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AGRICULTURE AND THE ENVIRONMENT 

1.  Introduction 

 Agriculture provides a wide variety of environmental amenities and disamenities.  

On the positive side, farms provide open space and scenery.  On the negative side, 

agriculture is a major contributor to numerous environmental problems.  Nitrate and 

pesticide runoff impair drinking water quality and degrade habitat for aquatic organisms 

including fish, affecting commercial fisheries and recreational uses of estuaries, lakes, 

and streams.  Bacterial contamination from animal wastes impairs drinking water quality 

and contaminates shellfish.  Odor from concentrated livestock facilities worsens the 

quality of life in nearby residential areas.  Erosion-induced sedimentation of waterways 

increases drinking water treatment costs and accelerates the need for dredging to maintain 

navigability.  Pesticide exposure causes both acute and chronic illness among farmers and 

farm workers, while pesticide residues on foods may also threaten human health.  

Ecological damage from agriculture includes kills of fish, birds, animals, and 

invertebrates from pesticides and, most important, habitat loss from conversion of 

wetlands and grasslands.  Heavy metals like selenium and arsenic in drainage water have 

been implicated in wildlife kills and reproductive problems and can pose hazards to 

human health.  Negative externalities also occur within agriculture.  Salinization of rivers 

by irrigation runoff damages crop production in downstream areas.  Upslope irrigation 

may cause drainage problems in downslope areas.  Pesticide drift kills bees and thus 

impairs orchard pollination. 

 These problems have spawned a large, wide-ranging literature exploring efficient 

and equitable policy design.  This chapter reviews some of the major developments in 
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that literature, concentrating on the portion that addresses the major features 

distinguishing agriculture from other industries. 

 We begin by considering the size, scope, and origins of environmental problems 

in agriculture.  Agriculture involves extraction of renewable resources under naturally 

occurring conditions.  Agricultural productivity has traditionally depended on the natural 

resource base of agriculture, giving farmers economic incentives for conserving that 

resource base.  Protection of environmental quality has historically been a side effect of 

those conservation efforts.  These economic incentives for resource conservation have 

traditionally been referred to as “stewardship.”  Section 2 explores the implications of 

stewardship for environmental policy. 

The resource base of agriculture varies substantially both across growing regions 

and across farms and fields within growing regions.  As a result, both agricultural 

productivity and environmental quality exhibit significant heterogeneity.  Section 3 

explores the implications of heterogeneity for environmental policy design. 

As noted above, agricultural production occurs largely under naturally occurring 

conditions.  Thus, stochastic factors exert significant influence on both agricultural 

productivity and environmental quality.  Section 4 explores the implications of 

uncertainty for environmental policy design. 

 For millennia, agriculture has been central to human existence.  The irreducible 

human need for food has led governments in virtually all countries to adopt policies 

relating specifically to the agricultural sector.  Environmental policies aimed at 

agriculture operate in combination with these farm-sector policies.  Section 5 explores 

interactions between environmental and agricultural policies. 
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 Finally, Section 6 sums up the major lessons of this literature and highlights 

topics of special interest for further research. 

2. Agriculture, Stewardship, and the Environment 

Farming is, at bottom, a resource extraction industry.  Both crop and livestock 

production involve harvesting biota, that is, renewable natural resources produced by 

biological processes.  Both utilize as intermediate inputs a variety of natural resources, 

such as soils, water, genetic material, non-crop plant life, and naturally occurring fauna 

that mitigate damage caused by pest species.  These natural resources may 

simultaneously influence environmental spillovers from agricultural production like 

water pollution, pesticide poisonings, or scenic amenities. 

The farm environment has also traditionally been an important source of direct 

consumption goods for farmers and their families.  Hunting and fishing have historically 

provided significant shares of farmers’ diets (and continue to do so in many developing 

countries).  Groundwater and local streams can be major sources of drinking water.  

Protecting wildlife habitat, water quality, and other aspects of environmental quality at 

the local level can thus be equivalent to protecting farmers’ standard of living. 

Until recently, agriculture was considered a clean industry, largely because 

farmers’ well-being depended on the resource base of agriculture and on local 

environmental quality.  Farmers were thought to be stewards of both in their own self-

interest.  Even today, stewardship is often invoked as a solution to environmental 

problems in agriculture, and attempts to popularize more environment-friendly farming 

practices remain the major form of environmental policy in agriculture, at least in 

developed countries. 
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In this section, we consider stewardship as a means of dealing with environmental 

problems.  We begin by developing a formal model of the market failures underlying 

these environmental problems.  We then use the model to formalize the notion of 

stewardship.  Finally, we consider the empirical evidence on the strength of these 

stewardship incentives and discuss the relationship between stewardship and technical 

change.  The section as a whole addresses some of the central questions arising in 

discussions of sustainable agriculture, e.g., the extent to which farmers have incentives 

for protecting environmental quality voluntarily and how those incentives are influenced 

by technical change. 

2.1 Agriculture and Environment: Theory 

We begin with two formal models for characterizing the market failures 

underlying environmental problems in agriculture.  The first is an output-oriented model 

in which the natural resource base enters only implicitly.  The second is an input-oriented 

model that can incorporate those resources explicitly. 

Overall, environmental spillovers are perhaps best conceptualized as arising from 

a multiple-output production system in which agricultural production and environmental 

quality are produced simultaneously from a given vector of inputs.  Let y be a vector of 

agricultural products, q be a vector of environmental impacts, and x be a vector of inputs.  

Agricultural technology is then a set T = {(y,q,x): x can produce (y,q)}. 

The output-oriented model represents this technology using a joint cost function 

for agricultural output and environmental quality C(y,q,w) = min{wx: (y,q,x) ∈ T}, 

where w is a vector of input prices.  Let U(y,q) represent society’s gross benefit from the 

consumption of agricultural output and environmental quality.  We assume that these 
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benefits are strongly separable from other forms of consumption or, equivalently, that the 

agricultural sector accounts for a share of the overall economy sufficiently small that 

income effects are negligible.  Optimal joint production of agricultural products and 

environmental quality is found by choosing (y,q) to maximize net benefits U(y,q) – 

C(y,q,w).  The necessary conditions are 

Uy(y,q) – Cy(y,q,w) = 0 

Uq(y,q) – Cq(y,q,w) = 0, 

i.e., the marginal benefits of agricultural output and environmental quality should be 

equated to their marginal costs.  (Subscripts denote partial derivatives.) 

 If market (inverse) demands for agricultural output and environmental quality 

equal Uy(y,q) and Uq(y,q), respectively, then perfectly competitive markets will generate 

the socially efficient levels of agricultural output and environmental quality in 

equilibrium.  But in most cases, environmental quality problems arise in agriculture 

because effective market demand for environmental quality in agriculture is incomplete 

or lacking.  For example, farmers are not required to pay for disposal of sediment, 

nutrients, or pesticides into surface or ground waters.  Similarly, farmers cannot charge 

for the open space, greenery, and scenic views their farms provide for neighboring 

residents and for passersby.  Both the environmental resources farmers provide and those 

they use are thus subject to open access exploitation.  At bottom, the lack of markets for 

these environmental resources is due to the extreme difficulty—or even downright 

impossibility—of establishing and enforcing clear property rights.  (For a more complete 

discussion of property rights issues see Bromley 1991.)  Most scenic amenities from 

agriculture, for example, are public goods.  The consumption of farm scenery is non-
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exclusive and non-rival.  Moreover, since the marginal cost of providing scenery to an 

additional consumer is minimal, leaving these scenic amenities unpriced can be efficient 

at the margin.  But leaving such amenities unpriced fails to provide farmers with 

incentives to forego development of their land, even when doing so is in the public 

interest.  Open access occurs in water pollution from agricultural emissions of nutrients, 

sediment, or pesticides for a somewhat different reason.  Emissions of agricultural 

pollutants are diffuse and enter water bodies at numerous different points.  Furthermore, 

it is difficult to distinguish agricultural emissions of nutrients and sediments from those 

that occur naturally.  It is impossible to restrict access to these water bodies, and hence 

impossible to levy charges for access to them. 

In the absence of markets for environmental quality, farmers tend to treat it as 

freely disposable.  In an unregulated market, the joint production of agricultural output 

and environmental quality will thus be characterized by the conditions 

Uy(y,q) – Cy(y,q,w) = 0 

Cq(y,q,w) = 0, 

which imply too much agricultural output and too little environmental quality.  In other 

words, the level of agricultural output generated by competitive markets exceeds the 

socially optimal level, while the level of environmental quality generated by competitive 

markets falls short of the socially optimal level. 

 In many cases, environmental effects of agriculture are associated with the use of 

one or more specific inputs, such as fertilizers or pesticides in the case of water pollution 

or farmland in the case of scenic amenities.  Let z be the specific input(s) of interest and v 

be the associated price(s).  Let e(z) represent the environmental effects of input use, 
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where ez > 0.  Let the agricultural output technology be represented by a revenue function 

R(p,w,z) = maxx,y{py – wx: (y,x,z) ∈ T).  Note that decreasing marginal productivity of z 

implies increasing marginal income foregone due to reductions in z, so that this 

formulation is equivalent to one characterized by increasing marginal cost of producing 

environmental quality.  Let S(p,e(z)) be the social surplus accruing when the price of 

agricultural output is p and the level of environmental quality is e(z).  Under standard 

assumptions, Sp = -y, that is, the derivative of S with respect to p equals the negative of 

demand for agricultural output, and Spp = -∂y/∂p > 0.  Se is negative for adverse 

environmental effects and positive for beneficial ones. 

The socially optimal usage level(s) of z and agricultural output price(s) p in this 

case maximize net social surplus S(p,e(z)) + R(p,w,z) – vz and is characterized by the 

necessary conditions 

Sp(p,e(z)) + Rp(p,w,z) = 0 

Se(p,e(z)) ez + Rz(p,w,z) – v = 0. 

The first condition is the market clearing condition that the quantity of agricultural output 

demanded (-Sp) equals the quantity supplied (Rp).  The second condition says that the 

value of the marginal product of z (Rz) should equal its unit price (v) plus (minus) the 

marginal social cost (benefit) of environmental effects arising from use of the input(s).  

The marginal social cost of z equals the marginal social willingness to pay for 

environmental quality (Se) times the marginal amount of environmental quality produced 

by z, (ez).  If markets for environmental quality are lacking, profit-maximizing farmers 

will equate the value of the marginal product of z with its unit price, leading to overuse of 
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inputs that create negative environmental effects and underuse of inputs that create 

positive environmental effects. 

2.2 Stewardship Incentives in Agriculture 

 Even when explicit markets for environmental quality are lacking, implicit 

linkages between agricultural productivity and environmental quality may give farmers 

incentives to provide some environmental protection.  Policy discussions have 

traditionally referred to these incentives under the rubric of stewardship.  On the 

production side, these incentives arise via resources that simultaneously improve both 

agricultural productivity and environmental quality.  The canonical example is soil 

conservation: Preventing erosion simultaneously preserves long-run land productivity and 

prevents sedimentation and nutrient pollution of waterways.  On the consumption side, 

resources may be significant sources of consumption items for farm families: Wildlife 

habitat allows for hunting while good water quality provides safe drinking water, fishing, 

and recreational opportunities. 

These examples can be modeled as forms of demand for environmental quality.  

Using the input-oriented model, divide social surplus from consumption into three 

components: (1) off-farm surplus from the consumption of agricultural output, CS(p), (2) 

off-farm damage from use of the input of interest, D(e(z)), and (3) on-farm surplus from 

consumption of agricultural output and goods associated with the resource base of 

agriculture, L(p,e(z)), Lp > 0, Le < 0.  In the case of soil erosion, for example, z represents 

the erosion rate, e(z) denotes the long-run reduction in soil depth associated with erosion 

rate z, and D(e(z)) represents off-farm damage from sedimentation and nutrient pollution 

of waterways.  Assuming stationary prices for agricultural output, the value of 
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agricultural productivity in the future can be written as L(p,e(z)).  When markets for 

agricultural land are well developed, L(p,e(z)) equals the price of farmland (Burt 1981, 

McConnell 1983).  In the case of drinking water quality, z might represent fertilizers or 

pesticides and e(z) the corresponding concentration in well or stream water, while 

L(p,e(z)) represents farm families’ surplus from consumption.  In the case of pesticides 

and farmer health, z would represent the toxicity, frequency of application, and/or 

pesticide application rate, e(z) the corresponding applicator exposure, and L(p,e(z)) the 

farm household’s combined demand for agricultural output and health status. 

In the absence of explicit markets for environmental quality, the equilibrium is 

characterized by the conditions 

CSp + Lp + Rp = 0 

Leez + Rz – v = 0. 

Farmers’ unit cost of using the input z, v-Leez, exceeds the market price v by an amount 

equal to the marginal reduction in land value.  It is conceivable that these incentives for 

stewardship are strong enough to replicate the social optimum.  The social optimum is 

characterized by the conditions 

CSp + Lp + Rp = 0 

[Le – De]ez + Rz – v = 0. 

The social and private optima coincide if De(e(z)) = 0 at the profit-maximizing level of z, 

that is, if profit-maximizing off-farm damage remains below a threshold level (Shortle 

and Miranowski 1987). 

 Alternatively, incentives for stewardship may arise from complementarity 

between environmental quality and agricultural output in production (Cyq < 0) or in 
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consumption (Uyq > 0).  If environmental quality and agricultural output are complements 

in production, farmers will have an incentive to increase environmental quality as a 

means of lowering the marginal cost of agricultural output.  An example is altering 

pesticide use and other crop management practices to preserve naturally occurring 

beneficial insects.  If demand for agricultural output is greater when environmental 

quality is greater (environmental quality and agricultural output are complements in 

consumption), then there will likely exist equilibria in which improvements in 

environmental quality support increased agricultural production.  Organic food is perhaps 

the most familiar example.  In either case, farmers will not treat environmental quality as 

costless. 

2.2.1 Strength of Stewardship Incentives in Modern Agriculture  

The strength of these stewardship incentives depends on the level of on-farm 

demand for environmental quality and on the degree of complementarity between 

agricultural output and environmental quality in production and consumption.  These 

factors vary according to the type of environmental quality problem as well as across 

nations. 

Soil Conservation.  In theory, well-functioning land markets should provide 

farmers with sufficient incentives to conserve soil optimally in order to protect farm 

productivity optimally (Burt 1981; McConnell 1983), suggesting that stewardship 

incentives for soil conservation should be strong in developed countries.  Empirical 

evidence from the U.S. and Australia indicates that farm land prices do reflect both past 

erosion and erosion potential (see for example Miranowski and Hammes 1984; Ervin and 

Mill 1985; Gardner and Barrows 1985; King and Sinden 1988; Palmquist and Danielson 
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1989) and that farmers exert greater soil conservation effort on land more vulnerable to 

erosion (see for example Ervin and Ervin 1982; Saliba and Bromley 1986; Norris and 

Batie 1987; Gould, Saupe, and Klemme 1989).  In the U.S., productivity losses from 

erosion appear small.  For example, the Natural Resource Conservation Service of the 

U.S. Department of Agriculture estimates that in 1992, only 19 (14) percent of U.S. 

cropland suffered sheet and rill (wind) erosion at rates high enough to impair productivity 

in any degree, while only 2 percent suffered severe erosion of either type (Natural 

Resource Conservation Service 1994).  Simulation studies suggest erosion would reduce 

U.S. agricultural productivity only on the order of 3 to 4 percent over 100 years (Crosson 

1986). 

These measures appear insufficient to ensure adequate environmental quality, 

however.  According to the U.S. Environmental Protection Agency, siltation and 

nutrients from agriculture remain the principal sources of water pollution in the U.S. 

despite substantial growth in the use of conservation tillage and other soil conservation 

measures (Economic Research Service 1997).  To the best of current knowledge, off-farm 

damage from sedimentation and associated nutrient pollution in the U.S. is tens or 

hundreds of times greater than the value of erosion-induced productivity losses (Crosson 

1991, Ribaudo 1986). 

 About 16 percent of agricultural land in developing countries is estimated to have 

suffered serious degradation from erosion, waterlogging, and salinization, and soil 

degradation is believed to have caused significant declines in agricultural productivity in 

a number of countries (Scherr 1998).  Poorly operating credit markets and, in some 

countries, lack of clear property rights in land appear to be major impediments to 
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investment in land, including soil conservation.  Stewardship incentives for soil 

conservation thus appear to play less of a role in environmental protection in these 

countries than in developed countries.  Deininger and Feder discuss these issues 

elsewhere in this Handbook. 

Pesticides and Farmer/Worker Safety.  Pesticide poisonings from occupational 

exposures are not uncommon, even in developed countries, although severe cases are 

relatively rare.  In the U.S., for example, the incidence of reported cases of occupational 

exposure leading to clinically observable symptoms is about 200 per 100,000 workers.  

Occupational fatalities from pesticides, however, occur on average only once every few 

years (Levine 1991).  Farmers’ desire to avoid adverse health effects may be one factor in 

limiting occupational poisoning risk: One would expect informed farmers to take 

expected adverse health effects into account in making decisions about which pesticides 

to use, how often to apply those pesticides, pesticide application rates, and application 

methods.  The empirical evidence available to date indicates this motive plays some role.  

Hedonic studies indicate a negative correlation between acute mammalian toxicity and 

the prices of pesticides used on corn, cotton, sorghum, and soybeans (Beach and Carlson 

1993; Fernandez-Cornejo and Jans 1995).  U.S. apple growers were less likely to use 

pesticides with higher acute mammalian toxicity, while those using more toxic pesticides 

applied them at lower rates (Hubbell and Carlson 1998).  Corn and soybean growers in 

the mid-Atlantic with personal experience of adverse health effects from pesticides were 

more likely to use non-chemical pest control methods (Lichtenberg and Zimmerman 

1999a). 
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Farmers’ incentives for avoiding health effects from pesticide use appear less 

strong in developing countries.  For example, Antle and Pingali (1994) found that the 

opportunity cost of lost work time from pesticide poisonings among rice farmers in the 

Philippines exceeded the increased value of rice production due to pesticide use. 

Scenic Amenities, Wetlands Preservation, and Wildlife Habitat.  Farmers usually 

live on or near their farms, making local environmental quality an item of consumption.  

Farmers frequently engage in outdoor recreational activities like hunting, fishing, and 

hiking, giving them an incentive to preserve wildlife and scenery in their local area.  In 

these cases, farmers’ demand for environmental quality can make up most or all of 

society’s demand for environmental quality, so that farmers’ use of inputs that impair 

environmental quality could coincide with the social optimum. 

Several empirical studies have found that farmers who stated greater concern over 

environmental quality were more likely to use at least some farming practices that reduce 

runoff and erosion (Napier, Camboni, and Thraen 1986; Lynne, Shonkwiler, and Rola 

1988; Amacher and Feather 1997; Weaver 1996).  Lichtenberg and Zimmerman (1999b) 

found that mid-Atlantic farmers were willing to incur substantial extra pesticide costs on 

average in order to prevent pesticide leaching; concern for overall environmental quality 

rather than protection of human health appeared to be their principal motivation. 

Other empirical findings suggest that farmers’ demand for environmental quality 

may not be very strong.  Van Kooten and Schmitz (1992) find that modest payments were 

insufficient to induce many Canadian farmers to preserve prairie potholes for wildfowl 

habitat.  Weaver (1996) finds that Pennsylvania farmers who had adopted conservation 

practices in the past because it was the “right thing to do” currently exerted no greater 
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conservation effort than those who had not.  Beach and Carlson’s (1993) hedonic price 

study turned up equivocal evidence: Farmers appeared willing to pay more for corn 

herbicides with shorter half lives and greater soil adsorption, characteristics associated 

with a lower likelihood of leaching into groundwater, but also for herbicides with greater 

water solubility, which is associated with a higher likelihood of leaching.  Moreover, 

greater soil adsorption is associated with greater weed control as well as less leaching. 

Overall, then, the literature suggests that stewardship incentives do operate in 

agriculture, but also that they are unlikely to satisfy society’s overall demand for 

environmental quality from agriculture.  Measures that protect farm productivity 

adequately typically fail to suffice for protecting broader environmental quality.  

Farmers’ demand for environmental quality as a consumption good generally makes up 

only a small share of society’s total demand and is thus generally inadequate to ensure 

attainment of socially desirable levels of environmental quality. 

2.2.2 Technical Change, Farm Structure, and Stewardship 

Some have argued that the emergence of agriculture as a source of environmental 

quality problems is linked to forms of technical change that have attenuated the 

importance of stewardship incentives (see for example Strange 1988).  For example, the 

introduction of synthetic chemicals (fertilizers, pesticides) lowered the marginal value of 

the resource base of agriculture (soil fertility, natural populations of beneficials) and thus 

stewardship incentives.  Moreover, they may have changed the efficient structure of farm 

enterprises.  Strange (1988) and others have argued that, if the costs of environmental 

damage were fully internalized in farm decision making, smaller-scale joint 

crop/livestock production would be more profitable than larger-scale, specialized 
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“industrial” farming.  This idea is voiced frequently in the sustainable farming advocacy 

literature but has not been studied rigorously. 

It has also been argued that new technologies may be the best means of reducing 

environmental damage from agriculture.  Precision input application methods offer the 

greatest promise in this regard.  A materials balance perspective suggests that matching 

input application rates more closely to crop uptake rates simultaneously tends to reduce 

environmental damage from such inputs.  As Khanna and Zilberman (1996) point out, in 

most cases environmental damage is caused only by inputs that are not taken up by the 

crop or other organisms in the crop ecosystem. 

 One way to conceptualize improvements in matching application and crop 

ecosystem uptake rates is to use the distinction between applied and effective input use 

introduced by Caswell and Zilberman (1986).  In their model, effective input use hz is 

assumed to be proportional to applied input use z.  The constant of proportionality h may 

depend on such factors as water infiltration rates, slope, soil water-holding capacity, or 

soil nutrient stocks, and may be embodied in a specific delivery technology, e.g., low-

pressure irrigation systems.  Environmental damage is a function only of residual inputs 

[1-h]z.  Hanemann, Lichtenberg, and Zilberman (1989), Caswell, Lichtenberg, and 

Zilberman (1990), and Dinar and Letey (1991) use this conceptualization to investigate 

the potential for low-volume irrigation methods to mitigate drainage problems in irrigated 

agriculture.  They note that low-volume, pressurized delivery systems like drip can attain 

efficiencies as high as 95 percent, while gravity-based delivery systems typically are only 

about 60 percent efficient.  Switching from a gravity-based to a low-volume delivery 

system, then, can decrease effluent production by as much as 87.5 percent.  At the same 
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time, improved matching between ecosystem demand and input application rates may 

result in increased crop productivity.  For example, low-volume delivery systems tend to 

have higher yields because water delivery can be adjusted to match crop uptake rates 

more closely than is possible with gravity-based delivery systems.  Similarly, increased 

crop productivity has been a major benefit of California’s CIMIS evapotranspiration 

forecasting system (Cohen et al. 1998). 

 More generally, assume that crop production is a function of effective input use, 

which is itself an intermediate output s(z,h) produced by the input application rate z and 

the application efficiency h.  Assume also that agricultural emissions e(z,h) are increasing 

in the input application rate z but decreasing in application efficiency, i.e., ez > 0, eh < 0.  

Application efficiency can be increased at a unit cost I.  Increased application efficiency 

will result in reductions in input application rates if the two are complements, szh > 0.  

When effective input use hz is proportional to applied input use, application efficiency 

and application rates are complements when the elasticity of the marginal product of the 

effective input s is greater than one in absolute value (Caswell and Zilberman 1986).  

Socially optimal application efficiency and input application rates are given by 

pfs(h,z)sh(h,z) – I – De(e(z,h)eh(z,h)) = 0 

pfs(h,z)sz(h,z)  – v – De(e(z,h)ez(z,h)) = 0, 

while the farmer’s profit-maximizing application efficiency and input application rates 

are given by 

pfs(h,z)sh(h,z) – I = 0 

pfs(h,z)sz(h,z)  – v = 0. 



 17 

In the absence of government intervention, farmers will tend to underinvest in application 

efficiency h and over-apply the input z, so that environmental damage will be greater 

than socially optimal. 

Improvements in efficiency of this kind will tend to mitigate environmental 

damage on the intensive margin, that is, damage from emissions given existing 

cultivation patterns.  But improvements in efficiency may also have extensive margin 

effects, e.g., changes in cropping patterns.  For example, the principal impact of 

introducing low-volume irrigation in California was the expansion of fruit and nut 

cultivation onto hillsides (Caswell and Zilberman 1986, Green et al. 1996).  Irrigated crop 

production replaced dryland pasture, so that the introduction of a water-saving 

technology resulted in increased aggregate water demand.  Similarly, the main impact of 

introducing center-pivot irrigation in the northern High Plains was replacement of pasture 

by irrigated corn, resulting in increased risk of wind erosion (Lichtenberg 1989).  Thus, it 

is by no means certain that improved input application efficiency will improve 

environmental quality. 

2.3 Agriculture and the Environment: Empirical Evidence 

 Quantitative information about the extent of agriculture’s impacts on 

environmental quality is remarkably scant.  Even in developed countries like the U.S., 

most of this information is anecdotal.  In particular, there are few reliable quantitative 

estimates of how changes in agricultural production or practices affect environmental 

quality. 

 Most empirical studies of agriculture’s impacts on environmental quality use 

farm-level simulation models like the Universal Soil Loss Equation (USLE) for erosion 
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and sedimentation (see for example Jacobs and Timmons 1974; Taylor and Frohberg 

1977; Wade and Heady 1977; Batie and Sappington 1986; Ribaudo 1989; Ribaudo, 

Konyar, and Osborne 1994; Babcock et al. 1996) or the Erosion/Productivity Impact 

Calculator (EPIC) for groundwater (see for example Johnson, Adams, and Perry 1991; 

Mapp et al. 1994; Teague, Bernardo, and Mapp 1995; Helfand and House 1995).  

Inferences from such models are of limited value.  One reason is that there is not a simple 

monotonic relationship between emissions at the level of an individual field and impacts 

on environmental quality at the ambient scale with which policy is actually concerned.  

Fate and transport are typically non-linear and depend on space and time in complex 

ways, making extrapolation of field-level emissions to ambient pollutant concentrations 

quite complex.  Thus, while the USLE may be appropriate for describing movement of 

sediment from an individual field, it does not address sediment movement across fields 

into waterways and thus does not capture the relationship between agriculture and 

ambient pollution.  EPIC is similarly designed to model leaching of chemicals through 

the crop root zone, but addresses neither lateral movement into surface water nor deep 

percolation into groundwater.  The estimated costs of producing environmental quality 

appear to be quite sensitive to specification of these fate and transport relationships 

(Braden et al. 1989).  The relationship between pollutant emissions and environmental 

quality impacts is similarly complex.  The effects of pollutants are mediated by a variety 

of influences.  Environmental effects frequently exhibit thresholds, that is, concentrations 

of pollutants at or below which there are no environmental effects due to natural 

degradation and/or detoxification processes.  In these cases the relationship between 

emissions and environmental quality is not monotonic, so that models like EPIC or the 
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USLE are not even appropriate for measuring relative impacts of alternative policies.  For 

example, EPIC simulations may indicate that nitrate leaching from the root zone under 

one policy regime is twice that under another.  But under certain natural conditions (e.g., 

fields sufficiently far from surface water, intervening forested buffers, sufficiently small 

percolation), nitrate leached from the root zone may be completely removed before it 

reaches any body of water, and ambient pollution will be the same under both regimes. 

 A few studies to date have attempted to estimate agriculture/environment 

relationships statistically.  The most noteworthy come from interdisciplinary efforts to 

model health effects of pesticide use on rice in the Philippines (Antle and Pingali 1994; 

Pingali, Marquez, and Palis 1994) and on potatoes in Ecuador (Crissman, Cole, and 

Carpio 1994).  The Philippines project combined data on production (yield, pesticide use, 

use of other chemicals, family and hired labor, etc.) with data on health impairments 

collected by a medical team.  Pingali, Marquez, and Palis (1994) link health impairments 

with pesticide usage patterns.  Antle and Pingali (1994) develop a health impairment 

index that they link both to pesticide use and to the cost of rice production.  The Ecuador 

project combined production data with information on the incidence of pesticide 

poisonings (Crissman, Cole, and Carpio 1994). 

A few other studies have attempted to fit statistical relationships characterizing 

parts of the overall joint agricultural production/environmental quality technology.  

Anderson, Opaluch, and Sullivan (1985) obtained data on use of the insecticide aldicarb 

on potatoes and on concentrations of aldicarb in water in nearby wells.  They were able to 

use these data to estimate a spatial model of aldicarb leaching into shallow well water, 

but were unable to obtain information on crop yields that would permit estimation of a 
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link between well water contamination and potato productivity.  Huszar (1989) combined 

household survey data on expenditures attributable to dust with wind erosion rates 

derived from the Natural Resources Inventory to estimate costs of wind erosion, but did 

not link wind erosion rates with agricultural production.  Lichtenberg and Shapiro (1997) 

estimated a model linking nitrate concentrations in community water system wells with 

hydrological characteristics of the pertinent water-bearing formations and indicators of 

agricultural production (crop acreage and livestock numbers in the counties in which the 

wells were located) and other nitrate sources such as septic systems. 

 Other studies of agriculture/environment tradeoffs have used some form of 

detailed process modeling of agricultural production and environmental impacts, taking 

into account information from both crop and environmental sciences.  Information from 

these other disciplines in specifying and parameterizing these submodels can yield 

important qualitative insights for policy formulation.  For example, the impacts of 

pesticide use on farm worker safety are usually conceptualized in terms of the quantities 

of pesticides applied; that is, health damage from pesticides is typically modeled as a 

function H(x), where x indicates the total amount of pesticides applied (see for example 

Edwards and Langham 1976).  A process model developed by Lichtenberg, Spear, and 

Zilberman (1994), however, indicated that the timing of pesticide application relative to 

harvesting operations is a critical determinant of the risk of acute poisoning from 

exposure to the insecticide parathion on fruit trees. 

3. Heterogeneity 

 Because of its dependence on natural resources and natural production conditions, 

agriculture in most countries is heterogeneous.  Crop productivity (and thus crop choice), 
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farming practices, and input use patterns vary according to such factors as climate, 

topography, geology, and pest complexes.  Human variability (e.g., differences in human 

capital across farmers) also affect crop productivity and choice.  Environmental effects of 

agriculture vary in similar ways, partly because of variations in crop choice and 

cultivation methods and partly because heterogeneity in physical, chemical, and 

biological characteristics of the environment create differences in environmental fate and 

transport, exposure, and toxicity. 

 In this section, we explore the implications of this heterogeneity for efficient 

policy design.  We begin by developing a conceptual model of land allocation/crop 

choice in land market equilibrium in a heterogeneous industry.  We use this model to 

discuss the efficiency of the four kinds of policies used most frequently to address 

underprovision of environmental quality in agriculture: 

1. Requiring the use of so-called best management practices; 

2. Imposing restrictions on the use of specific inputs; 

3. Taxing inputs associated with environmental problems; and 

4. Subsidizing environmental quality measures. 

We then turn to issues of implementation.  We discuss the feasibility of implementing 

first-best policies for each of the major classes of environmental problems associated 

with agriculture.  We then turn to policy design in cases where heterogeneity is important 

but regulators either cannot observe it or cannot use the information they have.  We 

extend the basic model to encompass the design of second-best policies under hidden 

information (adverse selection).  We conclude with a discussion of the likely applicability 

of such second-best policies. 
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 The preceding list of policies has two obvious omissions: (1) taxes imposed on 

pollutant emissions (nitrogen runoff, pesticide leaching) rather than on inputs, and (2) 

pollution trading. 

Emissions taxes have been used little, if at all, in agriculture.  The United States 

has not used emissions taxes to address pollution problems generally, preferring direct 

regulation or, more recently, tradable permit systems.  Effluent charges have been used 

more widely in Europe for pollution problems, but appear to have been designed to raise 

revenue rather than to correct externalities (see for example Cropper and Oates, 1992).  

Belgium and the Netherlands levy taxes on surplus nutrients from manure and fertilizers, 

respectively (OECD 1994), but these levies are based on theoretical rather than measured 

surpluses and are thus imposed on anticipated average emissions rather than measured 

actual emissions.  Several features of agricultural pollution problems suggest that effluent 

taxes would be difficult to implement.  First, sources of agricultural emissions tend to be 

numerous, widely dispersed, and difficult to identify.  Second, emissions of pollutants 

like nitrogen or pesticides leached from fields or aerial pesticide drift are not readily 

observable and can be monitored only by installing expensive devices.  Third, 

heterogeneity of production conditions and biological, physical, and chemical factors 

influencing the effects of emissions on ambient environmental quality makes it difficult 

to rely on inferences from models in order to economize on monitoring stations.  As a 

result, monitoring emissions tends to be prohibitively costly, making emissions taxes 

unattractive in practice. 

Pollution trading or purchasing systems have been established formally for 

nonpoint source nutrient problems affecting a number of watersheds throughout the U.S.  
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Interest in these systems is growing even though few trades have occurred to date.  

Heterogeneity is, of course, a necessary condition for the desirability of emissions 

trading—without differences in the cost of pollution reduction, agents cannot realize 

gains from trade.  Pollution trading systems with free initial distribution of permits might 

be especially attractive in agriculture because such systems help mitigate the 

distributional effects of regulation, which tend to be pronounced in environmental 

policies relating to agriculture (Osteen and Kuchler 1987; Lichtenberg, Parker, and 

Zilberman 1988; Zilberman et al. 1991; Sunding 1996).  The broader environmental 

economics literature has discussed a variety of issues relating to the design of such 

systems, including definition of permits and establishing baselines, monitoring and 

enforcement, market structure (the number of participants), transaction costs, initial 

distribution of permits, and political-economic acceptability (see Stavins 1998 for an 

overview, and Letson (1992) or Crutchfield, Letson, and Malik (1994) for discussion in 

the context of point/nonpoint trading).  The infeasibility of monitoring emissions suggests 

that pollution trades would need to apply to inputs associated with environmental quality.   

Malik, Letson, and Crutchfield (1993) analyze trading between point and nonpoint 

sources theoretically in situations where nonpoint source emissions are random, but 

assume that emissions are observable.  Overall, the literature lacks analyses of the 

features that distinguish emissions trading in agricultural situations from other methods 

of pricing environmental quality such as taxes or subsidies.  In what follows, therefore, 

we treat pollution trading simply as a form of incentive. 

3.1 Efficiency of Alternative Policies in a Heterogeneous Industry 
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A version of the input-based model modified along the lines developed by Caswell 

and Zilberman (1986) and by Lichtenberg (1989) is useful for discussing the relative 

efficiency of these alternative policy instruments.  The basic model was introduced by 

Hochman and Zilberman (1977) as a tractable means of investigating pollution-

production tradeoffs.  Moffitt, Just, and Zilberman (1978), Hochman, Zilberman, and Just 

(1977a, 1977b), and Lichtenberg and Zilberman (1989) have applied it to problems of 

dairy waste management in two California river basins.  Caswell and Zilberman (1986) 

and Lichtenberg (1989) used it to study the effects of land quality on irrigation 

technology choice and on cropping patterns.  Caswell, Lichtenberg, and Zilberman 

(1990), Hanemann, Lichtenberg, and Zilberman (1989), and Shah, Zilberman, and 

Lichtenberg (1995) have used it to examine drainage problems in the San Joaquin Valley, 

California. Just and Antle (1990) discuss its use in aggregating micro-level economic and 

environmental models to estimate aggregate effects.  Malik and Shoemaker (1993) use it 

to discuss targeting of cost-sharing programs for adoption of pollution-reducing 

agricultural practices. 

Let θ represent a source or index of heterogeneity, for example, land quality (soil 

productivity, slope) or human capital.  Let G(θ) be the cumulative distribution of θ, that 

is, the number of production units (acres) having at most type θ, and g(θ) be its density.  

For convenience, let θ be scaled such that θ ∈ [0,1], G(0) = 0, and G(1) = N, the total 

number of production units.  In the short run, the number and sizes of production units 

can be considered fixed.  Alternatively, one can assume that both technologies exhibit 

constant returns to scale and that the potential number of production units is limited by 

natural conditions such as the amount of potential farmland.  In the latter case it is 
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important to bear in mind that not all production units will necessarily be in agricultural 

production, so that shutdown conditions matter. 

Assume also that farmers choose between two activities, which can be two different 

methods for producing the same crop, as in Caswell and Zilberman (1986), or different 

crops or crop/technology combinations as in Lichtenberg (1989).  Assume that 

production of each is increasing and neoclassical in θ as well as use of the polluting input 

zj, so that each can be represented by a revenue function Rj(pj,w,zj,θ).  Let δ1(θ) denote 

the share of production units of type θ allocated to activity 1 and δ2(θ) denote the share of 

production units of type θ allocated to activity 2.  Assume also for the moment that level 

of environmental quality depends only on use of z and is thus invariant with respect to 

production unit type θ and activity.  Environmental quality can thus be written as a 

function of total use of z:  

( )( )θθδ+δ= ∫ d)(gzze)z(e 1
0 2211 . 

This restriction on e(z) will be relaxed later.  Assume also that social surplus from 

consumption is additively separable in agricultural output (p1,p2) and environmental 

quality e(z). 

The relevant decision problem is to choose p and z to maximize net social surplus 

plus agricultural income 

( ) ( ) ( )[ ]∫ θθ−θδ+−θδ+ 1
0 222

2
2111

1
121 d)(gvz),z,w,p(Rvz),z,w,p(R)z(e,p,pS  

subject to the constraints that δ1, δ2 ≤ 1, δ1+δ2 ≤ 1, and non-negativity constraints on δ1 

and δ2.  The necessary conditions for a maximum include 
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where λ0 and λj are associated with the respective constraints δ1+δ2 ≤ 1and δ j ≤ 1.  The 

first set of conditions is again the market-clearing conditions that aggregate demand equal 

aggregate supply for each activity.  The second set of conditions states that the marginal 

net return from the use of the input z in each activity, vR j
z − , should equal marginal 

social willingness to pay for environmental quality, Seez.  Note that optimal use of z 

varies across farm types and activities, since its marginal productivity varies with θ and j.  

The third set of conditions implies that all of each type of production unit should be 

allocated to the activity with the greatest social return. 

 The analysis that follows will be based on one of many possible equilibria.  The 

results obtained under other possibilities are similar, but not identical.  Assume that there 

exists a farm type θj* > 0 such that Rj(pj*,w,zj*,θj*) – [v+Seez]zj* = 0, j = 1,2, where pj* 

and zj* are the optimal prices and levels of input use z.  Assume without loss of 

generality that θ1* < θ2*, so that it is optimal for the lowest type of production unit 

engaged in agriculture to use activity 1.  This assumption implies further that farms of 

types lower than θ1* should not engage in agricultural production, e.g., land of 

sufficiently low quality should not be farmed.  Assume also that R2(p2*,w,z2*,1) – 

[v+Seez]z2* > R1(p1*,w,z1*,1) – [v+Seez]z1* > 0 and that R2
θ > R1

θ for all θ.  These latter 

assumptions imply the existence of a unique critical type θc* defined by 

R1(p1*,w,zj*,θc*) – [v+Seez]z1* = R2(p2*,w,z2*,θc*) – [v+Seez]z2*. 
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All production units of type θ1* ≤ θ < θc* should use activity 1 (δ1 = 1, δ2 = 0), while all 

production units of type θc* ≤ θ ≤ 1 should use activity 2 (δ1 = 0, δ2 = 1).  Thus, the 

remaining first-order conditions can be rewritten as 
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Finally, assume for the sake of convenience that activity 1 has a smaller detrimental (or 

larger positive) effect on environmental quality than activity 2.  If the use of z impairs 

environmental quality, this assumption implies activity 1 uses the input z less intensively 

than activity 2, that is z2* > z1* for any θ.  If the use of z enhances environmental quality, 

the opposite holds. 

 Without government intervention, farmers will not take environmental quality 

into account in choosing how intensively to use the input z or how extensively to use 

activities 1 and 2.  If the use of z impairs environmental quality, then farmers of every 

production type will use too much z in both activities (zj
o > zj* for all θ).  Returns to 

agricultural production will be higher than socially optimal (see Figure 1).  Both the 

breakeven production type below which agricultural production will not occur and the 

critical production type at which activity 2 becomes more profitable than activity 1 will 

be lower than socially optimal (θ1
o < θ1*,θc

o < θc*).  As a result, production units of types 

θc
o < θ < θc* and θ1

o ≤ θ < θ1* will be allocated suboptimally.  Output of activity 2 will 

be higher than socially optimal both because of the increased intensity of use of z and 

because of the increased extent to which activity 1 is used.  The price of the output of 
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activity 2 will consequently be lower than socially optimal.  Output of activity 1 may be 

higher or lower than socially optimal because increases in output due to more intensive 

use of z  and more extensive use of activity 1 on low type production units may be 

counterbalanced by decreases in output due to the decreased extent to which activity 1 is 

used on higher type production units. 

 If the use of z enhances environmental quality, as in the case of scenic amenities 

from farmland, the distortion caused by ignoring environmental quality will involve less 

intensive use of z and less extensive use of activity 1 (θ1
o > θ1*, θc

o < θc*) than is socially 

optimal. 

3.1.1 Best Practice Requirements 

 One approach to remedying the underprovision of environmental quality in 

agriculture is to mandate the use of practices that are less profitable but provide more 

environmental quality.  For example, storage of animal wastes prevents runoff during 

storms and permits expanded use of manure as a substitute for chemical fertilizers during 

the growing season.  Requiring installation of manure storage facilities and restrictions on 

spreading manure have been used to address runoff of animal wastes in Denmark 

(Dubgaard 1990) and some localities in the U.S. (Moffitt, Just, and Zilberman 1978).  In 

Australia, local districts require landowners to carry out specific erosion control 

measures, while Australia and Japan restrict land clearing (OECD 1994).  In the U.S. and 

Europe, leaching of pesticides into groundwater and aerial drift of pesticides have been 

addressed primarily through restrictions on mixing, loading, and application methods 

(Lichtenberg 1992; OECD 1994).    Zoning land for agricultural use, used in the U.S. and 

other countries, effectively requires landowners to maintain certain forms of open space. 
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For convenience, consider the case in which the use of z has negative effects on 

environmental quality while activities 1 and 2 both produce the same kind of output but 

with different input intensities.  Social surplus from the consumption of agricultural 

output and environmental quality is thus S(p,e(z)).  Imposition of a best practice 

requirement corresponds to mandating the use of the less-polluting activity (activity 1) 

while prohibiting the use of the more polluting activity (activity 2). 

 Since R2-vz2
o > R1-vz1

o and z2 > z1 for production types θ ≥ θc
o, agricultural 

output from activity 2 is greater than output from activity 1 for production types θ ≥ θc
o.  

Thus, the best practice requirement will result in a reduction of agricultural output and an 

increase in its price, although neither will necessarily attain its socially optimal level.  

The minimum production type engaged in agricultural production will remain θ1
o.  Use of 

the input z will fall in production types θ ≥ θc
o due to the shift from activity 2 to activity 1 

and will remain the same in production types θ1
o ≤ θ < θc

o.  Environmental quality will 

improve, although it will not necessarily attain its socially optimal level.  Overall, best 

practice requirements cannot replicate a first-best allocation of resources because they 

operate only on the extensive margin (altering choice of activity among production 

types), and then only in a relatively crude way. 

3.1.2 Input Use Restrictions  

 A second policy approach is placing restrictions on the use of inputs associated 

with environmental quality degradation or enhancement.  Most developed countries 

prohibit the sale of pesticides for use in situations (i.e., specific crops or locales) where 

they are thought to have excessive negative environmental or human health effects 

(OECD 1994).  The use of sewage sludge as fertilizer may be limited or prohibited in 
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areas where treated fields are thought to breed mosquitoes or be a source of bacterial 

contamination of water bodies.  Fertilizer application may be limited in areas with severe 

problems of nitrate contamination. 

 Consider again the case in which the use of the input z has negative effects on 

environmental quality and uniform restrictions on its use are imposed to attain the 

socially optimal level of environmental quality.  There will exist critical types 1θ  and 2θ  

at which these constraints become binding for activities 1 and 2, respectively.  If Rzθ > 0, 

so that optimal use of z is greater on higher-type production units, then the use of z will 

be unaffected on types below these critical types (z1
r = z1

o, θ1
r ≤ θ < 1θ  and z2

r = z2
o, θc

r ≤ 

θ < 2θ ) and will equal the constrained level on all other types (z1
r = 1z , 1θ  ≤ θ < θc

r and 

z2
r = 2z , 2θ  ≤ θ ≤ 1).  The lowest type of production unit engaged in agriculture will 

remain unchanged (θ1
r = θ1

o).  The lowest type of production unit using activity 2 will 

fall (θc
r < θc

o) because the constraint on use of z will be binding for activity 1 but not 

activity 2 on production unit type θc
o, making activity 1 less profitable than activity 2 for 

units of that type.  Agricultural output from both activities will decline and their prices 

will rise, but neither is likely to attain its socially optimal level. 

As is well known, uniform restrictions fail to replicate social optima because they 

fail to take heterogeneity into account.  However, the size of efficiency loss associated 

with the use of uniform restrictions depends on the degree of heterogeneity.  For 

example, Moffitt, Just, and Zilberman (1978) find that the minimum costs of managing 

dairy waste to meet water quality standards in the Santa Ana River Basin in California 

were over 20 percent lower than the costs associated with standards requiring the same 

disposal area per cow for all dairies.  Fleming and Adams (1997) find that farmers’ 
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returns were about 13 percent higher under a spatially differentiated tax than under a 

uniform tax when both taxes achieved the same level of groundwater quality.  In two of 

the four soil types considered, there was no difference in farm returns.  Lichtenberg, 

Zilberman, and Bogen (1989) find that the cost of meeting uniform standards for the 

carcinogenic pesticide DBCP in drinking water in all wells of a multiple-well system in 

California exceeded the minimum cost by only 4 to 6 percent.  Helfand and House (1995) 

find that the welfare cost of meeting nitrogen standards in groundwater in California was 

only about 2 percent higher under a uniform tax than under taxes differentiated by soil 

type. 

3.1.3 Linear Input Taxes and Subsidies 

 Taxes on polluting agricultural inputs have received only limited use for 

addressing environmental quality problems in agriculture.  In the United States, the state 

of Iowa imposed a relatively small tax on fertilizer whose primary purpose was to fund 

development and dissemination of best farming practices rather than influence fertilizer 

consumption.  Austria, Germany, Finland, Denmark, Sweden, Spain, and the United 

Kingdom tax fertilizers and pesticides, although it is not clear whether they set tax rates 

according to environmental criteria (Oskam, Viftigschild, and Graveland 1997). 

Subsidies for inputs thought to enhance environmental quality are more widely 

used.  Sweden, Austria, Switzerland, and the United Kingdom pay farmers to maintain 

amenities such as wildlife habitat and mountain landscapes.  Most developed  countries 

use subsidies to keep land in agriculture.  Many national and local governments also 

provide implicit subsidies by taxing agricultural land at lower rates than land in other 

uses (OECD 1994). 
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 It is apparent from the necessary conditions for a social optimum that imposition 

of a constant per-unit tax (subsidy) equal to Seez levied on a polluting (environmental 

quality enhancing) input z will induce farmers of all types to choose optimally the level 

of z and the kind of agricultural activity.  Thus, when environmental quality is sensitive 

only to input use z and not to farm type θ, a uniform tax (subsidy) on the polluting 

(environmental quality enhancing) input will achieve a social optimum even when 

heterogeneous conditions lead farmers to choose different crops, different farming 

practices, and different input mixes.  The result follows because the tax (subsidy) gives 

farmers the appropriate incentives on both the intensive and extensive margins. 

An alternative to taxing polluting input use (or emissions) is to tax farmers on the 

basis of observed ambient environmental quality.  When environmental quality is 

sensitive only to input use z and not to farm type θ, a tax Se on observed ambient 

environmental quality e(z) will induce farmers of all types to choose optimally the level 

of z and the kind of agricultural activity (Griffin and Bromley 1982). 

 In contrast, a constant per-unit subsidy on reductions in the use of a polluting 

input will not achieve a social optimum and may even worsen environmental quality.  In 

the best case, one could subsidize reductions in the use of z from (known) profit-

maximizing levels at a rate equal to the marginal value of environmental quality 

enhancement in the social optimum, in other words, offer a subsidy of the form 

)](z)(z[eS o
jjze θ−θ .  Such a subsidy will lead to socially optimal levels of z on most 

types of production units, but not all.  The subsidy will lower the minimum type of 

production unit engaged in farming, 
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z on all production units of types θc
s ≤ θ ≤ θc

o, where θc
s is the critical minimum type 

engaged in activity 2.  If the distortion is greater for activity 1 than activity 2, the reverse 

holds.  Since the subsidy increases the use of z for some types of production unit, it may 

actually lead to increased total use of z and thus decreased environmental quality.  This 

result, of course, corresponds to the well-known result that subsidies for pollution 

reduction may increase pollution in the long run (see for example Cropper and Oates 

1992).  The results and derivation also correspond closely to Caswell and Zilberman’s 

(1986) demonstration that the introduction of a water-saving irrigation technology may 

not result in aggregate water savings.  If activities 1 and 2 produce different crops, then 

these shifts on the extensive margin will lead to a suboptimal mix of agricultural products 

as well as excessively low environmental quality. 

3.1.4 Best Practice Subsidies 

 Subsidies for best practices are used widely to addressing environmental quality 

problems in agriculture, at least in the United States and Europe.  The principal approach 

taken toward water quality issues in the United States has been to provide subsidies for 
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best management practices thought to reduce erosion and runoff and for maintaining 

highly erodible land in conservation uses (for surveys of programs see Reichelderfer 

1990 or OECD 1994).  The Conservation Reserve Program (CRP), which features paid 

retirement of land thought to contribute excessively to environmental problems, is 

arguably the most significant environmental initiative in agriculture in the United States.  

Conceptually, the CRP is a narrowly targeted form of best practice subsidy in which 

grassland or forestry is the socially optimal use of land.  The European Union, New 

Zealand, Japan, and Turkey have similar programs.  Most of these countries also provide 

subsidies in the form of cost sharing for farmers adopting approved practices, usually for 

readily observable actions such as installation of structures, establishment of perennial 

crops, or planting winter cover crops.  Free extension service advice regarding such 

practices, a common component of these programs, can also be considered a form of 

subsidy. 

 In the case where use of the input z impairs environmental quality, such best 

practice subsidies can be modeled as a lump-sum subsidy to farmers choosing to use 

activity 1.  Such a subsidy will not change farmers’ incentives to use z on the intensive 

margin, but it will affect farmers’ choices regarding whether to engage in farming and 

which activity to select.  Its effects are shown in Figure 2.  Like a subsidy on reductions 

in the use of z, a lump-sum payment T to users of practice 1 will lower the minimum type 

of production unit engaged in farming (θ1
T  < θ1

o) and raise the critical type choosing 

activity 2 (θc
T  > θc

o).  The impact on the use of z is thus ambiguous: Farmers switching 

from activity 2 to activity 1 will use less of z, while those switching to farming from non-

agricultural activities will use more. 
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 Land retirement programs like the CRP feature paid diversion of land thought to 

contribute excessively to environmental problems.  An optimal program of this type will 

pay farmers to retire land that is privately profitable but socially inefficient to farm.  

Formally, such policies should address types of production units characterized by the 

conditions 
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which apply to production units of types θ1
o ≤ θ < θ1*, i.e., an efficiently structured 

program like the CRP should pay farmers R1-vz1 to retire land of types θ1
o ≤ θ < θ1*.  

Agricultural production and input use will be socially optimal in units of these types, but 

will be unaffected in all other types.  Thus, a land retirement program like the CRP is 

capable of generating a full social optimum only if environmental quality is unaffected by 

input use in production units of other types. 

 In sum, best practice subsidies are generally incapable of achieving social optima 

because they affect farmers’ decisions only on the extensive margin.  Best practice 

subsidies that reduce the use of polluting inputs sufficiently to achieve a socially optimal 

level of environmental quality will simultaneously produce socially suboptimal levels of 

agricultural output and output prices.  Moreover, subsidies of this kind tend to be 

excessively costly due to targeting problems, since the subsidy affects only the decisions 

of a few types of production units even when offered to all users of a practice.  Land 

retirement programs like the CRP can be structured to generate socially optimal 

production in production units of types that should not be engaged in agricultural 

production, but cannot affect input use in units of types remaining in production.  They 
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can be efficient within these limits but cannot replicate social optima by themselves.  In 

other words, land retirement programs like the CRP can be efficient only when coupled 

with other policies that influence input use on the intensive margin. 

3.2 Heterogeneity and Implementability 

 It has been assumed so far that the production of environmental quality depends 

only on the amount of the input z used.  But in many cases environmental quality effects 

depend on both the type of production unit and the agricultural activity.  For example, 

leaching of fertilizers tends to be greater on sandier soils and on irrigated crops.  

Similarly, some crops have greater fertilizer requirements or take up nutrients less 

efficiently than others.  Erosion and thus sediment damage and nutrient pollution tend to 

be greater on land with steeper slopes and for row crops.  Fish kills from pesticide drift 

are more common when fields are closer to streams and lakes.  Cropland irrigated using 

drip systems generates less runoff and drainage than cropland irrigated with gravity 

systems.  Farmland located close to urban areas provides more scenic amenities. 

 Suppose that environmental quality does vary by type of production unit and 

production activity, so that environmental quality provided by a production unit of type θ 

in activity j is ej(zj,θ) and total environmental quality is 
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 The optimal input tax in the present case is Seez
1 if activity 1 is more profitable 

and Seez
2 if activity 2 is more profitable and thus varies according to both production 

activity and type of production unit (see also Griffin and Bromley 1982; Segerson 1988).  

In contrast to the results of section 4.2.3, therefore, the social optimum cannot be 

implemented by a uniform tax on inputs that impair environmental quality or by a 

uniform subsidy on inputs that enhance environmental quality.  Suppose for example that 

the polluting input is nitrogen fertilizer, that θ indexes land quality, that the two activities 

using fertilizer are corn and wheat production, and that nitrogen leaching into surface 

water causes damage from eutrophication.  Then a nitrogen tax varying according to land 

quality and crop produced will induce farmers to apply nitrogen and to allocate their land 

optimally between corn, wheat, and pasture.  If nitrogen leaching is lower on higher 

quality land (e.g., higher quality land has higher water holding and/or cation exchange 

capacity), then the optimal nitrogen tax on both corn and wheat should be lower on fields 

of higher quality.  If corn uses nitrogen more efficiently than wheat (e.g., corn takes up a 

higher percentage of applied nitrogen than wheat), then the nitrogen tax on corn should 

be less than the nitrogen tax on wheat.  Put another way, a tax on nitrogen that is not 

differentiated according to land quality and crop will be suboptimal on both the intensive 

and extensive margins: It will fail to induce farmers to apply nitrogen optimally on each 

crop (the intensive margin) and will also fail to induce farmers to allocate land optimally 

between corn and wheat (the extensive margin). 

 The social optimum can be implemented by a uniform tax equal to Se levied on 

emissions ej, as Griffin and Bromley (1982) note.  But monitoring emissions tends to be 

excessively costly or infeasible.  Regulators may therefore be unable (or find it too 
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costly) to observe production unit type, for example, land quality or human capital, either 

directly or by inference from observed emissions, production practices or yield.  For 

example, the same crop may be grown in a number of different types of land or by 

farmers with different levels of expertise.  Alternatively, the government may observe 

farmers’ types and actions, but may lack the legal authority to impose policies that 

discriminate among farmers on the basis of either (Chambers 1992).  The U.S. 

Department of Agriculture has offices in almost every county in the United States, for 

example.  It has mapped soils extensively.  Commodity programs in the past required 

farmers to report cropping patterns.  USDA surveys estimate crop yields and input usage.  

Data on weather is available from numerous stations located in reasonable proximity to 

most farms.  One would thus expect USDA to have the capacity to monitor the use of 

inputs affecting environmental quality either directly or by inference.  Yet it may still be 

prevented from implementing differential taxes needed to achieve a social optimum.  For 

example, imposing on fertilizer used on corn and wheat or on water applied with different 

irrigation methods may be prohibited by law, either specifically by statute or by judicial 

interpretation of common law.  Heterogeneity can thus be a source of regulatory failure, 

that is, of the inability of regulation to achieve a socially optimal allocation of resources. 

3.2.1 Implementability of First-Best Taxes and Subsidies 

The extent to which it is feasible to implement a social optimum (or a reasonable 

approximation thereto) varies according to the type of environmental quality problem. 

Fertilizers.  As noted above, environmental damage from fertilizers typically 

varies according to both cropping pattern and attributes of land quality such as slope and 

soil texture.  Nutrient pollution of surface and ground waters tends to be greater on 
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greater slopes, on land closer to streams, and on sandier soils.  Crops differ in efficiency 

of nutrient uptake and thus in the supply of residual nutrients available for runoff and 

leaching.  Crop rotations featuring winter cereal crops often generate less nutrient 

pollution because the cereal crops absorb significant shares of residual nutrients.

 Implementing differential taxes on fertilizers would be difficult.  Farmers use the 

same fertilizer formulations on different crops and different types of land, making it 

infeasible to impose differential taxes at the point of sale.  Variations in yield are caused 

by numerous factors, including ones that are not easily observed like seed variety, pest 

infestation levels, and microclimate, making it difficult to infer fertilizer application rates 

from observed yields.  One would thus expect it to be difficult to implement first-best 

taxes on fertilizers. 

The situation may differ in areas suffering from drainage problems.  Emissions of 

leached fertilizers (more generally, of nutrients or heavy metals occurring naturally in 

soils) in such areas come from water pumped from subsurface drains.  In essence, 

nutrient emissions in such areas come from point sources that can be monitored.  The 

energy required for pumping is proportional to the volume of water pumped.  When 

pumps are powered by electricity, the volume of effluent can be inferred from electricity 

consumption, so that taxes on effluent can be levied on electricity use.  Soil maps can be 

used to adjust such taxes for differences in emissions due to soil quality or the presence 

of naturally occurring nutrients or heavy metals.  It would be more difficult to make 

adjustments for cropping patterns, however.  Further difficulties are likely to arise in 

areas in which subsurface drains capture leachate from neighboring farms as well as from 

the farm on which the drains are located.  Such situations are common in areas with 
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perched water tables, such as the west side of the San Joaquin Valley, California 

(Loehman and Dinar 1994).   Thus, implementation of first-best taxes is likely to be 

feasible in areas where drainage flows across farm boundaries are small and where there 

is little variation in cropping patterns or pollutant emissions across crops. 

Livestock Wastes.  Environmental damage from livestock wastes typically varies 

according to the location of the livestock operation, the extent to which animals are 

concentrated, and the type of livestock involved.  Nutrient pollution from livestock 

wastes tends to be greater on land near streams, near feedlots, and on sandier soils.  

Poultry litter and hog waste have greater concentrations of nutrients than cow manure.  

Livestock wastes present a mixed case for implementability.  In some cases, livestock 

operations can be treated as point sources and thus regulated differentially.  Moffitt, Just, 

and Zilberman (1978), Hochman, Zilberman, and Just (1977a, 1977b), and Lichtenberg 

and Zilberman (1989) investigate cases of surface water pollution from dairy wastes left 

on pastures or spread on disposal areas.  Dairies can be treated as point sources in such 

cases.  In other situations, livestock wastes are spread on cropland as fertilizer.  In such 

situations, differential taxation of livestock wastes would be characterized by the 

implementation problems discussed above for fertilizers. 

Erosion.  Environmental damage from erosion (sedimentation, nutrient pollution) 

typically varies according to topography, soil characteristics, location (e.g., proximity to 

streams), crop choice, and farm production practices, all of which should be considered 

observable by USDA and extension personnel or from soil survey data.  (In contrast to 

variable input use, most farm practices with significant effects on erosion are easily 

observed.)  In principle, then, it should be feasible to levy on farmland first-best taxes 
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that are adjusted for crop type and farming practices.  Legal restrictions likely constitute 

the most significant barrier to doing so. 

Pesticides.  Environmental damage from pesticides typically varies according to 

the formulation (and thus application method) used and according to the location of the 

field to which pesticides are applied.  It should be feasible to impose differential taxes on 

different formulations of any given pesticide active ingredient (e.g., liquid versus 

granular), although additional measures may be required in some cases to prevent dealers 

or farmers from evading higher taxes by reformulating pesticides themselves.  Similarly, 

it should be feasible to impose differential taxes on pesticides purchased in different 

regions, although it may be necessary to simultaneously implement enforcement 

measures to limit smuggling.  Existing pesticide regulation provides precedents for 

differential treatment of this kind.  The U.S. Environmental Protection Agency (EPA) 

banned all uses of granular formulations of the insecticide carbofuran due to concerns 

over bird kills but did not take regulatory action against other formulations.  EPA has 

similarly cancelled the registrations of numerous chemicals in specific states or growing 

regions while permitting legal use to continue in other areas. 

Scenic Amenities, Wetlands Preservation, and Wildlife Habitat.  Environmental 

quality enhancement from farmland preservation or other land use restrictions (wetlands 

preservation, wildlife habitat, paid conservation set-asides) depends primarily on the 

location of the farm and secondarily on agricultural production practices.  One would 

expect demand for scenic amenities to be greater for farms closer to urban areas with 

larger populations.  Concentrated livestock operations tend to have negative impacts on 

environmental quality due to odor.  How much the public is willing to pay for the 
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different kinds of scenery associated with different crops has not been investigated.  

Estimates of public willingness to pay for open space and scenery as functions of farm 

location and farm characteristics can be used to derive values for the purchase of 

development rights or agricultural easements or rental of land for wetlands preservation, 

wildlife habitat, or erosion control.  Implementing a first-best thus seems feasible for all 

of these environmental services.  However, lack of information about differences in 

returns to farming due to human capital or about farmers’ subjective assessments of 

future returns to farming and of the price of their land for development may hinder 

implementation of first-best policies, especially in programs that are local in scope and 

thus feature limited numbers of potential participants (e.g., preserving farmland for scenic 

amenities).  Programs aimed at environmental quality problems on a larger scale can 

exploit competition among potential participants to achieve a first-best.  From this 

perspective, for example, the decision to administer the CRP on a county basis is 

inconsistent with a goal of minimizing the cost of achieving environmental quality 

improvements. 

3.2.2 Second-Best Implementation Under Hidden Information 

When the government is unable to observe (or use its knowledge about) 

heterogeneity in the conditions governing the production of agricultural output and 

environmental quality, it is forced to consider second-best policies.  One example of such 

policies is non-linear taxes on polluting inputs, in which the tax rate varies according to 

the amount of the input purchased.  Other examples include auctions for CRP or wetlands 

reserve rentals, farmland easement purchases, and sale of development rights, in which 

the price paid for a unit of land varies according to the size of the parcel offered. 
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The derivation of such second-best policies is performed under the assumption 

that the government has perfect information about the structure of the farm economy and 

of environmental quality but cannot distinguish between individual farmers.  In other 

words, the government knows agricultural production technology and thus Rj(pj,w,zj,θ), 

emissions and thus ej(zj,θ), and the distribution of types of production units G(θ), but 

does not know the type θ of any individual farm operation. 

Second-best taxes and subsidies of this kind can be implemented using a 

revelation mechanism that induces farmers to report their type θ truthfully to the 

government in return for a payment (positive or negative) that depends on the type 

reported (for a detailed exposition see Chambers elsewhere in this Handbook).  Suppose 

for example that the government wants to maximize social surplus from the consumption 

of agricultural output and environmental quality S(p1,p2,e(z)) where the input z has a 

negative effect on environmental quality, Se < 0, plus revenue from a non-linear tax )~(θt  

where the tax payment depends on the type reported to the government θ
~

.  (If revenue 

from the tax reduces the need to levy other distortionary taxes, then the social value of 

each dollar of revenue from the tax on the polluting input may be worth more than a 

dollar.) 

This problem is the same in most respects as the case investigated by Spulber 

(1988) in which a regulator attempts to maximize surplus from consumption of a product 

less the social value of pollution damage when the costs of pollution control vary across 

firms and when the regulator knows the distribution of firm types but cannot observe or 

infer the type of any individual firm.  It differs in two important respects.  First, it 

considers multiple outputs (the two agricultural activities) and thus examines switches 
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among outputs on the extensive margin.  Second, it considers the possibility of shutdown, 

that is, of zero production by some types. 

The amount earned by a farmer operating a production unit of type θ who reports 

type θ
~

 is 

)~()]~()),~(,,([)]~()),~(,,([ 222
2

2111
1

1 θθθθδθθθδ tvzzwpRvzzwpR −−+− . 

If truthful revelation is optimal for the farmer, earnings for a farmer of type θ must be at a 

maximum when the farmer reports type θ
~

.  A necessary condition is thus that  
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which implies that zθ and tθ have the same sign.  The incentive compatibility condition 

implies that if optimal use of the polluting input z is higher (lower) on production units of 

higher (lower) types, then the total tax payment will be higher (lower) as well.  Note that 

this does not imply that the tax rate per unit of input rises as use of the input rises. 

This condition will be sufficient for a maximum when 
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(see for example Guesnerie and Laffont 1984 or Fudenberg and Tirole 1991).  Since the 

first term is non-positive by assumption, sufficiency is assured if zθ and Rj
zθ have the 

same sign.  If the marginal product of z is higher on units with higher production types, 

as has been assumed in the previous section, then a second-best tax should ensure that use 

of z is higher on higher-type production units.  If this monotonicity condition is not met 

for some types of production unit, then it will be optimal to impose taxes that ensure that 

all units of those types use the same amount of z; for these types, the second-best tax will 

achieve a pooling equilibrium. 
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 Under the assumptions of the preceding section, the social optimum has the 

following characteristics.  Activity 1 uses less of the polluting input z than activity 2.  It 

is socially optimal to use activity 1 on lower-type production units.  There exist critical 

types θ1* and θc* such that agricultural production should not occur for types θ < θ1*.  

Activity 1 is socially optimal for types θ1* ≤ θ < θc*, and activity 2 is socially optimal for 

types θ ≥ θc*. 

Knowing the agricultural production technology means that the government 

knows θ1*.  It can thus choose a tax schedule such that farmers with production units of 

type θ1* earn zero quasirent, that is 

R1(p1,w,z1,θ1*) – vz1 – t(θ1*) = 0 

when z1 is chosen to maximize the farmer’s earnings.  Integrating the incentive 

compatibility condition implies that 
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Note that for types θ < θ1*, the optimal tax is 
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which implies that the optimal tax will force out of production all units of types less than 

the socially optimal minimum θ1*.  Thus, a second-best tax is capable of implementing a 

social optimum on at least the lower-end extensive margin. 

 The government implements the second-best program by selling a farmer 

revealing herself to be type θ
~

 the right to purchase an amount of the polluting input z at 

the market unit price v in return for a payment )~(θt .  Its objective is to choose z and t to 
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maximize social surplus from consumption of agricultural output and environmental 

quality plus tax payments: 

( ) ∫∫
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(The extension to the case where tax payments displace distortionary taxes is 

straightforward.)  Assuming truth-telling implies that the objective function can be 

expressed (after integration by parts) as 
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 These conditions are sufficient if the monotonicity condition holds.  The 

monotonicity condition can be checked by differentiating the system first-order 

conditions with respect to θ and solving for zθ.  As usual, monotonicity of the hazard rate 

[N-G(θ)]/g(θ) is necessary but not sufficient for the second-order condition for truth-

telling to hold. 
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 First, note that at θc* the first two terms of the equation defining θc
m are equal 

while the third term is negative, indicating that θc* > θc
m.  Thus, the optimal second-best 

tax will induce production units of types θc
m ≤ θ < θc* to use activity 2 instead of the 

socially optimal activity 1. 

 Second, if Rzθ > 0, that is, the marginal product of z is greater on higher-type 

units, then units of types θ1* ≤ θ < θc
m and θc* ≤ θ <1 will use less of the input z than is 

socially optimal.  Units of type 1 will use the socially optimal level of z, that is, there is 

no distortion of input use or production “at the top.”  (Recall that G(1) = N so that the 

optimal second-best tax equals the optimal first-best tax for units of type 1.)  The use of z 

on units θc
m ≤ θ < θc* will be greater than socially optimal because activity 2 uses z more 

intensively than activity 1, however, so that the optimal second-best tax may result in 

either more or less use of z than is socially optimal. 

 Third, the second-best tax will result in less agricultural output from both 

activities and more environmental quality than is socially optimal on the intensive 

margin.  (Spulber (1988) derives a similar result.)  The output of activity 1 will always be 

less than socially optimal.  Both the output of activity 2 and environmental quality may 

be more or less than socially optimal because the increased use of z and increased output 

by production units of types θc
m ≤ θ < θc* will counteract the reduced use of z and 

decreased output of activity 2 on other types. 

3.2.3 Implementability of Second-Best Mechanisms Under Hidden Information 

 Most discussions of implementability of second-best mechanisms under hidden 

information focus on the monotonicity condition discussed in the preceding section.  But 

several other conditions are necessary for these second-best mechanisms to be 
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enforceable.  Two in particular—compliance monitoring and secondary markets—are 

crucial but frequently overlooked. 

 First, the government must be able to observe compliance in some way.  If it 

imposes a tax on the use of a polluting input, it must be able to monitor tax collections to 

ensure that quantity discounts or premia are actually applied to farmers’ purchases.  If the 

second-best tax involves quantity premia, the government must be able to monitor 

cumulative purchases to ensure that farmers do not simply avoid higher tax rates through 

multiple purchases of smaller quantities.  If the government offers a subsidy for 

conservation practices or for open space, it must be able to observe whether farmers 

actually carry out their side of the bargain.  If the government offers a payment in return 

for conservation effort, it must be able to observe that effort (the equivalent of a time 

sheet for labor) or infer it from observable outcomes. 

 Second, second-best mechanisms are enforceable only when secondary markets 

are infeasible, e.g., when the input z cannot be stored or resold or when users of z cannot 

collude (for example, by forming purchasing cooperatives).  Otherwise, if the optimal 

second-best tax rate featured discounts for larger purchases, farmers using smaller 

amounts of the input z would find it optimal to purchase larger amounts than would be 

profitable for a single season and either store the excess for the following season or sell 

the excess to other users.  The formation of purchasing cooperatives would accomplish 

the same end.  Similarly, if the optimal second-best tax rate featured price premia for 

larger purchases, farmers using larger amounts of z would find it profitable to make 

multiple purchases of smaller lots. 
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 These considerations suggest that second-best mechanisms will not generally be 

viable methods of handling environmental problems associated with the use of variable 

inputs like chemicals (fertilizers, pesticides).  Second-best taxes on such would involve 

extensive reporting to ensure that the appropriate tax be assessed on farmers’ cumulative 

purchases from all dealers.  If the second-best tax involved quantity premia, periodic 

inspections would be needed to limit the use of straw buyers.  Even so, secondary 

markets for chemicals can emerge readily.  Chemicals are storable and easily repackaged.  

Moreover, some farmers already engage in contract chemical application for others, 

making enforcement more complex.  The resulting enforcement problems could well 

eclipse those traditionally associated with moonshine. 

 Subsidies for limiting chemical use like the “green payments” program suggested 

by Wu and Babcock (1995, 1996) are similarly unenforceable without extensive, 

intrusive government inspection.  Monitoring cumulative purchases presents the 

difficulties noted above.  Moreover, because chemicals are storable, their (single-season) 

use cannot be inferred reliably from purchases.  Actual applications can be adjusted on a 

continuing basis, so compliance monitoring would require virtual continuous observation 

of farm operations.  In the absence of effective monitoring, there is nothing to prevent 

farmers from accepting payments and then simply applying chemicals at profit-

maximizing levels.  Furthermore, subsidies for reductions in polluting activities may have 

undesirable extensive margin effects like crop switching or bringing extra land into 

cultivation. 

 Second-best mechanisms are more likely to be enforceable in cases involving the 

use of durable inputs such as conservation structures (terraces), perennial crops 
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(stripcropping, filter strips, riparian buffers, reforestation), or the maintenance of 

environmental amenities (open space, scenic amenities, wildlife habitat).  In these cases, 

inspection at relatively infrequent intervals suffices to assess compliance.  Smith (1995), 

for example, considers the design of a bidding system for enrolling land in the CRP in 

cases where farmers possess private information about the profitability of the land they 

offer.  His model is more applicable to programs that are local in scope, such as those 

aimed at preserving farmland as open space, since administration of the CRP on a 

national basis would create sufficient competition among potential participants to allow 

the government to avoid paying information rents. 

Mechanisms involving the use of durables are not necessarily self-enforcing, 

however.  Livestock wastes are a case in which further enforcement is likely necessary.  

The government can observe at relatively low cost whether farmers build and maintain 

waste storage structures, but monitoring waste disposal is more costly, because manure 

can be spread at almost any time.  It is possible that farmers will build waste storage 

structures yet continue to spread manure for disposal rather than use it as a fertilizer 

substitute (see Dubgaard (1990) for an example from Denmark). 

 The preceding discussion suggests that the greatest scope for the application of 

hidden information models to environmental problems in agriculture lies in design of 

auctions and other bidding mechanisms for paid diversions, conservation set-asides, land 

retirement, agricultural easements, purchases of development rights, etc., in cases where 

these programs deal with problems that are local in scope.  Land use can be monitored at 

low cost and land-use restrictions cannot be sidestepped easily, so land-use contracts are 
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likely to be enforceable.  Hidden information is likely to be a problem when the number 

of potential participants is small enough that competition between them is limited. 

4. Uncertainty 

Agricultural production and its environmental effects are both subject to 

considerable uncertainty.  Two sources of uncertainty can be distinguished (Braden and 

Segerson 1993): unmeasured heterogeneity and randomness.  As noted in the preceding 

section, both agricultural productivity and environmental effects of agriculture vary 

according to differences in climate, topography, geology, pest complexes, and other 

exogenous factors in addition to human variability such as differences in human capital 

across farmers.  When not measured, this heterogeneity constitutes a source of 

uncertainty.  The remaining uncertainty is attributable to randomness, that is, the effects 

of factors like rainfall that cannot be predicted deterministically. 

This section explores three general issues arising due to uncertainty: (1) efficient 

policy design under uncertainty, (2) regulatory aversion to uncertainty, and (3) the role of 

information in policy design.  We begin by exploring the implications of uncertainty for 

policy design.  We begin by developing a conceptual model of ex ante regulation in 

which government and farmers are risk neutral.  We use the model to assess the relative 

efficiency of incentives (taxes, subsidies, tradable permits) and best practice standards 

both in general and with respect to specific inputs associated with environmental quality 

problems.  We then turn to implementation in cases where the government is unable to 

assess emissions of individual farmers.  We take up two types of policies: taxes 

(subsidies) on ambient environmental quality and ex post liability for environmental 

damage.  Next, we consider policy design in cases where regulators are averse to 
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uncertainty, either for political reasons or by statutory instruction.  Finally, we consider 

the role of information in policy design.  Acquisition of information about states of nature 

can be considered an input into the production process.  It may thus affect the use of 

inputs that influence environmental quality.  Information-intensive farming methods have 

been widely regarded as opportunities for strengthening stewardship.  We discuss briefly 

their potential effects on environmental quality. 

4.1 Taxes, Subsidies, and Best Practice Standards Under Uncertainty 

 We begin with a situation in which government and/or farmers are risk neutral but 

must act before uncertainty is resolved, so that they know the results of their actions only 

stochastically.  A modified form of the input-oriented model will be useful for exploring 

policy design in this context.  Let output be a function f(z,ε) of an input affecting 

environmental quality z and a random factor ε.  Without loss of generality, scale ε so that 

fε > 0, higher realizations of ε are associated with greater output.  If fzε < 0, the input z 

can be said to be risk-reducing because it increases income more in bad states of nature 

(low ε) than good states (high ε), thereby reducing the variability of income.  Similarly, if 

fzε > 0, the input z can be said to be risk-increasing because it increases income more in 

good states of nature than in bad states, thereby increasing the variability of income. 

As is well known from the work of Weitzman (1974), under uncertainty, quantity 

controls like best practice standards may be preferable to price instruments like Pigouvian 

taxes, subsidies, or tradable permits.  Consider the case where monitoring emissions is 

excessively costly, so that regulation is applied to inputs associated with environmental 

quality.  Let ẑ  be the socially optimal usage level of the input z that affects 

environmental quality and z~  be the usage level chosen by a farmer facing a price of 
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environmental quality equal to E{Deez} that implements the social optimum.  Following 

Weitzman (1974), the difference between the social net benefits under the price incentive 

and the best practice standard equals, to a second-order approximation around ),ˆ( εz , 

where }{εε E= , 
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If the farmer is risk-neutral, the optimal usage level of the input z satisfies 

E{pfz – v – E{Deez}} = 0. 
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The second term in curly brackets corresponds to Weitzman’s main result (p. 

484), derived under an assumption of no correlation between the random elements 

affecting benefits and costs.  If environmental damage is more sensitive to random 

variations than crop productivity, the term in square brackets is positive and the effect on 

E{∆} is negative, that is, the social loss from best practice standards is less than the social 

loss from pricing environmental quality.  If crop productivity is more sensitive to 

randomness than environmental damage, on the other hand, then incentives are likely to 

be preferable. 
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The first term in curly brackets represents the effect of correlation between 

random variations in crop productivity and environmental damage, and corresponds to 

the finding noted in Weitzman’s footnote 1 (p. 485) and in Stavins (1996).  Its sign 

depends on the combined risk effects of z on crop productivity and environmental 

damage.  Recall that ε is scaled so that fε > 0, that is, higher values of ε represent better 

(random) growing conditions.  The effect of growing conditions on environmental 

damage likely depends on the type of damage, although materials balance considerations 

suggest that environmental damage is likely lower under better growing conditions, that 

is, Dε < 0 and Dzε < 0.  For example, one would expect crop nutrient uptake to be greater 

under better growing conditions and nutrient runoff and/or leaching correspondingly less, 

implying Dzε < 0.  Similarly, herbicide uptake by weeds is likely greater (and thus 

residual herbicide in soils likely less) when growing conditions are better and thus weed 

densities are greater.  If Dzε < 0, the sign of this first term depends on the risk effect of z 

on crop productivity. If the input z is risk-increasing in terms of crop productivity, then 

incentives are likely to be preferable.  If, on the other hand, the input z is risk-reducing in 

terms of crop productivity, then best practice standards are likely to be preferable.  More 

generally, incentives are more likely to be preferable when fzε and Dzε have opposite 

signs, while best practice standards are more likely to be preferable when fzε and Dzε have 

the same signs. 

4.1.2 Incentives versus Best Practice Standards in Agriculture  

 Weitzman’s main result is that the choice between incentives and best practice 

standards depends on the relative sensitivity of crop productivity and environmental 

damage to uncertainty.  The empirical economic literature has not addressed this issue at 
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all.  However, when Dzε > 0, as generally expected, Weitzman’s argument also suggests 

that economic incentives are more likely to be preferable under uncertainty for risk-

increasing inputs while best practice standards are more likely to be preferable for risk-

reducing inputs.  In this section, we briefly review the literature on risk effects of the 

agricultural inputs associated with environmental quality.  Additional treatment of this 

issue can be found in Moschini and Hennessy elsewhere in this Handbook. 

 Fertilizers.  Fertilizers are widely believed to be risk-increasing, at least in rainfed 

agriculture.  When soil moisture is low (and thus growing conditions are poor), crop 

uptake of macronutrients (nitrogen phosphorus, potassium) and thus marginal nutrient 

productivity are low.  Nitrogen in particular may cause crop burn and thus have negative 

marginal productivity when soil moisture is low.  As growing conditions improve, crop 

uptake and the marginal productivity of nutrients increase.  In other words, nutrient 

productivity and states of nature tend to be positively correlated, fzε > 0. 

 Nitrogen has been the most extensively studied macronutrient.  Most empirical 

studies have found it to be risk-increasing.  Roumasset et al. (1989) survey the literature 

on fertilizer and yield variability through the mid-1980s, with an emphasis on 

developing-country applications.  Of the roughly 20 studies they cite, all but two 

(Farnsworth and Moffitt 1981, and Rosegrant and Roumasset 1985) found nitrogen to be 

risk-increasing.  In all cases, however, the estimated risk effects of nitrogen were small.  

The subsequent literature contains a similar pattern of results.  Studies using estimated 

parameters of a conditional beta distribution for Iowa corn yields found that nitrogen 

increased the variance of yield (Nelson and Preckel 1989; Love and Buccola 1991; 

Babcock and Hennessy 1996).  Horowitz and Lichtenberg (1993) found that corn growers 
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in the U.S. Corn Belt who purchased crop insurance used more nitrogen per acre, 

indicating that nitrogen is risk-increasing. 

 There is less evidence about risk effects of other macronutrients.  Studies of Iowa 

corn indicated that phosphorus is risk-increasing while potassium is risk-decreasing 

(Nelson and Preckel 1989; Love and Buccola 1991), while Horowitz and Lichtenberg 

(1993) found that corn growers who purchased crop insurance did not use phosphorus or 

potassium in significantly different per acre amounts than those who did not, suggesting 

that whatever risk effects these chemicals have are likely small.  Finally, Smith and 

Goodwin (1996) found that Kansas wheat growers who purchased crop insurance spent 

less on fertilizers in the aggregate, a category that includes items thought to have risk 

effects of opposite signs. 

 Soil erosion.  As noted earlier, preserving the value of their land gives farmers an 

incentive to engage in soil conservation by presenting farmers with a tradeoff between 

current yield and the future value of their land.  Their choice of erosion level 

(equivalently, soil conservation effort) is simultaneously a choice about investment in 

land quality.  Both current yield and future land prices are subject to uncertainty.  Ardila 

and Innes (1993) note that the effect of increased uncertainty (in the form of a Sandmo-

type mean-preserving spread) on optimal soil conservation depends on the relative sizes 

of yield and land price risks.  We are unaware of any empirical studies on the relative 

sizes of these risks and are thus unable to draw inferences about appropriate policy 

design. 

 Pesticides.  The literature on risk effects of pesticides is somewhat confusing, in 

part because it seems to have arisen from a misunderstanding regarding terminology 
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between economists and crop scientists.  The latter noted that farmers frequently used 

pesticides preventively, that is, before the degree of infestation was observed.  They 

argued on that basis that farmers were responding to the risk of infestation rather than 

actual infestation and thus characterized pesticide use in terms of insurance (van den 

Bosch and Stern 1962).  Economists responded to this characterization by developing 

models in which pesticides reduced the variability of income or output, producing the 

conventional wisdom that pesticides are risk-reducing.  Feder (1979), for example, 

analyzed pesticides using a Sandmo-type model in which pest damage was assumed to be 

additively separable from potential output and equal to the product of pest population 

size, damage per pest, and survivorship from pesticide application.  He found that 

pesticides are risk-reducing when there is uncertainty about pest population size or 

damage per pest, but risk-increasing when there is uncertainty about the marginal 

effectiveness of the pesticide. 

Farmers’ use of preventive treatments is not, of course, in and of itself evidence of 

risk aversion.  Even when pest infestations are observable, preventive treatment may be 

more profitable on average if rescue treatment is insufficiently effective, if the error in 

estimating infestation from observed levels is excessive, or if monitoring (scouting) is 

sufficiently costly.  Moreover, correlation between random factors affecting price or 

potential yield and pest damage may create situations in which pesticides increase rather 

than decrease yield and income variability (Pannell 1991; Horowitz and Lichtenberg 

1994).  For example, greater early-season soil moisture and solar radiation may promote 

the growth of all plants, crops and weeds included, while low moisture and solar radiation 

may lead to poor plant growth.  In such situations, the marginal productivity of herbicides 
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is likely to be higher in good states of nature than bad ones, implying that pesticides are 

risk-increasing.  Similarly, insecticides are thought to reduce the stability of crop 

ecosystems during the growing season by suppressing invertebrate predators and by 

altering competition among insect, weed, and disease species in ways that create less 

tractable pest problems (see for example Bottrell 1979). 

 The empirical evidence available to date suggests that pesticides frequently are 

risk-increasing.  Using a Just-Pope production function, Farnsworth and Moffitt (1981) 

found that pesticides increased the yield variability of irrigated cotton in California’s San 

Joaquin Valley.  A more recent study of the same crop and region by Hurd (1994) using a 

similar specification of production found that pesticides had no impact on yield 

variability.  Antle (1988), using the moment-based econometric procedure of Antle 

(1983), found that insecticide use had no statistically significant effect on yield variability 

of processing tomatoes in California.  Gotsch and Regev (1996) and Regev, Gotsch, and 

Rieder (1997), also using the moment-based approach of Antle (1983), found that 

fungicide use increased the variability of wheat revenue (which captures both quantity 

and quality effects) in Switzerland.  Horowitz and Lichtenberg (1993) found that corn 

growers in the U.S. Corn Belt who purchased crop insurance applied more herbicides and 

insecticides and spent more on pesticides, suggesting that pesticides are risk-increasing. 

In cases where pesticides are risk-increasing, economic incentives are likely to be 

preferable to best practice standards.  In such cases, shifting to incentive-based pesticide 

regulation could improve performance with respect to uncertainty as well as with respect 

to heterogeneity.  Overall, however, the risk effects of pesticides have not been studied 

sufficiently to permit broad generalizations, and it is possible that broad generalizations 
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may never be possible.  Herbicides, insecticides, and fungicides may differ in their risk 

effects, and those risk effects may differ across crops and regions. 

4.1.2 Moral Hazard 

 Environmental quality is frequently influenced by inputs that are neither traded in 

markets nor readily observable.  Examples include the observance of setback 

requirements and similar wellhead protection measures in mixing and loading pesticides; 

banded application of pesticides; scouting prior to pesticide application; and split 

application of fertilizers as a means of increasing the share of nutrients taken up by crops.  

Input taxes and subsidies are ineffective in such cases.  When pollution control effort of 

these kinds can neither be observed directly nor inferred from production, the regulatory 

problem is characterized by moral hazard, or hidden action. 

Nevertheless, a social optimum can be attained provided that ambient 

environmental quality is observable and that all farmers influencing environmental 

quality face the same set of random factors.  In such cases, observing ambient 

environmental quality is equivalent to observing each farmer’s pollution control effort, 

and moral hazard is not a factor.  Holmstrom (1982) shows that a principal contracting 

for production of a single output produced collectively by risk-averse agents can induce 

those agents to exercise first-best effort as long as the reward scheme is not required to be 

budget-balancing.  Rasmusen (1987) shows that, if agents are risk-averse, it is possible to 

attain a social optimum with mechanisms that are budget-balancing by random 

differential treatment of one out of many agents.  Segerson (1988) applies Holmstrom’s 

result to a nonpoint-source pollution control problem in which (crop) output is 

nonrandom while environmental quality is stochastic and influenced by unobservable 
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effort.  The optimal mechanism in this context consists of two parts.  If actual observed 

ambient pollution exceeds a pre-specified level, each farmer pays a pollution tax 

proportional to the difference between actual and that pre-specified level.  If actual 

observed ambient pollution is less than the pre-specified level, each farmer receives a 

pollution subsidy proportional to the difference between actual and the pre-specified 

level.  The socially optimal level of crop production can be attained in the long run by 

adding to the pollution tax a lump-sum payment or tax as needed to induce appropriate 

entry or exit.  This result generalizes to the case where both crop output and 

environmental quality are random and farmers are risk-averse.  As long as environmental 

quality consists of observable ambient pollution from uniformly mixed emissions, a 

combination of crop insurance and an ambient pollution tax will achieve a first-best 

allocation of crop output and environmental quality (Chambers and Quiggin 1996).  We 

examine interactions between insurance and environmental policy at greater length in 

Section 5.2 below. 

 If there are many farmers with differential impacts on ambient environmental 

quality, ambient pollution taxes can be used to achieve first-best environmental quality 

on average if the regulator has perfect information about the effects of each farmer’s 

environmental quality effort on the probability distribution of ambient pollution 

(Segerson 1988), including fate and transport of pollutants (Cabe and Herriges 1992).  

This information is costly to obtain.  Xepapadeas (1995) shows there may be conditions 

under which farmers can be induced to reveal fully their own environmental quality 

effort.  Farmers must be averse to the riskiness of tax payments (but not crop production 

or income) and able to reduce their own tax liability under an ambient pollution tax by 
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reporting indicators of environmental quality effort.  Participating in integrated pest 

management (IPM) programs, obtaining conservation plans from government agencies, 

and applying for cost sharing to install runoff or erosion control facilities might be 

interpreted as methods of reporting such effort. 

 Ambient pollution taxes capable of achieving first-best environmental quality 

may be too high to be acceptable politically.  For example, it may be optimal to charge 

each farmer a tax equal to the marginal damage from all ambient pollution in order to 

create incentives for first-best environmental quality effort (Segerson 1988). 

4.1.3 Environmental Quality and the Tort System 

 A number of authors have argued that ex post liability for harm can provide 

sufficient incentives to ensure that farmers exercise socially optimal precautions against 

stochastic environmental damage.  There has been particular interest in the role of the tort 

system in mitigating groundwater quality degradation, since well owners can take legal 

action in the event of impairment of drinking well water quality.  Segerson (1990) 

considers the extent to which farmers and pesticide manufacturers should be held liable 

for pesticide contamination of drinking water wells.  Wetzstein and Centner (1992) 

examine the potential effects of legislation that would replace strict liability for 

groundwater contamination by agricultural chemicals with a negligence standard. 

Menell (1991) has argued forcefully that the tort system gives polluters few 

incentives to take action to mitigate environmental damage because of the difficulty of 

establishing causal links between (1) the actions of any single agent and ambient 

pollutant concentrations and (2) ambient pollutant concentrations and harm suffered.  The 

source or sources of well water contaminants, for instance, cannot be readily identified.  
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The current state of biomedical knowledge is insufficient to prove to a legal standard that 

the low concentrations of pesticides or nitrate typically found in drinking water cause 

long-term health effects or other forms of environmental damage.  Most such health 

effects have multiple causes, making identification of causality difficult, even in the case 

of acute health effects from direct exposure to pesticides.  Moreover, Menell argues, the 

tort system is extremely costly, time-consuming, and inequitable.  Furthermore, 

inadequate financial resources may prevent those harmed from bringing suit, further 

weakening incentives for precautionary behavior (see for example Shavell 1987). 

Davis, Caswell, and Harper (1992) compare tort liability with direct regulation 

and workers’ compensation as means of protecting farm workers from pesticide 

poisonings.  Their simulation analysis indicates that experience-rated workers’ 

compensation is the most cost-effective of these policy instruments.  The fact that 

insurance premiums increase as the number of valid claims filed goes up regardless of the 

specific cause of those claims gives farmers strong incentives to take precautionary 

action.  Tort liability is less cost-effective because farm workers frequently fail to seek 

medical care, because doctors frequently fail to attribute observed symptoms to 

pesticides, and because farm workers lack resources to support legal action, while 

administrative regulation has high enforcement costs. 

4.2 Regulatory Aversion to Uncertainty 

 Thus far, the government has been treated as neutral with respect to uncertainty, 

that is, interested only in environmental quality on average.  Indeed, government is 

typically assumed to be risk-neutral because its large size permits adequate 

diversification.  But this assumption may not be appropriate for environmental issues.  
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Environmental quality tends to be idiosyncratic and thus non-diversifiable.  It is difficult, 

for example, to imagine means of compensating for an increment in premature deaths due 

to exposure to environmental toxicants or for the destruction of rare ecosystems.  

Governments are frequently sensitive to the prospect of making mistakes, especially to 

the possibility that realized environmental damage will turn out to be worse than 

expected.  For example, most environmental legislation in the United States requires 

regulation to incorporate a margin of safety adequate to protect against uncertainty in 

meeting environmental quality standards.  It is thus reasonable to treat governments as 

averse to uncertainty about environmental quality. 

 Lichtenberg and Zilberman (1988) have studied the engineering approach to 

uncertainty management implicit in the requirement of an adequate margin of safety.  

They argue that this requirement corresponds to a safety-fixed decision problem in which 

regulators choose instruments to minimize the social cost of regulation subject to the 

constraint that a nominal standard not be exceeded with more than a specified frequency.  

Beavis and Walker (1983) use a similar framework to derive optimal effluent taxes on 

random discharges from a set of polluters.  Bigman (1996) proposes a modification of 

this criterion that incorporates the size of the deviation from the nominal standard. 

In terms of the modified output-based model of the preceding section, optimal 

regulation in Lichtenberg and Zilberman’s (1988) analysis involves choosing inputs x 

and environmental quality-enhancing effort a to minimize cost wx + ra subject to the 

technological constraint (y,q,x,a) ∈ T and the safety-fixed constraint Pr{q > q } ≤ 1-α 

(alternatively, Pr{q ≤ q } ≥ α), where α, the frequency with which the nominal standard 

q  is met, corresponds to the statutory margin of safety.  As Lichtenberg, Zilberman, and 
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Bogen (1989) note, this decision problem generates an uncertainty-adjusted cost function 

C(y,q,α) = min{wx + ra: (y,q,x,a) ∈ T, Pr{q ≤ q } ≥ α}.  The margin of safety α can be 

interpreted as a measure of society’s aversion to uncertainty.  A higher value of α 

corresponds to lower tolerance for violations of the nominal standard and thus greater 

aversion to uncertainty.  This interpretation suggests that social benefits, too, should 

reflect social preferences for uncertainty about environmental quality, so that the social 

benefit function should be written as U(y,q,α) and maximized by choices of crop output, 

environmental quality, and margin of safety. 

 Lichtenberg and Zilberman (1988) examine theoretically the properties of cost-

minimizing regulatory decisions in the case where the safety-rule constraint can be 

represented as a weighted sum of the mean and standard deviation of environmental 

quality.  They show that the optimal regulatory policy consists of a portfolio of 

instruments of which some have comparative advantage in enhancing environmental 

quality on average while others have comparative advantage in reducing uncertainty 

about environmental quality.  They show that increased aversion to uncertainty (a higher 

margin of safety α) leads to a higher total cost of regulation and increased use of 

instruments with comparative advantage in reducing uncertainty, a class that includes 

research and data acquisition.  The marginal cost of environmental quality will fall, 

however, and use of instruments with comparative advantage in enhancing environmental 

quality on average may fall as well.  When there is greater background uncertainty about 

environmental quality, it becomes efficient to increase reliance on instruments with 

comparative advantage in enhancing environmental quality on average, while the use of 

instruments with comparative advantage in reducing uncertainty may fall. 
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 Empirical applications of this framework include Lichtenberg, Zilberman, and 

Bogen (1989), who estimate the cost of reducing the risk of cancer from pesticide 

contamination of drinking water; Lichtenberg and Zilberman (1989), who estimate the 

cost of mitigating the risk of gastroenteritis from consumption of shellfish contaminated 

by dairy wastes; Hanemann, Lichtenberg, and Zilberman (1989), who estimate the cost of 

meeting standards for selenium in river water; Harper and Zilberman (1992), who 

estimate the cost of reducing farm workers’ cancer risk from insecticide exposure; and 

Lichtenberg and Penn (1998), who estimate the cost of meeting nitrate standards in well 

water.  Estimated uncertainty premia (that is, incremental costs due to increases in the 

margin of safety) range from 1 percent or less in cases of lax standards and low margins 

of safety to as much as 35 percent for stringent standards and high margins of safety. 

4.3 Information Acquisition: IPM and Precision Agriculture  

 As noted previously, uncertainty springs from two types of sources, randomness 

and unobserved or unmeasured heterogeneity.  Uncertainty from both sources can be 

reduced or, in some cases, eliminated entirely.  Weather forecasts can be used to reduce 

uncertainty about rainfall, which affects optimal fertilizer application rates (Babcock 

1990), or uncertainty about evapotranspiration demand, which influences optimal 

irrigation water application rates (Cohen et al. 1998).  Scouting can reduce uncertainty 

about crop disease (Carlson 1970) or insect pressure (Moffitt 1986; Stefanou, Mangel, 

and Wilen 1986) and thus influence optimal pesticide use.  Soil tests can reduce or 

eliminate uncertainty about soil fertility, water infiltration rates, or other soil 

characteristics due to unmeasured soil heterogeneity (Babcock and Blackmer 1992; 

Babcock, Carriquiry, and Stern 1996).  In some cases it may be feasible to wait until 
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random events are realized and act with certainty in accordance with the realization of the 

random variable.  Scouting falls into the latter category if it is sufficiently accurate, since 

it is generally undertaken with the intent of postponing the use of pesticides or other pest 

control methods until the extent of infestation has been observed. 

 Information-intensive technologies are widely cited in policy discussions as 

potential means of improving environmental quality and farm profitability 

simultaneously, that is, of enhancing stewardship.  This proposition has received 

relatively little careful economic analysis.  The few analyses that have been performed 

suggest a need for caution in making such inferences. 

 Reducing uncertainty by acquiring information can affect environmental quality 

in two major ways.  First, it can lead to changes in the use of inputs that impair 

environmental quality (equivalently, in the use of inputs that enhance environmental 

quality).  Second, it can improve targeting of inputs to improve application efficiency, as 

was discussed in Section 2.2.2.  In what follows, we discuss potential environmental 

quality effects in both of these cases. 

4.3.1 Information, Input Use, and Environmental Quality 

Reductions in uncertainty due either to measurement of previously unobserved 

heterogeneity or to more accurate forecasts of random events have been modeled as 

mean-preserving contractions of the distribution of the unobserved factor or by using 

explicit Bayesian models.  Most studies have examined the acquisition of information 

using single-input production models, such as the model in which output y = f(y,ε), used 

in the preceding sections.  In the present case, the random factor ε represents either 

unobserved but measurable factors of production such as soil nutrient stocks or the water 
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infiltration rate of the soil at a specific location, or random factors such as pest infestation 

rates.  Feder’s (1979) study of the risk effects of pesticides, discussed above, is 

undertaken with scouting explicitly in mind.  Babcock and Blackmer (1992) model pre-

sidedress nitrogen test information as a mean-preserving contraction in the distribution of 

the soil nitrogen stock in a model in which nitrogen fertilizer and soil nitrogen are treated 

as perfect substitutes.  Feinerman, Letey, and Vaux (1983) use this framework to 

investigate the effects of uniformity of soil infiltration rates on optimal irrigation water 

application rates.  (See also Moschini and Hennessy elsewhere in this Handbook for a 

more general discussion.) 

Reductions in uncertainty influence input use even if farmers are risk-neutral, as 

can be seen using a second-order approximation of expected profit around the mean of ε 
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The term ½fεεσ2 is what Babcock and Shogren (1995) term production risk.  It is negative 

by the concavity of the production function in ε, i.e., fεε < 0.  The first-order condition 

defining optimal use of the input z is 
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A reduction in uncertainty (i.e., in σ2) leads to decreased (increased) use of z if fεεz > (<) 

0, that is, if increases in z reduce (increase) the concavity of the production function in ε.  

Alternatively, a reduction in uncertainty leads to decreased (increased) use of z if 

increases in ε make the input more (less) risk-increasing, that is, if ∂fεz/∂ε > (<) 0.  There 

is no extant empirical evidence about the sign of this third derivative, however. 

Information has value to farmers even if they are risk-neutral.  By the envelope 

theorem, a reduction in σ2 increases the farmer’s expected profit by the amount ½pfεε.  
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But acquiring information about ε may not increase overall social welfare.  If 

environmental damage is not taken into account in farmers’ input use decisions, the social 

value of information acquisition is 
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The first term in square brackets is negative, but the second term can be positive.  In the 

absence of regulation, then, reductions in uncertainty can decrease social welfare by 

exacerbating environmental quality problems. 

There have been few, if any, studies investigating optimal sampling or testing 

strategies in an economic context, that is, in the context of improved crop production 

decisions.  Carlson (1970) estimates the impact of peach disease-loss forecasts on the 

mean and standard deviation of returns from four fungicide use strategies.  Stefanou, 

Mangel, and Wilen (1986) derive scouting-based spraying strategies for lygus bug on 

cotton and estimate the value of scouting information of varying accuracy.  Babcock, 

Carriquiry, and Stern (1996) present a Bayesian model of soil nitrogen testing and an 

application to Iowa corn production.  There have also been discussions of scouting 

methods in the entomology and weed science literatures, but they have not been 

combined with economic models of pest management decision making.  Grid sample size 

for soil testing has emerged recently as an important issue given the costliness of 

sampling (see for example National Research Council 1997).  One issue of interest is 

whether decreased grid size improves the accuracy of information about important soil 

characteristics.  There is some evidence that variability of soil characteristics may not 

decrease appreciably at smaller sampling scales (National Research Council 1997). If it 

does not, then soil sampling may have limited effects on environmental quality. 
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4.3.2 Information and Application Efficiency 

Information can also be used to target input application more precisely, thereby 

improving environmental quality.  For example, scouting may reduce risks to human 

health and wildlife from pesticide use by reducing pesticide applications on average 

(although not necessarily in every single year), by permitting the use of narrower-

spectrum chemicals with fewer spillover effects, or by permitting spot treatments of areas 

with high infestation rates.  Similarly, soil testing allows farmers to take existing soil 

nutrient stocks into account in choosing chemical fertilizer application rates, reducing 

excess applications and thus eventual leaching.  Information on expected crop 

evapotranspiration rates derived from weather forecasts allows farmers to match 

irrigation application rates with crop demands.  In most cases, optimal water use declines, 

creating the potential to improve instream environmental quality by reducing water 

diversion for irrigation (Cohen et al. 1998).  However, it is not necessarily true that 

improved information will reduce the use of inputs that impair environmental quality, 

even on average and even on only the intensive margin. 

The following analysis, adapted from Moffitt (1986, 1988), uses a modified form 

of the input-oriented model to discuss this point in the context of scouting.  Let 

agricultural output be a function f(z,ε) of an input affecting environmental quality z and a 

random factor ε such that fε > 0.  Let z*(ε) be the optimal pesticide application rate when 

pest pressure is ε, defined by 

pfz(z*(ε),ε) – v = 0. 

Assume also that there exists a threshold level of pest pressure εc such that z*(ε) = 0 for ε 

≤ εc (Headley 1972; Mumford and Norton 1984; Moffitt 1988). 
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The optimal pesticide application rate of a risk-neutral farmer engaging in 

preventive treatment zp is defined by 

∫ =− 0)(),( vdzpf p
z εεψε , 

where ψ(ε) is the probability density of ε and Ψ(ε) is the corresponding cumulative 

distribution.  There exists a level of pest pressure εp such that 
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that is, zp = z*(εp).  The difference in pesticide use between preventive treatment and the 

scouting regime is 
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If fzε > 0, z*(ε) > (<) zp when ε < (>)εp.  The first and third terms of this difference are 

thus positive, while the second term is negative.  If Ψ(εp)-Ψ(εc) is sufficiently large, total 

pesticide application will be greater with scouting than under a preventive regime.  (If fzε 

< 0, the inequalities will be reversed but the basic analysis still holds.)  In such cases, 

providing free scouting services could have detrimental effects on environmental quality 

and social welfare overall. 

 Constraints on timing of application may be a significant impediment to the use of 

such information-based application strategies.  Feinerman, Choi, and Johnson (1990) 

model split application of nitrogen fertilizer as a form of increased application efficiency.  

They assume that initial soil nitrogen stocks and pre-plant applications of nitrogen are 

subject to leaching, runoff, and volatilization losses, while side-dress applications are not.  

Let z0 denote the initial stock of soil nitrogen, z1 the pre-plant application rate, z2 the 

side-dress application rate, and (1-h) denote losses of pre-plant nitrogen, all of which are 
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known with certainty.  Effective nitrogen s(z,h) is then z2+h[z0+z1].  Side-dressing is 

more efficient, but some pre-plant application may be optimal because of the risk that 

adverse weather conditions (too much rainfall) will prevent side-dressing.  Let ε represent 

soil moisture, scaled to lie in the unit interval, so that crop production is f(z2+h[z0+z1],ε).  

Environmental damage is D(e(1-h)[z0+z1],ε).  Side-dress application is infeasible when 

soil is excessively wet, that is, z1 = 0 when ε ≥ εc, making pre-plant application optimal 

(thereby creating environmental damage) for both risk-neutral and risk-averse farmers 

when nitrogen is sufficiently cheap.  Lichtenberg, Spear, and Zilberman (1994) note that 

re-entry regulation of pesticides may create similar disincentives for using reactive rather 

than preventive pesticide application.  In such cases, even subsidies for information 

acquisition may be of limited effectiveness. 

Matching input application rates with crop ecosystem uptake rates requires 

knowledge about both natural characteristics affecting production and about the ways in 

which applied inputs interact with those characteristics, that is, about technological 

structure.  More precise measurement of field conditions has little value without 

knowledge of the structure of crop production technologies (National Research Council 

1997).  Biological knowledge may be an important source of a priori information 

permitting improved specification of agricultural technology structure. 

Modeling crop nutrient response provides one important example.  A series of 

papers by Paris and his colleagues and by others examines the applicability of the von 

Liebig hypothesis of limitationality to nutrient response modeling.  This hypothesis has 

two major features: (1) limited substitutability between nutrients and (2) yield plateaus, 

that is, zero marginal productivity of non-limiting nutrients at some levels.  Empirical 
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studies on corn provide evidence of this limitationality: Best-fitting models combine 

yield plateaus and diminishing marginal nutrient productivity (see for example Lanzer 

and Paris 1981; Ackello-Ogutu, Paris, and Williams 1985; Grimm, Paris, and Williams 

1987; Paris and Knapp 1989; Frank, Beatty, and Embleton 1990; Cerrato and Blackmer 

1990; Paris 1992; Chambers and Lichtenberg 1996).  Limitationality could have 

important implications for understanding the effects of policy-induced changes in 

fertilizer use on nutrient pollution.  First, fertilizer recommendations generated from 

polynomial specifications tend to exceed those from a von Liebig specification.  If the 

von Liebig specification is correct, standard functional forms generate excessive nutrient 

application rates (Ackello-Ogutu, Paris, and Williams 1985).  Second, policies for 

enhancing water quality are typically targeted toward the limiting nutrient governing 

eutrophication (usually either nitrogen or phosphorus).  But reductions in application 

rates of one nutrient could make it limiting in crop production, leading to increased 

runoff of other nutrients.  For example, application of poultry litter to crops has been 

advocated as a means of reducing nitrogen loadings into the Chesapeake Bay.  

Application rates are targeted on crop nitrogen requirements, leading to accumulations of 

excess phosphorus.  It now appears possible that excess phosphorus may be leaching 

from fields, exacerbating the Bay’s nutrient pollution problem. 

In a similar vein, Lichtenberg and Zilberman (1986a) attempt to introduce crop 

ecosystem thinking into models of pesticide productivity.  They argue that pesticides 

should be treated differently from normal inputs because they limit damage rather than 

contribute to potential output.  They propose a model in which pesticides (and other 

inputs) produce an intermediate input called abatement.  The fact that abatement cannot 
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exceed potential output implies that the marginal product of pesticides and other damage 

control inputs declines faster than most first-order approximations such as a log-linear 

model.  Babcock, Lichtenberg, and Zilberman’s (1992) analysis of apple production 

found a substantial difference in marginal productivity and thus in profit-maximizing 

pesticide application rate recommendations.  The appropriateness of this damage control 

model has been the subject of some debate.  Several studies have found that some form of 

abatement function provides a better model fit than a standard log-linear model 

(Carrasco-Tauber and Moffitt 1992; Babcock, Lichtenberg, and Zilberman 1992; 

Chambers and Lichtenberg 1994), while others have found generic functional forms 

better fitting (Crissman, Cole, and Carpio 1994; Carpentier and Weaver 1997).  

(Carpentier and Weaver’s claim is weakened by the fact that they compared a generic 

specification with fixed farmer effects with a damage control specification without those 

fixed effects.) 

An additional attraction from a policy perspective is the fact that the damage 

control model permits inference of crop damage, that is, of the percentage of crop lost to 

pests under any configuration of pest control inputs.  The notion that relative crop losses 

to pests have remained virtually constant at about 30 percent over the past three decades 

(Pimentel et al. 1991) has been one of the main arguments used to motivate the need for 

stricter overall regulation of pesticides.  The estimates on which this claim is based are 

derived from a potpourri of field studies.  Chambers and Lichtenberg (1994) used a dual 

formulation of the damage control model to estimate the share of aggregate U.S. crops 

lost, and found that losses were much smaller initially and have declined markedly due to 
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pesticide use.  They also found no evidence of a “pesticide treadmill” in which ecological 

damage leads to a spiral of ever-increasing pesticide use. 

5.  Interactions Among Agricultural, Resource, and Environmental Policies 

 Agriculture has been treated thus far as a competitive industry characterized by 

market failures in the provision of environmental quality.  In most countries, however, 

agricultural markets are also subject to significant distortions, primarily due to 

government intervention.  Virtually all countries have agricultural policies that influence 

agricultural markets.  In developed countries, such policies are typically designed to 

bolster farm income and/or stabilize the prices of agricultural commodities.  In 

developing countries, such policies are typically designed to reduce food prices in urban 

areas and transfer income from agriculture to other sectors of the economy (see for 

example Schiff and ValdJs 1992).  Many countries also have policies designed to 

promote the use of inputs associated with environmental quality such as chemical 

fertilizers, pesticides, water, and land.  Some such policies have survived in developed 

countries, for example, irrigation water subsidies originally introduced in order to 

promote economic growth in the western United States. 

 As a result, it is necessary to design and evaluate environmental policies aimed at 

agriculture in a second-best context that takes into account the distortions introduced by 

agricultural and other resource policies (Lichtenberg and Zilberman 1986b).  These 

distortions can be substantial.  Lichtenberg and Zilberman (1986b), for example, analyze 

the impacts of a hypothetical marginal output cost-increasing environmental regulation 

affecting a crop subject to a simple deficiency payment program.  The supply price 

farmers face exceeds the demand price, resulting in excessive output and deadweight 
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efficiency loss.  An environmental regulation that increases the marginal cost of 

production reduces producer and consumer surplus in the affected market but reduces the 

size of the deadweight loss as well.  Back-of-the-envelope calculations using supply and 

demand elasticities, output levels, market prices, and target prices typical of the mid-

1980s indicate that the reduction in deadweight loss largely counteracts reductions in 

market consumer and producer surplus for crops like cotton and rice.  Moreover, 

estimates of market-level economic costs of regulation calculated under an assumption 

that markets are perfectly competitive far exceed the true market-level costs. 

 This section discusses the implications of interactions between environmental and 

agricultural policies for policy design.  We focus on three kinds of agriculture sector 

policies: (1) those designed to raise average income (price and income support 

programs), (2) those designed to reduce income variability (price stabilization and crop 

insurance), and (3) those designed to promote certain kinds of agricultural production 

technologies by subsidizing key inputs such as water, fertilizers, or pesticides. 

5.1 Agricultural Price and Income Policies 

 Agricultural price and income policies are used widely.  In developed countries, 

the main goal tends to be maintaining the farm sector by increasing farm income.  In 

developing countries, these policies are typically aimed at transferring income from the 

farm sector to urban consumers and/or industries (Schiff and ValdJs 1992).  These 

policies typically drive a wedge between the price farmers face and consumers’ 

willingness to pay for agricultural output.  In the context of the output-based model 

introduced earlier, farmers’ decision problem in such situations is to choose agricultural 
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output y and environmental quality q to maximize profit py – C(y,q), where p is 

determined by government agricultural policy.  The necessary conditions are 

p – Cy(y,q) = 0 

Cq(y,q) = 0. 

If government policy raises the supply price p above consumers’ willingness to pay 

Uy(y,q), agricultural output exceeds the socially optimal level.  If agricultural output and 

environmental quality are substitutes (Cyq < 0), such a price support policy exacerbates 

environmental quality problems.  If agricultural output and environmental quality are 

complements (Cyq > 0), then price support mitigates environmental quality problems. 

Environmental quality and agricultural output are likely to be substitutes in 

situations where environmental problems are associated with the use of agricultural 

chemicals (fertilizers, pesticides) or with conversion of land to agricultural uses 

(deforestation, loss of wetlands, wind erosion from cultivation of virgin prairie).  In these 

cases, price support programs like those used widely in developed countries are likely to 

worsen environmental quality problems.  In developing countries, however, agricultural 

policies typically depress farm-level prices and are thus likely to mitigate environmental 

damage. 

Environmental quality and agricultural output are clearly complements in cases 

where agriculture provides environmental quality directly, as in the case of scenic 

amenities from farming.  Price support programs in developed countries thus tend to 

promote farmland preservation and thus the provision of such amenities, at least to the 

extent that price support policies apply to the products typically raised near urban areas. 
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The case of soil erosion is more complex.  Price supports increase the return to 

current production and thus the return to erosion.  At the same time, they tend to increase 

expected future prices and thus the marginal user cost of soil erosion, that is, the expected 

returns to soil conservation.  Consider the input-based model used earlier to discuss soil 

conservation at the farm level in the case where the price of agricultural output p is 

determined by government policy.  An increase in p above the competitive market 

equilibrium level changes the soil erosion rate z by 
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The sign of ∂z/∂p equals the sign of the numerator.  The term Rpz represents the effect of 

an output price increase on current returns to erosion.  It is positive if erosion is a normal 

input.  The term Lepez represents the change in the future value of the farm L(p,e(z)) due 

to increased soil losses ez.  One would expect an increase in p to increase the marginal 

value of soil, i.e., Lep < 0.  Thus, the effect of price support on soil erosion is ambiguous, 

as LaFrance (1992) discusses in detail.  Claims to the contrary depend on specialized 

assumptions about the tradeoff between present and future income.  For example, 

Barrett’s (1991) claim that soil conservation is invariant with respect to price policy 

depends on the rather unrealistic assumptions of stationary prices and additive 

separability between soil depth/soil erosion and the use of other variable inputs (LaFrance 

1992).  Clarke (1992) uses a model in which erosion per se does not affect crop 

productivity in deriving the result that price supports unambiguously reduce erosion. 

Price support programs are complex.  Most require farmers to comply with 

production controls like acreage set-asides and/or meet eligibility conditions like base 

acreage requirements in order to limit budgetary exposure.  As a result, these programs 
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generate countervailing incentives.  Moreover, most environmental quality problems are 

regional or local in scope and must thus be analyzed on a regional or local scale.  

Aggregate nationwide assessments are relatively uninformative. 

If agriculture is characterized by constant returns to scale, as is widely believed 

for crop production, price and income support programs may influence the use of inputs 

that affect environmental quality on both the intensive and extensive margins, as 

discussed in Section 4. Rausser, Zilberman, and Just (1984) discuss the effects of 

deficiency payment programs with set-asides on land allocations using such a model.  

They argue that farmers may find it profitable to rent low-quality land in order to meet 

set-aside requirements, i.e., that set-asides may create a market for “diversion-quality” 

land.  Just and Antle (1989) discuss extensive-margin effects of alternative policy 

configurations in greater detail. 

If agricultural production is not characterized by constant returns to scale, price 

and income support programs may affect scale of operation as well.  This issue has 

received relatively little attention. 

Underwood and Caputo (1996) present a theoretical model of the impacts of 

deficiency payments, base acreage requirements, and set-asides on farmers’ allocation of 

land between program and non-program crops and of pest control measures between 

pesticides and alternative knowledge-based pest control methods. 

Leathers and Quiggin (1991) present a theoretical model of the impacts of price 

supports on risk-averse farmers’ demand for inputs that may influence environmental 

quality.  They show that a higher output price unambiguously increases demand for a 

risk-reducing input only if farmers exhibit constant absolute risk aversion, while the 
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effect of a higher output price on demand for a risk-increasing input is indeterminate 

under any assumption about risk preferences.  If one considers only the effects of price 

and income supports on average output prices, therefore, little can be said qualitatively 

about the potential effects of these programs on environmental quality. 

Beginning in 1985, the United States attempted to reduce potential environmental 

damage from agriculture by decoupling deficiency payments from current yields.  Per-

acre deficiency payment rates were thus determined by the difference between the target 

and market prices and by the amount of land enrolled in the program and thus eligible for 

payments.  Of these two, only acreage is under the farmers’ control.  Recent research on 

environmental impacts of commodity programs in the United States has therefore focused 

on land allocation, that is, on extensive-margin effects.  Policy discussions on 

environmental effects of commodity programs in the United States leading up to the 1995 

farm bill focused increasingly on base acreage requirements as impediments to the use of 

crop rotations for fertility and pest management (see for example National Research 

Council 1989). 

There have been few such empirical studies to date, none of which has examined 

base acreage requirements.  Following Lichtenberg (1989), Wu and Segerson (1995) use 

county-level data from Wisconsin to estimate a logit model of shares of county farmland 

allocated to alternative crops as functions of output and input prices, land quality 

characteristics, and farm program parameters such as the target price of corn and acreage 

set-asides for corn, oats, and wheat.  Their treatment of environmental quality effects is 

crude.  Land quality characteristics are also used to construct an index of leaching 

vulnerability that classifies soils as having high, moderate, or low leaching potential.  



 80 

Corn and soybeans are classified as “high-polluting,” wheat and oats as “low-polluting,” 

and hay as non-polluting.  The estimated model is then used to simulate the effects of 

changes in feed grain program parameters (the target price and set-aside for corn) on crop 

acreage allocations and thus potential leaching.  Plantinga (1996) similarly estimates a 

logit model of the shares of land in four land capability class groups in southwestern 

Wisconsin allocated to either dairying or forest as a function of the timber:milk price 

ratio.  Conversion from dairying to forest is assumed to decrease soil erosion by amounts 

taken from 1987 National Resources Inventory data, and Ribaudo’s (1989) estimates are 

used to value the water quality benefits of decreased erosion.  Stavins and Jaffe (1990) 

combine U.S. Forest Service data on county-level forest and cropland acreage, average 

per-acre crop returns derived from the Census of Agriculture, Natural Resource Inventory 

data on natural flood and drainage conditions, and weather data with parametric 

assumptions about land quality distributions to estimate conversion of forested wetlands 

in the southeastern United States.  Their model indicates that increases in average crop 

prices increase deforestation and wetlands loss substantially.  Van Kooten (1993) uses 

data from a survey of Saskatchewan farmers to estimate a cost function for converting 

wetlands and native pasture to cropland.  This cost function is combined with budget data 

under alternative price scenarios in a dynamic decision framework to estimate the effects 

of grain price supports on wetlands conversion over an 80-year period.  Kramer and 

Shabman (1993) use budget data to estimate the net returns to conversion of wetlands to 

cropland under several agricultural policy and tax reform scenarios. 

5.2 Price Stabilization and Crop Insurance 



 81 

 Agricultural programs may also be aimed at reducing price or income risk.  Most 

developed countries also have policies aimed at stabilizing the prices of agricultural 

commodities.  For example, in recent years the United States has set crop loan rates 

sufficiently low that they influence market prices only in exceptional circumstances.  As 

a result, crop loans reduce price risk by giving farmers the equivalent of free put options.  

As is well known, reductions in price risk tend to increase agricultural production 

(Sandmo 1971), exacerbating environmental quality problems in situations where 

environmental quality and agricultural output are substitutes, and enhancing 

environmental quality in situations where the two are complements.  Many countries also 

use crop insurance to protect farmers against catastrophic risk, e.g., major crop failure 

(see Hazell, Pomareda, and ValdJs (1986) or Hueth and Furtan (1994) for descriptions of 

these programs; elsewhere in this Handbook, Chambers discusses issues in the design of 

agricultural insurance). 

 As Chambers and Quiggin (1996) point out, when the government is risk-neutral 

and farmers are risk-averse, optimal environmental policy has two tasks: (1) providing 

farmers with insurance against income variability and (2) correcting incentives to ensure 

socially optimal crop choices and input allocations.  Crop insurance may affect 

environmental quality by influencing both crop choice and input use (see Moschini and 

Hennessy elsewhere in this Handbook for a review of theoretical analyses).  The little 

empirical literature available has shown that input use effects can be substantial.  

Horowitz and Lichtenberg (1993) found that corn growers in the U.S. Corn Belt who 

purchase crop insurance use significantly more herbicides, insecticides, and nitrogen 

fertilizer per acre and spend more per acre on pesticides than those who do not purchase 
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crop insurance.  Smith and Goodwin (1996) find that Kansas wheat growers who 

purchased crop insurance spent significantly less on fertilizers and on all agricultural 

chemicals than those who did not purchase crop insurance.  A simulation study by 

Babcock and Hennessy (1996) suggested that crop insurance reduces optimal nitrogen 

application rates on corn in Iowa, albeit relatively little.  The impacts of crop insurance 

on crop choice and total land in cultivation have not been investigated, nor have there 

been studies of input use effects in a broader variety of crops and locations. 

5.3 Input Subsidies 

 As noted in Section 3, input subsidies influence environmental quality in two 

ways.  On the intensive margin, they induce farmers to increase the use of the subsidized 

inputs.  On the extensive margin, they induce shifts in output composition toward crops 

that use the subsidized input more intensively. 

 In developing countries, subsidies for agricultural chemicals (fertilizers, 

pesticides) have been blamed for exacerbating environmental quality problems ranging 

from impairment of human health (see for example Levine 1991 and Boardman 1986) to 

poisonings of fish and other aquatic wildlife to degradation of water quality (see for 

example Way and Heong 1994).  Subsidies of this sort have been used widely in order to 

promote the adoption of Green Revolution hybrid crop varieties.  Recent empirical work 

suggests that the net social benefits of these subsidies may be negative.  Antle and Pingali 

(1994), for instance, find that the value of lost work time due to sickness caused by 

pesticide exposure in Philippine rice production outweighs the value of damage avoided. 

Heong, Escalada, and Mai (1994) argue that early-season insecticide use on rice does not 

reduce crop damage and may actually result in increased damage by suppressing 
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invertebrate predators that control later-season insect infestations (see also Bottrell and 

Weil 1995).  Grepperud (1995) argues that programs that enhance farm productivity or 

the productivity of off-farm labor may reduce farmers’ soil conservation effort.  Overall, 

however, empirical work on these issues is sparse. 

 In some cases, however, input subsidies of these kinds may actually enhance 

environmental quality.  L\pez and Nikklitschek (1991) show that in an economy with 

both a modern agricultural sector and traditional agriculture based on shifting cultivation, 

subsidization of inputs used in the modern sector can reduce deforestation by attracting 

labor from the traditional sector.  In cases where it is infeasible to control entry into the 

traditional sector, fertilizer and/or pesticide subsidies may be an effective second-best 

policy for reducing adverse climate change effects, erosion and sedimentation of rivers, 

and species loss due to tropical deforestation. 

 In the United States, subsidies for irrigation water in the arid West have been a 

major source of environmental quality problems such as increased river salinity, heavy 

metal (selenium, arsenic) discharges into surface waters and consequent damage to 

wildlife, wildlife damage caused by reduced instream flows, and habitat loss due to 

conversion of land to agricultural uses.  Water price distortions arise from a number of 

sources, including below-cost pricing of water from federal water projects, use of 

hydroelectric power revenues to offset the costs of providing irrigation water, exclusion 

of interest from capital repayment charges, and differential pricing for water delivered 

with lower reliability.  Ultimately, however, these distortions continue to influence water 

demand primarily because of limitations on water marketing due to legal restrictions on 

water transfers.  If water were freely marketable, farmers would face an opportunity cost 
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of foregone revenue from potential water sales to higher-value users (urban areas, higher-

value crops) regardless of the cost of acquiring irrigation water.  This opportunity cost of 

water appears to be on the order of 2-5 times the current price that federal and state 

irrigation projects charge for irrigation water.  Institution of water markets would thus 

likely increase farmers’ opportunity cost of water substantially, leading to reductions in 

drainage and saline effluent through reductions in water application rates, shifts to less 

water-using crops, and investment in more efficient irrigation technologies. 

 When drainage and effluent are increasing functions of water application rates, as 

is typically the case, an increase in the price of water can function as the equivalent of a 

Pigouvian tax.  Linear programming (Horner 1975; Gardner and Young 1988) and 

econometrically based simulation studies (Caswell, Lichtenberg, and  Zilberman 1990; 

Dinar and Letey 1991; Weinberg, Kling, and Wilen 1993; Weinberg and Kling 1995) 

indicate that increases in water prices (and thus institution of water markets) could 

alleviate drainage and saline effluent problems substantially through shifts in cropping 

patterns, changes in irrigation technology, and reductions in water application rates for 

given crops and irrigation technologies.  Moore and Dinar (1995), however, argue that 

water may be quantity-rationed at present in many areas, that is, that farmers presently 

are willing to purchase more water than is available at current prices.  In such situations, 

increases in water prices can result in smaller than anticipated reductions in on-farm 

water use.  They present econometric evidence indicating that California farmers using 

water from the Central Valley Project may be quantity-rationed. 

 Creation of water markets or other institutional reforms that price water at its true 

value may be effective means of controlling environmental damage in irrigated 
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agriculture caused by other inputs as well.  Larson, Helfand, and House (1996) note that 

increases in the price of water will reduce the use of complementary inputs and therefore 

environmental damage from the use of those inputs.  They present simulation results 

indicating that taxing irrigation water achieves given reductions in nitrate leaching from 

lettuce at per-acre costs roughly equal to those required under combined water and 

nitrogen taxes. 

 Government investment in infrastructure and other public goods may implicitly 

provide subsidies for agricultural inputs that influence environmental quality.  Stavins 

and Jaffe (1990) argue that federal drainage and flood control projects have played an 

important role in fostering conversion of forested wetlands to agricultural use in the 

Mississippi Delta region.  By reducing flood risk over broad areas, these projects 

implicitly lower the cost of land that would otherwise require significant private 

investment to make cultivation attractive.  Their empirical model suggests that close to 

one-third of conversion of forested wetlands in the Mississippi Delta between 1934 and 

1984 could be attributed to projects of this nature. 

6. Concluding Remarks 

 As we noted in the introduction, the centrality of agriculture to human existence 

and the dependence of agricultural productivity on natural conditions give environmental 

quality problems in agriculture certain distinctive features.  Agriculture’s dependence on 

natural conditions creates incentives for resource stewardship that may incidentally 

induce farmers to protect environmental quality.  This dependence also means that 

heterogeneity and uncertainty are important factors in environmental policy design.  The 

centrality of agriculture to human existence lies behind the presence of agriculture sector 
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policies in virtually all countries.  As a result, interactions between agricultural and 

resource policies play important roles in determining the effects of environmental 

policies in agriculture. 

We began with a discussion of stewardship in order to answer the question of 

whether environmental regulation is needed in agriculture.  If stewardship incentives are 

sufficiently strong, it is possible that farmers’ pursuit of their own self-interest will result 

in adequate provision of environmental quality.  Education and exhortation should suffice 

to fill any gaps by bringing unnoticed opportunities to farmers’ attention.  Such a view 

underlies the bulk of current environmental policy for agriculture in the U.S.  The 

existing literature suggests that stewardship incentives are not sufficiently strong in most 

countries; the emergence of environmental problems association with agriculture is prima 

facie evidence that they are not.  Therefore, there is a need for some form of 

environmental regulation.  The literature also suggests that promotion of more 

environment-friendly farming methods does not always enhance environmental quality. 

New precision application technologies that reduce input requirements on the intensive 

margin may have extensive margin effects that impair environmental quality, so that 

introduction of a new precision application method may worsen environmental quality 

overall.  Information-intensive technologies may similarly worsen environmental quality 

by increasing the use of polluting inputs.  Even when these technologies do help improve 

environmental quality, the extent of improvement is likely to be less than anticipated.  In 

general, careful empirical analysis is needed to determine the likely effects of these 

technologies.  Relatively little has been conducted to date, however. 
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While more traditional forms of regulation (economic incentives, standards) appear 

to be needed, the empirical basis for setting such standards is generally lacking.  The bulk 

of the empirical literature relies on farm-level simulation models.  There is considerable 

evidence that these models predict ambient environmental quality poorly at scales of 

interest to policymakers, suggesting that alternative approaches are needed.  Approaches 

involving interdisciplinary collection and analysis of data linking ambient environmental 

quality and agricultural production seem the most promising. 

One interesting sidelight in this discussion was the claim of the sustainable 

farming advocacy literature that environmental regulation in agriculture might resuscitate 

traditional family farms in developed countries like the U.S.  The formal argument is that 

once the full social value of environmental quality is taken into account, the joint costs of 

agricultural output and environmental quality are lower in smaller-scale integrated 

crop/livestock operations than in larger-scale specialized crop or livestock operations.  

While this proposition seems to enjoy considerable currency in policy discussions (at 

least in the U.S.), it has not been analyzed rigorously either theoretically or empirically. 

We then turned to the question of the appropriate instruments for environmental 

regulation in agriculture.  Developed countries mainly use a combination of direct 

regulation (imposition of best practice standards) and subsidies for the adoption of best 

practice farming methods to deal with both adverse and beneficial environmental effects. 

Emissions-based regulation tends to be infeasible given the high cost and technical 

difficulty of monitoring associated with nonpoint source problems like those typical in 

agriculture.  Our analysis of regulation in a heterogeneous industry implied that negative 

(positive) incentives applied to inputs were preferable for cases involving adverse 
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(beneficial) environmental effects because they gave farmers the proper signals on both 

the intensive and extensive margins.  Our analysis of the choice of policy instruments 

under uncertainty was inconclusive due to lack of information about the relative 

sensitivity of crop productivity and environmental damage to uncertainty, although the 

fact that most of the inputs associated with environmental quality problems are risk-

increasing argues for the superiority of incentives.  Input taxes (subsidies) differentiated 

across farm types (e.g., crops, soils, slopes, location) seemed feasible to implement in 

many cases where inputs have adverse (beneficial) environmental effects.  The major 

exception was fertilizer, which we discuss further below. 

We also examined the design of environmental regulation under hidden 

information (adverse selection) and hidden action (moral hazard).  Most studies of 

problems involving hidden information have neglected issues of contract enforcement 

such as compliance monitoring and secondary markets.  The difficulty of monitoring 

compliance and the ease with which secondary markets can arise suggests that hidden 

information is relatively intractable for most environmental quality problems in 

agriculture.  The major exception is land use.  Hidden information is likely to be an issue 

in local-scale land use policies (farmland preservation) but can be avoided when the 

number of potential participants is sufficiently large (e.g., national land retirement 

programs).  Very few studies have examined environmental policy design in cases 

involving hidden action.  Most have examined cases where emissions were either 

observable directly or could be inferred from observation of ambient environmental 

quality and thus have little applicability to nonpoint source problems. 
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Emissions trading would seem an attractive way to implement incentive-based 

regulation of environmental quality in agriculture.  However, there has been very little 

research on emissions trading under conditions characteristic of agriculture, namely when 

monitoring emissions is excessively costly, when the environmental quality effects of 

alternative farming practices vary across farms, and when there is significant uncertainty 

about those effects.  Further research is clearly indicated given the growth of interest in 

such programs. 

Of the inputs associated with environmental quality problems, fertilizers appear to 

be the least amenable to regulation.  The environmental quality effects of fertilizers vary 

according to crop type and natural production conditions in ways which first-best taxes or 

best practice standards cannot take into account.  Second-best taxes or best practice 

standards are unlikely to be enforceable due to the ease of creating secondary markets 

and the difficulty of monitoring compliance.  The empirical literature suggests that 

nitrogen and phosphorus, the nutrients most commonly associated with pollution 

problems, are risk-increasing, so that price and income stabilization programs tend to 

increase their use.  This latter finding is troubling because countries like the U.S. tend to 

keep stabilization and insurance programs in place even while phasing out price and 

income support programs.  Moreover, to the best of current knowledge, nutrient pollution 

of surface and ground waters tends to be the most widespread environmental quality 

problem associated with agriculture.  These considerations suggest that creative thinking 

about policy design is especially needed for dealing with nutrient problems. 

 The importance of understanding interactions between agricultural, natural 

resource, and environmental policies is well established by now.  Careful theoretical 
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analyses show that these interactions are frequently too complex to permit simple 

unambiguous generalizations, e.g., about the effects of price support or price stabilization 

programs on environmental quality.  As a result, empirical studies of these interactions 

are especially important for policy design.  Unfortunately, sound empirical studies are 

generally lacking. 

 One final set of issues generally neglected in the literature to date relates to 

environmental quality effects of marketing.  Most studies of environmental quality 

problems in agriculture assume a simple, two-sector competitive agricultural economy 

consisting of price-taking farmers and consumers.  In developed countries, at least, 

processors and marketers (wholesalers, retailers) account for a large share of the food 

sector.  Much of the interaction between farmers and their immediate customers is 

conducted under some form of vertical coordination, ranging from contracts to 

integration of operations.  In many cases, processors and growers supply some production 

inputs, so that agricultural output and environmental quality are produced jointly by both 

sets of agents.  Vertical interactions can play an important role in environmental quality 

problems even in industries without explicit forms of coordination.  For example, quality 

standards, which can arise from informational problems encountered in marketing, can 

influence inputs such as pesticides (Babcock, Lichtenberg, and Zilberman 1992; Starbird 

1994; Lichtenberg 1997).  To date, research on environmental quality problems in 

agriculture has concentrated on situations involving independent farms, ignoring the 

possibility that numerous agents jointly produce both environmental quality and 

agricultural output.  Both conceptual and empirical research could help improve 

environmental policy design in such industries. 
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