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I. Introduction

A large part of the theoretical literature on common pool resources (CPRs) assumes agents to be

homogenous (Gordon, 1954; Clark, 1976; Dasgupta and Heal, 1979; Levhari and Mirman, 1980;

Sandler, 1992; Ostrom, 1994).  Over the past few years, however, there has been a growing debate on

the effect of heterogeneity on the use of CPRs in both cooperative and non-cooperative settings.  This

line of work can be traced back to Olson (1965) who hypothesized that the greater is the wealth

inequality amongst members of a group, the larger is the probability of collective action.  Although

Olson’s work has been very influential in the CPR literature, it is backed by limited empirical support.

Field studies on CPR management present a very varied picture with a few supporting Olson’s

argument but a majority finding either an opposite or an ambiguous result.1

In a recent synthesis of this literature, Baland and Platteau (1995) suggest that to make sense

of these diverse findings it is helpful to distinguish between the different types of heterogeneity, such

as those arising from differences in endowments, objectives or cultural background of the agents.

They argue that while homogeneity in objectives and cultural background are absolute prerequisites

for collective action, this does not necessarily hold true for heterogeneity in private wealth of agents.

In a set of papers that appeared in this journal, Baland and Platteau (BP) (1997, 1998) explore this

effect of heterogeneity in private wealth of agents on efficiency in use of commons under several

different cases of regulated and unregulated commons.

One of the striking results from their papers arises in a context where agents appropriate a

common resource in the absence of any external regulation.  It is well known that in such a setting,

agents are likely to extract in excess of social optimum.  Now, consider a situation where agents have

differential access to an important input used in the extraction of this common resource.  To fix ideas,

think of this input as credit.  Due to information problems, particularly in low-income countries, the

                                                       
1 Thus for instance, Johnson and Libecap (1982) in their study of the Texas shrimp fishery found that when
fishermen differ in their inherent skills in fishing, cooperative agreements such as catch restrictions are unlikely
to succeed.  See also Bardhan (1993) and Aggarwal (2000) for examples from Asian irrigation systems.  Kanbur
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amount of credit available is often closely linked to ownership of assets (such as private land), which

can be offered as collateral.  Therefore, inequities in asset ownership often translate into inequities in

access to credit.  The following question thus becomes important: How, if at all, would the efficiency

in use of CPRs be affected if the distribution of credit were changed, keeping the total amount of

available credit constant?

To examine this question, BP consider a simple static setting, where extraction is a concave

function of effort and one unit of credit is required to exert one unit of effort.  Starting from a situation

where all agents have equal access to credit they consider a dis-equalizing change in access to credit

keeping the total amount available constant.  Agents who now become credit constrained are likely to

reduce their extraction levels, and as a response, the unconstrained agents are likely to increase their

level of extraction.  However, because of the assumption of concavity of the effort function, it follows

that the increase less than compensates for the decrease.  Thus total extraction is likely to fall, leading

to a more efficient outcome.  They thus conclude that the more unequal is the distribution of credit

constraints, the more efficient is the appropriation from CPRs.2

This unambiguous result on the effect of inequality on efficiency has important policy

implications.  Given the widespread degradation of natural resources under conditions of poorly

defined property rights, governments are struggling to find alternative ways to halt this process.  BP

claim that their central argument is applicable in a wide array of contexts in which constraints or factor

market imperfections limit the access of some users to important inputs used in extraction of CPRs.

Thus, for instance, if credit is an important input that is administratively distributed, then their analysis

suggests that an unequal distribution of available credit amongst users of a CPR would create a

                                                                                                                                                                            
(1992) and Baland and Platteau (1998) provide a survey drawing upon studies from various different CPR
contexts.
2 Clark (1980) also establishes a positive relationship between inequality and efficiency in the context of
common access fisheries.  However, he defines inequality in terms of the skill differentials of the agents.
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situation where the large holders self-limit their extraction, thus leading to situation where extraction

is lower than in the case where the available credit were distributed in an equal way

The present paper is motivated by the observation that BP’s result, derived within a static

setting, may not hold in the more realistic dynamic settings in which most CPR extraction (including

the case of fisheries examined by BP) takes place.3  In a dynamic resource setting, the following

considerations become important.  First, it is well known that in a dynamic setting the inter temporal

tradeoffs between conservation and depletion are important, and this opens up the possibility of a far

richer set of outcomes (including the possibility of self-enforcing cooperative equilibria), which could

potentially alter the conclusions reached in a static setting.  Second, note that access to credit which is

the basis of heterogeneity in the BP paper, becomes especially significant in situations where large

investments, (either in the form of installing capacity or adoption of new technology) have to be made

prior to extraction from the CPR.  Since these investments influence extraction choices in the future, a

a one-stage game (as used by BP) is inadequate to capture the complexity of the strategic environment

that arises due to the timing of the different moves.

Prior investments in capacity influence future extraction choices in a number of dynamic CPR

settings.  A prime example is that of groundwater for which property rights are generally poorly

defined in most countries.  In the specific case of India, landowners have the right to drill wells on

their own land and pump out as much water as they desire.  However, the fixed costs of drilling a well

and buying the pumping equipment are very high, particularly in semi-arid areas where wells need to

be very deep in order to intercept water-bearing fractures in the sub-strata.  The deeper is the well, the

lower is the probability that it would become dry at any given time.  Due to limited access to credit, a

majority of small and marginal landowners in these areas have not invested in wells, while large

farmers have invested in multiple wells with very high pumping capacities (Shah, 1993; Aggarwal

2000).  Interestingly, given the huge subsidies on electricity supply, the marginal costs of pumping are
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very low and this has led to a rapid decline in the water table in this region.  In the competitive

pumping race that has ensued, those who have deeper wells have survived while those with shallower

wells (generally the smaller landowners) have been driven out over time (Bhatia, 1992).  An important

policy question being posed in this context is regarding the effect that government’s policies on

distribution of credit can have on groundwater use, given the fact that direct regulation of groundwater

is not administratively feasible in the short run.

Similarly in the context of many fisheries, the choice of capacity (as measured by vessel size

and type of equipment used) is critical in determining the type and size of catch.  Kurien (1992) in his

case study of coastal fisheries in south India describes how with the expansion of export markets in

prawns in the mid 1960s, merchants from urban areas started to heavily invest in vessels capable of

deep sea fishing.  Traditional fishermen with relatively poor access to credit were not able to take

advantage of these opportunities and were slowly displaced as stocks depleted and their traditional

technologies became redundant.

To model the strategic interplay between agents in such scenarios, where decisions regarding

investment in sunk capacity are critical and have to be made prior to extraction, a two-stage

formulation of the dynamic game is needed.  In this paper we develop such a game in which agents

first choose the level of sunk investment in capacity and then the extraction path over the infinite

horizon.  We assume agents to be homogenous in all respects except in terms of their access to credit.

To model heterogeneity in access to credit we draw upon the widely observed fact that the extent of

credit available through the formal credit market is generally rationed in most low income countries

and is very closely determined by the amount of collateral (e.g. land or livestock) that can be offered.

The residual demand is met through the informal market where interest rates are much higher.  Thus

agents face different costs of credit depending on their exogenously given asset endowments, and this

difference in costs of credit constitutes the basis of heterogeneity amongst agents in the model.

                                                                                                                                                                            
3 In this paper we only analyze the case of extraction from a CPR in a non-cooperative framework.  Baland and
Platteau (1997, 1998) also discuss the case of voluntary contributions towards the creation and maintenance of a
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Given this dynamic setting, we derive a relationship between inequality (measured in terms of

difference in cost of credit) and steady state resource stock.  Contrary to the BP result, we show that

greater inequality does not necessarily lead to greater efficiency in use of CPRs.  In particular, we

show that for moderate levels of inequality, the resource stock is lower than that under perfect

equality.  It is only for fairly high levels of inequality that the resource stock approaches the socially

optimal level.

A recent working paper by Dayton-Johnson and Bardhan (1996) also suggests that the relation

between heterogeneity in asset endowments and efficiency in resource use may be non-monotonic.

However, the structure of their model is very different from ours.  In particular, they have a two period

setting in which the capacity level of agents is uniquely determined by their exogenously given asset

endowments and the strategy set of agents is defined by the single effort level that they simultaneously

choose in the first period (in the second period, it is always true that agents would apply maximum

effort).  As opposed to this, in our model, agents strategically choose the level of sunk investment in

capacity as well as the consequent extraction path over the infinite horizon.  Thus our focus lies more

on the choice of sunk capacity in the first stage of the game and its role as a commitment device to

deter entry or force exit of other agents from the extraction game in the second stage.

A number of papers in the industrial organization literature have explored the role of strategic

investments (see for instance, Dixit, 1980; Fudenberg and Tirole, 1983; Spence, 1977).  However,

there have been very few applications in CPR contexts.  Copeland (1990) explored the strategic effects

of investments that enhance or destroy a common resource in the context of international externalities.

However, the purpose of his paper was to establish the conditions that lead to under and over-

investment.  He did not specifically analyze the effect of heterogeneity amongst agents on the choice

of these investments and on the efficiency in resource use.  In our analysis, on the other hand,

heterogeneity amongst agents (in terms of their cost of credit) becomes an important factor in

determining both steady state stock levels and the total investment in capacity.  To the best of our

                                                                                                                                                                            
CPR and find the results to be somewhat different from the extraction case.
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knowledge, the effects of strategic investment in a dynamic CPR extraction game with heterogeneous

agents have not been examined before.

The rest of the paper is organized as follows.  To fix ideas we develop our model in the

context of groundwater extraction, although as discussed above, the central ideas behind it have much

wider applicability.  In Section II, we present the benchmark case of a single well owner within an

aquifer, who faces a competitive market for water.  This case also defines the social optimum in our

setting.  Then, in Section III, we extend this analysis to the case of two homogenous agents who

extract from the same groundwater aquifer.  In Section IV, we introduce heterogeneity amongst these

agents in terms of the cost of credit that they face.  In Section V, we use the results from Section IV to

map a relation between inequality on the one hand and steady state stock level and investment on the

other hand.  Finally, in Section VI, we conclude.

II.  Sole Ownership

For completeness, we begin with the case of a single agent who has sole extraction rights to a

groundwater aquifer.  Consider the following two-stage model.  In the first stage, the agent makes a

decision regarding how deep to drill the well.  Depth of the well is an important determinant of its

capacity because water cannot be extracted from the well whenever the water level in the aquifer falls

below the base of the well.  In other words, the depth of the well defines a lower bound X , such that

whenever the water stock in the aquifer falls below X , the well becomes dry.  For tractability, we

assume that there is one to one relationship between the investment, I, made in the depth of the well

and X  which is given as

[1] X   = )(IX
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where 0)(' <IX  and 0)('' ≥IX . The above investment is regarded as a sunk investment which has

to be made once and for all, prior to extraction.4  The marginal cost of investment is assumed to be a

constant, denoted by φ , which depends upon the rate of interest faced by the agent in the credit

market.   

In the second stage, the agent chooses an extraction path )(tw  that maximizes the present

value of net returns from extraction.  Following Gisser (1983), we assume that the cost of extracting

water is an increasing function of the extent of lift,5 shown in figure1 as AB.  The extent of lift at any

time t, in turn, depends on the water stock X(t) in the aquifer and thus the cost function for extraction

can be written as

[2] ( )
)(

)(

tX

tcw
tC =

where c is a constant and w(t) is the amount of water extracted at time t.  The well owner is assumed to

be a price taker in the market for water, with the price of water given by the constant p.

The agent’s optimization problem can be solved through backward induction by first solving

the second-stage problem conditional on the investment decision in the first-stage.  The second-stage

optimization problem is given as

[3] dte
tX

tcw
tpwMax t

tw

 

0
)(

 
)(

)(
)( δ−

∞

∫ 







−

s.t.  [A] )(twrX −=&

 [B]  wtw ≤≤ )(0

 [C] w(t) = 0    for    X(t) < )(IX

whereδ  is the discount rate and r is the natural recharge rate of water.  Equation [A] governs the

stock transition over time.  Constraint [B] implies that at each instantaneous point in time there is an

                                                       
4 The horsepower of the pumping equipment may also be an important determinant of capacity.  In most semi-
arid regions, submersible pumps are used.  Investments in such pumps, for all practical purposes, may also be
regarded as sunk investments.
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upper bound, w , on the amount of water that can be extracted.  To allow for the possibility of

complete exhaustion, we assume that w >r.  Constraint [C] ensures that there cannot be any extraction

whenever the stock of water falls below )(IX .

Since the maximand in the above problem is linear in the control variable, w(t), the

equilibrium is a bang-bang solution.  The optimal extraction path is given by the following most rapid

approach path (MRAP)

[4]








<

=

>

=

)}(,{)( if                 0

)}(,{)( if                 

)}(,{ )( if                

)(

IXXMaxtX

IXXMaxtXr

IXXMaxtXw

tw
S

S

S

S

where XS is the steady state stock level given as

[5]
p

cprcc
X S

 2

  4 22

δ

δδδ ++
=

Given this solution to the second-stage problem, in the first-stage the sole owner chooses the

level of sunk investment in the depth of the well such that the marginal costs of investment equal the

discounted marginal benefits from extraction.  Let us assume that the initial stock level is greater than

XS.  Let IS be the level of investment that corresponds to XS in [1].  From (4) it is clear that along the

optimal path, the agent does not extract any water whenever the stock level falls below X
S.  Thus the

marginal benefits from investing beyond IS  are zero.  However, for any level of investment I< IS, the

total benefit from investing is given by

[6] dte
(I)X

cr
prdte

X(t)

wc
wpIB ät

(I))Xs(

ät

(I))Xs(

−

∞

− ∫∫ 







−+








−=

0

)(

where ))(( IXs  denotes the time at which the stock attains the lower bound X . To ease notation, let

S(I)= ))(( IXs .  Differentiating [7] with respect to I, gives the marginal benefit from investing at any

level I< IS as

                                                                                                                                                                            
5 The difference between the water level in the well and the level to which it has to be lifted
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[7] )( 
2

)(  )(')
)(

()()( ISIS eIX
(I)Xä

cr
e

IX

c
pr)w(ISIB δδ −− ⋅+





−−′=′

In the appendix, we show that B’(I) is strictly positive and downward sloping for I< IS.

Figure 2 shows the marginal benefit and cost curves of investment.  The agent chooses the

level of investment that equates the marginal cost of investment ( φ ) with the marginal benefit of

investment.  If φ  ≤ Sφ , then the agent invests IS and drives the stock to the steady state level, XS.  On

the other hand, if φ > Sφ , then the optimal choice of investment is less than IS and given by the

intersection of the marginal benefit and cost curves in figure 2.  In this case, the steady state stock

level is less than XS.  Given that the well owner is a price taker in the market for water, this solution

also defines the social optimum in this setting.

III.  Homogenous Agents

In this section we consider the case of two agents (i =1, 2) who extract from a common groundwater

aquifer and are homogenous in all respects.  As opposed to the case of sole-ownership, in a two-person

case, the two-stage model is much more complex because of strategic behavior.  For ease in

exposition, we have divided this section in two parts.  In the first part, we present the Nash equilibrium

solution for the case usually modeled in the groundwater literature where only the extraction decision

(and not the capacity choice decision) is taken into account (see for instance, Provencher and Burt,

1993; Gisser, 1983).  Such a setting is useful in situations where either capacity can be quickly

adjusted to any changes in extraction needs and/or costs of setting up capacity are negligible and so

capacity does not represent a rigid constraint.  In second part of this section we relax this assumption

and present the two-stage model with capacity and extraction choice.

III.1 Extraction choice with no capacity constraints

The optimization problem for agent 1 here is given as (the case of agent 2 is symmetric)
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[8] dte
tX

tcw
tpw t

tw
Max δ−

∞

∫ −  )
)(

)(
)((

0

1
1

)(1

s.t   [A]  )()( 21 twtwrX −−=&

               [B]  wtw ≤≤ )(0 1

Solving the two best response functions for a Nash symmetric solution we get a result analogous to the

sole-ownership case.  The groundwater stock is driven to XN by the most rapid approach path (MRAP)

given as

[9]








<

=

>

=
N

N

N

N

XtX

XtXr

XtXw

w

)( if                     0

)( if                 2/

)( if                    

where

[10]
p

pcrcc
X N

  2

 2 22

δ
δδδ ++

=

On comparing equations [5] and [10] it is clear that XN < XS.  This is the standard result of over-

exploitation when agents do not fully internalize the externalities generated in the use of the commons.

The gross payoffs from extraction in this case are given as

[11] t

Xs
N

t
Xs

N e
X

crpr
e

tX

wc
wp

N

N

 

)(

 
)(

)(
δδπ −

∞
− ∫∫ 






 −+








−=

220

where s(XN) is the time at which the stock reaches the steady state level given as XN in (10).

III.2 Two stage game with capacity and extraction choice

Now let us consider the case where agents have to choose the level of investment in capacity

prior to extraction.  As we show below, agents may now choose investment levels strategically in
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order to force exit or deter entry of the other agent.6  In order to keep the analysis fairly general here,

we assume that agents choose investment levels sequentially, with the choice of moves being

endogenous to the game.  In a game with symmetric agents this implies that agents move

simultaneously.7 It would be helpful to categorize the set J of options available to each agent as:  J =

{D, A, E} where D stands for drive out, A for accommodate and E for exit.  For agent 1 to be able

drive out agent 2, two conditions must be satisfied.  First, in stage 1 of the game, agent 1 must invest

more than he expects agent 2 to invest, i.e. I1 > I2.  Second, in stage 2, agent 1 must drive down the

stock to a level beyond X (I2) in finite time.  By definition, adoption of the drive out option by any

agent implies forced exit for the other agent and together these imply that there exists a time period td,

such that for all t > td, there is only one agent in the game.  As opposed to this, the strategy to

accommodate implies that there are two agents in the game for all t.  For accommodation to work,

both players must invest at the same level.  Finally, note that each agent always has the option of

exiting out of the game in finite time, irrespective of what the other agent does.

Given this setting, we solve for the Cournot-Nash equilibrium defined as

DEFINITION 1: A strategy set ( I1, I2, w1, w2 ) is a Cournot-Nash (CN) equilibrium if the net discounted

payoff to agent i ( i =1,2),  from choosing (Ii
 , wi) is maximized given the equilibrium strategy of the

other agent.

To solve for the CN equilibrium recall that XN was found to be the Nash steady stock level in the

absence of capacity constraints.  Let IN denote the level of investment in capacity that corresponds to

XN from [1].  Note that (IN, IN) cannot be the equilibrium investment strategy in the presence of

capacity constraints.  This is because each agent by investing a small amount, ε , above IN can drive

out the other agent and get larger profits.  To examine when such a drive-out strategy would be

                                                       
6 A number of papers in the industrial organization literature have examined the choice of capacity as an entry
deterrent strategy (Tirole, 1988 provides a survey).  The results in these papers have been found to be quite
sensitive to the assumptions made regarding the timing of the moves, i.e. whether there is simultaneity in choice
of capacities or an exogenously given sequentiality with one player (incumbent) having a first mover advantage,
possibly due to technological lead.
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chosen, we lay out the extraction paths and the associated gross payoffs when agent 1 pursues the

drive out option under the expectation that agent 2 would invest I2.

Note that if agent 1 expects I2 to be less than IS (the optimal steady state investment level

under sole-ownership) then he would choose to invest IS and drive down the stock to XS.  This case is

similar to the sole ownership case.  The more interesting case arises when agent 1 expects I2 to be

greater than IS.  This is the case we consider in the rest of this section.

Under the drive out strategy, agent 1’s extraction path in the second stage is given as

[12] 








+<
+=
+>

=
         )( )( if          0

)( )(if          

)( )(if         

2

2

2

1

ε
ε
ε

IXtX

IXtXr

IXtXw

wD

The gross payoff to agent 1 from extracting along this path can be written as

[13] dte
IX

cr
prdte

tX

wc
wp t

IS

t
IS

D  

)( 2

)(

0

1 )
)(

()
)(

(
2

2

δ

ε

δ
ε

ε
π −

∞

+

−
+

∫∫ +
−+−=

As one would expect, this drive out payoff received by agent 1 is a decreasing function of I2 (proof in

the appendix).

By definition, under the above drive out strategy, agent 2 is forced to exit and his extraction

path is given as

[14]




<
≥

=
         )()( if          0

)()( if         

2

2
2 IXtX

IXtXw
wE

The gross payoff to agent 2 from extracting along this path can be written as

[15] dte
tX

wc
wpI

IS
tE ∫ −









−=

)(

0

 
22

2

)(
)( δπ

                                                                                                                                                                            
7 This is because when agents are symmetric they would have the same preferences over the choice of moves.
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Note that the above payoff is a function of I2.  Under complete information, agent 2 knows that he

would be driven out in the second stage.  Therefore, given φ , he chooses investment optimally in the

first stage.  For φ >0, the optimal net exit payoff is given as

[16] Et
IS

E Idte
tX

wc
wp

E

 
)(

)(   
)(

0

φφ δ −







−=Π −∫  where









−







−= ∫ −

)(

0

   
)(

maxarg
IS

tE Idte
tX

wc
wpI φδ

The above net exit payoff has a special significance in this setting.  Each agent can always guarantee

for himself this minimum payoff by exiting out of the extraction game in finite time, irrespective of

the actions of the other agent.  Thus )(φEΠ represents the reservation payoff in this setting.

Definition 2: A strategy (Ii, wi) for agent i ( i=1, 2) is individually rational if the net payoff to agent i

from this strategy is at least as large as his net exit payoff.

As opposed to driving out agent 2, agent 1 can also accommodate him.  If both agents invest

IN and accommodate each other then the gross payoffs are given by π N in [11].  As argued earlier, this

is an unstable equilibrium since π N < D
1π (I2 = IN) and so agent 1 prefers to drive out agent 2 if the

latter is expected to invest IN.  However, note that since D
1π (I2) is a decreasing function of I2 there

exists an INC > IN, such that for I2 = INC

[17] NNCD II ππ == )( 21

Proposition 1: In the homogenous case with capacity constraints, if it is individually rational for both

players to accommodate each other and invest INC then

a) (INC, INC) are the Cournot-Nash equilibrium investment levels.

b)  XN is the steady state stock level.
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Proof: To check if (INC, INC) are the equilibrium investment levels consider what happens if there is a

one step unilateral deviation by agent 1 to INC +ε (where ε > 0), in order to drive out agent 2.  Given

the shape of )(IDπ , it follows that )( επ +NCD I < NNCD I ππ =)( .  Hence this deviation is not

profitable.  Now consider a unilateral deviation by agent 1 to INC -ε.  Since INC -ε. < INC, agent 1 cannot

drive out agent 2.  Agent 2, however, would now find it optimal to drive out agent 1.  Since the net

exit payoff is lower than the payoffs from accommodation at INC, this deviation is also not profitable

for agent 1.

When both agents accommodate each other, the steady state stock level is given by XN  in (17).

Recall that XN was shown to be the steady state stock level in the case without capacity constraints

also.  However, the difference in the case with capacity constraints is that strategic behavior leads both

agents to invest more, since INC>IN.

Corollary1:  In the homogenous case with capacity constraints, both agents invest in excess capacity.

IV Heterogeneous Agents

In this section we assume that agents are homogenous in all respects except in terms of the cost of

credit they face.  Let the cost of credit be denoted by φ 1 and φ 2, respectively, for the two agents.  To

begin with, let us examine how the net payoffs (under the different strategies defined in the previous

section), vary with φ i  (i = 1, 2).  Under the strategy of accommodating by investing INC, the net

payoffs are given as

[18]  i
NCN

ii
A
i I φπφ −=Π )(

Note that .
)( NC

i

i
A
i I−=

∂
Π∂

φ
φ

 On the other hand, the net exit payoffs are given as E
iΠ ( φ i) in [16],

and it follows from the envelope theorem that E
i

i

i
E
i I−=
∂

Π∂
φ

φ )(
.
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Note that INC is not a function of φ i (see [17]), but E
iI is a decreasing function of φ  (from

[16]).  This implies that starting from low levels of φ I (where )()( i
E
ii

A
i φφ Π>Π ) as φ i increases

)( i
A
i φΠ  falls at a constant rate while )( i

E
i φΠ  falls at a decreasing rate (see figure 3).  This leads to

the following lemma

Lemma 1: There exists a φ 0> 0, such that when φ i
 > φ 0

, the net exit payoffs for agent i exceed his

net payoffs from accommodation.

Now let us examine how the steady state stock and investment levels vary, as inequality amongst

agents increases.  We define inequality as the difference between φ 1 and φ 2, and model increases in

inequality by a mean preserving spread given by decreasing φ1 and increasing φ2 such that (φ1 + φ2)/2

=φ.  Further we assume that φ  < φ 0, so that when agents are homogenous, the net payoffs from

accommodation are higher than the net exit payoffs.  Lemma 1 then implies that for high enough

levels of inequality, such that φ 2 > φ 0, agent 2 may find it optimal to exit out of the game.  In the

following two propositions we examine how changes in inequality affect investment and steady state

stock levels.

Proposition 2: Starting from the level of equality, for small mean preserving deviations in marginal

costs, such that φ 1< φ 2 < φ 0, the two agents continue to accommodate each other.  The Cournot-Nash

equilibrium investment levels are (INC, INC) and the steady state stock level is XN.

Proof:  Since accommodation is individually rational for both players, the proof follows directly from

proposition 1.

Proposition 3: For large mean preserving deviations in marginal costs, such that φ 1 < φ 0 but φ 2 >

φ 0

a) The Cournot-Nash equilibrium investment levels are given as ]),,[max( 22
EES III ε+ .
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b) The steady state stock level is given by ]}(,[min 2 ε+ES IXX .

Proof: In this case where agents are very heterogeneous, the sequentiality of moves becomes

important in the following way.  First, consider what happens if agent 2 moves first.  Since the option

of accommodation by investing at INC is no longer individually rational for agent 2, he can either drive

out agent 1 or exit out of the game himself.  Since agent 1 faces a lower marginal cost of investment

and invests after observing agent 2, drive out by agent 2 is not a feasible option here.  Agent 2’s only

option is to exit and thus he chooses to invest EI 2  to maximize his net exit payoff.  Given this, agent 1

chooses to invest  [max (IS, EI 2 +ε)].  Next consider what happens if agent 1 has to move first.  If agent

1 invests EI 2 +ε, then agent 2 having observed agent 1’s investment, will invest a little more than him

and drive him out.  To avoid being driven out, agent 1 will have to invest at a level where agent 2’s net

payoff from driving out agent 1 equals his net payoff from exit.  Denote this level of investment by

2I .  Thus agent 1 will invest 2I +ε whereas agent 2 will invest EI 2 .  Note that 2I > EI 2  and so the

payoffs for agent 1 when he moves first are (weakly) lower than his payoffs from the game where

agent 2 moves first.  However, agent 2’s payoffs are the same under both specifications of the game.

Thus, agent 1 weakly prefers to move second while agent 2 is indifferent.  Therefore, it follows that if

the sequentiality of moves is endogenous then agent 2 will move first.  The equilibrium investment

levels will be given as ]),,[max( 22
EES III ε+  and the steady state stock level will be given by

)](,[min 2 ε+ES IXX .

V. Inequality, Investment and Steady State Stock Levels

In this section we use the results from the previous section to map a relationship between inequality on

the one hand, and investment and steady state stock levels on the other hand.  In figures 4a and 4b, the

marginal cost of investment of agent 2, denoted as φ 2, is shown along the horizontal axis.  The origin

represents the point of perfect equality at which φ 2 = φ .  As one moves to the right along this axis,

φ 2 increases while φ 1 decreases, preserving the mean at φ .  Thus a movement to the right along this
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axis represents increasing levels of inequality.  The aggregate investment levels and the steady state

stock levels are shown along the vertical axis in figures 4a and 4b, respectively.

In a small neighborhood around the origin where φ 2 ≤ φ 0, it is individually rational for each

player to invest INC and accommodate the other player (proposition 2).  So the aggregate investment

levels and the steady state stock levels are the same as in the case of perfect equality.  We label this as

the range of low inequality in figure 4.  As φ 2  increases further such that φ 2 > φ 0, it is no longer

individually rational for player 2 to invest INC and stay in the game indefinitely (lemma 1).  It follows

from proposition 3 that in a small neighborhood to the right of 0
2 φφ = , agent 2 invests EI 2  and is

driven out by agent 1 who invests EI 2 + ε  and drives down the stock to )( 2 ε+EIX .  Thus the

steady state stock level as well as the investment levels are lower in this neighborhood than under

perfect equality.

As inequality increases further, aggregate investment falls monotonically since EI 2 is a

decreasing function of φ 2.  The relationship between steady state stock level and inequality is

somewhat more complex.  Note that the steady state stock level falls sharply at φ 2 = φ 0 and

thereafter increases as inequality increases.  For the case where φ 2 > φ 0, we can distinguish between

the following ranges for increasing values of φ 2
 (see figure 4).

1) Moderate inequality: where aggregate investment level is ( EI22 + ε  ) < 2INC and the steady state

stock level is )( 2 ε+EIX ,  with  )( 2 ε+EIX <XN  < XS.

2) High Inequality: where aggregate investment level is ( EI22 + ε   ) < 2INC and the steady state stock

level is )( 2 ε+EIX , with  XN < )( 2 ε+EIX < XS.

3) Very High Inequality: where aggregate investment level is ( EI2 +IS) < 2INC and the steady state

stock level is XS.

Contrary to the conclusion reached by Baland and Platteau (1997), we find that the

relationship between inequality and steady state stock level is non-monotonic.  In particular, starting
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from perfect equality, as inequality increases, there is a range (which we refer to as the range of

moderate inequality) where steady state stock level is lower than the level under perfect equality.  On

the other hand, in the low and high ranges of inequality, the steady stock level is at least as large as

that under perfect equality.  In the very high inequality range, steady state stock level is at the first best

level.

V. Summary and Conclusions

Previous work on common pool resources has generally assumed agents to be homogenous.  In this

paper we have focused on one aspect of heterogeneity, namely that arising from differential access to

an important input (credit) used in extraction from the CPR.  Access to credit becomes particularly

important in CPR contexts where considerable sunk investment is needed prior to extraction, and

where this investment influences the nature and extent of extraction.  Common examples are:

groundwater pumping and deep-sea fishing.  In modeling such cases, the following considerations

become important.  First, the choice of both investment levels and the extraction path are critical.

Second, since agents impose externalities on each other in extraction, and prior investment levels

influence the extent of these externalities, agents are likely to strategically choose investment levels.

Third, the timing of moves is important and so a one-stage game is inadequate to capture the

complexity of the strategic situation here.

Keeping these considerations in mind, we developed a two-stage model where agents

choose the level of sunk investment in capacity and subsequently, the extraction path over the infinite

horizon.  Sunk investments served as a commitment device in this model to deter entry or force exit.

Since the cost of credit influences these investment choices, heterogeneity amongst agents in terms of

their access to credit affects both capacity and extraction choices.  Using this model we find that

contrary to results derived in previous studies based on a static setting, the relation between inequality

and efficiency in resource extraction is non-monotonic.  The steady state resource stock is closest to

the socially optimal level when either inequality is very high or very low.  For moderate levels of
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inequality, we show that the resource stock may in fact be lower than that under perfect equality.

Further, we show that because of the strategic role of investments in this setting, agents invest in

excess capacity in general, except when inequality is high.

In many CPR contexts, such as that of groundwater in semi-arid India, direct regulation of

extraction rates is generally regarded as infeasible in the short run.  An important indirect policy tool

here is the administrative distribution of important inputs, such as credit used in groundwater

extraction.  Baland and Platteau have argued that in such cases unequal distribution of credit would

lead to higher efficiency in use of commons.  However, policies favoring a highly unequal distribution

of credit may not be politically feasible.  The contribution of our paper lies in showing that moderate

levels of inequality in distribution may, in fact, lower resource stocks even below that under equal

distribution.

Our basic model can be extended in several directions.  An important extension would be to

examine whether our result change qualitatively when there are more than two agents.  Previous

papers that have modeled only extraction choice and not capacity choice (such as Baland and Platteau,

1997; Dayton-Johnson and Bardhan, 1996) found the results to be qualitatively similar in a multiple

agent setting.  In the CPR literature there has also been a lot of interest in examining what happens

when the product from extraction of the commons is sold in an imperfectly competitive market

(Cornes et al,. 1986).  In our model, since we assumed agents to be price takers, it followed that

extraction is at its optimal level when there is a single agent extracting from the aquifer.  However,

when this agent also holds market power then there is likely to be over-conservation of the resource

and optimality would require more than one agent.  The strategic effects of investment are likely to be

much more complex in such a setting.



20

Appendix

1) Proof: Under sole ownership, total benefits from investment are a strictly positive and concave
function of investment for I<IS.

      For I<IS, the total benefits are given by
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                      Figure 2: Marginal benefit and costs of investment under sole-ownership
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               Figure3: Net payoff from exit and accommodation strategies.
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                  Figure 4: Effect of Inequality on Investment and Steady State Stock
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