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Integration and Causality in International Freight Markets – Modeling with Error Correction and Directed 

Acyclic Graphs 

Using Directed Acyclic Graphs (DAG’s) and Error Correction Models we study the dynamics of the 
notoriously volatile international freight prices that comprise the Baltic Panamax Index, the index on 
which freight futures trading is based.  The DAG’s are used to make definitive statements about the 
contemporaneous correlations between prices and allow us to address the construction of the data-
determined orthoganization on contemporaneous innovation covariance, critical in providing sound 
inference in innovation accounting techniques.  Our results provide a rich source of information on price 
discovery over various time horizons and suggest that the index may not be appropriately comprised and 
weighted. 

 

I. Introduction 

Neoclassical economic thought has long recognized the significance of transportation in the 

marketing process.  In a rudimentary sense, commodities will be transported from high supply to low 

supply regions if equilibrium conditions between the markets generate a large enough price differential to 

cover the cost of the transportation.  The world’s ocean shipping fleet functions under this very 

fundamental premise.  The price of ocean freight is, however, notoriously volatile and the costs associated 

with the shipment of goods can often be quite substantial.  This is particularly true for lower valued 

commodities, like grains, where the cost of shipment can be substantial portion of the underlying 

commodity price (Moneta, 1953, Dunn, 1987).1   

In January 1985, the Baltic Exchange developed the then known Baltic Freight Index (BFI) which 

in May 1985 would become the underlying asset of the Baltic International Freight Futures Exchange 

(BIFFEX) contract, a contract designed to hedge uncertainty associated with volatile freight rates.  On the 

basis of their exposure to the risk of adverse freight rate fluctuations, ship owners and charterers could buy 

or sell BIFFEX contracts so as to protect their freight rate revenue or control their freight rate cost, 

respectively.  In addition to its use for futures trading, the BFI was also considered to be the leading 

indicator of the condition in the dry-bulk shipping markets.  On a daily basis, it provides accurate 

information about the level of freight rates across a variety of shipping routes, worldwide.  This 

information is extremely valuable for shipping market agents and is an invaluable tool in their decision 

making process particularly, for an industry such as shipping where trades are being concluded across the 
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globe and there is not a central reporting place to record and monitor the level of activity in the markets.  

As Gray (1990) points out “ the clarity of vision [provided by the BFI] is a very useful service to the shipping industry. ” 

The current article makes significant contributions to the literature from several angles.  While 

several studies (outlined below) have attempted to measure the degree of interconnectivity between the 

freight markets, to date, no research has estimated the relationships in a truly dynamic manner and have, as 

such, failed to discuss the implications for commodity futures and physical trading.  Therefore it is the 

principal objective of this paper to assess the degree of interconnectivity between the major shipping 

routes over various time horizons.  To this end, we employ for the first time, Directed Acyclic Graphs 

(DAG’s), which have not, until now, been extensively utilized in economics and finance.   

Based on an Error Correction Model (ECM), we develop a framework for estimating forecast error 

decompositions and impulse responses, which combined, provides a rich source of information on market 

linkages in both the short, intermediate and long run.  Following Spirtes et al., (1993) we examine the 

contemporaneous relationships among the variables based on the variance covariance matrix from the 

innovations (residuals) from an ECM by employing DAG’s.  The application of innovation accounting and 

impulse response in this study is different from most other studies in the sense that we address the 

construction of the data-determined orthoganization on contemporaneous innovation covariance critical 

in providing sound inference in innovation accounting techniques used to assess short, intermediate and 

long run relationships among the prices (Swanson and Granger, 1997).  From a practical standpoint, this 

information is crucial in assessing the information flows from the shipping markets and once combined 

with the DAG analysis, allows us to make an assessment on whether the index, on which the futures is 

traded, is correctly composed.  Indeed, our analysis provides a mechanism for deciding upon the correct 

index and has obvious, yet profound implications for other research in the area of index construction. 

Our results suggest that over the longer term all freight prices are interconnected, verifying the 

suggestion that the dry bulk shipping market is efficient and bulk tonnage is moved effectively between 

markets stabilizing freight rates.  However, through our unique application of DAG analysis we find a 

strong geographical pattern to information linkages, and that some routes are dominant in terms of ‘price 
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leadership’.  The results also indicate that from a futures contract design standpoint, some routes are 

‘redundant’ in terms of information flow and could have been effectively dropped from the index, as 

information from these markets is already captured in other markets.  These redundant routes, have 

therefore diluted the index, making the hedging strategy less effective, perhaps helping to explain the 

demise of the freight futures market and the consequent growth in the Over the Counter (OTC) market.  

Importantly, the DAG analysis provides guidance into what should be the appropriate compilation and 

weighting of the index. 

The rest of the paper is as follows.  Section II offers a brief overview of the international ocean 

freight market, previous attempts to model freight markets, and a discussion of freight indices.  Section III 

outlines the methodologies employed in the paper, including an introduction to DAG’s, and section IV 

provides describes the underlying properties of the data series.  Section V presents the empirical results, 

and the last section, section V1, concludes.  

II. The International Ocean Freight Market and Freight Indices 

Despite the fact that freight rates are highly volatile and unpredictable, the vast majority of 

empirical research in international trade generally assumes the existence of a frictionless environment 

where commodities move freely between regions.  However, as shown by Goodwin, Grennes and 

Wohlgenant (1990) failure to account for the highly variable freight rates can lead to false conclusions in 

empirical research, illustrating the point by finding strong support for the Law of One Price (LOP), only 

after they included non-constant transportation costs.  Only a handful of papers have attempted to include 

transportation costs into their analysis with examples coming from Geraci and Prewo (1977) and Roehner 

(1996).  They both provide evidence that trade is quite responsive to transportation costs, and that it is 

vital that transportation costs be included in the study of trade flows.  

Independent of the limited trade research that accounts for freight costs, one area of freight price 

analysis that has generated interest in recent years has been forecasting future freight rates, and assessing 

the level of volatility in the freight markets.  Examples of freight price forecasting are provided by Binkley 

and Bessler (1983), Cullinane (1992), Denning et al. (1994), Venstra and Franses (1997), Kavussanos and 
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Nomikos (1999) and Haigh (2000).  In general, these authors conclude that forecasting freight rates is 

particularly difficult, evidently confirming the inherent instability in ocean transport markets.  Indeed, in 

his 1996 study, Kavussanos models the volatility directly of various types of ship prices (e.g., spot versus 

time-charter) and discovers that the various prices have all exhibited consistently large periods of volatility 

(that tend to time-cluster).  The research also indicates that there are some slight differences in the level of 

volatility depending on the shipping arrangement, with time-charter ship prices illustrating greater 

instability. 

Without a completely articulated theory the strong presumption is that spot rates and time charter 

rates ought to be related to one another in a systematic way (in a similar way that short and long bonds are 

related via the ‘term-structure’ of interest rates).  Indeed, the freight market is often judged as being the 

textbook example of efficient and competitive in the sense that the available tonnage is moved effectively 

from market to market to meet demand which stabilizes and links freight rates together (Berg-Andreassen, 

1997).  As such, in their quest to support this theory, several studies have sought to analyze the 

relationships between various shipping prices.  While Hale and Vanags (1989) reject the hypothesis that 

spot and time-charter rates are interconnected, the findings of Berg-Andeassen (1997) confirm the 

perception in the shipping industry that changes in the spot rate impact the movement of time-charter 

rates. 

Several authors, including Binkley and Harrer (1981), Binkley (1983), and Beenstock and Vergottis 

(1989) have provided important research in the area of ocean freight price determination.  Indeed, within 

the area of freight price determination, attempts have been made to decipher exactly which variables 

affecting the level of freight prices, are the most volatile (see for instance, Hse and Goodwin (1995)).  All 

the studies point out that equilibrium shipping rates are determined through a complex interaction of 

supply and demand conditions for the shipping services.  The demand for shipping is quite simply a 

function of the level of international trade and thus is influenced by the usual factors that affect the excess 

supply and demand of these globally traded commodities.  The supply of shipping is principally a function 

of the existing shipping capacity and the input costs associated with operating a vessel (e.g., fuel prices).  
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What contributes significantly to the variability of freight rates is the fact that there is limited scope for 

capacity expansion in the short run due to lengthy construction lags.  The major means of expanding short 

run capacity is through more intensive shipping use, entailing an increase in bunker fuel prices and hence 

freight rates.  This combined with the effect of changing conditions in the world economy, political events, 

port conditions and even the weather create an unstable, unpredictable shipping environment.  

Given the levels of volatility evidenced in the freight markets, the benefits of providing a futures 

market in freight rates had been obvious to market practitioners in the shipping industry since the 1960’s.  

However, such a market was eventually established only in 1985 (Gray, 1990).  The reason is that the 

underlying asset of the market - the service of seaborne transportation - is not a physical commodity that 

can be delivered at the expiry of the futures contract.  By its very definition, a futures contract is an 

agreement to deliver a specified quantity and grade of an identifiable commodity, at a fixed time in the 

future.  This obstacle was overcome with the introduction of the cash settlement procedure for the stock 

index futures contracts in 1982.  When the underlying commodity is not suitable for actual physical 

delivery then an alternative is to deliver the cash value of the commodity at that time.  The development of 

the cash settlement procedure led to the creation, on 1 May 1985, of the BIFFEX contract.  The 

underlying asset, which is delivered at the settlement date, is the cash value of a freight rate index, 

originally known as the Baltic Freight Index (BFI), now known as the Baltic Panamax Index (BPI).  

The BPI is calculated every London business day by the Baltic Exchange, from data supplied by a 

panel of fourteen international shipbrokers, and is reported in the market at 1 p.m. London time.  The 

panel is composed of companies who “ … are deemed by the Baltic Exchange to be of sufficient size, reputation and 

integrity to be good independent arbiters of the market” (Gray, 1990).  Each shipbroking company submits its view 

of that day’s rate on each of the BPI constituent routes, at 12 a.m. London time.  These rates are based 

either on actual shipping fixtures concluded in the market, or in the absence of an actual fixture, reflect the 

panelist’s expert view of what the rate would be on that day if a fixture had been concluded.  As a 

precautionary measure to prevent any individual broker influencing the market, the highest and lowest 



 6 

assessments for each trade route are excluded and a simple arithmetic average is taken of those that 

remain. The resulting route averages are used in the computation of the BPI. 

The BPI currently comprises 7 seaborne trade routes. The underlying trade routes and their 

respective weightings in the composition of the BPI have been substantially revised on a number of 

occasions to ensure that the index provides a sound basis for the effective functioning of the BIFFEX 

market.  These revisions in the composition of the index, since its inception in January 1985, are presented 

in Table 1 and schematically in Figure 1; the notes, in the same table, describe some minor amendments to 

the composition of the index.  2 

We can broadly identify four different periods corresponding to differing compositions of the 

underlying index.  During the first period (January 85 to August 90), the index consisted of capesize, 

panamax and handysize spot freight rates.  3  For the period up to 3 November 1988, there were 13 routes, 

of which, 3 were capesize routes (routes 6, 8 and 10 representing 15% of the index composition), 5 were 

panamax routes (routes 1, 2, 3, 7 and 9 which made up 65% of the index) and the remaining 5 were 

handysize routes (routes 4, 5, 11, 12 and 13 which accounted for the remaining 20%).  After 4 November 

1988, route 13 was deleted and the number of the index constituent routes was reduced to 12.  The 

composition of the index was altered again on 6 August 1990 with the introduction of three time-charter 

routes (routes 1A, 3A and 5). 4 The index was revised once more on 5 February 1991 when the panamax 

route 7 was replaced by a capesize route and a new time-charter route (route 2A) was introduced.  An 

additional time-charter route was introduced on 5 February 1993 (route 9).  The four handysize routes (i.e. 

routes 4, 5, 11 and 12) were eventually excluded from the composition of the index in November 1993 

and the number of the index routes was reduced to 11.  Finally, in November 1999, the capesize routes 

were removed from the underlying index and since then the index consists of panamax routes only.  

These revisions have been driven by the intention to generate an underlying index which promotes 

the effective functioning of the BIFFEX contract.  For instance, Gray (1990) indicates that time-charter 

routes were introduced in order to facilitate market participants who wanted to hedge their freight rate risk 

on these routes.  Similarly, Cullinane et al. (1999) indicate that the exclusion of the handysize routes was 
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implemented in response to pressure from market agents, operating on panamax and capesize trade-

routes, who wanted to increase the panamax and capesize representation on the index so as to enhance the 

performance of their hedges.  Finally, the exclusion of the capesize routes from the BPI, followed after an 

extensive review and consultation of the London International Financial Futures Exchange (LIFFE) with 

BIFFEX market participants, who “put a Panamax index at the top of their list of requirements” since this was 

expected to increase the performance of hedges on the panamax routes.  5  

The question of whether or not the BIFFEX contract provides effective freight risk management 

has been analyzed extensively in the literature by different researchers including  Kavussanos and Nomikos 

(1999, 2000) and Haigh and Holt (2000). These studies invariably indicate that BIFFEX is not a very 

effective hedging instrument; since it does not provide risk protection to the degree that is evidenced in 

other commodity and financial futures markets.  The underlying reason behind this is that the BIFFEX 

contract is based on an index comprising the routes and as such, provides a cross-hedge against these 

shipping routes; this makes the hedge less appealing, and the volume of trading lower.  However, despite 

the numerous revisions in the composition of the BPI, trading volume in the market has remained at low 

levels and, as a result, in June 2001, LIFFE, the authority regulating the BIFFEX contract, announced that 

trading in the BIFFEX contract would cease in April 2002.6  Whether the index is correctly composed and 

whether there are any obvious patterns or redundancies within the index is the question we attempt to 

address next. 

III. Models and Methodologies 

Cointegration and Error Correction Framework 

The development of cointegration modeling stems largely from the work of Granger (1986) and Engle and 

Granger (1987).  Although the estimated coefficients can be shown to be consistent, the associated 

standard errors may be misleading for any hypothesis testing (Hall (1986), Stock (1987)), and as such much 

work on applied cointegration analysis has relied on Johansen’s multivariate approach (Johansen, 1988, 

1991; Johansen and Juselius, 1990).  Because of the advantages of the Johansen methodology, this 
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technique is adopted in the ensuing analysis.  First, assume an n-dimensional vector of nonstationary time 

series, tX , (n = 7 here) that is generated by an autoregressive form depicted as: 

∑
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where tX is an n x 1vector of the I(1) variables (seven routes comprising the BPI), iΠ is an n x n matrix of 

parameters, ω is a vector of constants, and tε is a random error term.  Johansen and Juselius (1990) prove 

that eq. (1) can be rewritten as error-correction representation as follows: 
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Eq. 2 resembles a Vector Autoregression (VAR) (in fist differences), with an inclusion of the lagged-level 

component, also known as the Error Correction Term (ECT).  Since tε is stationary, the rank of the ‘long-

run’ matrix, Π , determines how many linear combinations of tX are stationary.  We know that the rank of 

any matrix is equal to the number of characteristic roots that are different from zero, and so the rank of Π  

determines the number of cointegrating vectors.  In practice, we can obtain only estimates of Π  and its 

characteristic roots, and once these are estimated we can test for the number of characteristic roots 

(Johansen (1991)). If Π  is full rank (Π =7), then the freight price series are jointly stationary and a VAR 

(levels) is the appropriate model to use to study the relationships between the freight prices.  If the rank of 

Π  is positive and less than n, then cointegration is present, and there exist matrices 'αβ , with dimensions 

n x r, where r is the number of cointegrating relationships, such that Π = 'αβ .  The matrix β is the matrix 
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of cointegrating parameters and the matrix α is the matrix of weights (also known as the speed of 

adjustment parameters) with which each cointegrating vector enters the n equations.  

 All the parameters within the ECM can provide information on both the long run and the short 

run nature of the relationships between the freight prices.  First, the long-run structure can be identified by 

testing hypothesis associated with β . Detailed examination on the cointegration space spanned by β  

provides rich information on the long-run relationships and market structure of the freight prices.  Indeed, 

hypothesis testing allows us to determine whether some markets may be excluded from the long run 

relations.   The short run dependencies among the prices can also be identified through hypothesis 

testing on α  and iΓ . Hypothesis testing on α , the short run adjustment to the long run relationships, can 

be conducted in a similar way to that used for hypothesis testing on β .  This allows the researcher to 

make inferences regarding the short run adjustment processes of each series.  It also enables the researcher 

the ability to test whether a particular market is weakly exogenous with regard to other markets (if those 

market prices are unresponsive to the deviation from long-run relationships). 

 The parameters associated with iΓ  define the short-run adjustment to the changes of the process 

(Juselius, 1995).  Hypothesis tests can also be conducted on these matrices.  However, as is the case of 

standard VAR’s, the individual coefficients associated with the ECM can be somewhat difficult to 

interpret, particularly those associated with the short-run dynamics captured within iΓ .  Consequently, 

innovation accounting may be the best way to describe the short run structure and interdependencies 

among the freight prices (Swanson and Granger, 1997).  Therefore, given the ECM, impulse response 

analysis can be undertaken based on an equivalent levels VAR to summarize the short run dynamic 

interrelationships among the seven freight prices.  Undertaking the impulse response analysis in this way 

addresses the necessity of imposing the cointegrating relationships into the system, which has very recently 

been proven to be crucial in yielding consistent impulse responses and forecast error decompositions 

(Phillips, 1998).   
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 However, the basic problem of the orthoganalization of residuals from the ECM remains 

unresolved.  Most studies employing ECM or VARs have yet to fully address the problem associated with 

the contemporaneous relationships among variables.  Despite this, innovation accounting (impulse 

responses) requires that a causal assumption about contemporaneous correlation be made.  Early work in 

this area employed the Choleski factorization, with more recent applications concentrating on a ‘structural’ 

factorization suggested by Bernanke (1986) and Sims (1986) simply because the Choleski factorization the 

world may not be viewed as being recursive (Cooley and Leroy (1985)).  However, the problem with both 

the Bernanke (1986) and Sims (1986) approach is that the correct structural model may not be known to 

the researcher.  Therefore, following Spirtes et al, 1993 in this study we examine the contemporaneous 

relationships among the variables based on the variance covariance matrix from the innovations (residuals) 

from the ECM by employing DAG’s which, until now, have been largely ignored in the economics and 

finance literature.  It is to a brief explanation of DAG theory that we now turn. 

Directed Acyclic Graphs 

For three variables A, B and C, illustrate a causal fork, A causes B and C, as: B ßA à C.   The 

unconditional association between B and C is nonzero (as both B and C have a common cause in A), but 

the conditional association between B and C given knowledge of the common cause A, is zero.  This is 

one screening off property associated with causal relations: common causes screen off associations between their joint 

effects.  Illustrate the inverted causal fork,  A and C cause B,  as:  Aà B ßC.   Here the unconditional 

association between A and C is zero,  but  the conditional association between A and C given the common 

effect B is not zero.  A second screening off property associated with causal relations is: common effects do not 

screen off association between their joint causes.  These screening off phenomieina are captured in the literature of 

Directed Acyclic Graphs. 7  

A Directed Acyclic Graph is a picture illustrating causal flow between variables with lines with and 

without arrowheads.  Variables connected by a line are said to be adjacent.  If we have a set of variables 

{A,B,C,D,E}: (i) the undirected graph contains only undirected lines (e.g., A  B); (ii) a directed graph 

contains only directed lines  (e.g., B → C);  (iii) an inducing path graph contains both directed lines and bi-
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directed lines (C ↔ D); (iv) a partially oriented inducing path graph contains directed lines ( → ),  bi-

directed lines  ( ↔ ),  non-directed lines  (oo)  and  partially directed lines ( o→ ).   A DAG is a graph 

that contains no directed cyclic paths (an acyclic graph contains no directed path from a variable that 

returns to itself).  Only acyclic graphs are used in the paper. 

  Directed Acyclic Graphs represent conditional independence as implied by the recursive product 

decomposition: 

)|Pr(),...,,,Pr(
1321 ii

n

in pavvvvv
=
Π=         (5) 

where Pr denotes probability.  The symbol pa i refers to the realization of some subset of the variables that 

precede (come before in a causal sense) iν  in order ( nννν ,...,, 21 ).  The symbol ∏ refers to the product 

(multiplication) operator.  Pearl (1986) proposes d-separation as a graphical characterization of conditional 

independence.  Verma and Pearl (1988) provide a proof of this proposition.  D - separation characterizes 

the conditional independence relations given by equation (5).  If we formulate a Directed Acyclic Graph in 

which the variables corresponding to pa i are represented as the parents (direct causes) of Vi, then the 

independencies implied by equation (5) can be read off the graph using the criterion of d-separation 

(defined in Pearl (1995)). 

Definition:  Let X, Y and Z be three disjoint subsets of vertices [variables] in a Directed Acylic Graph G, and let p be 

any path between a vertex [variable] in X and a vertex [variable] in Y, where by 'path' we mean any succession of edges, 

regardless of their directions. Z  is said to block p if there is a vertex w on p satisfying one of the following:  (i) w has 

converging arrows along p, and neither w nor any of its descendants are on Z, or, (ii) w does not have converging arrows along 

p, and w is in Z.  Further, Z is said to d-separate X from Y on graph G, written   (X ⊥Y | Z)G , if and only if Z blocks 

every path from a vertex [variable] in X to a vertex [variable] in Y. 

Geiger, Verma and Pearl  (1990) demonstrate that there is a one-to-one correspondence between 

the set of conditional independencies, X ⊥ Y | Z, implied by equation (5) and the set of triples (X, Y, Z) 

that satisfy the d-separation criterion in graph G.  If G is a Directed Acyclic Graph with variable set V, X 
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and Y are in V, and Z is also in V, then G linearly implies the correlation between X and Y conditional on 

Z is zero if and only if X and Y are d-separated given Z.   

Spirtes, et al. (1999) consider the relationship between directed graphs and the counterfactual 

random variable model (the random assignment experimental model) of Rubin (1978) and Holland (1986).  

For one (causal relationships summarized by directed graphs on observational data) to imply the other 

(causal relationships revealed in a random assignment experiment) one needs three conditions.  First, one 

needs to focus on causally sufficient set of variables.  This means that there are no omitted variables that in 

fact cause any two of the included variables under study.  If variable X causes both Y and Z and we omit 

X from the analysis, then an apparent causal flow from Y to Z (or vice versa) may be due to the fact that X 

causes both Y and Z, so the causal flow identified as running from Y to Z would be spurious (Suppes 

1970).  Second, one needs to constrain herself to causal flows that respect a causal Markov condition.  That is 

to say, if X causes Y and Y causes Z, we can factor the underlying probability distribution on X, Y and Z 

as Pr(X,Y,Z) = Pr(X)Pr(Y|X)Pr(Z|Y).  Finally, the probabilities, Pr, we attempt to capture by graph G are 

faithful to G if X and Y are dependent if and only if there is an edge between X and Y.    

Causal sufficiency suggests that one finds a sufficiently rich set of theoretically relevant variables 

upon which to conduct analysis.  Failure to include a relevant variable may lead one to put a line between 

two variables when in fact both are effects of an omitted third variable.  Spirtes, Glymour and Scheines 

(1993) note that the Markov condition has been questioned in quantium mechanical experiments.  Failure 

to require the condition would require us to ignore statistical dependency even in experimental designs 

(Spirtes, Glymour and Scheines 1993, p. 64).  Finally, the faithfulness condition may not hold if parameter 

values cancel one another.  For example the following two equations describe the underlying model that 

generates X, Y, and Z: 

X =  20Y  +  2Z + Xε   

Z =  - 10Y  + Zε  
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where  Xε  and Zε  are uncorrelated noise terms, each not correlated with its associated right hand side 

variables ( Xε is not correlated with Y or Z and Zε  is not correlated with Y).  If this is the “true” generating 

process on X, Y and Z, it has a Directed Acyclic Graphical representation with no conditional 

independence relations (dropping the noise terms): 

              X                      Y 

 

                        Z 

Yet,  X and Y are uncorrelated.  If we rely on correlation and partial correlation stucture based on 

observational data on X, Y and Z to remove edges between variables, we would mistakenly remove the 

edge between X and Y, even though the data generating process requires it to be present.  However, slight 

variations in any of the linear coefficients show X and Y to be correlated, so that the correlation structure 

in the model is unstable (Glymour 1997, p. 209). [Of course the experimentalist can find the causal model 

behind X and Y even with the unstable correlation structure; by breaking the connection between Y and Z 

through random assignment in a controlled experiment].  

 Spirtes, Glymour and Scheines (1993) have applied the notion of d-separation into an algorithm 

(PC Algorithm) for building directed graphs.  PC algorithm is a sequential set of commands that begin 

with an unrestricted graph where every variable is connected with every other variable and proceeds step-

wise to remove lines between variables and to direct "causal flow.” The a lgorithm is described in detail in 

Spirtes, Glymour, and Scheines (1993, p.117).   

  The algorithm (we will summarize only the generic aspects of PC algorithm) begins with a 

complete undirected graph G on the vertex set X.  The complete, undirected, graph shows an undirected 

line between every variable of the system (every variable in X).  Lines between variables are removed 

sequentially based on zero correlation or partial correlation (conditional correlation).   The conditioning 

variable(s) on removed lines between two variables is called the sepset of the variables whose line has been removed (for 

vanishing zero order conditioning information the sepset is the empty set).    Edges are directed by considering triples X 

 Y  Z, such that X and Y are adjacent as are Y and Z, but X and Z are not adjacent.   Direct lines 
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between triples:  X  Y  Z as X → Y ← Z if Y is not in the sepset of X and Z.  If  X → Y, Y and Z 

are adjacent, X and Z are not adjacent, and there is no arrowhead at Y, then orient Y  Z as Y → Z.  If 

there is a directed path from X to Y, and a line between X and Y, then direct  (X  Y) as: X →Y. 

 In applications, Fisher’s z may be used to test whether conditional correlations are significantly 

different from zero.  Fisher’s z can be applied to test for significance from zero; where: 









−
+





 −−=

|)|,(1
|)|,(1|

ln3||
2
1

)),|,((
kji
kji

knnkjiz
ρ
ρ

ρ ,     (6) 

and n is the number of observations used to estimate the correlations, )|,( kjiρ is the population 

correlation between series i and j conditional on series k (removing the influence of series k on each i and 

j), and |k| is the number of variables in k (that we condition on).  If i,j and k are normally distributed and 

r(i,j|k) is the sample conditional correlation of i and j given k, the distribution of  

)),|,(()),|,(( nkjirznkjiz −ρ is standard normal.  PC algorithm and its more refined extensions are 

marketed as the software TETRAD II (Scheines, et al 1994). 

 Monte Carlo studies with small sample sizes suggest that Tetrad II works well, if the researcher 

applies an inverse relationship between sample size and significance level on line removal test.  When 

sample size falls below 100 observations significance levels as high as .20 are recommended (Sprites, et. al. 

1993, Chapter 5).  As sample size grows above 100, the suggestion is to drop the applied significance level 

to more traditional values (e.g., .10 or .05). 

As previously suggested, applications of DAG’s in economics and finance are not commonplace.  

Recently, however, Swanson and Granger (1997) suggested a similar procedure to sort-out causal flow on 

innovations from a vector autoregression (VAR).  Their procedure considers only first order conditional 

correlation, and involves more subjective insight by the researcher to achieve a "structural recursive 

ordering." 

IV. Data 

Daily data from February 2nd 1996 through to May 7th 2001 are collected from the Baltic Exchange.  

The starting date of February 2nd 1996 is chosen, as this is the last date that a major change was made to 
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the BPI.8  Focusing on this period allows us to concentrate on the interactions of the freight prices when 

there have been no major changes occurring to any of the underlying routes.  

 Summary statistics on the prices are presented in Table 2 along with the correlations among the 

freight prices.  As observed by the coefficient of variation, the spot routes (R1, R2 and R3) show less 

variability than the time charter rates (R1A, R2A, R3A and R4).  This reflects the higher volatility of time-

charter routes compared to the underlying spot routes.  Turning next into the correlation coefficients, we 

can note that the highest correlation coefficients are evidenced between the spot and their corresponding 

time-charter routes (that is routes R1 and R1A, routes R2 and R2A and routes R3 and R3A).  This is not 

surprising given that the definitions of spot routes are very similar to those of the corresponding time-

charter routes.  Take for instance routes R1 and R1A.  Route R1 reflects cargo movements of grain from 

US Gulf to Belgium or Holland; route R1A on the other hand is a time-charter route for a round-trip 

voyage from north-west Continent (Europe) to US and back to north-west Continent.  Therefore, route 

R1A consists of two legs; a ballast leg from Europe to US - as there are few dry bulk cargoes originating in 

Europe - and a laden leg from US to Europe.  Similarly, route R2 (Grain from US Gulf to Japan) is similar 

to route R2A (timecharter route from Continent to the Far East via US Gulf).  Therefore, route R2A 

consists of a ballast leg from the Continent to US Gulf and a laden leg from US Gulf to Japan as is route 

R2.  Turning now into routes R3 and R3A we can see that they are also linked.  More specifically, route R3 

represents the shipping freight cost of transporting grain from North Pacific to Japan while route R3A 

typically represents cargo flows from Japan to North Pacific for the transportation of grain and then back 

to Japan.  Finally, route R4 comprises a ballast leg from Japan to North Pacific to load coal and then back 

to the European continent.  These similarities in the definitions of the BPI routes are manifested by the 

high values of correlation coefficients evidenced in Table 2.  The high degree of association between spot 

and timecharter rates is also confirmed by the time series plots of time charter price series (panel A) and 

the spot freight price series (panel B) in Figure 2.  The discussion above indicates that the underlying BPI 

shipping routes are linked.  However, it does not provide detailed evidence on the dynamics of these 
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linkages as well as on the existence of causation between them.  These are addressed in the following 

section.  

V. Empirical Results 

Unit root tests (Dickey and Fuller, 1981) on the levels and first differences of the Baltic routes, 

presented in Table 3, indicate that the series in levels follow unit root processes at the 5% level, with the 

exception of route R3A which has a unit root at the 1% level.  As a result, cointegration techniques are 

used to examine the existence of a long-run relationship between the shipping routes.  The lag length (k) in 

the VECM of equation (2), chosen on the basis of the Schwarz Bayesian Information Criterion (SBIC) 

(Schwarz, 1978), is 2.  The VECM of equation (2) is then estimated using the maximum likelihood 

estimation procedure of Johansen and Juselius (1990).9  The estimated λmax and λtrace statistics, in Table 4, 

indicate that there are three cointegrating relationships between the underlying freight rate routes, since the 

first failure to reject the null hypothesis of no cointegration is when testing for r ≤ 3 with the λtrace test and 

when testing for r = 3 with the λmax test; therefore, for the remainder of the study an ECM with three 

cointegrating relationships is modeled.  After imposing the three cointegrating vectors the estimated 

matrices associated with (2) using data from February 2nd 1996 through to May 7 th 2001 are as follows:  
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The first matrix is the factorized matrix of long-run coefficients, Π = 'αβ , multiplied by the vector 

of lagged variables, Xt-1, which includes an intercept term. The Π  matrix has been factorized as 'αβ  where 

α captures the short-run adjustment toward the long-run equilibrium and 'β  is the vector of cointegrating 

relationships.  Indeed, perturbations in the long-run equilibrium are given by 1' −tXβ .  As the t - statistics 

associated with the corresponding α  coefficients suggest, many of the markets seem to respond to 

adjustments in the equilibrium relationship (using a critical t-value of 1.96 (5%)).   In order to test formally 

whether freight rates for a route respond to the long-run information generated from all the other freight 

routes, we perform hypothesis tests on whether an entire row of α equals zero.  Results from these tests, 

do not provide conclusive evidence as to whether any of the freight rates are weakly exogenous at the 

most stringent levels of significance (i.e., 1% level).  This indicates that all routes react to shocks in other 

markets, a finding consistent with the efficient market theorem provided by Berg-Andreassen (1997).10 

Additionally, we also test restrictions associated with the long run parameters ( β ) which allows us 

to make more concrete statements about the nature of the cointegrating vectors.  Indeed, we may find a 

stable cointegrating vector holding the series together, but this may be due to a smaller sample of the 

seven series rather than all seven together.  Therefore, we formally test the hypothesis that each of the 

seven series is not in the cointegrating space, or in other words, is not present in any of the three 

cointegrating vectors.  At stringent levels of significance (i.e., 1% level) we find that each of the series 

belongs in the larger system that links the freight prices together.  

While testing whether each of the series is part of the entire cointegrating system is informative, it 

is also interesting to test other hypotheses associated with the long-run relationships.  That is to test 

whether groups of freight prices may belong to one particular vector, whereas other groups may belong to 

another vector.  For instance, Bessler and Fuller (2000) impose restrictions on the long run relationships of 

various rail rates based on their physical characteristics.  In our case, we have shipping routes with 

common geographical characteristics (e.g. shipping routes originating in the Atlantic or Pacific basins) or 
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contract types (e.g. time-charter vs. spot) or even route coverage (for instance, route 2 and route 2A).  

Therefore, we also test for restrictions along these lines within the cointegrating space.  

We test for overidentifying restrictions on the cointegration space (as outlined in Hansen and 

Juselius, 1995).  Focusing such restrictions on time-charter versus spot and on geographical characteristics 

resulted in no clear overidentifying restrictions.  Henceforth we therefore continue to employ the 

‘unrestricted’ cointegrating matrix.  This finding indicates that these markets are efficient in the sense that 

available tonnage is moved effectively from market to market to meet the demand and a consequence 

stabilizing the freight markets, thus ensuring that over the longer term, their prices move together. 

Turning next into the Γ matrix, containing the coefficients of the lagged freight rates given above, 

we note that most of the coefficients are statistically significant.  Interestingly, the coefficients associated 

with R2 (Grains from US Gulf – Japan) are highly significant across all the estimated equations, with 

coefficients ranging from .123 on R3A to .319 on R2A.  Such a finding suggests the importance of this 

particular freight route since a ll the other shipping routes seem to be significantly affected by this route.  

The preceding analysis indicates that it is quite difficult to discern the short run patterns of 

responses to strengths of the dependencies by either focusing on individual para meter estimates whether 

they are derived from the Γ or the α matrix.  Therefore, to address this issue we turn our attention to the 

innovation accounting techniques which are described next. 

Innovation Accounting 

A more detailed insight on the causal relationship between freight rates is obtained by analyzing 

the decompositions of forecast errors generated from the ECM of equation (7).  Critical to such analysis is 

the treatment of contemporaneous innovations in the time series (Sims, 1980).  In this paper, we follow 

the factorization commonly referred to as the “Bernanke ordering”.  Consider the innovation vector ( tε ) 

from the ECM as: tt v=ε? , where ? is a 7 x 7 matrix of coefficients and tv is a 7 x 1 vector of orthogonal 

shocks.  To illustrate, a general description of the model being considered here is given in Equation (7) 

below: 
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Here ,,,,,, 615141312111 tttttt εεεεεε and t71ε are observed (non-orthogonal) innovations in the series 

differenced freight prices ,,,,,, 654321 XXXXXX ∆∆∆∆∆∆ and 7X∆  in period t; 

,,,,,, 615141312111 tttttt νννννν and t71ν are orthogonal innovations for the same series in period t, where 

orthogonalization is obtained via the matrix A .  As documented by Doan (1992), a factorization is 

identified if there is no combination of i and j (i ≠ j) for which both { }ija and { }jia are non-zero (where 

{ }ija  is element i,j of the matrix )A .   

 A common practice in early VAR-type analysis was to rely on a Choleski factorization, so that the 

A matrix is lower triangular in order to achieve a just-identified system in contemporaneous time.  In the 

ensuing analysis we employ the directed graphs algorithms given in Spirtes et al. (1993) to place zeros into 

the A matrix (a similar suggestion was made by Swanson and Granger (1997)).  A DAG is an assignment 

of causal flow (or the lack thereof) among a set of variables (vertices) based on identifying restrictions in 

the following innovation correlation matrix (Σ ) from the ECM (where we represent the innovations as 

itε ).  Our seven variable ECM results in the following innovation correlation matrix where lower 

triangular entries only are printed in the order, R1, R1A, R2, R2A, R3, R3A and R4. 
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The off-diagonal elements of the scaled inverse of the )( tεΣ (or any other correlation matrix) are in 

fact the negatives of the partial correlation coefficients between the corresponding pair of variables (in our 

case, freight rates) given the remaining variables in the matrix (Whittaker 1990, p.4).  To illustrate, if we 

were interested in computing the conditional correlation between innovations in R2 )( 3tε  and R2A )( 4tε  

given innovations in R3 )( 5tε  and R3A )( 6tε  we would calculate the inverse of the following matrix )(1 tεΣ  

(taking the corresponding elements from )( tεΣ ): 
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1.00    0.71    0.49    0.41
1.00    .44 0    44.0

1.00    76.0
00.1

)(1 tε .        (9) 

The matrix )(1 tεΣ is the 4 x 4 matrix with lower triangular elements associated with the R2, R2A, R3 and 

R3A given in (8) above.  The off-diagonal elements of the scaled inverse of the )(1 tεΣ matrix, denoted by 

)(*
1 tεΣ , (where the * indicates that we have scaled the inverse matrix) are the negatives of the partial 

correlation coefficients between the corresponding pair of variables given the remaining variables.  In this 

case: 
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For instance, the partial correlation between innovations in rates in one market (R2) and 

innovations in another market (R2A), given innovations in markets R3 and R3A is 0.68.  Under the 

assumption of multivariate normality, Fisher’s z - test (Eq.6) can be applied to test for significance from 

zero.  In this particular instance, the correlation between routes R2 and R2A given R3 and R3A (0.68) is 

significantly different from zero at all conventional significance levels, whereas the correlation between 

R2A and R3 given R2 and R2A (-.01) is not significantly different from zero (the marginal significance 
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level is 0.703).  So we can say that innovations in the R2 and R2A rates are related in contemporaneous 

time whereas innovations in R2A and R3 are not. 

Directed graphs provide an algorithm for removing edges between markets (similar to that 

described above) and also directing the causal flow of information between the markets.  The algorithm 

starts with a complete undirected graph (like the one shown in the top panel of Figure 3) where 

innovations in every market are connected with innovations in every other market.  The algorithm 

removes edges based on vanishing correlation and partial correlation, the latter measured based on the 

scaled inverse correlation matrix (which is derived from the complete contemporaneous variance-

covariance matrix from the ECM as explained above).  Edges between the variables are sequentially 

removed based on either vanishing zero order correlation (unconditional correlations) or vanishing 

conditional correlations, where conditioning is done on all possible sets with members 1,2,…,k – 2, where 

k is the number of variables studied (7 in this case). 

The middle panel of Figure 3 gives the pattern on innovations based on the seven-freight market 

ECM (Eq.8).  We see two undirected edges in panel B: R1 – R2 and R4 – R3A.  Here Tetrad is not able to 

direct the edges but some other interesting and intuitively pleasing patterns emerge.11  The first 

observation is that there are no complete ‘sinks’ whereby a particular route only receives information from 

other routes, but does not generate any information to other routes.  This first observation leads us to 

conclude that no routes are redundant in terms of generating information in contemporaneous time.  

However, some routes seem to ‘receive’ more information from other markets rather than generate 

information.  For instance, the graph illustrates that R1 is led in contemporaneous time by R1A and R2A 

but does not ‘lead’ any other route.  That is, we do not have a directed edge away from that route.  

Additionally, we can note that R1 and R2 are clearly linked together although we are not able to distinguish 

the direction of causality between them.  Despite this undirected edge, it is clear that R1 does not seem to 

be leading other shipping routes in terms of information discovery.  

Turning next into R1A we can note that while it leads R1, it is also influenced by R2 (grains from 

US Gulf to Japan) and R4, the eastern hemisphere time charter route, which does ultimately connect 
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Japan, Australia and European Continent (the same destination as R1A).  On the other hand, R2, which is 

considered by shipping practitioners as being the benchmark route, is clearly a dominant route in 

contemporaneous time.  This is verified by observing the number of directed edges leaving that route and 

influencing other routes.  As can be seen R2 leads R1A, R2A and R3 in contemporaneous time, and is also 

linked with R1, although we can not determine the direction of causation in this case.  While DAG’s alone 

seem to verify the importance of R2 in the price discovery process, data provided by the United States 

Federal Grain Inspection Service (FGIS) - which provides data on volume of trade and number of ships 

leaving the U.S. ports - also point out the significance of R2 in the world sea borne trade.  To illustrate, 

between Feb 2nd 1996 and May 7th 2001 (the period of time studied here), a total of 86.5 million tones of 

grain was transported from the U.S. Gulf to South Japan (R2) on 4556 different vessels.  This compares to 

a total of 14.5 million tones of grain being transported from the U.S. Gulf to the Amsterdam-Rotterdam-

Antwerp (ARA) region of Europe (R1) on 414 vessels, and 37 million tonnes were shipped from the US. 

North Pacific to South Japan (R3) on a total of 1908 vessels.  Using R2 as the base route, we can see that 

in terms of tonnage shipped, volume does have some influence on price leadership.  In particular volume 

on R1 is only about 17% of that shipped to Japan via R2 and volume on R3 is about 43% of the total 

volume that is shipped via R2.  Focusing our attention on the time charter routes, we see that R2A, ‘leads’ 

R1 in contemporaneous time, but it is clearly influenced (being led) by both R2 and R3A.  This is in 

contrast to R2A’s spot equivalent, R2, which is a more dominant route in terms of price leadership.  

Not surprisingly routes R4, R3A and R3 are all linked together.  The common characteristic of 

these routes is that they reflect trading in the Pacific basin.  Interestingly, this group of routes is also 

connected via R2A to the U.S. Gulf region.  This is expected as the physical movement of goods within 

the U.S. to competing ports links the prices in a way described in Berg-Andreassen (1997).  For instance, 

route R3A leads R2A but both these routes have the common characteristic that they are routes that 

ultimately head for Japan/South Korea.  R4 also seems to lead route R1A.  Intuitively, these routes 

originate in very different parts of the globe but have the common feature that their final destination is 

North Continent.   
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 Forecast error decompositions and impulse responses (one standard deviation shocks from the 

ECM’s) based on the DAG’s are provided in table 4 and figure 4 respectively.  The forecast error 

decomposition allows us to consider which freight rates are statistically exogenous or endogenous relative 

to each other at differing forecast horizons.  A freight rate would be considered statistically exogenous if 

most of the variance of its forecast error is due to its own innovations rather than the innovations 

originating from the other freight prices in the system.  A truly exogenous freight rate should explain 100% 

of its forecast error variance at all forecast horizons.  In this study we provide horizons from 1,2,3 and 5 

days (the very short run) to intermediate run (10 days) to the long run (30 and 60 days).  The maximum 

forecast horizon is set to 60 days since this is the typical duration of hire in the time-charter routes of the 

Baltic Panamax Index.  The first column in the output is the standard error of forecast for each particular 

route.  The remaining columns provide the error decompositions.  Each row should add up to 100% (but 

may not due to rounding).  Calculation of the impulse responses on the other hand, enables us to evaluate 

the dynamic paths of adjustment of each of the freight prices to shocks in the data series. 

Looking for instance at the forecast decompositions for R1, we can note that this route is quite 

heavily influenced by R1A and R2 which combined explain almost 61% of the uncertainty in R1 after just 

1 day and their impact is even stronger when we consider the longer term.  This finding is not surprising 

given the results from the DAG’s as well as the relatively low level of physical trading activity on this 

route.  Indeed, as suggested by the directed graph analysis, R1 acts as a “near sink” since it is quite 

unimportant in generating information affecting other markets.  This pattern is also verified by looking at 

the influence that R1 exerts on the forecast errors of the remaining routes, in the second column of Table 

5, where the greatest influence of R1 into any other route across all forecast horizons is only 5.56% (R3A 

for 60 days ahead).  Finally, recall that DAG’s suggest we cannot assign the direction of causation between 

R1 and R2 in contemporaneous time.  However, we can see from the error decompositions that R2 

explains up to 49.00% (after 10 days) of the variation in R1, whereas R1 explains at most 0.81% of the 

variation in R2.  Therefore, R2 dominates R1 in terms of information discovery across all forecast 

horizons.  
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Similar conclusions about R1 emerge when we consider the impulse response functions.  Reading 

along the columns from the left hand side of figure 4 to the right hand side we can assess the effect of 

shocking each market (along the top) and the resulting response on the other markets down the left hand 

side.  Shocking R1 for instance, has some effect on itself and a slight effect on the other routes although 

the effect dies out fairly quickly which confirms the fact that R1 is relatively unimportant in terms of price 

discovery. 

Turning next to the forecast decompositions for R1A, we can note that it is heavily  influenced by 

R2 in the short run, and continues to be influenced by this widely regarded influential market into the 

much longer term, although at that time the Far-Eastern routes (R3, R3A and R4) also help explain some 

of the variation.  In the short run, (1 day) R4 influences R1A, accounting for 15.9%.  Interestingly, this 

complements the findings from DAGs that R1A is affected by R4 in contemporaneous time.  We can also 

note that R1A, unlike its ‘spot’ counterpart (R1), does influence other markets particularly in the longer 

term (explaining 27.113%, 12.109% and 28.313% in R1, R2 and R2A, respectively after 60 days).  The 

superior importance of R1A in information discovery is also confirmed by the impulse response functions 

in Figure 4 which show that R1A has a bigger effect on other routes and the shocks do not die out as 

quickly as its spot counterpart, R1.  Therefore, these findings indicate that R1A is more influential, in 

terms of information dissemination, compared to R1.  This is expected given the scope of trading reflected 

in route R1A.  Typical routes reflected within the definition of route R1A include Continent – North 

America for grains and back to Continent or Continent – East Coast of South America for grains or coal 

and then back to the Continent. Therefore, R1A represent the wider North and South Atlantic to 

Continent trade, as opposed to the US Gulf – Continent trade only reflected in R1, and hence reflects 

more accurately the trading conditions in the Atlantic basin.  As a result, it should exert greater influence 

on other routes, compared to R1. 

 Perhaps the most expected result is confirmed by the error decompositions of R2.  As previously 

explained, R2 is the most significant route in terms of price discovery and  results from the DAG analysis 

illustrate its influence in contemporaneous time.  However, R2 is highly exogenous in the short run 
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meaning that it explains 100% of its own variation after 1 day, and continues to explain over 90% of its 

own variation after 5 days.  In the intermediate to long-run, R2 is affected by other markets, most notably 

R1A and R3A, however their combined effect accounts for only 24.3% of the total variation in R2 after 60 

days. Interestingly, it takes quite a long time for these markets to influence R2, but this is commensurate to 

the period of time taken for the ships to move between these regions so as to exploit any differences in the 

level of freight rates.  Turning next into the impulse response functions, we can note that a shock in R2 

affects all the other freight rates, with the effect of the shock not truly stabilizing until the maximum 

horizon of 60 days.  What is surprising however is that even though R2 seems to have the greatest 

influence on other markets, in contemporaneous time, short, intermediate and the long-term, its weighting 

in the BPI is identical to R2A (12.5%) which seems to be less influential.  Indeed, R2A (the time-charter 

equivalent of R2) is most heavily influenced by R2 in the short run, but is also influenced by R1A 

particularly for the longer horizons. This is because, R1A and R2A link the Atlantic and Pacific trades and 

a degree of substitutability exists between these routes.  For instance, vessels which are available in the 

Continent, will choose to trade either in the Atlantic basin (R1A) or the Pacific basin (R2A) depending on 

the level of freight rates prevailing in these two regions.  Therefore, any imbalance in the relative level of 

freight rates between these regions will be ironed out by a corresponding adjustment of the supply of 

tonnage in each region.  However, given the timescales involved in the time charter routes, these 

adjustments will take place in the medium to long-run, that is in excess of 30 days, which explains why the 

impact of R1A on R2A is greater for the longer horizons.  

However, like R1, R2A does very little in explaining the variability of other routes across different 

horizons.  For instance, it has very little influence on R3 and only explains a little over 2% of its forecast 

error after 60 days.  Correspondingly, as illustrated by the impulse response analysis, a shock in R2A has 

the least effect on all other routes.  For instance, shocking R2A has almost no effect on R1A.  These 

results compliment the DAG analysis where it was found R2A has very little influence in other markets, 

and even though it ‘directs’ R1 in contemporaneous time its influence on R1 after 1 day is just 1.86% and 
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falls to 0.19% after 60 days.  R2A is therefore, by all accounts a relatively insignificant route, obviously not 

‘deserving’ an equivalent weighting in the BPI as R2, which is clearly the more dominant route. 

As one might expect, once we turn our attention to the markets that are related to the Pacific Basin 

(R3, R3A and R4) we see a similar geographical divide in the short run that was found in the U.S. Gulf. 

According to the forecast error decompositions, after 1 day, R3 is only influenced by itself (41.563%) and 

by R3A (54.371%).  Interestingly, its effect on other routes is fairly small. For instance, over the longer 

term it explains, 3.65%, 5.46%, 7.39% and 5.13% of the “US Gulf-routes” (i.e. R1, R1A, R2, R2A) and 

has a similar affect on the other West Coast routes (4.43% and 4.73% on R3A and R4, respectively). 

Similar conclusions emerge when we consider the impulse responses.  That is, while a shock in R3 has 

some effect on some routes, compared to more significant routes, like R1A or R2, this effect is small.  

Focusing now on R3A, this time-charter route represents cargo voyages between Japan and the 

U.S. west Coast (or British Columbia) and back, or between Japan and Australia and back thus, in 

description, being quite different from the other routes, as it may never link to the U.S.  Not surprisingly, 

the short-run forecast error decompositions, indicate that the route is quite exogenous in the short-run 

since it explains 100% of its forecast error for the 1-step ahead forecast; for longer horizons however, it 

tends to be influenced by other routes, most notably R2.  Indeed within 60 days about 23% of R3A’s 

variability is explained by R2 reflecting once again that over time arbitrage should link the freight markets 

together.  We can also note that, unlike its spot counterpart R3,  R3A has a clear influence on other 

markets.  Focusing on the longer term (60 days), R3A explains 13.32% of the variation in R1, 12.85% in 

R2A, 50.34% of the variation in R3, and almost 50% of the variation in R4.  The impulse responses also 

verify the importance of this route.  A shock in R3A has a significant effect in all markets, with the larger 

effects occurring in R3, R3A and R4.  This is consistent with the results from DAG analysis which 

suggests that there is an obvious consistency between the methodologies.  Indeed, in contemporaneous 

time, R3A and R4 are connected (but not directed), and R3A causes both R3 and R2A in 

contemporaneous time.  Therefore, R3A is an important route, perhaps as important as R2, in terms of 

information discovery. 
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Finally, R4, typically comprises a ballast leg from Japan to North Pacific to load coal and then back 

to the Continent.  The short-run forecast error decompositions, indicate that the route is quite exogenous.  

It explains about 87% of its own variation after one day but is also affected by R3A (about 11.9%) – which 

also is linked to Japan.  The DAG suggests that we cannot sign the causation in contemporaneous time, 

but results here seem to indicate that R3A affects R4 in the longer term (50.34%) much more than R4 

affects R3A in the long term (3.21%).  The impulse response graphs also suggest most influence comes 

from R3A.  Interestingly, R3 has a little affect on R4 in the short, intermediate and longer term, even 

though, as seen in the DAG, there is a contemporaneous causality suggesting R3 causes R4.  Once again, 

like other routes, R2 affects R4 as time passes, accounting for about 11.36% after 60 days. 

 In summary therefore, given the competitive nature of the ocean shipping market we should 

expect to find that all routes move together, a result confirmed by the cointegration analysis, and should 

influence one another (albeit by different degrees) a result confirmed by the DAG analysis, the forecast 

error decompositions and impulse response analysis.  The results, from these tests indicate that there are 

some leading routes, like R2 and R3A which dominate the other routes in terms of information 

dissemination. However, while R3A seems to be appropriately weighted within the BPI, R2 is under 

weighted relative to its importance.  In addition, it seems that the information provided by R1 is already 

reflected in other routes (like R1A and R2) and could conceivably be ignored as a means of providing new 

information not captured in other markets.  Indeed, R1 follows rather than leads in contemporaneous 

time, the short, intermediate and long run.  The same seems to be true for R2A.  These two routes 

together comprise, almost a quarter of the weighting of the BPI (22.5%), yet their influence is trivial.  To 

illustrate this point, we exclude routes R1 and R2A from the estimation process and re-estimate the ECM 

of equation (2) using the modeling procedure described in section 2.  The ensuing pattern is presented in 

Figure 3, Panel C.  We can clearly see that innovations in most freight rates are linked between each other.  

In fact, with the exception of the R1A - R3, R2 - R4 and R2 - R3A pairs of routes, the remaining 

combinations of pairs are connected between them.  This indicates that the flow of information between 

the routes has increased following the exclusion of the two redundant routes from the system.  In addition, 
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the fact that none of the connected pairs are directed indicates that there is a balance in the flow of 

information within each pair of routes since none of the routes leads any of the other routes.  Therefore, 

these findings suggest that R1 and R2A do not contribute any new information to the system of freight 

rates and, as a result, should not be included in the calculation of the index.  From a practitioner’s 

standpoint, this implies that the current index may have been diluted by redundant routes, thus deterring 

hedging activity in a way suggested by Haigh and Holt (2000) and Nomikos and Kavussanos (2000). 

VI. Conclusions 

While there have been several attempts in recent years to study the level of interconnectivity and 

linkages within the volatile dry-bulk ocean freight industry to date, no study has conducted an analysis in a 

truly dynamic nature.  Underutilized in both finance and economics, the unique contribution of this 

research is to employ Directed Acyclic Graphs (DAG’s).  The DAG’s allow us to assess causation and 

linkages among the world’s major shipping routes for the first time.  The DAG analysis also allows us to 

address issues surrounding the causal ordering on innovations from a VAR or an Error Correction Model 

from which we generate familiar forecast error decompositions and impulse responses. 

 Our results verify previous research on international shipping freight markets in that freight rates 

are very much linked which suggests that shipping markets are highly efficient and tonnage is shifted from 

market to market thus stabilizing and linking freight rates together.  Indeed, we confirm using a variety of 

methodologies, that over time, markets that are geographically separated, do begin to significantly 

influence one another by the time that it takes to physically move the commodity from one region to 

another.   

 Our DAG (contemporaneous) analysis combined with the short, intermediate and long run 

analysis also confirm that some routes are dominant in terms of price discovery and lead many other 

routes.  This is true in particular for R2 (Grains from US Gulf to Japan), which is known throughout the 

industry as the ‘benchmark’ route.  This route leads many other routes in contemporaneous time, and 

impacts other routes for long periods of time if it is shocked.  While the analysis confirms that several of 

the routes comprising the BPI are appropriately weighted, R2 seems to have a relatively low weight, 
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whereas R1 and R2A seem to provide no unique information since their information is captured within 

the information provided by other routes.  These routes are quite possibly redundant in the index, or at 

best have a weight that is too high.   

 The information from the DAG analysis, forecast error decompositions and impulse response 

analysis provides a unique insight behind the mechanics of international linkages in freight rates but also 

provides an indication as to why the volume of trading in freight futures has been declining in recent years.  

Indeed, we illustrate from a futures trading standpoint, the composition (and weighting) of the index may 

not be correctly composed (despite being changed several times since its inception).  As freight futures 

trading has declined in recent years, quite possibly due to the development of FFA’s, we conclude that the 

BPI is not the appropriate index to which futures contracts should be linked.  Indeed, the results of this 

study suggest that the composition and weighting of the current BPI may have diluted the hedging 

effectiveness of the futures contract, or deterred hedging, which may have in part, contributed to its 

demise. 

This research provides a unique, detailed understanding of how these differing freight routes affect 

one another in contemporaneous time and in the short, intermediate and longer term providing valuable 

information for the physical traders on the routes analyzed in this study.   Moreover, while the DAG and 

related analysis provided here might be useful from a futures contract design standpoint, this research may 

have further obvious, yet profound implications in the general area of index construction.  
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Table 1. Baltic Panamax Index: Changes in its composition since its inception. 

 Vessel Size 
(dwt) 

Cargo Route 4/01/85 –
3/11/88 

4/11/88 – 
3/08/90 

6/08/90 – 
4/02/91 

5/02/91 – 
4/02/93 

5/02/93 – 
2/11/93 

3/11/93 – 
5/05/98 

6/05/98 – 
29/10/99 

From 
1/11/99 

1 55,000 Light Grain US Gulf  to ARA 20% 20% 10% 10% 10% 10% 10% 10% 
1A 70,000 T/C Trans-Atlantic round (duration 45 – 60 days)   10% 10% 10% 10% 10% 20% 
2 52,000 HSS US Gulf to South Japan 20% 20% 20% 10% 10% 10% 10% 12.5% 
2A 70,000 T/C Skaw Passero to Taiwan – Japan (50-60 days)     10% 10% 10% 10% 12.5% 
3 52,000 HSS US Pacific Coast to South Japan 15% 15% 7.50% 7.50% 7.50% 10% 10% 10% 
3A 70,000 T/C Trans-Pacific Round (35 – 50 days)    7.50% 7.50% 7.50% 10% 10% 20% 
4 21,000 HSS US Gulf to Venezuela 5% 5% 5% 5% 5%    
5 35,000 Barley Antwerp to Jeddah (Saudi Arabia) 5% 5%       
 38,000 T/C South America to Far East   5% 5% 5%    
6 120,000 Coal Hampton Roads (US) to South Japan 5% 7.50% 7.50% 7.50% 7.50% 7.50%   
7 65,000 Coal Hampton Roads (US) to ARA 5% 5% 5%      
 110,000 Coal Hampton Roads (US) to ARA    5% 5% 7.50% 7.50%  
8 130,000 Coal Queensland (Australia) to Rotterdam 5% 5% 5% 5% 5% 7.50%   
9 55,000 Coke Vancouver (Canada) to Rotterdam 5% 5% 5% 5%     
 70,000 T/C Japan – Korea to Skaw Passero (50 – 60 days)     5% 10% 10% 15% 
10 90,000 Iron Ore Monrovia (Liberia) to Rotterdam 5% 5% 5%      
 150,000 Iron Ore Tubarao (Brazil) to Rotterdam    5% 5% 7.50% 7.50%  
11 25,000 Pig Iron Vitoria (Brazil) to China 5%        
 25,000 Phosphate Casablanca (Morocco) to West Coast India  2.50% 2.50% 2.50% 2.50%    
12 20,000 Potash Hamburg (Germany) to West Coast India 2.50%        
 14,000 Phosphate Aqaba (Jordan) to West Coast India  5% 5% 5% 5%    
13 14,000 Phosphate Aqaba (Jordan) to West Coast India 2.50%        
14 140,000 Iron Ore Tubarao (Brazil) to Beilun and Baoshan (China)       7.50%  
15 140,000 Coal Richards Bay (S. Africa) to Rotterdam       7.50%  

Notes: The following minor amendments of the Index are not presented in this Table. 
1. As of 6 May 1998, Routes 2 and 3 refer to a 54,000 dwt panamax vessel.  For the period prior to 1 November 1999, the index was known as the Baltic Freight Index (BFI). 
2. Routes 1A, 2A, 3A and 9 were based on a 64,000 dwt panamax vessel  for the period up to 2 February 1996. 
3. Route 5 was 20,000 dwt vessel Barley from Antwerp to Red Sea for the period 1 January 1985 to 4 February 1986. 
4. Route 7 was based on a 100,000 dwt vessel for the period 5 February 1991 to 4 February 1993. 
5. Route 8 was based on a 110,000 dwt vessel for the period 1 January 1985 to 5 February 1992. 
6. Route 10 was based on a 135,000 dwt vessel for the period 5 February 1991 to 2 August 1995.  
7. Route 11 was 20,000 dwt Sugar from Recife (Brazil) to US East Coast for the period 1 January 1985 to 8 May 1986.  
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Table 2. Descriptive statistics and correlation analysis on freight prices. 

Descriptive Statistics  

 R1 R1A R2 R2A R3 R3A R4 
Mean 12.265 9063.49 20.693 10545.81 13.213 9204.88 7656.52 
Median 12.397 9338 21.775 11049.5 13.173 9492.5 7003.0 
Standard deviation 2.336 2262.55 3.875 2840.83 2.330 2364.16 2374.07 
CV 0.190 0.25 0.187 0.269 0.176 0.257 0.310 

3m  -0.947 -0.887 -0.553 -0.530 -1.188 -1.023 -0.762 

4m  -0.240 -0.345 -0.692 -0.308 0.004 -0.297 0.458 

Min 7.6 4106 12.314 4143 8.883 3757 3206 
Max 16.571 13071 26.929 16386 17.693 13250 12883 

Correlations 

 R1 R1A R2 R2A R3 R3A R4 
R1 1       
R1A 0.942 1      
R2 0.832 0.929 1     
R2A 0.744 0.889 0.957 1    
R3 0.847 0.813 0.742 0.613 1   
R3A 0.819 0.841 0.815 0.739 0.953 1  
R4 0.656 0.555 0.369 0.210 0.865 0.759 1 
        

Summary statistics are presented for daily freight prices for the period 2nd February 1996 – 7th May 2001 (1330 
observations). CV represents the coefficient of variation and 3m and 4m represent sample skewness and kurtosis 
respectively. 
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Table 3. Augmented Dickey-Fuller (ADF) tests for order of integration on freight prices.  
Test is on the estimated coefficient θ1from the following prototype model: 

∑
=

∆++=∆
K

1k
k-tk1-t10t X  X    X βθθ  

Freight Price K HO: I(1) vs. HA: I(0) 
ADF 

HO: I(2) vs. HA: I(1) 
ADF 

R1 2 -2.153 -12.539 
R1A 2 -2.382 -11.799 
R2 1 -2.152 -16.109 
R2A 1 -2.679 -17.834 
R3 2 -2.398 -11.483 
R3A 1 -3.197 -19.120 
R4 2 -2.459 -11.527 
Critical values are taken from Fuller (1976). They are –2.57 (10%), -2.88* (5%) and –3.46 (1%). Therefore, 
based on these results are series are I(1). The optimal lag length (K) was based on the Schwartz Bayesian 
Criterion (1973). 
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Table 4. Cointegration analysis of freight rates. 

Johansen (1988) tests for the number of cointegrating vectors a 
λtrace test statistic :Ho  λtrace critical 

value 
λmax test statistic :Ho  λmax critical 

value 
204.96 r = 0 124.25 71.67 r = 0 44.91 
133.29 r ≤ 1 95.18 58.03 r = 1 39.43 
75.26 r ≤ 2 70.60 34.99 r = 2 33.32 
40.27 r ≤ 3 48.28 19.22 r = 3 27.14 
21.05 r ≤ 4 31.52 13.23 r = 4 21.07 
7.82 r ≤ 5 17.95 4.32 r = 5 14.90 
3.50 r ≤ 6 8.18 3.50 r = 6 8.18 

a r represents the number of cointegrating vectors. )ˆ1ln()1,( 1max +−−=+ rTrr λλ and 

)ˆ1ln()(
1

∑
+=

−−=
n

ri
itrace Tr λλ  are the estimated (ordered from largest to smallest) eigenvalues on Π matrix in 

Equation 2.  Critical values for the λmax and λtrace and statistics (at the 5% level) are from Osterwald -Lenum 
(1992). The optimal lag length (k) is based on the Schwartz Bayesian Criterion (1973). The sample size (N) is 
equal to 1330.  
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Table 5. Error decompositions. 
Steps ahead Std.error R1 R1A R2 R2A R3 R3A R4 
(R1)         
1 0.0203 28.902 20.515 40.429 1.8600 0.0744 1.4924 6.7271 
2 0.0371 25.107 21.132 43.231 1.6568 0.1207 1.6654 7.0867 
3 0.0531 22.653 21.312 45.245 1.5325 0.1744 1.9251 7.1583 
5 0.0824 19.718 21.374 47.654 1.3434 0.2986 2.5893 7.0228 
10 0.1410 16.625 21.810 49.001 0.9419 0.6729 4.5551 6.3936 
30 0.2685 13.712 25.158 43.957 0.3193 2.1928 10.227 4.4344 
60 0.3864 12.295 27.113 39.967 0.1910 3.6523 13.324 3.4577 
(R1A)         
1 0.0143 0.0000 48.577 33.140 0.0000 0.1761 2.1780 15.929 
2 0.0300 1.0546 40.745 41.681 0.2286 0.3243 2.3998 13.567 
3 0.0460 1.8502 36.347 46.069 0.4108 0.4406 2.6297 12.252 
5 0.0775 2.6051 31.901 50.245 0.5706 0.6521 3.2145 10.811 
10 0.1443 2.9650 28.772 52.426 0.5177 1.2116 4.9756 9.1321 
30 0.2923 2.3324 30.656 47.559 0.1714 3.4123 9.5108 6.3582 
60 0.4245 1.8644 32.303 43.644 0.0921 5.4644 11.480 5.1525 
(R2)         
1 0.0090 0.0000 0.0000 100.00 0.0000 0.0000 0.0000 0.0000 
2 0.0178 0.0762 0.5911 98.641 0.1778 0.0167 0.2518 0.2453 
3 0.0270 0.2400 1.4888 96.594 0.3257 0.0717 0.7090 0.5705 
5 0.0453 0.5562 3.1409 92.775 0.4016 0.2689 1.8440 1.0138 
10 0.0833 0.8124 5.7059 86.349 0.2216 0.9813 4.8064 1.1235 
30 0.1598 0.3958 9.9138 73.306 0.6776 4.1273 11.091 0.4887 
60 0.2224 0.2150 12.109 66.197 1.3070 7.3926 12.196 0.5840 
(R2A)         
1 0.0134 0.0000 16.060 50.729 24.633 0.0582 3.2548 5.2662 
2 0.0279 0.6208 16.120 57.653 16.860 0.1786 3.1389 5.4288 
3 0.0432 1.1550 16.200 60.660 12.939 0.2817 3.3410 5.4225 
5 0.0734 1.7442 16.516 62.802 9.0904 0.4773 4.1175 5.2520 
10 0.1366 2.0830 17.829 62.441 5.5126 1.0090 6.5804 4.5463 
30 0.2691 1.4750 23.788 54.861 2.1760 3.1103 12.285 2.3048 
60 0.3859 1.0501 28.313 50.244 1.1591 5.1275 12.851 1.2555 
(R3)         
1 0.0089 0.0000 0.0000 4.0662 0.0000 41.563 54.371 0.0000 
2 0.0168 0.2200 0.0003 6.5251 0.0027 35.892 57.101 0.2595 
3 0.0246 0.5701 0.0002 8.7793 0.0103 31.566 58.308 0.7664 
5 0.0400 1.2856 0.0100 12.537 0.0242 25.536 58.700 1.9064 
10 0.0748 2.4786 0.1428 18.109 0.0150 18.107 57.501 3.6463 
30 0.1655 3.8610 1.3715 22.732 0.6352 11.295 56.173 3.9324 
60 0.2434 4.7773 4.0919 26.258 2.0626 9.3679 50.341 3.1016 
(R3A)         
1 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000 100.00 0.0000 
2 0.0265 0.7625 0.0000 1.2285 0.0973 0.3828 96.384 1.1451 
3 0.0395 1.5544 0.0011 3.0032 0.1633 0.9106 91.880 2.4871 
5 0.0656 2.5992 0.0261 6.3272 0.1964 1.7501 84.801 4.3004 
10 0.1247 3.7159 0.3151 11.647 0.1197 2.6791 75.806 5.7174 
30 0.2671 4.7364 3.0890 17.694 0.3127 3.5431 66.049 4.5759 
60 0.3839 5.5585 8.5386 23.763 0.8175 4.4259 53.682 3.2139 
(R4)         
1 0.0116 0.0000 0.0000 0.0942 0.0000 0.9624 11.901 87.042 
2 0.0227 0.8488 0.0065 1.8365 0.0134 2.0379 22.339 72.917 
3 0.0344 1.6375 0.0090 3.6396 0.0191 2.8000 29.472 62.423 
5 0.0584 2.5584 0.0042 6.3741 0.0131 3.6387 37.609 49.803 
10 0.1134 3.3543 0.0802 9.6344 0.0371 4.2400 45.460 37.194 
30 0.2446 3.6945 1.2365 10.229 1.4830 4.4368 52.600 26.321 
60 0.3447 4.1600 4.0203 11.3607 3.5180 4.7344 49.382 22.824 
The decompositions for each step ahead are given for a Bernanke factorization of contemporaneous covariances, which treats each price 
series as exogenous in contemporaneous time.  The justification for this is based on the directed graph on observed innovations from the 
error correction model shown in Equation 2 (with 2 lags).  The decompositions may not sum to one hundred in each row due to rounding.  
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Figure 1.  Major revisions of the BFI/BPI Freight Index. 
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Figure 2.  International freight price charts.  The sample period is Feb. 2, 1996 through May 7, 2001.  Dollars per day. 
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Figure 3: Graphical Representations on Innovations from the Error Correction Models. 
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Figure 4. Impulse responses to one standard deviation shocks. 
Innovation to: 
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Endnotes 

                                                                 
1 For example, ocean freight prices ranged from 3.2% - 12.4% of the value of imported Rotterdam 

wheat prices between May 1985 and January 1998 (see Haigh and Holt, 2000). 

2 During the period from January 1985 to October 1999, the underlying index of the BIFFEX 

contract was called the Baltic Freight Index (BFI).  

3 These are the three major classes of vessels, which are used for the transportation of different dry-

bulk commodities across different parts of the world. Capesize vessels (around 140,000 dead-weight 

tons (dwt)) transport iron ore mainly from South America and Australia, and coal from North 

America, Australia and South Africa. Panamax vessels (around 70,000 dwt) are used primarily to 

carry grain from North America, Argentina and Australia, and coal from North America, Australia 

and South Africa. Finally, handysize vessels (around 35,000 dwt) transport grain, mainly from North 

America, Argentina and Australia, and minor bulk products - such as sugar, fertilizers, steel and 

scrap, forest products, non-ferrous metals and salt - virtually from all over the world. 

4 Spot charters and time-charters are the two major vessel employment contracts in the shipping 

industry. In a spot charter, a shipowner undertakes the responsibility to transport a cargo from the 

loading port to the destination port. The freight paid by the charterers (cargo owners) to the 

shipowner is expressed as USD ($) per ton of cargo and covers all of the shipowner’s expenses in 

performing that voyage. A voyage charter may be thought of, therefore, as the equivalent of hiring a 

taxi to take you from A to B. In a time-charter, the shipowner agrees to hire out his vessel to a 

charterer for a specified time period. The freight rate paid by the charterer in this case is calculated 

as $ per day of hire. The charterer is directly responsible for all the voyage expenses - such as 

bunkers, port charges, canal dues etc. - but has much more flexibility, compared to a voyage charter, 

as to where he trades the ship. A time-charter is therefore, much more akin to hiring a car. 
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5 Source: “LIFFE to Introduce new BIFFEX Futures and Options Contracts,”  LIFFE news, 

LIFFE Internet Site (www.LIFFE.com), Friday 11 December 1998.  

6 In 1995 trading began in over-the-counter (OTC) derivatives like Freight Forward Agreements 

(FFA’s) and has since seen remarkable growth since that date.  Indeed, many practitioners suggest 

that part of the reason that the BIFFEX futures market has meet its demise is because of the 

development and subsequent growth in the FFA’s. Over the period from February 1996 to June 

2000, the average trading volume in the market was only 146 contracts. The monetary value of these 

contracts roughly corresponds to the average freight cost of transporting 108,000 tons of Grain 

from US Gulf to Japan (that is, 2 voyages in Route 2 of the BPI); market sources estimate that this 

level of futures trading activity corresponds to only 10% of the total physical activity in the dry-bulk 

shipping market. It is also worth noting that the average trading volume after the introduction of the 

BPI has fallen to only 17 contracts a day.  

7 Orcutt (1952), Simon (1953), Richenbach (1956), and Papineau (1985) offer similar expressions of 

asymmetries in causal relations.  For a description of various causal asymmetries see Hausman 

(1998). 

8 As we can see in Table 1, data for the routes that comprise the BPI are available since 5 February 

1993, when R4, then known as R9, was introduced. However, on 2 February 1996 the vessel size for 

R1A, R2A, R3A and R4 increased from 64,000 tonnes to 70,000 tonnes causing a jump in the level 

of freight rates of approximately $1000 a day. Consequently, to avoid this structural break we 

employ data for the BPI going back only to 2 February 1996. 

9 We also allow for the existence of a constant ( µ ) inside of the Π matrix. 

10 Results from these tests indicate that routes R1A and R4 are individually weakly exogenous at the 

5% level of significance.  However jointly testing that these shipping routes are weakly exogenous 
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results in a 2χ value of 13.59 (with an associated p-value of .03). Such a finding does not provide 

conclusive evidence as to whether the markets are exogenous at stringent statistical levels. Hence, no 

restrictions on weak exogeneity are imposed in the estimated model.  These results, like all other 

excluded to conserve space, are available upon request. 

11 In subsequent innovation accounting analysis we direct these edges to imply acyclic rather than 

cyclic graphs.  For a discussion of problems arising from cyclic graphs, the reader is directed to 

Spirtes et al. 1999.  The same analysis was conducted at the 1% level of significance. Similar 

(undirected linkages) are found connecting the markets with the exception of the links between R4 

and R1A, R2 and R1A and R2A and R1. 


