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Integration and Causality in International Freight Markets — Modeling with Error Correction and Directed

Acyclic Graphs
Using Directed Acyclic Graphs (DAG'’s) and Error Correction Models we study the dynamics of the
notoriously volatile international freight prices that comprise the Baltic Panamax Index, the index on
which freight futures trading is based. The DAG’s are used to make definitive statements about the
contemporaneous correlations between prices and allow us to address the construction of the data-
determined orthoganization on contemporaneous innovation covariance, critical in providing sound
inference in innovation accounting techniques. Our results provide a rich source of information on price

discovery over various time horizons and suggest that the index may not be appropriately comprised and
weighted.

. Introduction

Neoclassical economic thought has long recognized the significance of transportation in the
marketing process. In a rudimentary sense, commodities will be transported from high supply to low
supply regions if equilibrium conditions between the markets generate a large enough price differential to
cover the cost of the transportation. The world’s ocean shipping fleet functions under this very
fundamental premise. The price of ocean freight is, however, notoriously volatile and the costs associated
with the shipment of goods can often be quite substantial. This is particularly true for lower valued
commodities, like grains, where the cost of shipment can be substantial portion of the underlying
commodity price (Moneta, 1953, Dunn, 1987)."

In January 1985, the Baltic Exchange developed the then known Baltic Freight Index (BFI) which
in May 1985 would become the underlying asset of the Baltic International Freight Futures Exchange
(BIFFEX) contract, a contract designed to hedge uncertainty associated with volatile freight rates. On the
basis of their exposure to the risk of adverse freight rate fluctuations, ship owners and charterers could buy
or sell BIFFEX contracts so as to protect their freight rate revenue or control their freight rate cost,
respectively. In addition to its use for futures trading, the BFI was also considered to be the leading
indicator of the condition in the dry-bulk shipping markets. On a daily basis, it provides accurate
information about the level of freight rates across a variety of shipping routes, worldwide. This
information is extremely valuable for shipping market agents and is an invaluable tool in their decision

making process particularly, for an industry such as shipping where trades are being concluded across the



globe and there is not a central reporting place to record and monitor the level of activity in the markets.
As Gray (1990) points out * the clarity of vision [provided by the BFI] is a very useful service to the shipping industry. ™

The current article makes significant contributions to the literature from several angles. While
several studies (outlined below) have attempted to measure the degree of interconnectivity between the
freight markets, to date, no research has estimated the relationships in a truly dynamic manner and have, as
such, failed to discuss the implications for commodity futures and physical trading. Therefore it is the
principal objective of this paper to assess the degree of interconnectivity between the major shipping
routes over various time horizons. To this end, we employ for the first time, Directed Acyclic Graphs
(DAG’s), which have not, until now, been extensively utilized in economics and finance.

Based on an Error Correction Model (ECM), we develop a framework for estimating forecast error
decompositions and impulse responses, which combined, provides a rich source of information on market
linkages in both the short, intermediate and long run. Following Spirtes et al., (1993) we examine the
contemporaneous relationships among the variables based on the variance covariance matrix from the
innovations (residuals) from an ECM by employing DAG’s. The application of innovation accounting and
impulse response in this study is different from most other studies in the sense that we address the
construction of the data-determined orthoganization on contemporaneous innovation covariance critical
in providing sound inference in innovation accounting techniques used to assess short, intermediate and
long run relationships among the prices (Swanson and Granger, 1997). From a practical standpoint, this
information is crucial in assessing the information flows from the shipping markets and once combined
with the DAG analysis, allows us to make an assessment on whether the index, on which the futures is
traded, is correctly composed. Indeed, our analysis provides a mechanism for deciding upon the correct
index and has obvious, yet profound implications for other research in the area of index construction.

Our results suggest that over the longer term all freight prices are interconnected, verifying the
suggestion that the dry bulk shipping market is efficient and bulk tonnage is moved effectively between
markets stabilizing freight rates. However, through our unique application of DAG analysis we find a

strong geographical pattern to information linkages, and that some routes are dominant in terms of ‘price
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leadership’. The results also indicate that from a futures contract design standpoint, some routes are
‘redundant’ in terms of information flow and could have been effectively dropped from the index, as
information from these markets is already captured in other markets. These redundant routes, have
therefore diluted the index, making the hedging strategy less effective, perhaps helping to explain the
demise of the freight futures market and the consequent growth in the Over the Counter (OTC) market.
Importantly, the DAG analysis provides guidance into what should be the appropriate compilation and
weighting of the index.

The rest of the paper is as follows. Section Il offers a brief overview of the international ocean
freight market, previous attempts to model freight markets, and a discussion of freight indices. Section 111
outlines the methodologies employed in the paper, including an introduction to DAG'’s, and section IV
provides describes the underlying properties of the data series. Section V presents the empirical results,
and the last section, section V1, concludes.
1. The International Ocean Freight Market and Freight Indices

Despite the fact that freight rates are highly volatile and unpredictable, the vast majority of
empirical research in international trade generally assumes the existence of a frictionless environment
where commodities move freely between regions. However, as shown by Goodwin, Grennes and
Wohlgenant (1990) failure to account for the highly variable freight rates can lead to false conclusions in
empirical research, illustrating the point by finding strong support for the Law of One Price (LOP), only
after they included non-constant transportation costs. Only a handful of papers have attempted to include
transportation costs into their analysis with examples coming from Geraci and Prewo (1977) and Roehner
(1996). They both provide evidence that trade is quite responsive to transportation costs, and that it is
vital that transportation costs be included in the study of trade flows.

Independent of the limited trade research that accounts for freight costs, one area of freight price
analysis that has generated interest in recent years has been forecasting future freight rates, and assessing
the level of volatility in the freight markets. Examples of freight price forecasting are provided by Binkley

and Bessler (1983), Cullinane (1992), Denning et al. (1994), Venstra and Franses (1997), Kavussanos and
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Nomikos (1999) and Haigh (2000). In general, these authors conclude that forecasting freight rates is
particularly difficult, evidently confirming the inherent instability in ocean transport markets. Indeed, in
his 1996 study, Kavussanos models the volatility directly of various types of ship prices (e.g., spot versus
time-charter) and discovers that the various prices have all exhibited consistently large periods of volatility
(that tend to time-cluster). The research also indicates that there are some slight differences in the level of
volatility depending on the shipping arrangement, with time-charter ship prices illustrating greater
instability.

Without a completely articulated theory the strong presumption is that spot rates and time charter
rates ought to be related to one another in a systematic way (in a similar way that short and long bonds are
related via the ‘term-structure’ of interest rates). Indeed, the freight market is often judged as being the
textbook example of efficient and competitive in the sense that the available tonnage is moved effectively
from market to market to meet demand which stabilizes and links freight rates together (Berg-Andreassen,
1997). As such, in their quest to support this theory, several studies have sought to analyze the
relationships between various shipping prices. While Hale and Vanags (1989) reject the hypothesis that
spot and time-charter rates are interconnected, the findings of Berg-Andeassen (1997) confirm the
perception in the shipping industry that changes in the spot rate impact the movement of time-charter
rates.

Several authors, including Binkley and Harrer (1981), Binkley (1983), and Beenstock and Vergottis
(1989) have provided important research in the area of ocean freight price determination. Indeed, within
the area of freight price determination, attempts have been made to decipher exactly which variables
affecting the level of freight prices, are the most volatile (see for instance, Hse and Goodwin (1995)). All
the studies point out that equilibrium shipping rates are determined through a complex interaction of
supply and demand conditions for the shipping services. The demand for shipping is quite simply a
function of the level of international trade and thus is influenced by the usual factors that affect the excess
supply and demand of these globally traded commodities. The supply of shipping is principally a function

of the existing shipping capacity and the input costs associated with operating a vessel (e.g., fuel prices).
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What contributes significantly to the variability of freight rates is the fact that there is limited scope for
capacity expansion in the short run due to lengthy construction lags. The major means of expanding short
run capacity is through more intensive shipping use, entailing an increase in bunker fuel prices and hence
freight rates. This combined with the effect of changing conditions in the world economy, political events,
port conditions and even the weather create an unstable, unpredictable shipping environment.

Given the levels of volatility evidenced in the freight markets, the benefits of providing a futures
market in freight rates had been obvious to market practitioners in the shipping industry since the 1960’s.
However, such a market was eventually established only in 1985 (Gray, 1990). The reason is that the
underlying asset of the market - the service of seaborne transportation - is not a physical commodity that
can be delivered at the expiry of the futures contract. By its very definition, a futures contract is an
agreement to deliver a specified quantity and grade of an identifiable commodity, at a fixed time in the
future. This obstacle was overcome with the introduction of the cash settlement procedure for the stock
index futures contracts in 1982. When the underlying commaodity is not suitable for actual physical
delivery then an alternative is to deliver the cash value of the commaodity at that time. The development of
the cash settlement procedure led to the creation, on 1 May 1985, of the BIFFEX contract. The
underlying asset, which is delivered at the settlement date, is the cash value of a freight rate index,
originally known as the Baltic Freight Index (BFI), now known as the Baltic Panamax Index (BPI).

The BPI is calculated every London business day by the Baltic Exchange, from data supplied by a
panel of fourteen international shipbrokers, and is reported in the market at 1 p.m. London time. The
panel is composed of companies who * ... are deemed by the Baltic Exchange to be of sufficient size, reputation and
integrity to be good independent arbiters of the market” (Gray, 1990). Each shipbroking company submits its view
of that day’s rate on each of the BPI constituent routes, at 12 a.m. London time. These rates are based
either on actual shipping fixtures concluded in the market, or in the absence of an actual fixture, reflect the
panelist’s expert view of what the rate would be on that day if a fixture had been concluded. As a

precautionary measure to prevent any individual broker influencing the market, the highest and lowest



assessments for each trade route are excluded and a simple arithmetic average is taken of those that
remain. The resulting route averages are used in the computation of the BPI.

The BPI currently comprises 7 seaborne trade routes. The underlying trade routes and their
respective weightings in the composition of the BPI have been substantially revised on a number of
occasions to ensure that the index provides a sound basis for the effective functioning of the BIFFEX
market. These revisions in the composition of the index, since its inception in January 1985, are presented
in Table 1 and schematically in Figure 1; the notes, in the same table, describe some minor amendments to
the composition of the index. ?

We can broadly identify four different periods corresponding to differing compositions of the
underlying index. During the first period (January 85 to August 90), the index consisted of capesize,
panamax and handysize spot freight rates.® For the period up to 3 November 1988, there were 13 routes,
of which, 3 were capesize routes (routes 6, 8 and 10 representing 15% of the index composition), 5 were
panamax routes (routes 1, 2, 3, 7 and 9 which made up 65% of the index) and the remaining 5 were
handysize routes (routes 4, 5, 11, 12 and 13 which accounted for the remaining 20%). After 4 November
1988, route 13 was deleted and the number of the index constituent routes was reduced to 12. The
composition of the index was altered again on 6 August 1990 with the introduction of three time-charter
routes (routes 1A, 3A and 5).* The index was revised once more on 5 February 1991 when the panamax
route 7 was replaced by a capesize route and a new time-charter route (route 2A) was introduced. An
additional time-charter route was introduced on 5 February 1993 (route 9). The four handysize routes (i.e.
routes 4, 5, 11 and 12) were eventually excluded from the composition of the index in November 1993
and the number of the index routes was reduced to 11. Finally, in November 1999, the capesize routes
were removed from the underlying index and since then the index consists of panamax routes only.

These revisions have been driven by the intention to generate an underlying index which promotes
the effective functioning of the BIFFEX contract. For instance, Gray (1990) indicates that time-charter
routes were introduced in order to facilitate market participants who wanted to hedge their freight rate risk

on these routes. Similarly, Cullinane et al. (1999) indicate that the exclusion of the handysize routes was
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implemented in response to pressure from market agents, operating on panamax and capesize trade-
routes, who wanted to increase the panamax and capesize representation on the index so as to enhance the
performance of their hedges. Finally, the exclusion of the capesize routes from the BPI, followed after an
extensive review and consultation of the London International Financial Futures Exchange (LIFFE) with
BIFFEX market participants, who “put a Panamax index at the top of their list of requirements” since this was
expected to increase the performance of hedges on the panamax routes.®

The question of whether or not the BIFFEX contract provides effective freight risk management
has been analyzed extensively in the literature by different researchers including Kavussanos and Nomikos
(1999, 2000) and Haigh and Holt (2000). These studies invariably indicate that BIFFEX is not a very
effective hedging instrument; since it does not provide risk protection to the degree that is evidenced in
other commodity and financial futures markets. The underlying reason behind this is that the BIFFEX
contract is based on an index comprising the routes and as such, provides a cross-hedge against these
shipping routes; this makes the hedge less appealing, and the volume of trading lower. However, despite
the numerous revisions in the composition of the BPI, trading volume in the market has remained at low
levels and, as a result, in June 2001, LIFFE, the authority regulating the BIFFEX contract, announced that
trading in the BIFFEX contract would cease in April 2002.° Whether the index is correctly composed and
whether there are any obvious patterns or redundancies within the index is the question we attempt to
address next.
I11.  Models and Methodologies
Cointegration and Error Correction Framework
The development of cointegration modeling stems largely from the work of Granger (1986) and Engle and
Granger (1987). Although the estimated coefficients can be shown to be consistent, the associated
standard errors may be misleading for any hypothesis testing (Hall (1986), Stock (1987)), and as such much
work on applied cointegration analysis has relied on Johansen’s multivariate approach (Johansen, 1988,

1991; Johansen and Juselius, 1990). Because of the advantages d the Johansen methodology, this



technique is adopted in the ensuing analysis. First, assume an n-dimensional vector of nonstationary time

series, X , (n =7 here) that is generated by an autoregressive form depicted as:

K

X, =W+6°1 PiX.ite t=12,..T, W
i=1

e, ~ Niid(0,9),

where X is an n x lvector of the 1(1) variables (seven routes comprising the BPI), P is an n x n matrix of
parameters, w is a vector of constants, and e, is a random error term. Johansen and Juselius (1990) prove

that eqg. (1) can be rewritten as error-correction representation as follows:

DX, :gllcant_i +PX., +e, (2)
with
G=-(1-P,-P,-..-P)(i=1.k-1, (3)
and
P=-[I-P,-.P]. (4)

Eq. 2 resembles a Vector Autoregression (VAR) (in fist differences), with an inclusion of the lagged-level

component, also known as the Error Correction Term (ECT). Since e, is stationary, the rank of the ‘long-
run’ matrix, P, determines how many linear combinations of X are stationary. We know that the rank of

any matrix is equal to the number of characteristic roots that are different from zero, and so the rank of P
determines the number of cointegrating vectors. In practice, we can obtain only estimates of P and its
characteristic roots, and once these are estimated we can test for the number of characteristic roots
(Johansen (1991)). If P is full rank (P =7), then the freight price series are jointly stationary and a VAR
(levels) is the appropriate model to use to study the relationships between the freight prices. If the rank of

P is positive and less than n, then cointegration is present, and there exist matrices ab', with dimensions

n x r, where r is the number of cointegrating relationships, such that P = ab'. The matrix b is the matrix



of cointegrating parameters and the matrix ais the matrix of weights (also known as the speed of
adjustment parameters) with which each cointegrating vector enters the n equations.

All the parameters within the ECM can provide information on both the long run and the short
run nature of the relationships between the freight prices. First, the long-run structure can be identified by
testing hypothesis associated with b . Detailed examination on the cointegration space spanned by b
provides rich information on the long-run relationships and market structure of the freight prices. Indeed,
hypothesis testing allows us to determine whether some markets may be excluded from the long run
relations. The short run dependencies among the prices can also be identified through hypothesis

testing on a and G. Hypothesis testing on a , the short run adjustment to the long run relationships, can
be conducted in a similar way to that used for hypothesis testing on b . This allows the researcher to

make inferences regarding the short run adjustment processes of each series. It also enables the researcher
the ability to test whether a particular market is weakly exogenous with regard to other markets (if those

market prices are unresponsive to the deviation from long-run relationships).

The parameters associated with G define the short-run adjustment to the changes of the process

(Juselius, 1995). Hypothesis tests can also be conducted on these matrices. However, as is the case of

standard VAR’s, the individual coefficients associated with the ECM can be somewhat difficult to

interpret, particularly those associated with the short-run dynamics captured within G. Consequently,

innovation accounting may be the best way to describe the short run structure and interdependencies
among the freight prices (Swanson and Granger, 1997). Therefore, given the ECM, impulse response
analysis can be undertaken based on an equivalent levels VAR to summarize the short run dynamic
interrelationships among the seven freight prices. Undertaking the impulse response analysis in this way
addresses the necessity of imposing the cointegrating relationships into the system, which has very recently
been proven to be crucial in yielding consistent impulse responses and forecast error decompositions

(Phillips, 1998).



However, the basic problem of the orthoganalization of residuals from the ECM remains
unresolved. Most studies employing ECM or VARs have yet to fully address the problem associated with
the contemporaneous relationships among variables. Despite this, innovation accounting (impulse
responses) requires that a causal assumption about contemporaneous correlation be made. Early work in
this area employed the Choleski factorization, with more recent applications concentrating on a ‘structural’
factorization suggested by Bernanke (1986) and Sims (1986) simply because the Choleski factorization the
world may not be viewed as being recursive (Cooley and Leroy (1985)). However, the problem with both
the Bernanke (1986) and Sims (1986) approach is that the correct structural model may not be known to
the researcher. Therefore, following Spirtes et al, 1993 in this study we examine the contemporaneous
relationships among the variables based on the variance covariance matrix from the innovations (residuals)
from the ECM by employing DAG’s which, until now, have been largely ignored in the economics and
finance literature. It is to a brief explanation of DAG theory that we now turn.

Directed Acyclic Graphs

For three variables A, B and C, illustrate a causal fork, A causesBand C,as: B <A —> C. The
unconditional association between B and C is nonzero (as both B and C have a common cause in A), but
the conditional association between B and C given knowledge of the common cause A, is zero. This is
one screening off property associated with causal relations: common causes screen off associations between their joint
effects. Illustrate the inverted causal fork, A and C cause B, as: A-> B <C. Here the unconditional
association between A and C is zero, but the conditional association between A and C given the common
effect B is not zero. A second screening off property associated with causal relations is: common effects do not
screen off association between their joint causes. These screening off phenomieina are captured in the literature of
Directed Acyclic Graphs.”

A Directed Acyclic Graph is a picture illustrating causal flow between variables with lines with and
without arrowheads. Variables connected by a line are said to be adjacent. If we have a set of variables
{A,B,C,D,E}: (i) the undirected graph contains only undirected lines (e.g., A % B); (ii) a directed graph

contains only directed lines (e.g., B® C); (iii) an inducing path graph contains both directed lines and bi-
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directed lines (C « D); (iv) a partially oriented inducing path graph contains directed lines (® ), bi-
directed lines (« ), non-directed lines (0% 0) and partially directed lines (o® ). A DAG is a graph
that contains no directed cyclic paths (an acyclic graph contains no directed path from a variable that
returns to itself). Only acyclic graphs are used in the paper.

Directed Acyclic Graphs represent conditional independence as implied by the recursive product

decomposition:
Pr(Vy,V,, Vs, V) = iF:’lF’r(Vi | pa) (5)

where Pr denotes probability. The symbol pa, refers tothe realization of some subset of the variables that

precede (come before in a causal sense) n, in order (,,n,,....n ). The symbol O refers to the product

(multiplication) operator. Pearl (1986) proposes d-separation as a graphical characterization of conditional
independence. Verma and Pearl (1988) provide a proof of this proposition. D - separation characterizes
the conditional independence relations given by equation (5). If we formulate a Directed Acyclic Graph in
which the variables corresponding to pa; are represented as the parents (direct causes) of \, then the
independencies implied by equation (5) can be read off the graph using the criterion of d-separation
(defined in Pearl (1995)).

Definition: Let X, Y and Z be three disjoint subsets of vertices [variables] in a Directed Acylic Graph G, and let p be
any path between a vertex [variable] in X and a vertex [variable] in Y, where by ‘path" we mean any succession of edges,
regardless of their directions. Z is said to block p if there is a vertex w on p satisfying one of the following: (i) w has
converging arrows along p, and neither w nor any of its descendants are on Z, or, (ii) w does not have converging arrows along

p, and wis in Z. Further, Z is said to d-separate X from Y on graph G, written (XY | Z)s, if and only if Z blocks

every path from a vertex [variable] in X to a vertex [variable] in Y.
Geiger, Verma and Pearl (1990) demonstrate that there is a one-to-one correspondence between
the set of conditional independencies, X * Y | Z, implied by equation (5) and the set of triples (X, Y, Z)

that satisfy the d-separation criterion in graph G. If G is a Directed Acyclic Graph with variable set V, X
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and Y are in V, and Z is also in V, then G linearly implies the correlation between X and Y conditional on
Zis zero if and only if X and Y are d-separated given Z.

Spirtes, et al. (1999) consider the relationship between directed graphs and the counterfactual
random variable model (the random assignment experimental model) of Rubin (1978) and Holland (1986).
For one (causal relationships summarized by directed graphs on observational data) to imply the other
(causal relationships revealed in a random assignment experiment) one needs three conditions. First, one
needs to focus on causally sufficient set of variables. This means that there are no omitted variables that in
fact cause any two of the included variables under study. If variable X causes both Y and Z and we omit
X from the analysis, then an apparent causal flow from Y to Z (or vice versa) may be due to the fact that X
causes both Y and Z, so the causal flow identified as running from Y to Z would be spurious (Suppes
1970). Second, one needs to constrain herself to causal flows that respect a causal Markov condition. That is
to say, if X causes Y and Y causes Z, we can factor the underlying probability distribution on X, Y and Z
as Pr(X,Y,Z) = Pr(X)Pr(Y | X)Pr(Z]Y). Finally, the probabilities, Pr, we attempt to capture by graph G are
faithful to G if X and Y are dependent if and only if there is an edge between X and Y.

Causal sufficiency suggests that one finds a sufficiently rich set of theoretically relevant variables
upon which to conduct analysis. Failure to include a relevant variable may lead one to put a line between
two variables when in fact both are effects of an omitted third variable. Spirtes, Glymour and Scheines
(1993) note that the Markov condition has been questioned in quantium mechanical experiments. Failure
to require the condition would require us to ignore statistical dependency even in experimental designs
(Spirtes, Glymour and Scheines 1993, p. 64). Finally, the faithfulness condition may not hold if parameter
values cancel one another. For example the following two equations describe the underlying model that
generates X, Y, and Z:

X = 20Y + 2Z + ¢,

Z=-10Y +e,



where e, and e, are uncorrelated noise terms, each not correlated with its associated right hand side
variables (e, is not correlated with Y or Z and e, is not correlated with Y). If this is the “true” generating

process on X, Y and Z, it has a Directed Acyclic Graphical representation with no conditional

independence relations (dropping the noise terms):

Xx— Y

\/

Yet, X and Y are uncorrelated. If we rely on correlation and partial correlation stucture based on
observational data on X, Y and Z to remove edges between variables, we would mistakenly remove the
edge between X and Y, even though the data generating process requires it to be present. However, slight
variations in any of the linear coefficients show X and Y to be correlated, so that the correlation structure
in the model is unstable (Glymour 1997, p. 209). [Of course the experimentalist can find the causal model
behind X and Y even with the unstable correlation structure; by breaking the connection between Y and Z
through random assignment in a controlled experiment].

Spirtes, Glymour and Scheines (1993) have applied the notion of d-separation into an algorithm
(PC Algorithm) for building directed graphs. PC algorithm is a sequential set of commands that begin
with an unrestricted graph where every variable is connected with every other variable and proceeds step-
wise to remove lines between variables and to direct "causal flow.” The algorithm is described in detail in
Spirtes, Glymour, and Scheines (1993, p.117).

The algorithm (we will summarize only the generic aspects of PC algorithm) begins with a
complete undirected graph G on the vertex set X. The complete, undirected, graph shows an undirected
line between every variable of the system (every variable in X). Lines between variables are removed
sequentially based on zero correlation or partial correlation (conditional correlation).  The conditioning
variable(s) on removed lines between two variables is called the sepset of the variables whose line has been removed (for

vanishing zero order conditioning information the sepset is the empty set). Edges are directed by considering triples X

¥ Y ¥ Z, such that X and Y are adjacent as are Y and Z, but X and Z are not adjacent. Direct lines
13



between triples: X % Y 3% ZasX ® Y = Zif Yisnotin the sepset of Xand Z. If X® Y,Y and Z
are adjacent, X and Z are not adjacent, and there is no arrowhead at Y, then orient Y 3% ZasY ® Z. |If
there is a directed path from X to Y, and a line between X and Y, then direct (X% Y)as: X ®Y.

In applications, Fisher’s z may be used to test whether conditional correlations are significantly

different from zero. Fisher’s z can be applied to test for significance from zero; where:

A . 110.0) = & i TT-3gni L7 ((ii’jj||:f)|2' ©)

and n is the number of observations used to estimate the correlations, r (i, j | k) is the population

correlation between series i and j conditional on series k (removing the influence of series k on each i and
j), and | K] is the number of variables in k (that we condition on). If i,j and k are normally distributed and
r(i,j] k) is the sample conditional correlation of i and j given k, the distribution of

2(r (i, j | K),n)- 2(r(i, j | k),n)is standard normal. PC algorithm and its more refined extensions are

marketed as the software TETRAD I1 (Scheines, et al 1994).

Monte Carlo studies with small sample sizes suggest that Tetrad Il works well, if the researcher
applies an inverse relationship between sample size and significance level on line removal test. When
sample size falls below 100 observations significance levels as high as .20 are recommended (Sprites, et. al.
1993, Chapter 5). As sample size grows above 100, the suggestion is to drop the applied significance level
to more traditional values (e.g., .10 or .05).

As previously suggested, applications of DAG’s in economics and finance are not commonplace.
Recently, however, Swanson and Granger (1997) suggested a similar procedure to sort-out causal flow on
innovations from a vector autoregression (VAR). Their procedure considers only first order conditional
correlation, and involves more subjective insight by the researcher to achieve a "structural recursive
ordering."

V. Data
Daily data from February 2™ 1996 through to May 7" 2001 are collected from the Baltic Exchange.

The starting date of February 2° 1996 is chosen, as this is the last date that a major change was made to
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the BP1.® Focusing on this period allows us to concentrate on the interactions of the freight prices when
there have been no major changes occurring to any of the underlying routes.

Summary statistics on the prices are presented in Table 2 along with the correlations among the
freight prices. As observed by the coefficient of variation, the spot routes (R1, R2 and R3) show less
variability than the time charter rates (R1A, R2A, R3A and R4). This reflects the higher volatility of time-
charter routes compared to the underlying spot routes. Turning next into the correlation coefficients, we
can note that the highest correlation coefficients are evidenced between the spot and their corresponding
time-charter routes (that is routes R1 and R1A, routes R2 and R2A and routes R3 and R3A). This is not
surprising given that the definitions of spot routes are very similar to those of the corresponding time-
charter routes. Take for instance routes R1 and R1A. Route R1 reflects cargo movements of grain from
US Gulf to Belgium or Holland; route R1A on the other hand is a time-charter route for a round-trip
voyage from north-west Continent (Europe) to US and back to north-west Continent. Therefore, route
R1A consists of two legs; a ballast leg from Europe to US - as there are few dry bulk cargoes originating in
Europe - and a laden leg from US to Europe. Similarly, route R2 (Grain from US Gulf to Japan) is similar
to route R2A (timecharter route from Continent to the Far East via US Gulf). Therefore, route R2A
consists of a ballast leg from the Continent to US Gulf and a laden leg from US Gulf to Japan as is route
R2. Turning now into routes R3 and R3A we can see that they are also linked. More specifically, route R3
represents the shipping freight cost of transporting grain from North Pacific to Japan while route R3A
typically represents cargo flows from Japan to North Pacific for the transportation of grain and then back
to Japan. Finally, route R4 comprises a ballast leg from Japan to North Pacific to load coal and then back
to the European continent. These similarities in the definitions of the BPI routes are manifested by the
high values of correlation coefficients evidenced in Table 2. The high degree of association between spot
and timecharter rates is also confirmed by the time series plots of time charter price series (panel A) and
the spot freight price series (panel B) in Figure 2. The discussion above indicates that the underlying BPI

shipping routes are linked. However, it does not provide detailed evidence on the dynamics of these
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linkages as well as on the existence of causation between them. These are addressed in the following
section.
V. Empirical Results

Unit root tests (Dickey and Fuller, 1981) on the levels and first differences of the Baltic routes,
presented in Table 3, indicate that the series in levels follow unit root processes at the 5% level, with the
exception of route R3A which has a unit root at the 1% level. As a result, cointegration techniques are
used to examine the existence of a long-run relationship between the shipping routes. The lag length (k) in
the VECM of equation (2), chosen on the basis of the Schwarz Bayesian Information Criterion (SBIC)
(Schwarz, 1978), is 2. The VECM of equation (2) is then estimated using the maximum likelihood
estimation procedure of Johansen and Juselius (1990).° The estimated | ., and | ., Statistics, in Table 4,
indicate that there are three cointegrating relationships between the underlying freight rate routes, since the

first failure to reject the null hypothesis of no cointegration is when testing for r £ 3 with the | ., test and
when testing for r = 3 with the | ,, test; therefore, for the remainder of the study an ECM with three

cointegrating relationships is modeled. After imposing the three cointegrating vectors the estimated

matrices associated with (2) using data from February 2™ 1996 through to May 7" 2001 are as follows:
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The first matrix is the factorized matrix of long-run coefficients, P = ab', multiplied by the vector
of lagged variables, X,;, which includes an intercept term. The P matrix has been factorized as ab' where

a captures the short-run adjustment toward the long-run equilibrium and b is the vector of cointegrating
relationships. Indeed, perturbations in the long-run equilibrium are given by b'X_,. As the t - statistics

associated with the corresponding a coefficients suggest, many of the markets seem to respond to
adjustments in the equilibrium relationship (using a critical t-value of 1.96 (5%)). In order to test formally
whether freight rates for a route respond to the long-run information generated from all the other freight
routes, we perform hypothesis tests on whether an entire row of a equals zero. Results from these tests,
do not provide conclusive evidence as to whether any of the freight rates are weakly exogenous at the
most stringent levels of significance (i.e., 1% level). This indicates that all routes react to shocks in other
markets, a finding consistent with the efficient market theorem provided by Berg-Andreassen (1997).”°

Additionally, we also test restrictions associated with the long run parameters (b ) which allows us

to make more concrete statements about the nature of the cointegrating vectors. Indeed, we may find a
stable cointegrating vector holding the series together, but this may be due to a smaller sample of the
seven series rather than all seven together. Therefore, we formally test the hypothesis that each of the
seven series is not in the cointegrating space, or in other words, is not present in any of the three
cointegrating vectors. At sringent levels of significance (i.e., 1% level) we find that each of the series
belongs in the larger system that links the freight prices together.

While testing whether each of the series is part of the entire cointegrating system is informative, it
is also interesting to test other hypotheses associated with the long-run relationships. That is to test
whether groups of freight prices may belong to one particular vector, whereas other groups may belong to
another vector. For instance, Bessler and Fuller (2000) impose restrictions on the long run relationships of
various rail rates based on their physical characteristics. In our case, we have shipping routes with

common geographical characteristics (e.g. shipping routes originating in the Atlantic or Pacific basins) or
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contract types (e.g. time-charter vs. spot) or even route coverage (for instance, route 2 and route 2A).
Therefore, we also test for restrictions along these lines within the cointegrating space.

We test for overidentifying restrictions on the cointegration space (as outlined in Hansen and
Juselius, 1995). Focusing such restrictions on time-charter versus spot and on geographical characteristics
resulted in no clear overidentifying restrictions. Henceforth we therefore continue to employ the
‘unrestricted’ cointegrating matrix. This finding indicates that these markets are efficient in the sense that
available tonnage is moved effectively from market to market to meet the demand and a consequence
stabilizing the freight markets, thus ensuring that over the longer term, their prices move together.

Turning next into the G matrix, containing the coefficients of the lagged freight rates given above,
we note that most of the coefficients are statistically significant. Interestingly, the coefficients associated
with R2 (Grains from US Gulf — Japan) are highly significant across all the estimated equations, with
coefficients ranging from .123 on R3A to .319 on R2A. Such a finding suggests the importance of this
particular freight route since all the other shipping routes seem to be significantly affected by this route.

The preceding analysis indicates that it is quite difficult to discern the short run patterns of
responses to strengths of the dependencies by either focusing on individual parameter estimates whether
they are derived from the Cor the a matrix. Therefore, to address this issue we turn our attention to the
innovation accounting techniques which are described next.

Innovation Accounting

A more detailed insight on the causal relationship between freight rates is obtained by analyzing
the decompositions of forecast errors generated from the ECM of equation (7). Critical to such analysis is
the treatment of contemporaneous innovations in the time series (Sims, 1980). In this paper, we follow

the factorization commonly referred to as the “Bernanke ordering”. Consider the innovation vector (e,)
from the ECM as: ? e, =v,, where ? is a 7 x 7 matrix of coefficients and v, is a 7 x 1 vector of orthogonal

shocks. To illustrate, a general description of the model being considered here is given in Equation (7)

below:
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Here e,,,€,,€5,,€4; €51, €4y ,aNd €, are observed (non-orthogonal) innovations in the series
differenced  freight  prices  DX,,DX,,DX,,DX,,DX;,DX,,and DX, in period
Ny N oy Ny N 4y Ny N6y ,@Nd N, are orthogonal innovations for the same series in period t, where

orthogonalization is obtained via the matrix A. As documented by Doan (1992), a factorization is

identified if there is no combination of iand j (i * j) for which both {a,.j}and {aji}are non-zero (where

{a; } is element i,j of the matrix ) A.

A common practice in early VAR-type analysis was to rely on a Choleski factorization, so that the
A matrix is lower triangular in order to achieve a just-identified system in contemporaneous time. In the
ensuing analysis we employ the directed graphs algorithms given in Spirtes et al. (1993) to place zeros into
the A matrix (a similar suggestion was made by Swanson and Granger (1997)). A DAG is an assignment
of causal flow (or the lack thereof) among a set of variables (vertices) based on identifying restrictions in
the following innovation correlation matrix (S) from the ECM (where we represent the innovations as

e,). Our seven variable ECM results in the following innovation correlation matrix where lower
triangular entries only are printed in the order, R1, R1A, R2, R2A, R3, R3A and R4.

6..00
972 100
@059 0.67 1.00
S(e) =65 080 076 1.00
20.39 0.43 0.44 0.44 1.00
2040 048 041 049 0.71 1.00
€37 046 040 0.44 070 0.82 1.00
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The off-diagonal elements of the scaled inverse of the S(e,) (or any other correlation matrix) are in

fact the negatives of the partial correlation coefficients between the corresponding pair of variables (in our
case, freight rates) given the remaining variables in the matrix (Whittaker 1990, p.4). To illustrate, if we

were interested in computing the conditional correlation between innovations in R2 (e,,) and R2A(e,,)
given innovations in R3(e;,) and R3A(e,) we would calculate the inverse of the following matrix S, (e,)

(taking the corresponding elements from S(e,) ):

é.00 u
.76 1.00 u

S.(e)=¢ U 9)
@44 044 100 U

c

@41 049 071 1.00§
The matrix S;(e,) is the 4 x 4 matrix with lower triangular elements associated with the R2, R2A, R3 and
R3A given in (8) above. The off-diagonal elements of the scaled inverse of the S, (e,) matrix, denoted by

S, (e,), (where the * indicates that we have scaled the inverse matrix) are the negatives of the partial

correlation coefficients between the corresponding pair of variables given the remaining variables. In this

case:

.00 v
S*(e)—268 1.00 3 (10)
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For instance, the partial correlation between innovations in rates in one market (R2) and
innovations in another market R2A), given innovations in markets R3 and R3A is 0.68. Under the
assumption of multivariate normality, Fisher’s z - test (Eq.6) can be applied to test for significance from
zero. In this particular instance, the correlation between routes R2 and R2A given R3 and R3A (0.68) is
significantly different from zero at all conventional significance levels, whereas the correlation between

R2A and R3 given R2 and R2A (-01) is not significantly different from zero (the marginal significance
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level is 0.703). So we can say that innovations in the R2 and R2A rates are related in contemporaneous
time whereas innovations in R2A and R3 are not.

Directed graphs provide an algorithm for removing edges between markets (similar to that
described above) and also directing the causal flow of information between the markets. The algorithm
starts with a complete undirected graph (like the one shown in the top panel of Figure 3) where
innovations in every market are connected with innovations in every other market. The algorithm
removes edges based on vanishing correlation and partial correlation, the latter measured based on the
scaled inverse correlation matrix (which is derived from the complete contemporaneous variance-
covariance matrix from the ECM as explained above). Edges between the variables are sequentially
removed based on either vanishing zero order correlation (unconditional correlations) or vanishing
conditional correlations, where conditioning is done on all possible sets with members 1,2,...,k — 2, where
k is the number of variables studied (7 in this case).

The middle panel of Figure 3 gives the pattern on innovations based on the seven-freight market
ECM (EQq.8). We see two undirected edges in panel B: R1 — R2 and R4 — R3A. Here Tetrad is not able to
direct the edges but some other interesting and intuitively pleasing patterns emerge.* The first
observation is that there are no complete ‘sinks’ whereby a particular route only receives information from
other routes, but does not generate any information to other routes. This first observation leads us to
conclude that no routes are redundant in terms of generating information in contemporaneous time.
However, some routes seem to ‘receive’ more information from other markets rather than generate
information. For instance, the graph illustrates that R1 is led in contemporaneous time by R1A and R2A
but does not ‘lead’ any other route. That is, we do not have a directed edge away from that route.
Additionally, we can note that R1 and R2 are clearly linked together although we are not able to distinguish
the direction of causality between them. Despite this undirected edge, it is clear that R1 does not seem to
be leading other shipping routes in terms of information discovery.

Turning next into R1A we can note that while it leads R1, it is also influenced by R2 (grains from

US Gulf to Japan) and R4, the eastern hemisphere time darter route, which does ultimately connect
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Japan, Australia and European Continent (the same destination as R1A). On the other hand, R2, which is
considered by shipping practitioners as being the benchmark route, is clearly a dominant route in
contemporaneous time. This is verified by observing the number of directed edges leaving that route and
influencing other routes. As can be seen R2 leads R1A, R2A and R3 in contemporaneous time, and is also
linked with R1, although we can not determine the direction of causation in this case. While DAG'’s alone
seem to verify the importance of R2 in the price discovery process, data provided by the United States
Federal Grain Inspection Service (FGIS) - which provides data on volume of trade and number of ships
leaving the U.S. ports - also point out the significance of R2 in the world sea borne trade. To illustrate,
between Feb 2™ 1996 and May 7" 2001 (the period of time studied here), a total of 86.5 million tones of
grain was transported from the U.S. Gulf to South Japan (R2) on 4556 different vessels. This compares to
a total of 14.5 million tones of grain being transported from the U.S. Gulf to the Amsterdam-Rotterdam-
Antwerp (ARA) region of Europe (R1) on 414 vessels, and 37 million tonnes were shipped from the US.
North Pacific to South Japan (R3) on a total of 1908 vessels. Using R2 as the base route, we can see that
in terms of tonnage shipped, volume does have some influence on price leadership. In particular volume
on R1 is only about 17% of that shipped to Japan via R2 and volume on R3 is about 43% of the total
volume that is shipped via R2. Focusing our attention on the time charter routes, we see that R2A, ‘leads’
R1 in contemporaneous time, but it is clearly influenced (being led) by both R2 and R3A. This is in
contrast to R2A’s spot equivalent, R2, which is a more dominant route in terms of price leadership.

Not surprisingly routes R4, R3A and R3 are all linked together. The common characteristic of
these routes is that they reflect trading in the Pacific basin. Interestingly, this group of routes is also
connected via R2A to the U.S. Gulf region. This is expected as the physical movement of goods within
the U.S. to competing ports links the prices in a way described in Berg-Andreassen (1997). For instance,
route R3A leads R2A but both these routes have the common characteristic that they are routes that
ultimately head for Japan/South Korea. R4 also seems to lead route R1A. Intuitively, these routes
originate in very different parts of the globe but have the common feature that their final destination is

North Continent.

23



Forecast error decompositions and impulse responses (one standard deviation shocks from the
ECM’s) based on the DAG's are provided in table 4 and figure 4 respectively. The forecast error
decomposition allows us to consider which freight rates are statistically exogenous or endogenous relative
to each other at differing forecast horizons. A freight rate would be considered statistically exogenous if
most of the variance of its forecast error is due to its own innovations rather than the innovations
originating from the other freight prices in the system. A truly exogenous freight rate should explain 100%
of its forecast error variance at all forecast horizons. In this study we provide horizons from 1,2,3 and 5
days (the very short run) to intermediate run (10 days) to the long run (30 and 60 days). The maximum
forecast horizon is set to 60 days since this is the typical duration of hire in the time-charter routes of the
Baltic Panamax Index. The first column in the output is the standard error of forecast for each particular
route. The remaining columns provide the error decompositions. Each row should add up to 100% (but
may not due to rounding). Calculation of the impulse responses on the other hand, enables us to evaluate
the dynamic paths of adjustment of each of the freight prices to shocks in the data series.

Looking for instance at the forecast decompositions for R1, we can note that this route is quite
heavily influenced by R1A and R2 which combined explain almost 61% of the uncertainty in R1 after just
1 day and their impact is even stronger when we consider the longer term. This finding is not surprising
given the results from the DAG’s as well as the relatively low level of physical trading activity on this
route. Indeed, as suggested by the directed graph analysis, R1 acts as a “near sink” since it is quite
unimportant in generating information affecting other markets. This pattern is also verified by looking at
the influence that R1 exerts on the forecast errors of the remaining routes, in the second column of Table
5, where the greatest influence of R1 into any other route across all forecast horizons is only 5.56% (R3A
for 60 days ahead). Finally, recall that DAG’s suggest we cannot assign the direction of causation between
R1 and R2 in contemporaneous time. However, we can see from the error decompositions that R2
explains up to 49.00% (after 10 days) of the variation in R1, whereas R1 explains at most 0.81% of the
variation in R2. Therefore, R2 dominates R1 in terms of information discovery across all forecast

horizons.
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Similar conclusions about R1 emerge when we consider the impulse response functions. Reading
along the columns from the left hand side of figure 4 to the right hand side we can assess the effect of
shocking each market (along the top) and the resulting response on the other markets down the left hand
side. Shocking R1 for instance, has some effect on itself and a slight effect on the other routes although
the effect dies out fairly quickly which confirms the fact that R1 is relatively unimportant in terms of price
discovery.

Turning next to the forecast decompositions for R1A, we can note that it is heavily influenced by
R2 in the short run, and continues to be influenced by this widely regarded influential market into the
much longer term, although at that time the Far-Eastern routes (R3, R3A and R4) also help explain some
of the variation. In the short run, (1 day) R4 influences R1A, accounting for 15.9%. Interestingly, this
complements the findings from DAGs that R1A is affected by R4 in contemporaneous time. We can also
note that R1A, unlike its ‘spot’ counterpart (R1), does influence other markets particularly in the longer
term (explaining 27.113%, 12.109% and 28.313% in R1, R2 and R2A, respectively after 60 days). The
superior importance of R1A in information discovery is also confirmed by the impulse response functions
in Figure 4 which show that R1A has a bigger effect on other routes and the shocks do not die out as
quickly as its spot counterpart, R1. Therefore, these findings indicate that R1A is more influential, in
terms of information dissemination, compared to R1. This is expected given the scope of trading reflected
in route R1A. Typical routes reflected within the definition of route R1A include Continent — North
America for grains and back to Continent or Continent — East Coast of South America for grains or coal
and then back to the Continent. Therefore, R1A represent the wider North and South Atlantic to
Continent trade, as opposed to the US Gulf — Continent trade only reflected in R1, and hence reflects
more accurately the trading conditions in the Atlantic basin. As a result, it should exert greater influence
on other routes, compared to R1.

Perhaps the most expected result is confirmed by the error decompositions of R2. As previously
explained, R2 is the most significant route in terms of price discovery and results from the DAG analysis

illustrate its influence in contemporaneous time. However, R2 is highly exogenous in the short run
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meaning that it explains 100% of its own variation after 1 day, and continues to explain over 90% of its
own variation after 5 days. In the intermediate to long-run, R2 is affected by other markets, most notably
R1A and R3A, however their combined effect accounts for only 24.3% of the total variation in R2 after 60
days. Interestingly, it takes quite a long time for these markets to influence R2, but this is commensurate to
the period of time taken for the ships to move between these regions so as to exploit any differences in the
level of freight rates. Turning next into the impulse response functions, we can note that a shock in R2
affects all the other freight rates, with the effect of the shock not truly stabilizing until the maximum
horizon of 60 days. What is surprising however is that even though R2 seems to have the greatest
influence on other markets, in contemporaneous time, short, intermediate and the long-term, its weighting
in the BPI is identical to R2A (12.5%) which seems to be less influential. Indeed, R2A (the time-charter
equivalent of R2) is most heavily influenced by R2 in the short run, but is also influenced by R1A
particularly for the longer horizons. This is because, R1A and R2A link the Atlantic and Pacific trades and
a degree of substitutability exists between these routes. For instance, vessels which are available in the
Continent, will choose to trade either in the Atlantic basin (R1A) or the Pacific basin (R2A) depending on
the level of freight rates prevailing in these two regions. Therefore, any imbalance in the relative level of
freight rates between these regions will be ironed out by a corresponding adjustment of the supply of
tonnage in each region. However, given the timescales involved in the time charter routes, these
adjustments will take place in the medium to long-run, that is in excess of 30 days, which explains why the
impact of R1A on R2A is greater for the longer horizons.

However, like R1, R2A does very little in explaining the variability of other routes across different
horizons. For instance, it has very little influence on R3 and only explains a little over 2% of its forecast
error after 60 days. Correspondingly, as illustrated by the impulse response analysis, a shock in R2A has
the least effect on all other routes. For instance, shocking R2A has almost no effect on R1A These
results compliment the DAG analysis where it was found R2A has very little influence in other markets,

and even though it ‘directs’ R1 in contemporaneous time its influence on R1 after 1 day is just 1.86% and
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falls to 0.19% after 60 days. R2A is therefore, by all accounts a relatively insignificant route, obviously not
‘deserving’ an equivalent weighting in the BPI as R2, which is clearly the more dominant route.

As one might expect, once we turn our attention to the markets that are related to the Pacific Basin
(R3, R3A and R4) we see a similar geographical divide in the short run that was found in the U.S. Gulf.
According to the forecast error decompositions, after 1 day, R3 is only influenced by itself (41.563%) and
by R3A (54.371%). Interestingly, its effect on other routes is fairly small. For instance, over the longer
term it explains, 3.65%, 546%, 7.39% and 5.13% of the “US Gulf-routes” (i.e. R1, R1A R2, R2A) and
has a similar affect on the other West Coast routes (4.43% and 4.73% on R3A and R4, respectively).
Similar conclusions emerge when we consider the impulse responses. That is, while a shock in R3 has
some effect on some routes, compared to more significant routes, like R1A or R2, this effect is small.

Focusing now on R3A, this time-charter route represents cargo voyages between Japan and the
U.S. west Coast (or British Columbia) and back, or between Japan and Australia and back thus, in
description, being quite different from the other routes, as it may never link to the U.S. Not surprisingly,
the short-run forecast error decompositions, indicate that the route is quite exogenous in the short-run
since it explains 100% of its forecast error for the 1-step ahead forecast; for longer horizons however, it
tends to be influenced by other routes, most notably R2. Indeed within 60 days about 23% of R3A’s
variability is explained by R2 reflecting once again that over time arbitrage should link the freight markets
together. We can also note that, unlike its spot counterpart R3, R3A has a clear influence on other
markets. Focusing on the longer term (60 days), R3A explains 13.32% of the variation in R1, 12.85% in
R2A, 50.34% of the variation in R3, and almost 50% of the variation in R4. The impulse responses also
verify the importance of this route. A shock in R3A has a significant effect in all markets, with the larger
effects occurring n R3, R3A and R4. This is consistent with the results from DAG analysis which
suggests that there is an obvious consistency between the methodologies. Indeed, in contemporaneous
time, R3A and R4 are connected (but not directed), and R3A causes both R3 and R2A in
contemporaneous time. Therefore, R3A is an important route, perhaps as important as R2, in terms of

information discovery.
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Finally, R4, typically comprises a ballast leg from Japan to North Pacific to load coal and then back
to the Continent. The short-run forecast error decompositions, indicate that the route is quite exogenous.
It explains about 87% of its own variation after one day but is also affected by R3A (about 11.9%) — which
also is linked to Japan. The DAG suggests that we cannot sign the causation in contemporaneous time,
but results here seem to indicate that R3A affects R4 in the longer term (50.34%) much more than R4
affects R3A in the long term (3.21%). The impulse response graphs also suggest most influence comes
from R3A. Interestingly, R3 has a little affect on R4 in the short, intermediate and longer term, even
though, as seen in the DAG, there is a contemporaneous causality suggesting R3 causes R4. Once again,
like other routes, R2 affects R4 as time passes, accounting for about 11.36% after 60 days.

In summary therefore, given the competitive nature of the ocean shipping market we should
expect to find that all routes move together, a result confirmed by the cointegration analysis, and should
influence one another (albeit by different degrees) a result confirmed by the DAG analysis, the forecast
error decompositions and impulse response analysis. The results, from these tests indicate that there are
some leading routes, like R2 and R3A which dominate the other routes in terms of information
dissemination. However, while R3A seems to be appropriately weighted within the BPI, R2 is under
weighted relative to its importance. In addition, it seems that the information provided by R1 is already
reflected in other routes (like R1A and R2) and could conceivably be ignored as a means of providing new
information not captured in other markets. Indeed, R1 follows rather than leads in contemporaneous
time, the short, intermediate and long run. The same seems to be true for R2A.  These two routes
together comprise, almost a quarter of the weighting of the BPI (22.5%), yet their influence is trivial. To
illustrate this point, we exclude routes R1 and R2A from the estimation process and re-estimate the ECM
of equation (2) using the modeling procedure described in section 2. The ensuing pattern is presented in
Figure 3, Panel C. We can clearly see that innovations in most freight rates are linked between each other.
In fact, with the exception of the R1A - R3, R2 - R4 and R2 - R3A pairs of routes, the remaining
combinations of pairs are connected between them. This indicates that the flow of information between

the routes has increased following the exclusion of the two redundant routes from the system. In addition,
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the fact that none of the connected pairs are directed indicates that there is a balance in the flow of
information within each pair of routes since none of the routes leads any of the other routes. Therefore,
these findings suggest that R1 and R2A do not contribute any new information to the system of freight
rates and, as a result, should not be included in the calculation of the index. From a practitioner’s
standpoint, this implies that the current index may have been diluted by redundant routes, thus deterring
hedging activity in a way suggested by Haigh and Holt (2000) and Nomikos and Kavussanos (2000).

V1.  Conclusions

While there have been several attempts in recent years to study the level of interconnectivity and
linkages within the volatile dry-bulk ocean freight industry to date, no study has conducted an analysis in a
truly dynamic nature. Underutilized in both finance and economics, the unique contribution of this
research is to employ Directed Acyclic Graphs (DAG’s). The DAG's allow us to assess causation and
linkages among the world’s major shipping routes for the first time. The DAG analysis also allows us to
address issues surrounding the causal ordering on innovations from a VAR or an Error Correction Model
from which we generate familiar forecast error decompositions and impulse responses.

Our results verify previous research on international shipping freight markets in that freight rates
are very much linked which suggests that shipping markets are highly efficient and tonnage is shifted from
market to market thus stabilizing and linking freight rates together. Indeed, we confirm using a variety of
methodologies, that over time, markets that are geographically separated, do begin to significantly
influence one another by the time that it takes to physically move the commodity from one region to
another.

Our DAG (contemporaneous) analysis combined with the short, intermediate and long run
analysis also confirm that some routes are dominant in terms of price discovery and lead many other
routes. This is true in particular for R2 (Grains from US Gulf to Japan), which is known throughout the
industry as the ‘benchmark’ route. This route leads many other routes in contemporaneous time, and
impacts other routes for long periods of time if it is shocked. While the analysis confirms that several of

the routes comprising the BPI are appropriately weighted, R2 seems to have a relatively low weight,
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whereas R1 and R2A seem to provide no unique information since their information is captured within
the information provided by other routes. These routes are quite possibly redundant in the index, or at
best have a weight that is too high.

The information from the DAG analysis, forecast error decompositions and impulse response
analysis provides a unique insight behind the mechanics of international linkages in freight rates but also
provides an indication as to why the volume of trading in freight futures has been declining in recent years.
Indeed, we illustrate from a futures trading standpoint, the composition (and weighting) of the index may
not be correctly composed (despite being changed several times since its inception). As freight futures
trading has declined in recent years, quite possibly due to the development of FFA’s, we conclude that the
BP1 is not the appropriate index to which futures contracts should be linked. Indeed, the results of this
study suggest that the composition and weighting of the current BPI may have diluted the hedging
effectiveness of the futures contract, or deterred hedging, which may have in part, contributed to its
demise.

This research provides a unique, detailed understanding of how these differing freight routes affect
one another in contemporaneous time and in the short, intermediate and longer term providing valuable
information for the physical traders on the routes analyzed in this study. Moreover, while the DAG and
related analysis provided here might be useful from a futures contract design standpoint, this research may

have further obvious, yet profound implications in the general area of index construction.
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Table 1. Baltic Panamax Index: Changes in its composition since its inception.

Vessel  Size Cargo Route 4/01/85 -4/11/88 -6/08/90 -5/02/91 - 5/02/93 - 3/11/93 -6/05/98 - From

(dwt) 3/11/88  3/08/90  4/02/91  4/02/93  2/11/93  5/05/98  29/10/99 1/11/99
1 55,000 Light Grain  US Gulf to ARA 20% 20% 10% 10% 10% 10% 10% 10%
1A 70,000 T/C Trans-Atlantic round (duration 45 — 60 days) 10% 10% 10% 10% 10% 20%
2 52,000 HSS US Gulf to South Japan 20% 20% 20% 10% 10% 10% 10% 12.5%
2A 70,000 T/C Skaw Passero to Taiwan — Japan (50-60 days) 10% 10% 10% 10% 12.5%
3 52,000 HSS US Pacific Coast to South Japan 15% 15% 7.50% 7.50% 7.50% 10% 10% 10%
3A 70,000 T/C Trans-Pacific Round (35 — 50 days) 7.50% 7.50% 7.50% 10% 10% 20%
4 21,000 HSS US Gulf to Venezuela 5% 5% 5% 5% 5%
5 35,000 Barley Antwerp to Jeddah (Saudi Arabia) 5% 5%

38,000 T/C South America to Far East 5% 5% 5%
6 120,000 Coal Hampton Roads (US) to South Japan 5% 7.50% 7.50% 7.50% 7.50% 7.50%
7 65,000 Coal Hampton Roads (US) to ARA 5% 5% 5%

110,000 Coal Hampton Roads (US) to ARA 5% 5% 7.50% 7.50%
8 130,000 Coal Queensland (Australia) to Rotterdam 5% 5% 5% 5% 5% 7.50%
9 55,000 Coke Vancouver (Canada) to Rotterdam 5% 5% 5% 5%

70,000 T/C Japan — Korea to Skaw Passero (50 — 60 days) 5% 10% 10% 15%
10 90,000 Iron Ore Monrovia (Liberia) to Rotterdam 5% 5% 5%

150,000 Iron Ore Tubarao (Brazil) to Rotterdam 5% 5% 7.50% 7.50%
11 25,000 Pig Iron Vitoria (Brazil) to China 5%

25,000 Phosphate  Casablanca (Morocco) to West Coast India 2.50% 2.50% 2.50% 2.50%
12 20,000 Potash Hamburg (Germany) to West Coast India 2.50%

14,000 Phosphate  Agaba (Jordan) to West Coast India 5% 5% 5% 5%
13 14,000 Phosphate  Agaba (Jordan) to West Coast India 2.50%
14 140,000 Iron Ore Tubarao (Brazil) to Beilun and Baoshan (China) 7.50%
15 140,000 Coal Richards Bay (S. Africa) to Rotterdam 7.50%

Notes: The following minor amendments of the Index are not presented in this Table.

As of 6 May 1998, Routes 2 and 3 refer to a 54,000 dwt panamax vessel. For the period prior to 1 November 1999, the index was known as the Baltic Freight Index (BFI).
Routes 1A, 2A, 3A and 9 were based on a 64,000 dwt panamax vessel for the period up to 2 February 1996.

Route 5 was 20,000 dwt vessel Barley from Antwerp to Red Sea for the period 1 January 1985 to 4 February 1986.

Route 7 was based on a 100,000 dwt vessel for the period 5 February 1991 to 4 February 1993.

Route 8 was based on a 110,000 dwt vessel for the period 1 January 1985 to 5 February 1992.

Route 10 was based on a 135,000 dwt vessel for the period 5 February 1991 to 2 August 1995.

Route 11 was 20,000 dwt Sugar from Recife (Brazil) to US East Coast for the period 1 January 1985 to 8 May 1986.
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Table 2. Descriptive statistics and correlation analysis on freight prices.

Descriptive Statistics
R1 R1A R2 R2A R3 R3A R4
Mean 12.265 9063.49 20.693 10545.81 13.213 9204.88 7656.52
Median 12.397 9338 21.775 11049.5 13.173 9492.5 7003.0
Standard deviation ~ 2.336 2262.55 3875 2840.83 2.330 2364.16 2374.07
cv 0.190 0.25 0.187 0.269 0.176 0.257 0.310
m, -0.947 -0.887 -0.553 -0.530 -1.188 -1.023 -0.762
m -0.240 -0.345 -0.692 -0.308 0.004 -0.297 0.458
4

Min 76 4106 12.314 4143 8.883 3757 3206
Max 16.571 13071 26.929 16386 17.693 13250 12883

Correlations

R1 R1A R2 R2A R3 R3A R4
R1 1
R1A 0.942 1
R2 0.832 0.929 1
R2A 0.744 0.889 0.957 1
R3 0.847 0.813 0.742 0.613 1
R3A 0.819 0.841 0.815 0.739 0.953 1
R4 0.656 0.555 0.369 0.210 0.865 0.759 1

Summary statistics are presented for daily freight prices for the period 2nd February 1996 — 7th May 2001 (1330
observations). CV represents the coefficient of variation and m,and m, represent sample skewness and kurtosis
respectively.



Table 3. Augmented Dickey-Fuller (ADF) tests for order of integration on freight prices.
Test is on the estimated coefficient gifrom the following prototype model:

K
o
DX, =q, +q: X, + A by DX

k=1
Freight Price K HO: 1(1) vs. HA: 1(0) HO: 1(2) vs. HA: I(1)
ADF ADF
R1 2 -2.153 -12.539
R1A 2 -2.382 -11.799
R2 1 -2.152 -16.109
R2A 1 -2.679 -17.834
R3 2 -2.398 -11.483
R3A 1 -3.197 -19.120
R4 2 -2.459 -11.527

Critical values are taken from Fuller (1976). They are —2.57 (10%), -2.88* (5%) and —3.46 (1%). Therefore,
based on these results are series are 1(1). The optimal lag length (K) was based on the Schwartz Bayesian
Criterion (1973).
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Table 4. Cointegration analysis of freight rates.

Johansen (1988) tests for the number of cointegrating vectors a

| vace test statistic Ho: | wace critical | max test statistic Ho: | max critical
value value
204.96 r=0 124.25 71.67 r=0 4491
133.29 re1 95.18 58.03 r=1 39.43
75.26 re2 70.60 34.99 r=2 33.32
40.27 re£3 48.28 19.22 =3 27.14
21.05 r£4 31.52 13.23 r=4 21.07
7.82 res 17.95 4.32 r=5 14.90
350 r£6 8.18 3.50 r==6 8.18
a r represents the number of cointegrating vectors. | __(r,r+1)=-TIn(1-1 ,)and

l,..(r)=-T 5 In(1- 1", are the estimated (ordered from largest to smallest) eigenvalues on P matrix in
i=r+l

Equation 2. Ciritical values for the | mex and | v and statistics (at the 5% level) are from Osterwald -Lenum
(1992). The optimal lag length (k) is based on the Schwartz Bayesian Criterion (1973). The sample size (N) is
equal to 1330.



Table 5. Error decompositions.

Steps ahead Std.error R1 R1A R2 R2A R3 R3A R4
(R1)

1 0.0203 28.902 20.515 40.429 1.8600 0.0744 1.4924 6.7271
2 0.0371 25.107 21.132 43.231 1.6568 0.1207 1.6654 7.0867
3 0.0531 22.653 21.312 45.245 1.5325 0.1744 1.9251 7.1583
5 0.0824 19.718 21.374 47.654 1.3434 0.2986 2.5893 7.0228
10 0.1410 16.625 21.810 49.001 0.9419 0.6729 45551 6.3936
30 0.2685 13.712 25.158 43.957 0.3193 2.1928 10.227 4.4344
60 0.3864 12.295 27.113 39.967 0.1910 3.6523 13.324 3.4577
(R1A)

1 0.0143 0.0000 48.577 33.140 0.0000 0.1761 2.1780 15.929
2 0.0300 1.0546 40.745 41.681 0.2286 0.3243 2.3998 13.567
3 0.0460 1.8502 36.347 46.069 0.4108 0.4406 2.6297 12.252
5 0.0775 2.6051 31.901 50.245 0.5706 0.6521 3.2145 10.811
10 0.1443 2.9650 28.772 52.426 0.5177 1.2116 4.9756 9.1321
30 0.2923 2.3324 30.656 47.559 0.1714 3.4123 9.5108 6.3582
60 0.4245 1.8644 32.303 43.644 0.0921 5.4644 11.480 5.1525
(R2)

1 0.0090 0.0000 0.0000 100.00 0.0000 0.0000 0.0000 0.0000
2 0.0178 0.0762 0.5911 98.641 0.1778 0.0167 0.2518 0.2453
3 0.0270 0.2400 1.4888 96.594 0.3257 0.0717 0.7090 0.5705
5 0.0453 0.5562 3.1409 92.775 0.4016 0.2689 1.8440 1.0138
10 0.0833 0.8124 5.7059 86.349 0.2216 0.9813 4.8064 1.1235
30 0.1598 0.3958 9.9138 73.306 0.6776 4.1273 11.091 0.4887
60 0.2224 0.2150 12.109 66.197 1.3070 7.3926 12.196 0.5840
(R2A)

1 0.0134 0.0000 16.060 50.729 24.633 0.0582 3.2548 5.2662
2 0.0279 0.6208 16.120 57.653 16.860 0.1786 3.1389 5.4288
3 0.0432 1.1550 16.200 60.660 12.939 0.2817 3.3410 5.4225
5 0.0734 1.7442 16.516 62.802 9.0904 0.4773 4.1175 5.2520
10 0.1366 2.0830 17.829 62.441 5.5126 1.0090 6.5804 4.5463
30 0.2691 1.4750 23.788 54.861 2.1760 3.1103 12.285 2.3048
60 0.3859 1.0501 28.313 50.244 1.1591 5.1275 12.851 1.2555
(R3)

1 0.0089 0.0000 0.0000 4.0662 0.0000 41.563 54.371 0.0000
2 0.0168 0.2200 0.0003 6.5251 0.0027 35.892 57.101 0.2595
3 0.0246 0.5701 0.0002 8.7793 0.0103 31.566 58.308 0.7664
5 0.0400 1.2856 0.0100 12.537 0.0242 25.536 58.700 1.9064
10 0.0748 2.4786 0.1428 18.109 0.0150 18.107 57.501 3.6463
30 0.1655 3.8610 1.3715 22.732 0.6352 11.295 56.173 3.9324
60 0.2434 4.7773 4.0919 26.258 2.0626 9.3679 50.341 3.1016
(R3A)

1 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000 100.00 0.0000
2 0.0265 0.7625 0.0000 1.2285 0.0973 0.3828 96.384 1.1451
3 0.0395 1.5544 0.0011 3.0032 0.1633 0.9106 91.880 24871
5 0.0656 2.5992 0.0261 6.3272 0.1964 1.7501 84.801 4.3004
10 0.1247 3.7159 0.3151 11.647 0.1197 2.6791 75.806 5.7174
30 0.2671 4.7364 3.0890 17.694 0.3127 3.5431 66.049 45759
60 0.3839 5.5585 8.5386 23.763 0.8175 4.4259 53.682 3.2139
(R4)

1 0.0116 0.0000 0.0000 0.0942 0.0000 0.9624 11.901 87.042
2 0.0227 0.8488 0.0065 1.8365 0.0134 2.0379 22.339 72.917
3 0.0344 1.6375 0.0090 3.6396 0.0191 2.8000 29.472 62.423
5 0.0584 2.5584 0.0042 6.3741 0.0131 3.6387 37.609 49.803
10 0.1134 3.3543 0.0802 9.6344 0.0371 4.2400 45.460 37.194
30 0.2446 3.6945 1.2365 10.229 1.4830 4.4368 52.600 26.321
60 0.3447 4.1600 4.0203 11.3607 3.5180 4.7344 49.382 22.824

The decompositions for each step ahead are given for a Bernanke factorization of contemporaneous covariances, which treats each price
series as exogenous in contemporaneous time. The justification for thisis based on the directed graph on observed innovations from the
error correction model shown in Equation 2 (with 2 lags). The decompositions may not sum to one hundred in each row due to rounding.
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Figure 1. Major revisions of the BFI/BPI Freight Index.
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Figure 2. International freight price charts. The sample period is Feb. 2, 1996 through May 7, 2001. Dollars per day.
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Figure 3: Graphical Representations on Innovations from the Error Correction Models.
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Figure 4. Impulse responses to one standard deviation shocks.
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Endnotes

' For example, ocean freight prices ranged from 3.2% - 12.4% of the value of imported Rotterdam
wheat prices between May 1985 and January 1998 (see Haigh and Holt, 2000).

? During the period from January 1985 to October 1999, the underlying index of the BIFFEX
contract was called the Baltic Freight Index (BFI).

* These are the three major classes of vessels, which are used for the transportation of different dry-
bulk commodities across different parts of the world. Capesize vessels (around 140,000 dead-weight
tons (dwt)) transport iron ore mainly from South America and Australia, and coal from North
America, Australia and South Africa. Panamax vessels (around 70,000 dwt) are used primarily to
carry grain from North America, Argentina and Australia, and coal from North America, Australia
and South Africa. Finally, handysize vessels (around 35,000 dwt) transport grain, mainly from North
America, Argentina and Australia, and minor bulk products - such as sugar, fertilizers, steel and
scrap, forest products, non-ferrous metals and salt - virtually from all over the world.

* Spot charters and time-charters are the two major vessel employment contracts in the shipping
industry. In a spot charter, a shipowner undertakes the responsibility to transport a cargo from the
loading port to the destination port. The freight paid by the charterers (cargo owners) to the
shipowner is expressed as USD ($) per ton of cargo and covers all of the shipowner’s expenses in
performing that voyage. A voyage charter may be thought of, therefore, as the equivalent of hiring a
taxi to take you from A to B. In a time-charter, the shipowner agrees to hire out his vessel to a
charterer for a specified time period. The freight rate paid by the charterer in this case is calculated
as $ per day of hire. The charterer is directly responsible for all the voyage expenses - such as
bunkers, port charges, canal dues etc. - but has much more flexibility, compared to a voyage charter,

as to where he trades the ship. A time-charter is therefore, much more akin to hiring a car.



® Source: “LIFFE to Introduce new BIFFEX Futures and Options Contracts,” LIFFE news,

LIFFE Internet Site (www.LIFFE.com), Friday 11 December 1998.

®In 1995 trading began in over-the-counter (OTC) derivatives like Freight Forward Agreements
(FFA’s) and has since seen remarkable growth since that date. Indeed, many practitioners suggest
that part of the reason that the BIFFEX futures market has meet its demise is because of the
development and subsequent growth in the FFA’s. Over the period from February 1996 to June
2000, the average trading volume in the market was only 146 contracts. The monetary value of these
contracts roughly corresponds to the average freight cost of transporting 108,000 tons of Grain
from US Gulf to Japan (that is, 2 voyages in Route 2 of the BPI); market sources estimate that this
level of futures trading activity corresponds to only 10% of the total physical activity in the dry-bulk
shipping market. It is also worth noting that the average trading volume after the introduction of the
BPI has fallen to only 17 contracts a day.

" Orcutt (1952), Simon (1953), Richenbach (1956), and Papineau (1985) offer similar expressions of
asymmetries in causal relations. For a description of various causal asymmetries see Hausman
(1998).

® As we can see in Table 1, data for the routes that comprise the BPI are available since 5 February
1993, when R4, then known as R9, was introduced. However, on 2 February 1996 the vessel size for
R1A, R2A, R3A and R4 increased from 64,000 tonnes to 70,000 tonnes causing a jump in the level
of freight rates of approximately $1000 a day. Consequently, to avoid this structural break we
employ data for the BPI going back only to 2 February 1996.

* We also allow for the existence of a constant () inside of the P matrix.

1 Results from these tests indicate that routes R1A and R4 are individually weakly exogenous at the

5% level of significance. However jointly testing that these shipping routes are weakly exogenous



results in a c?value of 13.59 (with an associated p-value of .03). Such a finding does not provide

conclusive evidence as to whether the markets are exogenous at stringent statistical levels. Hence, no
restrictions on weak exogeneity are imposed in the estimated model. These results, like all other
excluded to conserve space, are available upon request.

" In subsequent innovation accounting analysis we direct these edges to imply acyclic rather than
cyclic graphs. For a discussion of problems arising from cyclic graphs, the reader is directed to
Spirtes et al. 1999. The same analysis was conducted at the 1% level of significance. Similar
(undirected linkages) are found connecting the markets with the exception of the links between R4

and R1A, R2 and R1A and R2A and R1.



