    0.016  0.035  0.035  0.059**  0.017 -0.044 
  3tc    0.028  0.013  0.018  0.025 -0.032 -0.009 

  4tc   -0.001  0.029  0.023  0.027 -0.046 -0.030 
  1tf    0.103***  0.077**  0.041  0.028  0.068 -0.003 
  2tf   -0.010 -0.036 -0.014 -0.046  0.117**  0.124* 
  3tf   -0.011 -0.029  0.029  0.015  0.045  0.050 
  4tf    0.029  0.004 -0.009 -0.021  0.018  0.014 
  2

1 1
nd

t tc f    0.002  0.025***  0.009  0.019  0.007  0.040 
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Table 2b. Simple error-correction model: Comparing results across data frequency and cash series type – 
log-prices 

 Daily Sales-only Weekly 
 Trans. Bid/Offer Trans. Bid/Offer Trans. Bid/Offer 

Dep. Variable: tc         
  1tc    0.036  0.160***  0.008  0.114***  0.036  0.098 
  2tc    0.086**  0.043  0.053**  0.080***  0.075* -0.039 
  3tc    0.035**  0.045  0.044  0.016  0.003 -0.045 
  4tc    0.058***  0.055**  0.044**  0.074** -0.011  0.025 
  1tf    0.206***  0.173***  0.309***  0.157***  0.259***  0.226*** 
  2tf    0.110***  0.119***  0.164***  0.068  0.084  0.164** 
  3tf    0.059**  0.038  0.086**  0.046 -0.059  0.029 
  4tf    0.053  0.043  0.045  0.000 -0.004  0.063 
  2

1 1
nd

t tc f   -0.081*** -0.075*** -0.129*** -0.111*** -0.351*** -0.360*** 

Dep. Variable: tf        
  1tc    0.013  0.054*  0.014  0.032  0.000  0.092* 
  2tc    0.021  0.024  0.051**  0.062***  0.008 -0.038 
  3tc    0.029*  0.015  0.021  0.027 -0.022 -0.003 

  4tc   -0.006  0.026  0.013  0.021 -0.039 -0.024 
  1tf    0.098***  0.070**  0.048  0.025  0.059 -0.017 
  2tf    0.000 -0.021 -0.024 -0.055  0.113**  0.108* 
  3tf   -0.019 -0.034  0.029  0.015  0.052  0.050 
  4tf    0.041*  0.017 -0.004 -0.014  0.033  0.029 
  2

1 1
nd

t tc f    0.004  0.025***  0.010  0.023*  0.014  0.050 
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Table 3. Volatility spillovers 

 Price levels 
 Weekly 
 Trans. Bid/Offer 
Mean Model   
  Dep. Variable: tc    
  2

1 1
nd

t tc f   -0.349*** -0.336*** 
  Dep. Variable: tf    
  2

1 1
nd

t tc f    0.049**  0.057** 
Variance Model:   
    ARCH   
      11   0.104* -0.202* 
      12  -0.464*** -0.495*** 
      21  -0.396***  0.142 
      22   0.572***  0.639*** 
    GARCH   
      11   0.977***  0.851*** 
      12   0.300*** -0.010 
      21  -0.059  0.182*** 
      22   0.640***  0.929*** 
Likelihood   
  Unrestricted 1877.1 1948.7 

   1

GRE

t tf c   1821.5*** 1907.1*** 

    1

GRE

t tc f   1849.5*** 1909.9*** 

Average volatility 
spillover (% of c. 
var.)   

 
 

1t tf c   -8.27% 15.72% 

1t tc f   27.07% 10.45% 
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Table 4. Evaluating adequacy of speculation in cheese futures market: Selected results from GARCH-MEX model 
 

 

    Model 1 Model 2  
Variations on 
Working’s T 

   Unrestricted corr. Restricted corr. Unrestricted corr. Restricted corr. LR test§ 
Avg. Min Max Log-like. Coef. Log-like. Coeff. Log-like. Coeff. Log-like. Coeff.  

Proportional 1.03 1.00 1.08 2293.0†  2309.6 -7.76*** 

(0.44) 
2306.0 -2.72***

(0.24) 
2302.2 0.26** 

(0.10) 
7.60*** 

Upper bound 1.16 1.06 1.29 2294.0†  2304.7 -2.33*** 

(0.12) 
2306.7 -0.61*** 

(0.20) 
2301.5 0.28** 

(0.13) 
10.40*** 

Lower bound 1.02 1.00 1.09 2295.0†  2306.5†  2302.5 -1.05***

(0.06) 
2301.6 0.30*** 

(0.11) 
1.80 

Industry 1.03 1.00 1.11 2294.0†  2306.5 -8.66*** 

(0.67) 
2308.9 -2.66*** 

(0.07) 
2297.0†   

Dynamic 1.10 1.00 1.26 2301.0†  2299.0 -3.16*** 

(1.06) 
2307.6 -1.04***

(0.18) 
2298.9†   

Proportional (S) 1.12 1.03 1.22 2295.2†  2295.5 -1.19*** 
(0.38) 

2314.6 -2.89***

(0.75) 
2305.7 0.24**

(0.10) 
17.80*** 

Dynamic (S) 1.21 1.03 1.41 2297.8†  2297.4 -1.48*** 

(0.63) 
2299.6†  2295.2†   

Upper bound (S) 1.28 1.12 1.45 2307.4† -1.13**

(0.56) 
2295.7 -1.01*** 

(0.19) 
2303.9 
 

-0.40***

(0.06) 
2298.7†   

Lower bound (S) 1.12 1.03 1.23 2296.8 -0.52 
(0.37) 

2303.2 -0.43 
(0.69) 

2313.9 -1.95*

(1.05) 
2305.6 0.28***

(0.05) 
16.60*** 

Percentage of OI             
Total  0.06 0.01 0.18 2306.0†  2298.5 -4.68* 

(2.75) 
2303.2 0.43 

(0.84) 
2300.54 1.72***

(0.56) 
5.32** 

Total (S) 0.21 0.09 0.32 2298.0†  2297.8 0.12 
(0.95) 

2314.0 -1.83 
(1.21) 

2298.6 0.67** 
(0.34) 

30.80*** 

Long 0.07 0.00 0.33 2300.7 -0.29 
(1.71) 

2296.5 2.94* 
(1.60) 

2308.3†  2302.9 1.39***

(0.41) 
 

Long (S) 0.20 0.07 0.46 2300.6†  2297.2 1.62* 
(0.93) 

2305.9 0.45* 
(0.27) 

2302.2 0.72**

(0.29) 
7.40*** 

Short 0.07 0.00 0.17 2297.0†  2299.2 -3.83*** 

(1.32) 
2304.6 -2.58***

(0.85) 
2298.9 -0.01 

(0.57) 
11.40*** 

Short (S) 0.20 0.05 0.38 2308.2†  2305.7 -0.35
(0.71) 

2305.5 -0.12 
(0.25) 

2299 -0.75*

(0.44) 
13.00*** 

Notes: † Model does not converge. § Likelihood ratio test of Model 2 uncrestricted vs. restricted correlation. Critical values of Chi-square 
distribution with 1 d.f. are 2.706 (10%, *), 3.841 (5%, **), and 6.635 (1%, ***).  


