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Causality in Futures Markets

L Introduction

It has been over seventy years since Keynes wrote his Treatise on Money, in which he
proposed his theory of “normal backwardation” — the idea that hedgers use futures markets to
transfer risk to speculators, causing futures prices to deviate from expected future cash prices so
that the speculators might be compensated. Despite decades of empirical investigation, no
consensus regarding the validity of Keynes’ conjecture has been reached. Two difficulties have
prevented the conclusive confirmation or rejection of the theory. First, the expected future cash
price is not observed, and therefore neither is any risk premium. Second, it is not feasible for
researchers to seek the answer to this question by experimentation. Systematic manipulation of
futures markets is not only impractical; in many cases it is illegal.

Indeed, researchers conducting empirical work in economics and finance generally must
work with observational rather than experimental data, and frequently are not able to observe all
relevant quantities. This makes the correct inference of causal relationships difficult at best and
impossible by some accounts - many assume that the use of controlled experiments is the only
means by which causal mechanisms can reliably be inferred. Careful empirical researchers in
these fields have thus resigned themselves to being able to draw only rather weak conclusions. It
is said that evidence consistent with a theory is found, rather than that a theory has been proven.
The less cautious investigator, upon finding that two observed quantities A and B covary, might
imprudently conclude that A4 causes B, or vice versa. Consequently, empirical studies in
economics and finance rarely unanimously support or reject available theoretical explanations.

Such is certainly the case with research into futures markets, the subject of this paper.



This situation is not unique to economics and finance - researchers in numerous fields
find themselves operating under such difficult circumstances. This situation has inspired a recent
multidisciplinary effort to develop a body of theory concerning the inference of causal
relationships using observational data. A subset of this literature further concerns itself with
conducting this inference when the observational data are incomplete. Treatments of this subject
can be found in Pearl (2000) and Spirtes, Glymour and Scheines (2000). This study uses these
causality methods to investigate Keynes’s theory, and other unresolved questions of more recent
vintage regarding futures markets: we investigate the causes of the well-documented positive
correlation between volume and volatility in futures markets, and assess the evidence regarding
theories that predict that the activities of certain types of traders affect levels of price volatility.
A correct understanding of the causal mechanisms that drive futures markets is obviously
important for a variety of parties — hedgers, speculators, exchange officials, and regulators.

The following section extends this introduction by discussing in detail the issues that we
investigate and the importance of each. We then describe the specific causal inference procedure
that we employ and the data that we use. Finally, we present the analysis and offer some

concluding remarks.

1. Issues Investigated

The first issue that we investigate is the Keynes’s (1930) theory of normal
backwardation, and its extensions. Keynes argues that hedgers enter the futures markets
primarily to reduce the risk associated with cash market positions. He further argues that
hedgers are generally commodity producers, and are therefore long in the cash market and short

in the futures market. This necessarily means that speculators must be long in the futures



market, and he postulates that the current futures price must be below the expected future cash
price in order to induce speculators to bear the risk associated with those long positions. A
consequence of the theory as stated by Keynes, and supported in Hicks (1939), is that a futures
contract’s prices are expected to display an upward trend on average. Telser (1958) searches for
such trends in the cotton and wheat markets, and reports finding no evidence. Cootner (1960)
extends the theory by pointing out that hedgers are not necessarily commodity producers, but
may be commodity consumers as well. Thus the net position of hedgers as a whole might be
either long or short. As such, he suggests that the current futures price might be either above or
below the expected future cash price. The modified theory is sometimes referred to as “net
hedging” or ‘“hedging pressure.” Cootner reports finding evidence consistent with this
hypothesis, namely that speculators appear to be earning profits over his sample period. Cootner
thus shifts the empirical focus from searching for trends in futures prices to searching for
speculative profits and/or hedging losses in futures markets.

Houthakker (1957) and Rockwell (1967) note however that speculative profits may be
due to superior forecasting ability, rather than the collection of a risk premium. Rockwell thus
recasts normal backwardation as “the return earned by a hypothetical speculator who follows a
naive strategy of being constantly long when hedgers are net short and constantly short when
hedgers are net long.” This then implies that speculative profits / hedging losses are a necessary,
but not sufficient condition for the net hedging theory to hold. The analysis then must focus on
decomposing speculative profits into forecasting ability and naive components. Both Rockwell
and Chang (1985) conduct such analyses, and each finds evidence of speculative profits.
Rockwell reports that speculative profits are due to forecasting ability, however Chang reports

evidence of naive profits as well. This approach suffers from the inherent difficulty of dividing



speculators into able and naive groups, when forecasting ability is unobserved. The reliability
with which this task can be performed using aggregate data on trader positions is highly
questionable. Further complicating matters, the available data regarding market commitments
contain a proportion of traders whose status (either speculator or hedger) is unknown. In contrast
to Rockwell and Chang, Hartzmark (1987) uses a very unique, highly disaggregated data set to
find evidence that hedgers earn significant positive profits on average, precluding Rockwell’s
naive speculator from profiting. Certainly, the evidence from these related empirical approaches
to the question is mixed.

Meanwhile, another thread of the literature has developed a somewhat different
perspective on the question. The theory of normal backwardation is presented in the context of a
single asset, and the hypothesized risk premium should therefore due to the expected futures
return and variability of that return. Dusak (1973) and Black (1976) argue that the question
should be considered in a portfolio context. The capital asset pricing model (CAPM) states that
any risk premium should be due to the relationship between an asset’s returns and returns on
total wealth. If a futures contract’s price changes are correlated with returns on total wealth, then
some portion of the risk of holding a futures contract is undiversifiable (a non-zero “beta” in
CAPM nparlance), and a risk premium should therefore be present (because there is a
“systematic” risk). If, on the other hand, futures price changes are independent of returns on
total wealth, then the risk of holding a futures contract should be fully diversifiable, and no risk
premium should be present. Dusak finds that for the markets that she considers, futures price
changes are independent of returns on a proxy for total wealth (the S&P 500 index), and
concludes that no risk premiums are present. Carter, Rausser & Schmitz (1983) argue that

Dusak’s proxy for total wealth is inadequate, and that it should include commodity prices.



Hirschleifer (1988) and Hirschleifer (1990) argue that the assumptions built into the standard
CAPM might be inappropriate, however. He argues that there may be a costs associated with
futures market participation (perhaps in the form of learning the mechanics of futures market
operation), which limit the participation of some types of investors. If this is the case, his
theoretical models show that even in the presence of a zero beta, not all risk can be diversified
away. He therefore argues that risk premiums in futures markets could be composed of two
components — the standard systematic component, and a “residual” component that is a function
of hedging pressure. Bessimbinder (1992) finds that futures returns covary with hedger’s net
positions, and concludes that this result supports hedging pressure as a determinant of risk
premiums in futures markets, consistent with Hirschleifer’s model, and with the generalized
concept of normal backwardation.

We now summarize the above discussion regarding existing empirical research on normal
backwardation. Risk premiums that may exist in futures markets cannot be observed, because
the expected future cash price cannot be observed. The standard empirical practice then is to
check for speculative profits, which would be consistent with the existence of risk premiums. If
speculative profits exist (the evidence on this is mixed), they must be decomposed into profits
due to forecasting ability, which is unobserved, and any residual profits (a dubious proposition).
If there are profits that are not due to forecasting ability, it is inferred that risk premiums are
present. These premiums may be due to systematic risk if futures price changes are correlated
with returns to total wealth (a nebulous concept). After adjusting “observed” risk premiums for
systematic risk, it is then inferred that any residual risk premium that is not due to systematic risk
may be due to hedging pressure, if measures of these two phenomena are correlated. This path

by which a researcher might find evidence consistent with the generalized theory of normal



backwardation is so convoluted, it is little wonder that no consensus has been reached. If such
evidence is found and can be believed, it is still only consistent with the theory, the real burning
issue of causality is never addressed. Does the net position of hedgers cause futures price
changes?

We believe that the successful evaluation of this question requires that it be reconsidered
from scratch, in a framework that explicitly addresses the issue of causality, and simultaneously
accounts for the existence of relevant, but unobserved quantities. We provide such an
investigation here. Clearly, the correct answer to Keynes’ theory is important for market
participants. Should a hedger anticipate loosing money on average in exchange for enjoying
reduced risk? Can speculators expect to be profitable on average by merely taking a position
opposite that of hedgers’ net position, regardless of the depth of their knowledge of a market and
their forecasting ability?

The second issue that we investigate is the cause(s) of positive correlation between the
volume of trade and degree of price variability in futures markets. This relationship is well
documented; Karpoff (1987) provides a survey of the evidence. There are two theoretical
explanations for this phenomenon. First, there is the Mixture of Distributions Hypothesis
(MDH), due originally to Clark (1973). He proposes a model in which there is a stochastic
number of independent price changes over any time period, due to a non-constant rate of
information arrival. This results in the variance of the overall price change for a given period
being an increasing function of number of within-period price changes. Volume of trade is also
specified as an increasing function of the number of within-period price changes. Thus, in this
theory the (unobserved) rate of information arrival is a common cause of trading volume and

price change volatility. Epps and Epps (1976) present an alternative formulation of the MDH.



They specify an equilibrium model of intraday price determination in which the level of
disagreement among traders causes the magnitude of a day’s overall price change. Here volume
is also an increasing function of disagreement, and the Epps & Epps model therefore also implies
that volume and volatility are both effects of a latent common cause. Tauchen and Pitts (1983)
offer a MDH model that incorporates elements of both the Clark and Epps and Epps models. On
a related issue, the MDH models also result in a leptokurtotic distribution for observed price
changes, which is consistent with empirical evidence. A competing explanation for this
phenomenon due to Mandelbrot (1963) is that price changes are drawn from a distribution with
infinite variance from the stable Paretian family. Finding evidence supporting the MDH
explanation for positive volume and volatility correlation would thus also support one theory of
the cause of excess kurtosis in the futures price change distribution.

A competing explanation for the positive correlation between trading volume and price
volatility in futures markets is that of noisy rational expectations (NRE). In the NRE model of
Shalen (1993), there are two types of traders. Informed traders have private information
regarding market values. Uniformed speculators, on the other hand have no private information,
and attempt to extract price signals from observed futures price changes. The series of these
price changes is noisy, however, due to a random liquidity demand from hedgers (buying or
selling due to their activity in the underlying market, not due to information arrival). The
uninformed speculators can then misinterpret this liquidity trading as being due to information
arrival, causing them to adjust their positions, resulting in increases in volume and volatility.
The level of activity of uniformed speculators then is a common cause of volume and volatility.

We investigate the causal mechanisms driving the volume and volatility relationship. In

addition to potentially vindicated one of the theoretical explanations given above, understanding



these mechanisms is important for market participants, researchers, and regulators. All market
participants are obviously impacted by price volatility and market depth, and clearly should be
interested in the underlying causes. Researchers will be interested in the correct specification of
empirical models, and results inconsistent with existing theories might inspire new ones.
Regulators have displayed an interest in curbing excessive levels of price volatility, and the
success of such an endeavor would be greatly aided by a deep understanding of its causes.

The third issue that we investigate is allegations that the activities of specific types of
traders are causes for the level of price volatility. This is closely related to the volume -
volatility issue; as explained above, the NRE expectation model of Shalen predicts that volatility
is an increasing function of the number of uninformed speculators. Similarly, in the model of
Stein (1987), rational, but imperfectly informed futures speculators can (but do not necessarily)
destabilize prices. These models contrast with the rational expectations model of Danthine
(1978), in which imperfectly informed speculators stabilize prices. More recently, the finance
literature has become interested in irrational behavior. An example of this is the model of
DeLong, et al. (1990). In their model, irrational traders drive an asset’s price away from the
fundamental value, rational arbitrageurs’ fear that the return to fundamental value may be slow
coming, and so limit their activity, resulting in increased price volatility. This model is not
concerned with futures markets as such, but the underlying principals might still apply.

Empirical evidence compiled regarding this question thus far is limited. Daigler and
Wiley (1999) examine various financial futures markets, and report that the activity of futures
traders who are on the trading floor is associated with decreased price volatility, while the
activity of the “general public” is associated with increased volatility. The on-floor traders can

observe the identities of those making large trades, and are therefore in a position to infer the



informational content of those trades. They can therefore be thought of as informed, and the
results are thus consistent with the models of Shalen and Stein. Chang, Chou, and Nelling
(2000) find that in the S&P 500 futures market, large hedging activity is positively correlated
with volatility, and concludes that increased volatility likely results in increased hedging
demand. Wang (2002) finds that in exchange rate futures markets measures of speculative
activity and volatility are positively related. He suggests then that speculators destabilize
markets. Note that these last two studies find very similar empirical evidence, but reach opposite
conclusions regarding the likely direction of causality. Neither seems to consider the possibility
that the observed relationship might be due to a common cause. This question is important for

reasons similar to those given above for our second line of inquiry.

111. Inferring Causal Relationships From Incomplete, Observational Data

As mentioned in the introduction, treatments of the theory of causal inference using
observational data can be found in Pearl (2000) and Spirtes, Glymour and Scheines (2000).
These methods are just beginning to be adopted in applied economic research, although these
efforts to date have largely worked under an assumption of causal sufficiency (i.e. that the
researcher has collected observations for all variables present in the unknown causal structure).
Swanson and Granger (1997) search for causal relationships among the variables in a vector
autoregression to guide an appropriate Bernanke decomposition of the innovation covariance
matrix and Demiralp and Hoover (2003) investigate the reliability of such a procedure. Haigh
and Bessler (2003) investigate price discovery in cash grain markets and a related transportation
market. Akleman, et al (1999) investigate causal relationships among corn exports and exchange

rates using causal methods, both with and without the assumption of causal sufficiency.
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We now provide a description of the algorithm that we employ to inferring causal
relationships, the Fast Causal Inference (FCI) algorithm. The FCI was developed to be
appropriate for inferring causal relationships from observational data (to the extent possible),
even in the presence of latent variables. This section is adapted from Chapter 6 of Spirtes,
Glymour and Scheines (2000); see that work for a more thorough description. The causal
literature has developed the directed graph as a tool for visually representing a group of related
causal relationships. A graph is a set of variables (V1,Va,...,V,) that are connected by lines
called edges, which may represent causal flows. If two variables are connected by an edge, they
are said to be adjacent. Directed edged have arrowheads on the ends indicating the direction of
causal flow between two adjacent variables. For example, V;—V, indicates that V; is a cause of
V,. V) is a parent of V; if there is a directed edge from V; to V,. A path is a sequence of
variables such that each pair of variables that are adjacent in the sequence are also adjacent in the
graph. A directed path is a path containing only directed edges in which causal flow runs from
the first endpoint on the path to the last. An undirected path is a path in which causal flow is not
required to run from the first endpoint on the path to the last. If there is a directed path from V;
to V,, we say that V; is an ancestor of V; (e.g. as is the case in the graph V;—V3;—V,) and that
V, is a descendant of V. Note that parents are always ancestors, but the reverse is not true. A
cyclic path is one in which causal flow begins at a variable and eventually returns to that variable
(e.g. Vi—V,—V;3—-V)). If a variable is caused by two other variables on a path, it is said to be a
collider. For example, in the graph V,—V,«V3, V, is a collider on the paths <V,V,,V3> and
<V3,V,,Vi>. A graph that contains directed edges, and no cyclic paths is a directed acyclic
graph (DAG). The set of variables in a DAG is assumed to be causally sufficient — there are no

latent common causes for any pair of variables in V.
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Nature may choose to hide some variables, however. Suppose there is a DAG G over a
set of variables V, and that O is a subset of the variables in V that are observed. An path U is a
an inducing path relative to O if and only if a) every member of O on U, except for the
endpoints, is a collider on U, and b) every collider on U is an ancestor of either one of the
endpoints. For example, in the graph G (see figure 1), the path U = <V,V,,V3,V4, V5, Vs> is an
inducing path from V; to Vgover O = {V,V,,V4,Vs}. As required, each of the colliders on U,
V; and V4, is an ancestor one of the endpoints, V| and Vg, and the variables on U that are in O
(other than the endpoints) are each colliders on U. Inducing paths provide the critical connection
between statistical independence relations and causal mechanisms represented in graphs over
observable variables. The existence of an inducing path between V; and V is implied if V; and
V, are statistically dependent conditional on every subset of O\{V,V,} (although this fact alone
does not imply the direction of causal flow). This implies that for our example, we would be
able to find no subset of {V,,V4} (including the empty set) that could be conditioned on to render
V, and Vg independent.

A graph is an inducing path graph (IPG) over O if there is an edge between two variables
V, and V; with an arrowhead at V; if and only if there is an inducing path in G from V; to V;
relative to O. To continue the example from the above paragraph, suppose we observe only the
variables in O = {V,V,,V4,V¢}. As previously established, there is an inducing path running
from V; to Vs over O. The inducing path graph G’ over O (shown in figure 2) thus features a
directed edge running from V; and V. Note, however, that in G there was no edge running from
Vi to V. This illustrates an important point — the existence of a directed edge between two
variables in an IPG implies that one variable is an ancestor of the other in the underlying DAG,

but not necessarily a parent. Note also that some edges in G” have arrowheads on both ends.
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These result from the existence of inducing paths running from each variable to the other. For
example, <V,,V3,V4> is an inducing path over O, as is <V4,V3,V,>. Hence the definition of IPG
above requires arrowheads at both ends of the edge between V, and V4 in G’. Such edges are
referred to as bidirected edges, and they imply that the two adjacent variables have a latent
common cause (in this case V3).

Unfortunately, the statistical conditional independence relations over a set of observed
variables will not necessarily identify a unique IPG. For an IPG G’, the set of all IPGs that entail
equivalent sets of statistical independence relations over a given set of observed variables O is
denoted Equiv(G’). A partially-oriented inducing path graph (POIPG) is a pattern that represents
set of IPGs in Equiv(G’), where G’ is the true IPG over O for the DAG G. The ends of the edges
in a POIPG can have any one of three types of marks: no mark, and arrowhead, or an “0”. We
use the symbol “*” to denote any one of these three types of end marks. We say that 7 is a
POIPG of DAG G with IPG G’ over O if and only if: a) 7 and G’ have the same variables and
adjacencies; b) if V,0—V; is in 7, then either V,—V, or Vi<V, is in every IPG in Equiv(G’);
c) if Vi=V,yis in x, then Vi—V; is in every IPG in Equiv(G’); d) if V{*—*V,*—*V3isin x,
then V; is a non-collider in every IPG in Equiv(G’); e) if V<>V, is in 7, then V<V, is in
every IPG in Equiv(G’); and f) if Vi0—0oV; is in 7, then either Vi—V,, Vi<V, or ViV, isin
every IPG in Equiv(G’). The adjacencies that exist in a POIPG then convey information about
the conditional independence relations among the observed variables, and end marks on the
edges other than “0” convey information about the direction of causal flow in the underlying
DAG. The output of the FCI algorithm that we describe below is a POIPG.

One special type of path that may be found in a POIPG is a definite discriminating path,

the existence of which may be used when orienting the edges in the FCI algorithm. A path U is a
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definite discriminating path for V; if and only if U is an undirected path between V, and V3
containing V, every variable on U, except the endpoints, is either a collider or definite non-
collider on U and the following conditions also hold:

A) If V4 and V5 are adjacent on U and Vs is between V4 and V; on U, then V4*—V;s

B) If V4 is between V3 and V; on U and V4 is a collider on U then either V4*—V3 or

V4—Vs.
C) If V4 is between V, and V; on U and V4 is a collider on U then either V4*—V,; or
V4—V,.

D) V; and V; are not adjacent.

Some conditions regarding the underlying DAG G are necessary for inferring the set of
IPGs over O that are in Equiv(G’) using a set of conditional independence relationships. First,
the Markov condition assumes that in the probability distribution over the variables V in the
underlying DAG G, a variable V; is independent of every set of variables that does not contain
V, or its decedents, conditional on V,’s parents. This essentially states that it is possible to
represent a set of conditional independence relations graphically, using the definitions of a DAG
and the related terminology that we laid out in the first paragraph of this section. Second, the
faithfulness or stability condition requires that the conditional independence relations among the
variables V in the underlying DAG G are due to the topology of G, rather than peculiar,
offsetting parameter values in the causal relationships. Pearl (2000) gives the following
example. Suppose we have DAG H (see figure 3), and that the causal relationships are
represented by the structural equations

Vo=cVi+u,

and
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Vi=aV;+bV,+u;
where u, and u; are independent stochastic errors. Note that generally we would expect V, and
V3 to be dependent, but if the parameter a just happened to take the value —bc, then V, and V;
would be independent. The faithfulness or stability condition states that one is unlikely to
encounter this type of independence relation in practice. If, in examining a hypothetical data set
associated with figure 3, the only conditional independency we find is that V, and V3 are
independent conditioned on the null set, the faithfulness condition allows us to infer that V, and
V3 should not be adjacent, and that neither V, nor V3 is caused by V.

We now describe the Causal Inference (CI) algorithm, the basic functioning of which
underlies the FCI algorithm that we use, and then describe how the two algorithms differ. The
input of either algorithm is observations over a set of possibly causally insufficient variables, and
the output of either algorithm is a POIPG. Both algorithms consist of two phases, determining
the adjacencies in the POIPG using a statistical test of conditional independence relationships
(Fisher’s z test), and then deducing the maximally informative orientation of the resulting edges
that is consistent with the faithfulness condition and the assumption that the underlying graph is
a DAG (i.e. there are no cycles). The CI algorithm involves the following steps:

A) Form a complete undirected graph on the set of variables O, in which every variable

is connected to every other variable by an undirected edge.

B) If two variables V; and V; are independent conditional on any subset S of O\{V,V,},
remove the edge between V; and V,, and record S in the separating set for V| and V,,
denoted Sepset(V1,V>).

C) Let F be the graph that results from step B). Orient each edge as o—o. For each triple

of variables (V1,V2,V3) such that the pairs (V1,V;) and (V2,,V3) are adjacent in F but
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the pair (V1,V3) is not, orient V{*—*V,*—*V3 as V*—V,«*V; if and only if V; is
not in Sepset(V,V3) and arrange V *—*V,*—*V; as V| *—*V,*—*V; if and only if V,
is in Sepset(V1,V3).
D) Repeat the following sequence of instructions until no more edges can be oriented:
1) If there is a directed path from V; to V,, and there is an edge V;*—*V,, orient
V*=*V, as V*=V,.
i1) Else, if V,V,, V3 is a collider along <V,V,, Vs> V,V,,V; is adjacent to
V1,V,, V3, and V1,V,, V3 is not in Sepset(V1,V3), then orient V*—*V; as V«—*V,.
ii1) Else, if U is a definite discriminating path between V,; and V; for V3, and V4 and
Vs are adjacent to V3 on U, and V3, V4, and Vs form a triangle, then
a) If Vyisin Sepset(V1,V2), then mark V3*—*V,*—*Vs as V3*—*V,*—*V;
b) Else, V3*—*V,*—*Vsas V3*—>V,«—*V;
iv) Else, if V;*—>V,*—*V; then orient as V| *—V,—Vj.
Step B above is computationally infeasible, as the number of possible subsets of O grows very
rapidly with the cardinality of O. Checking for conditional dependence of two variables V; and
V, over all possible subsets of O\{V,V,} then becomes very difficult. The FCI and CI
algorithms differ in the way that step B is performed. The FCI uses an intermediate step to infer
that some variables cannot be in Sepset(V;,V,), thereby reducing the number of conditional
independence tests that must be performed. This procedure is relatively complicated, and does
not offer any additional understanding of the means by which the causal structure is inferred, and
we therefore do not describe it. The important fact is that the FCI algorithm is essentially a
computationally feasible version of the CI algorithm. The FCI algorithm is implemented in the

Tetrad 3 computer program, which we use in our analysis.
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1V. Data

We analyze eight futures markets: Chicago Board of Trade (CBOT) corn, New York
Mercantile Exchange (NYMEX) crude oil, Chicago Mercantile Exchange (CME) Eurodollar
deposits, New York Commodity Exchange (COMEX) gold, CME Japanese Yen, New York
Board of Trade (NYBOT) coffee, CME live cattle, and the CME S&P 500. Observations for all
data over the interval March 21, 1995, through January 8, 2003, are used. We construct three
types of data series for use in the analysis: 1) those related to trader activity and positions, ii)
those related to futures prices and trading volume, and iii) trend and seasonal series. We now
discuss each category of data in turn.

The Commodity Futures Trading Commission (CFTC) requires certain exchange
members and futures commission merchants (i.e. brokers) to file daily reports with the
Commission. Those reports show the futures positions of traders that hold positions above
specific reporting levels set by CFTC regulations (these are referred to as “reportable positions™).
Each trader is classified as being either commercial or non-commercial, with commercial traders
being those engaged in hedging activity. Ederington and Lee (2002) caution that this distinction
is not always entirely accurate, and our data regarding trader type are thus noisy. Henceforth we
refer to reportable commercial positions as being those of “large hedgers”, to reportable non-
commercial positions as being those of “large speculators”, and to non-reportable positions as
being those of “small traders”. The data collected as of a markets close on each Tuesday are
released to the public in the CFTC’s Commitments of Traders (COT) report, generally on the
following Friday. We use this data in two ways. First, we calculate the net position of large
hedgers (LH Net Position) as the number of open long futures positions minus the number of

open short futures positions held by large hedgers. Second, we calculate the aggregate level of

17



activity of each trader type (LH Activity, LS Activity, and ST Activity for large hedgers, large
speculators and small traders, respectively) as the sum of their open long and short futures
positions. These three variables, at any point in time, sum to twice the level open interest in the
market. Some adjustments to the COT data are necessary. Before 1998, corn futures positions
are measured in numbers of 1,000 bushels, rather than number of contracts (each calling for
delivery of 5,000 bushels). We therefore divide all corn COT data prior to 1998 by five so that
the related data series we use are measured in consistent units over the sample period. The size
of the cash settlement called for by the S&P 500 futures contract was halved in late 1997, and we
therefore multiply all S&P 500 COT data prior to the change by two, to make our measures of
trader positions consistent with the current contract specification. In the crude oil and coffee
markets, observations for the COT series are missing for September 11, 2001, and are linearly
interpolated.

Daily price data for individual deliveries for each market are provided by Commodity
Research Bureau, and the corresponding volume data are provided by Primark Datastream. We
construct a continuous futures price level series (Nearby) for each market using week-ending
observations of the futures contract nearest to expiration. We use weeks that run Wednesday
through Tuesday in constructing all price, volume, and volatility series, so as to correspond with
the COT data. We also construct a nearby weekly returns series (Refurn) using weekly returns
series for each individual delivery. Thus no observations in our Return series are constructed
using price level observations from two different deliveries (as would be the case if one simply
constructed a return series using a previously constructed nearby levels series). A weekly total
volume series (Volume) was constructed for each market by summing the total trading volume

for all deliveries for each day. A measure of futures price volatility (Volatility) was constructed
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by taking the log difference between the high and low prices for each week for the nearby
contract.

A linear time trend series (7ime) is used in the analysis, as are weekly observations of
two annual seasonal harmonic variables. These are defined as

Annual Sin = sin(M]

52

and
Annual Cos = COS(%)

These harmonic series account for the possibility of seasonal influences on the volume,

volatility, and activity variables which we expect in the agricultural commodity futures markets.

V. Analysis

We begin by investigating the possibility of non-stationary behavior in the series. A4
priori, the Efficient Market Hypothesis gives us strong reason to suspect that the Nearby series
may contain a unit root, however, we have no such grounds for suspicion with respect to the
remaining series. Indeed, it would seem rather implausible to believe that LH Net Position, for
example, might drift off toward infinity. All data series save the trend and seasonal harmonic
series are subjected to Augmented Dickey-Fuller (ADF) tests for non-stationary, with the results
given in table 1. We find that for seven of the eight Nearby series we cannot reject the null
hypothesis of no unit-root, confirming out initial suspicion. We therefore use the Return series
for all markets in the causal analysis that follows (we use the Return series even the live cattle
market, as we wish to keep the interpretation of the results consistent across markets). For the

remaining series (Volatility, Volume, LH Activity, LS Activity, ST Activity, and LH Net Position),
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we generally reject the null hypothesis that each series contains a unit root. Given that a) the
burden of proof was on proving that there is no unit-root, b) our prior expectations, ¢) it is a well-
established fact that ADF tests have low power against plausible alternatives (see, for example,
DelJong, et al, 1992), and d) our desire to use consistent types of series (i.e. levels or differences)
across markets, we proceed to use the levels series for all variables other than Return.

We apply the FCI algorithm to the 10 data series for each market. In all cases, the
algorithm is restricted from allowing inducing paths running from any variable to 7ime, and from
allowing a latent common cause for any variable and 7ime. Similar restrictions are placed on the
allowed orientations of edges attached to the seasonal harmonic series, although the possibility of
inducing paths running from 7ime to either of the seasonal harmonic series is not prohibited.
The resulting POIPGs are presented in figures 4 through 11.

We first consider the evidence with regard to the generalized theory of normal
backwardation. Our analysis considers the relationhip between week-ending level of LH Net
Position and the Return that was realized over those weeks. We interpret this as follows.
Suppose the futures price begins at exactly the unobserved spot price that is expected to prevail
at the time of expiration. A move by LH Net Position to a higher level should, if normal
backwardation holds, then cause the futures price to move higher, to some price above the
expected future spot price so that speculators who are now more short can be compensated. We
then expect a positive relationship between the week-ending level of LH Net Position and
Return." The prima facia evidence in this regard is not generally supportive of the hypothesis

that hedging pressure causes risk premiums, as we find a negative correlation between these two

" The LH Net Position variable is constructed using open interest data that are pooled across contract maturities,
while the Return series is constructed from price data for the nearby contract. While not ideal, we are confident in
this approach, as open interest tends to be heavily concentrated in the nearby contract. The LH Net Position
variables should thus provide a reasonable approximation to the net position of large hedgers in the nearby contract,
slightly scaled upward.
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variables in all markets except the S&P 500. Examining the POIPGs for the eight markets, we
find that LH Net Position and Return have a latent common cause in three markets (gold,
japanese yen, and coffee), no causal connection in three markets (Eurodollar deposits, live cattle,
and the S&P 500), and that in the remaing two markets (corn and crude oil) either there is a
latent common cause or there is an inducing path from running Return to LH Net Position in all
IPGs consistent with the observed set of conditional independencies. In no case do we find the
possibility that causal flow night run from LH Net Position to Return, and we firmly conclude
that hedging pressure does not cause returns, and we thus find no support for the generalized
theory of normal backwardation. We can conclude, then, that it does not appear that hedgers
need not expect to automatically pay a risk risk premium to speculators. Note, however, that this
is not the same as concluding that risk premiums do not exist in these markets, only that there are
not risk premiums caused by hedging pressure. The speculative profits sometimes found in other
research could then be due to speculators collecting risk premiums that are due to other causes,
or due to superior forecasting ability.

We now describe how the algorithm arrived at this conclusion. In the cases where the
two variables are adjacent in the POIPG, a sufficient condition to conclude that causal flow does
not run from LH Net Position to Return is the existence of an arrowhead on the LH Net Position
end of the edge. We explain the existence of such an arrowhead using the corn market as an
example. After the adjacencies are determined for the corn market POIPG (step B in the FCI
algorithm), the following sub-graph is present: Volumeo—oLH Net Positiono—oReturn. The
adjacency between Volume and Return is removed because the unconditional correlation
between the two is not significantly different from zero. Finding that Volume and Return are

unconditionally uncorrelated prevents us from beleiving that we could have either Volumeo—LH
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Net Position—Return or Volume<—LH Net Position<—oReturn. Furthermore, the faithfullness
condition prevents us from beleiving that Volume<LH Net Position— Return (if this were the
case, it would be very unusual to find that Volume and Return were unconditionally
uncorrelated). We therefore must accept the only remaining possibility, that Volumeo—LH Net
Position<—oReturn is the appropriate orientation (LH Net Position is a collider). We thus have
an arrowhead at the LH Net Position end of the edge between it and Return. This type of edge
orientation is due to step C of the FCI algorithm, and this rule can be used to oreint all of the
edge end marks that are critical to our analysis in this paper.

We next discuss the evidence regarding relationships between trader type and volatility
levels, and afterwards discuss the related issue of the Volume and Volatility relationship. The
theories discussed earlier in the paper make predictions regarding causal relationships between
speculators and/or uninformed traders. LS Activity obviously represents speculative activity, and
some would argue that this category represents uniformed traders to some extent as well. It does
not seem unreasonable to interpret ST Activity as representing uniformed traders. Such
distinctions turn out not to be necessary, however. We find no evidence of causal flow running
from either LS Activity or ST Activty to Volatility in any of the eight markets. The edges directly
connecting ST Activity and Volatility are removed by conditioning on the empty set in five
markets, by conditioning on Volume in crude oil and eurodollars, and by conditioning on the
Time trend for the S&P 500 market. The edge between LS Activity and Volatility is removed in
the following markets by conditioning on the variables given in parentheses: corn (4nnual Sin),
crude oil (LH Activity), Eurodollars (Return), gold (Volume and Time), japanese yen and coffee
(the empty set), live cattle (LH Net Position), and S&P 500 (7ime). This information is

summarized in table 2. Two variables need not be connected directly by an inducing path in the
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POIPG for causal flow to run between them — we may find a roundabout directed path from one
variable to the other. We find no evidence of such inderect causal flow in this case however.
We thus find no evidence supporting theories that predict that the activity levels of speculators
and/or uninformed traders affects volatility (either positively or negatively).

With regared to the Volume and Volatility relation, we find that in six of the eight markets
there is a latent common cause for the two variables. In the coffee market, there is either a latent
common cause, or that there is an inducing path from Volatility to Volume in all observationally
equivellent IPGs. The evidence from these markets is then consistent with the MDH, which
predicts that either the rate of information arrival (the Clark version) or the level of disagreement
among traders (the Epps and Epps version) or some combination of these causes the postive
correlation. In the crude oil market, we find an inducing path running from Volume to Volatility,
which is cosistent with neither the MDH nor Shalen’s prediction that the level of activity of
uniformed speculators causes the positive correlation between Volume and Volatility. 1f Shalen’s
theory is true, we expect to find causal flow running from either LS Activity or ST Activty to both
Volume and Volatility. We find no such evidence in any of the markets that we analyze. The
edges between the activity levels and Volatility were removed for the reasons discussed
previously. The edges between Volume and ST Activity generally are not removed (crude oil and
Eurodollars being the exceptions), but are biderected, implying a latent common cause. Edges
between LS Activity and Volume are removed in all markets save one (live cattle). This was
accomplished by conditioning on LH Activity (Eurodollars, Japanese yen, and coffee), Volatility
(gold and S&P 500), and the empty set (corn). Thus most of the neccesary edges to support
Shalen’s theory are removed, and even though edges connecting ST Activity and Volume are

generally not removed, they are biderected implying a latent common cause. We also again find
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no evidence of indirect causal paths that would support Shalen’s theory. The practical
implication of our findings is that those attempting to model time-varying volatility may indeed
find volume to be a usefull proxy for some unobserved cause or causes of volatility. It is not
neccesarily prudent, however, to assume that any event that will affect an increase in volume will
also result in an increase in volatility. Contract expiration, for example, generally results in
increased volume as traders roll positions out of the expiring contract. This event has nothing to
do with either of the unobservable common causes of volume and volatility that have been
suggested in the theoretical literature, and should not therefore be expected to cause an increase

in volatility.

V1. Conclusions

In this article, we examine various unresolved issues regarding causal relationships in
futures markets. To this end, we apply the Fast Causal Inference (FCI) algorithm, which has
been developed in the formal causality literature as an appropriate tool for inferring causal
relationships using observational data, even in the presence of relevant unobserved quantities.
Such an approach is highly attractive, considering that most research in empirical economics and
finance is conducted in such an environment. We find no support for the generalized theory of
normal backwardation, and thus no reason to believe that hedgers will generally transfer a risk
premium to speculators in exchange for risk-bearing services. We find no support for theories
predicting that particular types of traders affect the level of price volatility, either positively or
negatively, in futures markets. We find evidence that supports the mixture of distributions
hypotheses (MDH), which posit the existence of one or more unobservable common causes of

trading volume and price volatility. This suggest that models of time-varying volatility can
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benefit from the information about the latent variable(s) contained in volume, but caution in the
interpretation of such a model is necessary as volume does not actually cause volatility.

There are abundant opportunities for the further application of causal inference methods
to empirical research into derivatives markets. Other open questions need to be addressed, some
of which are: is the level of futures trading activity a cause of price volatility in the underlying
cash market? What are the causes and/or effects of changes in the shape of the forward curve?
What are the causes of basis movements? Does the size of the margin deposit required to trade
futures impact any of the quantities that we have considered? What are the causal relationships
that exist across related markets (e.g. the soy complex or the crude oil complex)? These issues

offer a fertile ground for future research.
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Table 1 Results of Augmented Dickey-Fuller Tests”

LH LS ST LH Net
Commodity Nearby Return Volatility Volume Activity Activity Activity Position
Corn -2.73(1) -19.59 (0) -6.53 (2) -11.49 (0) -3.70 (1) -4.10 (0) -3.42(1) -3.94(1)
Crude Oil -2.03(1) -21.66 (0) -15.53 (0) -6.65(3) -2.30(13) -3.54(0) -1.76 (9) -4.78 (1)
Eurodollars -0.24(0) -19.07 (0) -6.67 (2) -5.44(3) -2.60 (13) -2.81(16) -3.79(1) -4.01 (0)
Gold 0.02 (0) -19.20 (0) -14.17 (0) -12.91 (0) -3.47(0) -4.23 (1) -3.38(2) -4.33(1)
Japanese Yen -2.25(0) -18.49 (0) -5.97(3) -2.08(12) -4.17 (13) -5.48 (0) -7.73 (0) -5.81(1)
Coffee -2.69(3) -21.39(0) -9.50 (1) -14.11 (0) -3.72(0) -4.55 (0) -4.89 (1) -5.90 (1)
Live Cattle -3.82(0) -17.95(1) -6.78 (2) -14.25(0) -1.96 (0) -4.96 (1) -4.77 (10) -3.30(1)
S&P 500 -0.24 (1) -24.26 (0) -8.91(1) -1.71(12) -1.97 (14) -3.18(13) -1.92(14) -3.45(0)

* The null hypothesis is that the series listed in the row and column intersection has a unit root. We reject this

hypothesis if the ADF test statistic is less than the critical value —3.13 (10%) given in Fuller (1976). Both an
intercept and a time trend were included in the tests. The optimal lag length given in parenthesis was chosen using

the Schwarz (1978) information criterion.
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Table 2 Conditioning Sets that Result in Vanishing Correlations”

between between between between
LS Activity ST Activity LS Activity ST Activity
and and and and
Market Volatility Volatility Volume Volume
Corn Annual Sin Empty Set Empty Set (None)

ST Activity, LH

Crude Oil LH Activity Volume Net Position, LS /ﬁ'ctlwty ’
) ime
Time

Eurodollars Return Volume LH Activity LS Activity
Gold Volume, Time Empty Set Volatility (None)
Japanese Yen Empty Set Empty Set LH Activity (None)
Coffee Empty Set Empty Set LH Activity (None)
Live Cattle LH Net Position  Empty Set (None) (None)
S&P 500 Time Time Volatility (None)

®For the market listed in a row, the correlation between the pair of variables listed in the column is not significantly
different from zero, conditional on the variables given in the row and column intersection. “(None)” indicates that
no set of variables is found that results in a correlation not significantly different from zero. “Empty Set” indicates
that the unconditional correlation between the two variables is not significantly different from zero. Return is the
log change in the price of the nearby futures contract, Volume is the total volume of trade, Volatility is the log
difference between the high and low nearby futures prices for a week, LH Net Position is net futures position of
large hedgers, LH Activity, LS Activity, and ST Activity are the total number of open futures positions of large
hedger, large speculators, and small traders, respectively. Time is a linear time trend, and Annual Sin is an annual
seasonal harmonic variable.
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Figure 1 Directed Acyclic Graph G
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Figure 2 Inducing Path Graph G’ over O = {V,V,,V4,Vs} Associated with Directed Acyclic

Graph G
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Figure 3 Directed Acyclic Graph H
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Figure 7 Partially Oriented Inducing Path Graph for Gold
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