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l. I ntroduction
A large part of the theoretical literature on common pool resources (CPRS) assumes agents to be
homogenous (Gordon, 1954; Clark, 1976; Dasgupta and Heal, 1979; Levhari and Mirman, 1980;
Sandler, 1992; Ostrom, 1994). Over the past few years, however, there has been a growing debate on
the effect of heterogeneity on the use of CPRs in both cooperative and non-cooperative settings. This
line of work can be traced back to Olson (1965) who hypothesized that the greater is the wealth
inequality amongst members of a group, the larger is the probability of collective action. Although
Olson’swork has been very influential in the CPR literature, it is backed by limited empirical support.
Field studies on CPR management present a very varied picture with afew supporting Olson’s
argument but a majority finding either an opposite or an ambiguous result.*

In arecent synthesis of thisliterature, Baland and Platteau (1995) suggest that to make sense
of these diverse findingsit is helpful to distinguish between the different types of heterogeneity, such
as those arising from differences in endowments, objectives or cultural background of the agents.
They argue that while homogeneity in objectives and cultural background are absolute prerequisites
for collective action, this does not necessarily hold true for heterogeneity in private wealth of agents.
In aset of papers that appeared in this journal, Baland and Platteau (BP) (1997, 1998) explore this
effect of heterogeneity in private wealth of agents on efficiency in use of commons under severa
different cases of regulated and unregulated commons.

One of the striking results from their papers arises in a context where agents appropriate a
common resource in the absence of any external regulation. It iswell known that in such a setting,
agents are likely to extract in excess of social optimum. Now, consider a situation where agents have
differential access to an important input used in the extraction of this common resource. To fix ideas,

think of thisinput as credit. Due to information problems, particularly in low-income countries, the

! Thus for instance, Johnson and Libecap (1982) in their study of the Texas shrimp fishery found that when
fishermen differ in their inherent skillsin fishing, cooperative agreements such as catch restrictions are unlikely
to succeed. See also Bardhan (1993) and Aggarwal (2000) for examples from Asian irrigation systems. Kanbur



amount of credit availableis often closely linked to ownership of assets (such as private land), which
can be offered as collateral. Therefore, inequities in asset ownership often translate into inequitiesin
access to credit. The following question thus becomes important: How, if at all, would the efficiency
in use of CPRs be affected if the distribution of credit were changed, keeping the total amount of
available credit constant?

To examine this question, BP consider a simple static setting, where extraction is a concave
function of effort and one unit of credit is required to exert one unit of effort. Starting from a situation
where all agents have equal access to credit they consider a dis-equalizing change in access to credit
keeping the total amount available constant. Agents who now become credit constrained are likely to
reduce their extraction levels, and as a response, the unconstrained agents are likely to increase their
level of extraction. However, because of the assumption of concavity of the effort function, it follows
that the increase | ess than compensates for the decrease. Thus total extraction islikely to fall, leading
to amore efficient outcome. They thus conclude that the more unequal is the distribution of credit
constraints, the more efficient is the appropriation from CPRs.?

This unambiguous result on the effect of inequality on efficiency has important policy
implications. Given the widespread degradation of natural resources under conditions of poorly
defined property rights, governments are struggling to find alternative ways to halt this process. BP
claim that their central argument is applicable in awide array of contexts in which constraints or factor
market imperfections limit the access of some users to important inputs used in extraction of CPRs.
Thus, for instance, if credit is an important input that is administratively distributed, then their analysis

suggests that an unequal distribution of available credit amongst users of a CPR would create a

(1992) and Baland and Platteau (1998) provide a survey drawing upon studies from various different CPR
contexts.

2 Clark (1980) also establishes a positive relationship between inequality and efficiency in the context of
common access fisheries. However, he defines inequality in terms of the skill differentials of the agents.



situation where the large holders self-limit their extraction, thus leading to situation where extraction
is lower than in the case where the available credit were distributed in an equal way

The present paper is motivated by the observation that BP s result, derived within a static
setting, may not hold in the more realistic dynamic settings in which most CPR extraction (including
the case of fisheries examined by BP) takes place.® In adynamic resource setting, the following
considerations become important. First, it iswell known that in a dynamic setting the inter temporal
tradeoffs between conservation and depletion are important, and this opens up the possibility of a far
richer set of outcomes (including the possibility of self-enforcing cooperative equilibria), which could
potentially alter the conclusions reached in a static setting. Second, note that access to credit which is
the basis of heterogeneity in the BP paper, becomes especially significant in situations where large
investments, (either in the form of installing capacity or adoption of new technology) have to be made
prior to extraction from the CPR. Since these investments influence extraction choices in the future, a
aone-stage game (as used by BP) isinadequate to capture the complexity of the strategic environment
that arises due to the timing of the different moves.

Prior investments in capacity influence future extraction choicesin a number of dynamic CPR
settings. A prime example is that of groundwater for which property rights are generally poorly
defined in most countries. In the specific case of India, landowners have the right to drill wells on
their own land and pump out as much water as they desire. However, the fixed costs of drilling awell
and buying the pumping equipment are very high, particularly in semi-arid areas where wells need to
be very deep in order to intercept water-bearing fracturesin the sub-strata. The deeper is the well, the
lower is the probability that it would become dry at any given time. Dueto limited access to credit, a
majority of small and marginal landowners in these areas have not invested in wells, while large
farmers have invested in multiple wells with very high pumping capacities (Shah, 1993; Aggarwal

2000). Interestingly, given the huge subsidies on electricity supply, the margina costs of pumping are



very low and this hasled to arapid decline in the water table in thisregion. In the competitive
pumping race that has ensued, those who have deeper wells have survived while those with shallower
wells (generally the smaller landowners) have been driven out over time (Bhatia, 1992). An important
policy question being posed in this context is regarding the effect that government’ s policies on
distribution of credit can have on groundwater use, given the fact that direct regulation of groundwater
is not administratively feasible in the short run.

Similarly in the context of many fisheries, the choice of capacity (as measured by vessel size
and type of equipment used) is critical in determining the type and size of catch. Kurien (1992) in his
case study of coastal fisheries in south India describes how with the expansion of export marketsin
prawns in the mid 1960s, merchants from urban areas started to heavily invest in vessels capable of
deep seafishing. Traditiona fishermen with relatively poor access to credit were not able to take
advantage of these opportunities and were slowly displaced as stocks depleted and their traditional
technol ogies became redundant.

To model the strategic interplay between agents in such scenarios, where decisions regarding
investment in sunk capacity are critical and have to be made prior to extraction, atwo-stage
formulation of the dynamic game is needed. In this paper we develop such a game in which agents
first choose the level of sunk investment in capacity and then the extraction path over the infinite
horizon. We assume agents to be homogenous in all respects except in terms of their access to credit.
To model heterogeneity in access to credit we draw upon the widely observed fact that the extent of
credit available through the formal credit market is generally rationed in most low income countries
and is very closaly determined by the amount of collateral (e.g. land or livestock) that can be offered.
The residual demand is met through the informal market where interest rates are much higher. Thus
agents face different costs of credit depending on their exogenously given asset endowments, and this

difference in costs of credit congtitutes the basis of heterogeneity amongst agents in the model.

3 In this paper we only analyze the case of extraction from a CPR in a non-cooperative framework. Baland and
Platteau (1997, 1998) also discuss the case of voluntary contributions towards the creation and maintenance of a



Given this dynamic setting, we derive a relationship between inequality (measured in terms of
difference in cost of credit) and steady state resource stock. Contrary to the BP result, we show that
greater inequality does not necessarily lead to greater efficiency in use of CPRs. In particular, we
show that for moderate levels of inequality, the resource stock islower than that under perfect
equality. Itisonly for fairly high levels of inequality that the resource stock approaches the socially
optimal level.

A recent working paper by Dayton-Johnson and Bardhan (1996) also suggests that the relation
between heterogeneity in asset endowments and efficiency in resource use may be non-monotonic.
However, the structure of their model is very different from ours. In particular, they have a two period
setting in which the capacity level of agents is uniquely determined by their exogenously given asset
endowments and the strategy set of agents is defined by the single effort level that they simultaneously
choosein the first period (in the second period, it is aways true that agents would apply maximum
effort). Asopposed to this, in our model, agents strategically choose the level of sunk investment in
capacity as well as the consequent extraction path over the infinite horizon. Thus our focus lies more
on the choice of sunk capacity in the first stage of the game and its role as a commitment device to
deter entry or force exit of other agents from the extraction game in the second stage.

A number of papersin theindustrial organization literature have explored the role of strategic
investments (see for instance, Dixit, 1980; Fudenberg and Tirole, 1983; Spence, 1977). However,
there have been very few applications in CPR contexts. Copeland (1990) explored the strategic effects
of investments that enhance or destroy a common resource in the context of international externalities.
However, the purpose of his paper was to establish the conditions that lead to under and over-
investment. He did not specifically analyze the effect of heterogeneity amongst agents on the choice
of these investments and on the efficiency in resource use. In our analysis, on the other hand,
heterogeneity amongst agents (in terms of their cost of credit) becomes an important factor in

determining both steady state stock levels and the total investment in capacity. To the best of our

CPR and find the results to be somewhat different from the extraction case.



knowledge, the effects of strategic investment in a dynamic CPR extraction game with heterogeneous
agents have not been examined before.

The rest of the paper is organized as follows. To fix ideas we develop our model in the
context of groundwater extraction, although as discussed above, the central ideas behind it have much
wider applicability. In Section I, we present the benchmark case of a single well owner within an
agquifer, who faces a competitive market for water. This case also defines the socia optimum in our
setting. Then, in Section I11, we extend this analysis to the case of two homogenous agents who
extract from the same groundwater aquifer. In Section IV, we introduce heterogeneity amongst these
agentsin terms of the cost of credit that they face. In Section V, we use the results from Section IV to
map a relation between inequality on the one hand and steady state stock level and investment on the

other hand. Finaly, in Section VI, we conclude.

[I. Sole Ownership
For completeness, we begin with the case of a single agent who has sole extraction rightsto a
groundwater aquifer. Consider the following two-stage model. In thefirst stage, the agent makes a
decision regarding how deep to drill the well. Depth of the well is an important determinant of its

capacity because water cannot be extracted from the well whenever the water level in the aquifer falls
below the base of the well. In other words, the depth of the well defines alower bound X , such that
whenever the water stock in the aguifer fallsbelow X, the well becomes dry. For tractability, we
assume that there is one to one relationship between the investment, 1, made in the depth of the well
and X whichisgivenas

[1] X =X()



where X'(1) <0 and X''(1) 3 0. The aboveinvestment is regarded as a sunk investment which has

to be made once and for all, prior to extraction.” The marginal cost of investment is assumed to be a
constant, denoted by f , which depends upon the rate of interest faced by the agent in the credit
market.

In the second stage, the agent chooses an extraction path W(t) that maximizes the present

value of net returns from extraction. Following Gisser (1983), we assume that the cost of extracting
water is an increasing function of the extent of lift,> shown in figurel as AB. The extent of lift at any
timet, in turn, depends on the water stock X(t) in the aquifer and thus the cost function for extraction

can be written as

2] ctt) = ‘;‘(N—((tt))

where c is a constant and w(t) is the amount of water extracted at timet. The well owner is assumed to
be a price taker in the market for water, with the price of water given by the constant p.

The agent’ s optimization problem can be solved through backward induction by first solving
the second-stage problem conditional on the investment decision in the first-stage. The second-stage

optimization problem is given as

‘e cw(t) o dt
3 M t)- —= t
3] MGl - Sy oS

st. [A] X=r-wt)
[B] O£ wW(t)EW
[C] w{t)=0 for X(t)< X(I)
whered isthe discount rate and r is the natural recharge rate of water. Equation [A] governs the

stock transition over time. Constraint [B] implies that at each instantaneous point in time thereis an

* The horsepower of the pumping equipment may also be an important determinant of capacity. In most semi-
arid regions, submersible pumps are used. Investments in such pumps, for all practical purposes, may aso be
regarded as sunk investments.



upper bound, W, on the amount of water that can be extracted. To allow for the possibility of
complete exhaustion, we assume that W >r. Constraint [C] ensures that there cannot be any extraction
whenever the stock of water falls below X(1).

Since the maximand in the above problem islinear in the control variable, w(t), the

equilibrium is a bang-bang solution. The optimal extraction path is given by the following most rapid

approach path (MRAP)
[ if X (t)> Max {X 3, X (1)}
[4] Ws(t):'i.r if X (t) = Max { X °, X (1)}
{0 it X (t) < Max { X S, X (1)}

where X is the steady state stock level given as

d C++/d 2% + 4d cpr
- 2 p

[5] X3

Given this solution to the second-stage problem, in the first-stage the sole owner chooses the
level of sunk investment in the depth of the well such that the marginal costs of investment equal the
discounted marginal benefits from extraction. Let us assume that the initial stock level is greater than
X®. Let 1° bethe level of investment that correspondsto X®in [1]. From (4) it is clear that along the
optimal path, the agent does not extract any water whenever the stock level falls below X°. Thusthe
marginal benefits from investing beyond I° are zero. However, for any level of investment I< I°, the
total benefit from investing is given by

(X0) g v

N cw o . & cr 0
[6] B(I)= O ¢pw- —.ve*dt+ O ¢pr- -, —~e®dt
o © X))o L X(De

where S(X (1)) denotes the time at which the stock attains the lower bound X . To ease notation, let
S1)= s(X(l)). Differentiating [7] with respect to |, gives the marginal benefit from investing at any

level I< I°as

5 The difference between the water level in the well and the level to which it has to be lifted
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In the appendix, we show that B’ (1) is strictly positive and downward sloping for 1< 15,
Figure 2 shows the marginal benefit and cost curves of investment. The agent chooses the

level of investment that equates the marginal cost of investment (f ) with the marginal benefit of
investment. If f £ f S, then the agent invests I° and drives the stock to the steady state level, X°. On

the other hand, if f >f °, then the optimal choice of investment is less than I° and given by the

intersection of the margina benefit and cost curvesin figure 2. In this case, the steady state stock
level islessthan X°. Given that the well owner isa price taker in the market for water, this solution

also defines the social optimum in this setting.

I1. Homogenous Agents
In this section we consider the case of two agents (i =1, 2) who extract from a common groundwater
aquifer and are homogenous in all respects. As opposed to the case of sole-ownership, in atwo-person
case, the two-stage model is much more complex because of strategic behavior. For easein
exposition, we have divided this section in two parts. In the first part, we present the Nash equilibrium
solution for the case usually modeled in the groundwater literature where only the extraction decision
(and not the capacity choice decision) is taken into account (see for instance, Provencher and Burt,
1993; Gisser, 1983). Such a setting is useful in situations where either capacity can be quickly
adjusted to any changes in extraction needs and/or costs of setting up capacity are negligible and so
capacity does not represent arigid constraint. In second part of this section we relax this assumption

and present the two-stage model with capacity and extraction choice.

[11.1 Extraction choice with no capacity constraints

The optimization problem for agent 1 here is given as (the case of agent 2 is symmetric)



[8] Max gm0 - ) ey

WO o X(t)
st [A] X =r1- w(t)- w,(t)
[B] OEw, () EW

Solving the two best response functions for a Nash symmetric solution we get a result analogous to the

sole-ownership case. The groundwater stock is driven to X" by the most rapid approach path (MRAP)

given as
}_v_v if X(t)> XN
[9] wh ={r/2 if X(t)=x"
+0 it X(t) < X"
where
- " _dc+\/d202+2d pcr

2d p

On comparing equations [5] and [10] it is clear that X < X°. Thisisthe standard result of over-
exploitation when agents do not fully internalize the externalities generated in the use of the commons.

The gross payoffs from extraction in this case are given as

s(xN) o ¥ "

_ & _  CW 0 4 \ agr Cr Q.qt
[11 pU= W H Gy B TG
0 XOgp D82 2X'g

where s(X) is the time at which the stock reaches the steady state level given as X" in (10).

I11.2 Two stage game with capacity and extraction choice
Now let us consider the case where agents have to choose the level of investment in capacity

prior to extraction. Aswe show below, agents may now choose investment levels strategically in

10



order to force exit or deter entry of the other agent.® In order to keep the analysis fairly general here,
we assume that agents choose investment levels sequentially, with the choice of moves being
endogenous to the game. In a game with symmetric agents this implies that agents move
simultaneously.” It would be helpful to categorize the set J of options available to each agent as: J =
{D, A, E} where D stands for drive out, A for accommodate and E for exit. For agent 1 to be able
drive out agent 2, two conditions must be satisfied. First, in stage 1 of the game, agent 1 must invest

more than he expects agent 2 to invest, i.e. I, > |,. Second, in stage 2, agent 1 must drive down the
stock to alevel beyond X (I,) in finite time. By definition, adoption of the drive out option by any

agent implies forced exit for the other agent and together these imply that there exists atime period ty,
such that for all t > ty, there is only one agent in the game. As opposed to this, the strategy to
accommodate implies that there are two agents in the game for all t. For accommodation to work,
both players must invest at the same level. Finaly, note that each agent always has the option of
exiting out of the game in finite time, irrespective of what the other agent does.

Given this setting, we solve for the Cournot-Nash equilibrium defined as

DEFINITION 1: A strategy set (14, 12, Wi, W, ) is a Cournot-Nash (CN) equilibrium if the net discounted
payoff to agent i (1 =1,2), fromchoosing (I;, w;) is maximized given the equilibrium strategy of the

other agent.

To solve for the CN equilibrium recall that X was found to be the Nash steady stock level in the
absence of capacity constraints. Let I denote the level of investment in capacity that corresponds to
XN from[1]. Notethat (I, 1) cannot be the equilibrium investment strategy in the presence of
capacity constraints. Thisis because each agent by investing a small amount, e , above I can drive

out the other agent and get larger profits. To examine when such a drive-out strategy would be

® A number of papersin the industrial organization literature have examined the choice of capacity as an entry
deterrent strategy (Tirole, 1988 provides asurvey). The resultsin these papers have been found to be quite
sensitive to the assumptions made regarding the timing of the moves, i.e. whether there is simultaneity in choice
of capacities or an exogenously given sequentiality with one player (incumbent) having a first mover advantage,
possibly due to technological lead.

11



chosen, we lay out the extraction paths and the associated gross payoffs when agent 1 pursues the
drive out option under the expectation that agent 2 would invest I,.

Note that if agent 1 expects |, to be less than I° (the optimal steady state investment level
under sole-ownership) then he would choose to invest 1°and drive down the stock to X°. Thiscaseis
similar to the sole ownership case. The more interesting case arises when agent 1 expects I, to be
greater than |°. Thisis the case we consider in the rest of this section.

Under the drive out strategy, agent 1's extraction path in the second stage is given as

W if  X()> X(l,+e)
if  X(t)=X(l,+e)

i
!
r

1o it X(t)< X(I,+€)

[12] w =

The gross payoff to agent 1 from extracting along this path can be written as

S(1,+e) __ ¥
\ — CVV - dt bN CI' -dt
[13] p. = (pW- ——)e “dt + (pr- —————)e 'dt
t= 0 X (1) o2, XA, ve)

As one would expect, this drive out payoff received by agent 1 is a decreasing function of |, (proof in
the appendix).
By definition, under the above drive out strategy, agent 2 is forced to exit and his extraction

path is given as

14 eI EX®2 X (1)
2 %0

it X(t)< X(1,)

The gross payoff to agent 2 from extracting along this path can be written as

S(l,) .
& cw O

15 S(1,)= OEPW- — = dt

[19] P, (1,) ? pw X0 5

" This is because when agents are symmetric they would have the same preferences over the choice of moves.
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Note that the above payoff isafunction of 1,. Under complete information, agent 2 knows that he
would be driven out in the second stage. Therefore, given f , he chooses investment optimally in the
first stage. For f >0, the optimal net exit payoff is given as

S(I

) e -
[16] PE(f)— pw . W G st f 1E where
X(t) g
su)ae )
E =zargmaxi O¢ w-—-e tdt- f I
omes P Xwe E

The above net exit payoff has a special significance in this setting. Each agent can always guarantee

for himself this minimum payoff by exiting out of the extraction game in finite time, irrespective of

the actions of the other agent. Thus P E(f ) represents the reservation payoff in this setting.

Definition 2: A strategy (I;, w) for agent i (i=1, 2) isindividually rational if the net payoff to agent i

fromthis strategy is at least as large as his net exit payoff.

As opposed to driving out agent 2, agent 1 can also accommodate him. If both agents invest

IN and accommodate each other then the gross payoffs are given by p Min[11]. Asargued earlier, this

is an unstable equilibrium since p "< p° (1= 1) and so agent 1 prefers to drive out agent 2 if the

|atter is expected to invest IN. However, note that since plD (I,) isadecreasing function of |, there

exists an IN® > IN such that for I, = IN®
[17] p (I, =1")=p"

Proposition 1: In the homogenous case with capacity constraints, if it isindividually rational for both

players to accommodate each other and invest IN® then
a) (I"° I"°) are the Cournot-Nash equilibrium investment levels,

b) X"isthe steady state stock level.

13



Proof: To check if (IN°, IN°) are the equilibrium investment levels consider what happensiif thereisa
one step unilateral deviation by agent 1 to I"® +e (where e > 0), in order to drive out agent 2. Given
the shapeof p ° (1), it followsthat p (1™ +e)<p °(1 ™) =p ™. Hencethis deviation is not

NC NC NC
I I™-e <l

profitable. Now consider a unilateral deviation by agent 1to 1™~ -e. Since , agent 1 cannot
drive out agent 2. Agent 2, however, would now find it optimal to drive out agent 1. Since the net
exit payoff islower than the payoffs from accommodation at I, this deviation is also not profitable
for agent 1.

When both agents accommodate each other, the steady state stock level is given by X" in (17).
Recall that XM was shown to be the steady state stock level in the case without capacity constraints
also. However, the difference in the case with capacity constraints is that strategic behavior leads both

agents to invest more, since I"> .

Corollaryl: Inthe homogenous case with capacity constraints, both agents invest in excess capacity.

v Heter ogeneous Agents
In this section we assume that agents are homogenous in all respects except in terms of the cost of
credit they face. Let the cost of credit be denoted by f 1 and f ,, respectively, for the two agents. To
begin with, let us examine how the net payoffs (under the different strategies defined in the previous
section), vary with f ; (i =1, 2). Under the strategy of accommodating by investing I, the net

payoffs are given as

[18] PAE )= p - I™f,
P A(f
Note that .”T(') =- I "°. Onthe other hand, the net exit payoffs are givenas P © (f ;) in[16],
. Prd)_ e
and it follows from the envelope theorem that T—- I

14



Note that I"“is not afunction of f ;(see[17]), but | © is adecreasing function of f (from
[16]). Thisimpliesthat starting from low levelsof f | (where PA(f ) >P F(f ))as f ;increases

P A(f,) falsat aconstant rate while P (f ;) fallsat adecreasing rate (see figure 3). Thisleadsto

the following lemma

Lemma 1: Thereexistsa f ° 0, such that when f ;> f © the net exit payoffs for agent i exceed his

net payoffs from accommodation.

Now let us examine how the steady state stock and investment levels vary, as inequality amongst
agentsincreases. We define inequality as the difference betweenf ; and f »,, and model increasesin
inequality by amean preserving spread given by decreasing f * and increasing f ? such that (f * + f %)/2
=f. Further weassumethat f < f °, sothat when agents are homogenous, the net payoffs from
accommodation are higher than the net exit payoffs. Lemma 1 then implies that for high enough
levels of inequality, such that f ,> f ° agent 2 may find it optimal to exit out of the game. In the

following two propositions we examine how changes in inequality affect investment and steady state

stock levels.

Proposition 2: Sarting from the level of equality, for small mean preserving deviations in marginal

costs, such thatf <f ,<f °, the two agents continue to accommodate each other. The Cournot-Nash

equilibrium investment levels are (1N, 1"°) and the steady state stock level is X".

Proof: Since accommodation isindividually rational for both players, the proof follows directly from

proposition 1.

Proposition 3: For large mean preserving deviationsin marginal costs, suchthat f ;< f %but f ,>
f 0

a) The Cournot-Nash equilibriuminvestment levels are given as [max(l ®, I £ +e), 17].

15



b) The steady state stock level isgiven by min[ X °, X (15 +¢e}].
Proof: In this case where agents are very heterogeneous, the sequentiality of moves becomes
important in the following way. First, consider what happens if agent 2 movesfirst. Since the option

NC
I

of accommodation by investing at 1™~ is no longer individually rational for agent 2, he can either drive

out agent 1 or exit out of the game himself. Since agent 1 faces alower margina cost of investment
and invests after observing agent 2, drive out by agent 2 is not afeasible option here. Agent 2’'sonly
option is to exit and thus he chooses to invest | 2E to maximize his net exit payoff. Given this, agent 1
1515

choosesto invest [max ( +€)]. Next consider what happens if agent 1 hasto move first. If agent

linvests | 2E +e, then agent 2 having observed agent 1's investment, will invest alittle more than him
and drive him out. To avoid being driven out, agent 1 will have to invest at alevel where agent 2's net
payoff from driving out agent 1 equals his net payoff from exit. Denote this level of investment by

|,,. Thusagent 1 will invest |,+ewhereas agent 2 will invest | 5. Notethat 1,> |5 and sothe
payoffs for agent 1 when he movesfirst are (weakly) lower than his payoffs from the game where
agent 2 movesfirst. However, agent 2’ s payoffs are the same under both specifications of the game.

Thus, agent 1 weakly prefers to move second while agent 2 isindifferent. Therefore, it follows that if

the sequentiality of moves is endogenous then agent 2 will move first. The equilibrium investment

levels will be given as [max(l °, | +e€), | ] and the steady state stock level will be given by
min[X®, X(I5 +e)].

V. Inequality, Investment and Steady State Stock L evels
In this section we use the results from the previous section to map a relationship between inequality on
the one hand, and investment and steady state stock levels on the other hand. In figures 4a and 4b, the

margina cost of investment of agent 2, denoted as f , is shown along the horizontal axis. The origin
represents the point of perfect equality at which f ,=f . Asone movesto the right along this axis,

f ,increaseswhile f ; decreases, preserving themeanat f . Thus a movement to the right along this
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axis represents increasing levels of inequality. The aggregate investment levels and the steady state
stock levels are shown along the vertical axisin figures 4a and 4b, respectively.

In asmall neighborhood around the origin where f , £ f °, itisindividually rational for each
player to invest IN® and accommodate the other player (proposition 2). So the aggregate investment
levels and the steady state stock levels are the same as in the case of perfect equality. We label this as
the range of low inequality in figure 4. As f , increases further suchthat f ,>f °, itisno longer

individually rational for player 2 to invest IN® and stay in the game indefinitely (lemma 1). It follows

from proposition 3 that in a small neighborhood to theright of f , =f % agent 2 invests I2E andis

driven out by agent 1 who invests 1) + e and drivesdown thestock to X (IS +e) . Thusthe
steady state stock level aswell asthe investment levels are lower in this neighborhood than under
perfect equality.

Asinequality increases further, aggregate investment falls monotonically since | 2E isa
decreasing function of f ,. The relationship between steady state stock level and inequality is
somewhat more complex. Note that the steady state stock level fallssharply at f ,=f °and
thereafter increases asinequality increases. For the case where f ,> f ©, we can distinguish between
the following ranges for increasing values of f ,(seefigure 4).

1) Moderate inequality: where aggregate investment level is ( 215 + e ) < 21"° and the steady state
stock level is X (15 +e), with X (15 +e) <X¥ < X5

2) High Inequality: where aggregate investment level is ( 215 + e ) < 21" and the steady state stock
levelis X (15 +e) ,with X"< X(15 +e) < X%

3) Very High Inequality: where aggregate investment level is (15 +1%) < 21" and the steady state
stock level is X,

Contrary to the conclusion reached by Baland and Platteau (1997), we find that the

relationship between inequality and steady state stock level is non-monotonic. In particular, starting
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from perfect equality, as inequality increases, there is arange (which we refer to as the range of
moderate inequality) where steady state stock level islower than the level under perfect equality. On
the other hand, in the low and high ranges of inequality, the steady stock level is at least as large as
that under perfect equality. Inthe very high inequality range, steady state stock level is at the first best

level.

V. Summary and Conclusions

Previous work on common pool resources has generally assumed agents to be homogenous. In this
paper we have focused on one aspect of heterogeneity, namely that arising from differential access to
an important input (credit) used in extraction from the CPR. Access to credit becomes particularly
important in CPR contexts where considerable sunk investment is needed prior to extraction, and
where this investment influences the nature and extent of extraction. Common examples are:
groundwater pumping and deep-sea fishing. In modeling such cases, the following considerations
become important. First, the choice of both investment levels and the extraction path are critical.
Second, since agents impose externalities on each other in extraction, and prior investment levels
influence the extent of these externdlities, agents are likely to strategicaly choose investment levels.
Third, the timing of moves is important and so a one-stage game is inadequate to capture the
complexity of the strategic situation here.

Keeping these considerations in mind, we developed a two-stage model where agents
choose the level of sunk investment in capacity and subsequently, the extraction path over the infinite
horizon. Sunk investments served as a commitment device in this model to deter entry or force exit.
Since the cost of credit influences these investment choices, heterogeneity amongst agents in terms of
their access to credit affects both capacity and extraction choices. Using this model we find that
contrary to results derived in previous studies based on a static setting, the relation between inequality
and efficiency in resource extraction is non-monotonic. The steady state resource stock is closest to

the socially optimal level when either inequality is very high or very low. For moderate levels of

18



inequality, we show that the resource stock may in fact be lower than that under perfect equality.
Further, we show that because of the strategic role of investments in this setting, agents invest in
excess capacity in general, except when inequality is high.

In many CPR contexts, such as that of groundwater in semi-arid India, direct regulation of
extraction rates is generally regarded as infeasible in the short run. An important indirect policy tool
here is the administrative distribution of important inputs, such as credit used in groundwater
extraction. Baland and Platteau have argued that in such cases unequal distribution of credit would
lead to higher efficiency in use of commons. However, policies favoring a highly unequal distribution
of credit may not be politically feasible. The contribution of our paper lies in showing that moderate
levels of inequality in distribution may, in fact, lower resource stocks even below that under equal
distribution.

Our basic model can be extended in several directions. An important extension would be to
examine whether our result change qualitatively when there are more than two agents. Previous
papers that have modeled only extraction choice and not capacity choice (such as Baland and Platteau,
1997; Dayton-Johnson and Bardhan, 1996) found the results to be qualitatively similar in amultiple
agent setting. 1n the CPR literature there has also been alot of interest in examining what happens
when the product from extraction of the commons is sold in an imperfectly competitive market
(Corneset al,. 1986). In our model, since we assumed agents to be price takers, it followed that
extraction is a its optimal level when there is a single agent extracting from the aquifer. However,
when this agent also holds market power then there islikely to be over-conservation of the resource
and optimality would require more than one agent. The strategic effects of investment are likely to be

much more complex in such a setting.
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Appendix

1) Proof: Under sole ownership, total benefits from investment are a strictly positive and concave
function of investment for I<I°,

For 1<15, the total benefits are given by

N & cw 0 & c 0
TB() = A GPW- —— e dt+ ) Epr- ——=e dt
00 X(t)ﬂ 3(1?)) l(l)ﬂ
mB(l) _ _ & OW O i xay Is(X(1)  TX(1)
g - MBO = 8P Saee UK
) a':‘pr ) ige-a‘s( xay JIs(X(1)) TX(1) + JX(1) o8 X(1)
g X(Ng > moaxi "
- (V_V- I’)ep- Lge—és( X(1) yﬂs(é(l)) yﬂﬁ(l) + cr yﬂl(l)e.as (X(1)
g X(Ng > 1 oaxim N
_IXA(1) a0 gu))é—_ £ C QﬂS(L(I)) 4+ 9 u
m ¢ &P xop () axim

For 1<15, w(t) =W for all t, therefore

MO _, & p X0 _ 1

it 1X(1) w-r
_ 1X() -ds(gu))(:a cr x c &
Thus, MB(l) = —*¢e - - — <
- 0 L m gp l(”%

To check the sign of MB(l) note that ﬂﬁ‘m(l ) <0(from [1]), therefore MB(l) >0 if

c cr
- >
X(1)  dX2(1)

dc+4d?c® +4dper o
P X(1)> =X

2pd

p

For 1<1°, we know that X (1) > X S and so the above condition is satisfied.
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Now consider the sign of ﬂME:(I)

MB(1) _ e‘ITZX(l)
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Given the assumptions regarding X(1)in (1) it follows that IMB()

2) Proof: plD is a decreasing function of 1, for 1,>1°,
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In the two-person case,

0] =r- 2w
It
o IsX() 1
1X(1) 2w-r
Therefore,
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X(I P
Note that ﬂ—f(z) <0from[1], therefore.”pl—l <0 if the following condition holds

2 2

cr >¢ae\Tv-rcjaep_ c 0
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Note that < 1, therefore the above condition would hold if

2W-r

cr e c O s s
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Note that for the case being considered, |, > I® and so the above condition is satisfied.
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Figure 1: Schematic diagram of groundwater aquifer depicting the lift AB
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Figure 2: Marginal benefit and costs of investment under sole-ownership
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Figure 4: Effect of Inequality on Investment and Steady State Stock



