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Hedging and Cash Flow Risk in Ethanol Refining 

 
Practitioner's Abstract 

Interviews with ethanol refinery risk managers reveal that, at least for the firms represented, (a) 
working capital to fund margin accounts is limited so the optimal deployment of this capital is a 
major concern, and (b) these firms hedge with smaller positions than those indicated by the 
traditional price risk minimization theory.  In response to those observations, this study 
examines the relationship between hedge outcome price risk and price risk induced intra hedge 
cash flow risk.  A simulation analysis of a simple long hedge indicates that the sum of hedge 
outcome risk and intra hedge cash flow risk is minimized at hedging levels well below the levels 
that minimize only the hedge outcome risk.  The model is generalized to apply to a commodity 
processor using ethanol refining as a specific example.  While the preliminary results are 
promising, data deficiencies prevent pursuing the analysis to its logical completion.  Steps for 
extending this study using higher quality data are proposed.   
 
Keywords: hedging, liquidity, margin accounts, margin calls, cash flow risk, corn crushing, 

ethanol refining. 
 
Introduction 
 
Ethanol refinery risk managers were interviewed during the past year in an attempt to better 
understand hedging motivations and risk management practices in the ethanol industry.  Specific 
questions addressed hedge horizons, hedge ratio determination, accountability and reporting of 
hedging outcomes, and the availability of capital to fund margin accounts.  These interviews 
revealed (a) the managers use a six to nine month hedge horizon, (b) direct (i.e., one-to-one) 
hedging was used and risk minimizing hedge ratios were not considered, (c) the risk managers 
typically report quarterly to upper management on hedging results, (d) some input purchases / 
output sales are deliberately left unhedged to allow participation in possible beneficial spot price 
alignments, and (e) working capital to fund margin accounts is limited and the optimal 
deployment of this capital in dynamic context is a major concern.  These insights may be 
applicable to other processing sectors as well.   
 
These stylized "facts" are at odds with the typical hedging formulation that assumes 
unconstrained capital availability which implies that the margin requirements of ongoing hedges 
can be ignored.  This leaves the minimization of price risk in the hedge's final outcome as the 
sole hedging objective in the typical hedging formulation.   
 
Consideration of capital requirements for hedge maintenance is of particular interest in light of 
the liquidity crisis of late 2008 and its lingering effects.  Credit markets were referred to as 
"frozen" during the early stages of this crisis.  Frozen credit markets implies that credit was 
unobtainable and while conditions have eased somewhat, credit availability continues to be a 
major concern for U.S. policy makers.  Funds to cover losses from ongoing hedging may be 
difficult to obtain in such an environment.  In extremely tight credit scenarios, hedging positions 
may have to be abandoned due to inadequate capitalization.  Even without a liquidity crisis, the 
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attainment of adequate working capital by a firm in a growing industry such as ethanol refining 
is typically a concern.  When constrained, working capital must be allocated among many uses 
including the funding of margin accounts versus plant expansion and improvement, and within 
the hedging program, among the margin accounts for different types of futures contracts (i.e., 
corn versus ethanol).  Finally, the ethanol blending tax credit may be a casualty in the debate 
over federal government expenditures.  The potential elimination of this program will make 
credit more difficult to obtain as banks become hesitant to lend in the ethanol processing sector.  
Should the blending tax credit be eliminated, the reduction in ethanol refining profitability will 
result in reduced capital for all uses in the sector.  
 
This study seeks to determine the relationship between hedge outcomes and intrahedge cash 
flows.  Our starting point is that hedging studies typically seek to minimize the risk of the 
hedge's net result (i.e., the hedge outcome).  In contrast, this study will also consider the potential 
margin calls required to maintain the hedge.  When futures positions are taken to initiate a hedge, 
the timing and size of the resulting potential margin calls is unknown.  Precautionary balances of 
cash or near cash assets must be maintained to meet these potential margin calls.  The existence 
of the unknown amount and timing of potential margin calls constitutes risk while the 
maintenance of marginable asset balances to meet potential margin calls incurs a cost.  The firm's 
pursuit of ethanol refining indicates a higher long run return on investment in ethanol refining 
than in investment in financial assets that can be used to satisfy margin calls. 
 
The problem can be stated alternatively.  Hedging allows a producer to reduce the risk of a 
transaction's final outcome but increases the risk of cash needs required to arrive at the final 
outcome.  Just as hedging swaps basis risk for price risk, it also swaps intermediate liquidity risk 
for outcome risk.  This paper examines these tradeoffs.  
 
We proceed as follows.  First we establish notation to allow consideration of the related 
literature.  Second, we construct an empirical model that allows an examination of the tradeoff 
between outcome and liquidity risk for a long hedge.  Next we generalize this model so that it 
can represent a processing hedge.  The model's parameters are estimated and the implications of 
the estimates are discussed.  Finally, extensions of this work are discussed. 
 
Literature Review 
 
Johnson (1960) and Stein (1961) use a portfolio approach to provide hedging's theoretical 
foundation.  Their approach assumes an agent has a spot position of xs units ( xs > 0 if long, xs < 
0 if short) and can take a futures position of xf units to hedge the spot position.  st represents a 
commodity's spot price and fMt represents a commodity's M-maturity futures price.  A hedge 
placed at time 0 and removed at time 1 will generate a profit of  
 
(1a) Π = xs (s1 - s0) + xf (fM1-fM0) 
 
The agent is assumed to either minimize V(Π) or maximize utility where U[ E(Π), V(Π)].  
Optimization results in the risk minimizing hedge ratio, η*, where η* = Cov(∆s, ∆f)/Var(∆f) and 
the risk minimizing hedge xf

* = - η* xs.  η* is estimated as the regression parameter η1 in  
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(1b) ∆st = η0 + η1 ∆fTt + εt 
 
Anderson and Danthine (1980, 1981) generalized this approach to accommodate multi-contract 
hedging (1980) and cross hedging (1981).  The optimal hedging strategy depends on the hedging 
horizon (length of ∆), and the deliverable commodities and maturities (M) as defined by the 
futures contracts considered as hedging vehicles.   
 
The hedge's outcome is judged by its effectiveness, defined as the proportionate reduction in the 
V(Π) due to hedging (Ederington, 1979).  Effectiveness is estimated empirically by the R2 of the 
regression in (1b).  
 
Recent work has focused on time varying (as opposed to constant) hedge ratios.  Several studies 
suggest that the simplest hedging models such as the constant-hedge ratio models proposed by 
Johnson, Stein, and Anderson and Danthine work best.  Garcia, Roh and Leuthold (1995) find 
that time-varying hedge ratios “provide minimal gain to hedging in terms of mean return and 
reduction in variance over a constant conditional procedure.”  Collins (2000) reports that 
multivariate hedging models offer no statistically significant improvement over “naive equal and 
opposite hedges.” 
 
In the processing sector both the time and product-form price dimensions are potentially 
hedgeable.  Processing hedges have been studied in the context of the soybean sector because of 
the sector's importance, the existence of futures contracts for both inputs and outputs, and the 
availability of long price histories (Tzang and Leuthold 1990; Fackler and McNew 1993).  
Cottonseed crushing hedges have also been studied in a cross hedging framework (Dahlgran, 
2000; Rahman, Turner, and Costa, 2001).  More recently, processing hedges have been applied 
and analyzed in the corn-based ethanol refining (a.k.a. corn crushing) sector (Dahlgran, 2009; 
Franken and Parcell, 2003).  These studies generally find that the ethanol futures contract 
provides acceptable levels of hedging effectiveness despite the limited ethanol futures trading 
volume compared to that in the soybean sector.  None of these studies have considered the 
variation margin risk associated with hedging. 
 
Empirical Model 
 
We start by defining the end of day t margin account balance (Mt) as  
 
(2) Mt = Mt-1 + xf ∆fMt + Dt - Wt  
 
where Dt represents the margin deposit required on day t and Wt represents permissible margin 
account withdrawals on day t.1  The required deposits and permissible withdrawals are 
determined by the account's level at the completion of trading session relative to initial and 
maintenance margin thresholds established by the exchange clearing house.   
 
For our purposes, we define the initial and maintenance margin thresholds in terms standard 
deviations of futures prices changes.  This definition reflects the assumption that these thresholds 

                                                 
1  xf and ∆fMt are as defined earlier. 
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are set so that the probability that the session's price change depletes the margin account is 
acceptably low.  For example, suppose that daily futures price changes follow a unit normal 
process [i.e., N(0,1)] and we want to ensure that the probability that the margin account will be 
depleted by a day's price changes is less than 0.001.  Thus, we set k such that  
Pr { Z < -k } = 0.001, so k = 3.09 standard deviations.   
 
The hedger's initial (M0) and maintenance (Mm) margin requirements are  
 
(3a) M0 = | xf | k0 σ∆f  
 
(3b) Mm = | xf | km σ∆f 
 
where km ≤ k0. and these values are set by the exchange clearinghouse in accordance with the 
probabilities of margin account depletion.  More precisely, k0 - km determines the probability that 
a margin account funded at the initial level will experience a margin call at the end of the trading 
session, and km determines the probability that a margin account funded at the maintenance level 
will be depleted at the end of a trading session.   
 
Margin deposits and withdrawals are determined by margin account balances in relation to initial 
and maintenance levels.  Required margin deposits are defined as  
 
(4a) Dt = M0 - ( Mt-1 + xf ∆fTt )  if Mt-1 + xf ∆fTt < Mm, 0 otherwise, 
 
while permissible margin account withdrawals are   
 
(4b) Wt = Mt-1 + xf ∆fTt - M0  if Mt-1 + xf ∆fTt > M0, 0 otherwise. 
 
M0 is known so the hedge's uncertain cash flows are  
 
(4c) Wt - Dt = (Mt-1 + xf ∆fTt - M0 ) [δ( Mt-1 + xf ∆fTt > M0 ) + δ(Mt-1 + xf ∆fTt < Mm )] 
 
where δ indicates logic conditions returning 1 if true and 0 if false.   
 
Figure 1a demonstrates the features of a long hedge's random cash flow (Wt - Dt).  ∆fMt is the 
random variable that determines the daily variation margin requirements so its distribution is 
shown.  If the daily price change is negative and large enough to cause the margin account to fall 
below the maintenance level (i.e., ∆fTt < [Mm - Mt-1 ] / xf ), then variation margin is required to 
bring the margin account back up to its initial level (Mt-1 + xf ∆fTt - M0 ).  If the daily price 
change is positive and large enough to cause the margin account balance to exceed its initial 
margin balance, (i.e., ∆fTt > [M0 - Mt-1 ] / xf), then the hedger can remove margin from the 
account, taking it back down to its initial level.  If the daily price change is such that that the 
margin account balance remains between the initial and the maintenance levels, then the hedge 
neither faces a margin call nor can funds be removed from the margin account.  These rules 
result in the discontinuous function indicated by thick lines in figure 1a.   
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Figure 1a.  Variation Margin Requirements under Long Hedging, M0 > Mm.. 

  
Figure 1b.  Variation Margin Requirements under Long Hedging, M0 = Mm.. 
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Figure 1b demonstrates that when the initial and maintenance margin requirements are identical, 
the discontinuity in figure 1a vanishes and the hedge's daily cash flows are equivalent to the 
daily futures price changes time the hedge position size.  The variance of cash flows under the 
assumptions of figure 1b is xf

2 Var(∆fMT).  The variance of cash flow subject to the discontinuity 
depicted in figure 1a is more complex because of the discontinuity.  We will use simulation to 
estimate cash flow risk in the presence of the discontinuity created by margin account rules.   
 
Continual back substitution for Mt-1 in (2) gives  
 
(5a) �� == ∆+−−= T

1t Ttf
T

1t tt0T fx)DW(MM , or 
 
(5b) �� == ∆=−+− T

1t Ttf0T
T

1t tt fxMM)DW(  
 
Hedging studies typically focus on aggregate hedging gains and losses (the sum on the right-
hand side of 5b) and how well they offset gains and losses on the spot market position.  Our 
interest lies in the incremental generation of those gains and losses and the flow of investible 
funds over the life of the hedge (i.e., the hedge's cash flows) as well as the final outcome for 
hedged and unhedged positions.  The hedge's outcome depends on two points on the paths taken 
by spot and futures prices over the life of the hedge while the hedges cash flows depends on the 
entire path taken by the futures price.    
 
The commodity's spot and futures price paths are represented with a vector error correction 
(VEC) process (Enders, 1995).  This model was selected because futures prices generally display 
a unit root processes while the forces of arbitrage create a long run equilibrium relationship 
between spot and futures prices.  Our model selection also offers the benefit of integrating 
models used to study market efficiency with hedging analysis.   
 
A p-order n-variable VEC model derives from the vector autoregressive model  
 
(6) xt = A0 + A1 xt-1 + A2 xt-2 +… + Ap xt-p + εt 

 
where xt is the (n × 1) vector (x1t, x2t, …, xnt)', and εt is an independently and identically 
distributed (n × 1) vector of random variables with zero mean and variance matrix Σε.  If xt 
contains unit roots, then the model is more appropriately expressed as  
 
(6b) tptit

 1p

1i i0t xxx ε+π+∆π+π=∆ −−
−
=�   

 
where π0=A0, )AI( i

1j ji � =−−=π , and )AI( p

1j j� =−−=π .  An equivalent expression is   

 
(6c) tit

1p

1i
*
i1t

**
0t xxx ε++∆π+π+π=∆ −

−
=− �  

 
where *

0π  = π0 = A0, *π  = )AI( p

1j j� =−−=π , and � += π−π=−=π p

1ij ij
*
i A . 



 7 

Analysis 
 
We perform two analyses with this model.  First, to determine the order of magnitude of liquidity 
risk, we simulate a simple long hedge.  This simulation will indicate the key parameters that 
influence liquidity risk levels.  Our second analysis generalizes the model to a commodity 
processor with a specific application to an ethanol refiner.  In this second analysis, we will 
estimate the applicable ethanol processing parameters.    
 
Long Hedging Simulation 
 
To understand the model's implications, we use a first order ( p = 1) vector error correction 
model, ∆xt = π xt-1 + εt, where xt contains a commodity's spot price (st) and a M-maturity futures 
contract price (fMt).  The long run equilibrium (cointegrating) relationship between the spot and 
futures prices is simply st = fMt.  We further assume that the spot price adjustment coefficient in 
response to equilibrium error is 0.5, while the futures market is efficient so that today's 
equilibrium error is of no value in predicting tomorrow's futures price change.  Finally, we 
assume that each of the errors (εi,t) has a unit variance and that the correlation between the errors 
is 0.3.  These assumptions result in the VEC specification  
 

(7) 
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We use random draws for εt for t = 1,2, … 40 to simulate ∆st and ∆fMt in (7) over the life of a 40 
day long hedge.  The series of price changes is then used to simulate the daily margin account 
balance in (2) and the daily variation margin requirements and withdrawals in (4c) over the life 
of the hedge assuming a given hedge ratio.  Each hedge is replicated 10,000 times for a given 
hedge ratio.  Hedge ratios from 0 to 1.2 by 0.1 are evaluated.   
 
We first assume identical initial and maintenance margin requirements as depicted in figure 1b.  
We do this because when M0 = Mm, the discontinuity in Dt - Wt disappears (figure 1a becomes 
figure1b) and V( Dt - Wt) = V(∆fMt) is easily derived from Σε.2  These results are  
 
(8a) E(xt | xt-1) = A0 + A1 xt-1  V(xt | xt-1) = Σe 

(8b) E(xt | x0) = 0
t
10

j

1

1t

0j )( xAAA +�
−
=   V(xt | x0) = )'( j

1

j

1

t

0j AA εεεεΣ� =  

                                                 
2  Expectations of xt given x0 require the following.  Starting with a first order vector 

autoregressive model, xt  = A0 + A1 xt-1 + εt and substituting iteratively, (i.e., xt-1  = A0 + A1 

xt-2 + εt-1, xt-2  = A0 + A1 xt-3 + εt-2, … ) we find  xt = jt

j

1

t

0j0
t
10

j

1

1t

0j )( −=
−
= �� ++ εεεεAxAAA .    
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(8c) E( ∆xt | xt-1) = (A1 –I) xt-1  V( ∆xt | xt-1) = Σe 

(8d) E( xt  - x0 | x0) = 0
t
10

j

1

1t

0j )I()( xAAA −+�
−
=  V(xt - x0 | x0) = )'( j

1

j

1

t

0j AA εεεεΣ� =  

 
The simulation outcomes are compared to these results to verify each method. 
 
The results of our simulations are show in figures 2a and 2b.  A visual comparison of the 
simulated results (indicated by symbols) with the theoretical values (indicated by lines) is shown 
in figure 2a.  This figure indicates that a simulation of 10,000 repetitions for each hedge ratio 
value accurately portrays the value of the underlying parameters expressed in (8a) through (8d).  
Furthermore, this figure indicates that a hedge ratio near 1 minimizes the variance of the hedge 
outcome but the futures positions associated with the unit hedge ratio create substantial cash flow 
risk.  The minimum of the combined cash flow risk and hedge outcome risk occurs at a hedge 
ratio of about 0.5.  
 
The simulations depicted in figure 2a assumed identical initial and maintenance margins.  In 
practice, maintenance margin levels are well below initial margin levels.  Figure 2b depicts this.  
Figure 2b shows the theoretical values of the hedge outcome variance and cash flow variance 
(solid lines) as derived and shown in figure 2a.  The variance of hedge outcomes does not depend 
on margin requirements so it is invariant to assumed margin requirements.  Cash flow risk 
however does depend on the size of the gap between the initial and maintenance margin levels 
(figures 1a versus 1b).  Figure 2b shows cash flow variance when the maintenance margin level 
is two standard deviations below the initial margin level (indicated by X) and five standard 
deviations below the initial margin level (indicated by dots).  This figure demonstrates that even 
when the gap between initial margin and maintenance margin is a sizeable five standard 
deviations of price, the cash flow risk is substantial relative to hedge outcome risk.  Figure 2b 
also shows (square markers) combined outcome and cash flow risk when k0 - km = 5.  While the 
combined risk is minimized at a higher hedge ratio than when initial and maintenance margin 
levels are identical, this minimum is still substantially below the risk minimizing hedge ratio that 
considers only the hedge outcome.  These findings lead us to the conclusion that the sole focus in 
traditional hedging analysis on the hedge outcome provides only a partial explanation of hedger's 
behavior.   



 9 

 

Hedging Risk - 40 Day Horizon

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Hedge Ratio

V
ar

ia
n

ce

Hedge Outcome      

Simulated

Variation Margin

Simulated

Combined

 
Figure 2a.  Simulation results: identical initial and maintenance margin requirements. 
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Figure 2b.  Simulation results: initial margin greater than maintenance margin. 
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Processing Hedges 
 
The previous simulation was useful for understanding the relative magnitude of cash flow risk 
and it provided an analytical framework for a simple long (or short) hedge.  We now generalize 
that framework to apply to a commodity processor.  An ethanol refiner will be used as an 
example.   
 
We continue using the vector error correction model to represent prices behavior.  However, the 
price behavior model must be expanded as a processor faces price risk in the cash markets for 
inputs as well as outputs and so uses futures markets in an attempt to hedge those price risks.  
We assume that the futures and cash markets for the inputs as well as the outputs are integrated 
because of temporal arbitrage forces.  This temporal arbitrage is reflected by the basis 
relationship in the input market and by the basis relationship in the output market.  In ethanol 
refining these basis relationships are for corn and ethanol, respectively, 
 
(9a) Corn basis: sxt - fxT,t = ax + bx [ T(Mx) - t ], or 
 
(9b) Ethanol basis: syt - fyT,t = ay + by [ T(My) - t ]. 
 
Spot and futures price are assumed to adjust to the basis errors, which are defined as   
 
(10a) Corn basis error: ext = sxt - fxT,t - ax - bx [ T(Mx) - t ]  
 
(10b) Ethanol basis error: eyt = syt - fyT,t - ay - by [ T(My) - t ] . 
 
Inputs and outputs are also integrated by product form arbitrage.  Inputs are transformed into 
outputs as represented by the production function   
 
(11) yt=2.7 xt 
 
where yt is gallons of ethanol produced and xt is bushels of corn processed.  This crushing 
relationship is implicit in the crushing margin offered by the spot and futures markets where  
 
(12a) Spot crush margin ($/bu): mst = yt syt - xt sxt = 2.7 syt - sxt 
 
(12b) Futures crush margin ($/bu) mft = 2.7 fyTt - fxTt.  
 
The errors in these relationships entr our pricing model so they are defined as   
 
(12c) Spot crush margin error wst = 2.7 syt - sxt - stm . 
 
(12d) Futures crush margin  wft = 2.7 fyTt - fxTt - ftm .  

where stm  and ftm  represent the average crushing margin. 
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These relationships are combined to form the vector error correction model 
 
(13a) Corn cash: ∆sxt  = βsx ex,t-1 + γsx ws,t-1 + ζsxt 
 
(13b) Corn futures: ∆fxT,t = βfx ex,t-1 + γfx wf,t-1 + ζfxt 
 
(13c) Ethanol cash:  ∆syt  = βsy ey,t-1 + γsy ws,t-1 + ζsyt  
 
(13d) Ethanol futures: ∆fyT,t = βfy ey,t-1 + γfy wf,t-1 + ζfyt  
 
This model was estimated using daily cash and futures market data from March 25, 2005 through 
December 31, 2010.  Futures contracts were restricted to include only those maturing within 270 
days of the date of observation in accordance with the interviews with the ethanol refinery risk 
managers.   
 
The model was estimated in two steps.  First, regressions were estimated and the equilibrium 
errors were estimated from these regressions.  In a general form, the regressions estimated in this 
first step were   
 
(14a) Corn basis:   sxt - fxM,t =  ax [D(M), D(t) ] + bx (T(M) - t ) + εxt.  
 
(14b) Ethanol basis: syt - fyM,t = ay [D(M), D(t) ] + by (T(M) - t ) + εyt.. 
 
(14c) Spot crush margin: 2.7 syt - sxt = as [ D(t) ] + ϖst.. 
 
(14d) Futures crush margin:  2.7 fyMt - fxMt = af [ D(M), D(t) ] + ϖft  
 
where D(M) represents a set of dummy variables for contract maturities.  These dummy 
variables are constructed with individual dummies for the year of M, the month of M, and the 
interaction between year and month.  Similarly, D(t) represents a set of dummy variable for the 
observation's time with individual effects for the year of t, the month of t, and the interaction 
between year and month.  T(M) - t represents days to maturity as T(M) converts the contract's 
maturity year and month to the indexing sequence that represents t.     
 
The results of fitting (14a) through (14d) are shown in table 1.  These results indicate that the 
models provide a statistically significant fit of the data with R2s ranging from 0.778 to 0.975.  
Each set of individual dummy variables is also statistically significant as is the days to maturity 
in the basis relationships.   
 
We use the fitted values of the regressions reported in table 1 to derive the fitted errors for each 
regression.  These errors are then used to estimate the vector error correction model.   
 
On each day (t) several futures contract prices are quoted so several bases and futures processing 
margins are available.  The vector error correction structure assumes only one futures price 
change and only one set of equilibrium errors can influences this price change.  The contract 
maturity selected (M) was the nearest contract with 182 days or more to maturity.  Futures price  
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Table 1.  Regression results for corn - ethanol integrating relationships.   
  

  Corn basis  Ethanol basis  Cash Crush  Futures Crush 
  cts/bu  $/gal $/gal $/gal 
  

N  7,755 13,226 1,017 6,978 
R-sq  0.804 0.778 0.864 0.975 
MSE  144.40 0.006972 0.061255 0.03943 
DFE  7,636 13,094 968 6,867 
 
Regression Effects Pr > F (df) Pr > F (df) Pr > F (df) Pr > F (df)  
Time(t) Yr(t) <0.0001 (5) <0.0001 (4) <0.0001 (4) <0.0001 (5) 
 Mo(t) <0.0001(11) <0.0001(11) <0.0001(11) <0.0001(11) 
 Mo(t)*Yr(t) <0.0001(55) <0.0001(33) <0.0001(33) <0.0001(53) 
Mat(M) Yr(M) <0.0001 (9) <0.0001 (6)   <0.0001 (8) 
 Mo(M) <0.0001 (4) <0.0001(11)   <0.0001 (4) 
 Mo(M)*Yr(M) <0.0001(33) <0.0001(65)   <0.0001(29) 
Days to maturity <0.0001 (1) <0.0001 (1)     
  

 
 
changes were for that maturity (M).3  Likewise all lagged basis errors are for that maturity 
corresponding to the maturity selected for the futures price change.  This selection procedure 
resulted in 764 usable observations.   
 
In the second step of the model estimation procedure, the selected price changes and selected 
estimated equilibrium errors were combined to estimate the vector error correction model in 
(13a) through (13d).  The results, reported in table 2, indicate the following:  First, none of the 
intercepts are significantly different from zero meaning that none of the series displays a 
significant drift.  Second, neither the basis error nor the spot market processing margin error 
significantly influences the corn futures market.  This result is consistent with corn futures 
market efficiency because neither the basis error nor the cash processing margin error is useful in 
predicting changes in corn futures prices.  Third, the cash corn price adjusts to errors in the cash 
market processing margin.  Likewise, the cash price of ethanol responds to ethanol basis errors.  
Both of these effects are significant indicating that long run price adjustment occurs only in the 
cash markets and extends beyond the current market period.  The result of this long run 
adjustment is that short run hedge ratios will differ from long run hedge ratios as reported by 
Dahlgran (2009).  Finally, while the lack of significance in the corn futures price equation 
suggests corn futures market efficiency, the presence of significant effects in the ethanol futures 
price equation indicates inefficiency in the ethanol futures market as errors in the previous 
period's futures market processing margin can be used to predict changes in the price of the 
ethanol futures contract.   
 

                                                 
3  In other words, futures price changes were always computed across time but never across contract 
maturities.  
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Table 2.  Vector error correction regression results for corn crush hedging. 
  

Model Estimated equation  Equation MSE 
 
Corn cash (cts/bu): ∆sxt =  0.121  - 0.029 ex,t-1  + 1.696 ** ws,t-1 73.98 
   (0.320) (0.028) (0.536)   
 
Corn futures (cts/bu): ∆fxM,t =  -0.141  + 0.026 ex,t-1  + 1.723 wf,t-1,  69.77 
   (0.310) (0.026) (1.068)   
 
Eth cash ($/gal): ∆syt =  -0.001  - 0.102 *** ey,t-1 - 0.005 vs,t-1 0.000746 
   (0.001) (0.024) (0.008)   
 
Eth futures ($/gal): ∆fyM,t =  -0.000  + 0.003 ey,t-1 - 0.043 *** wf,t-1 0.000783 

   (0.001) (0.009) (0.007)  
 

Contemporaneous correlation matrix 
 

  ∆sx ∆fx ∆sy ∆fy 
 Spot corn Fut corn Spot ethanol Fut ethanol 
 
∆sx Spot Corn (cts/bu) 1.000 0.931 0.051 0.161 
∆fx Futures Corn (cts/bu)   1.000 0.050 0.706 
∆sy Spot Ethanol ($/gal)     1.000 0.120 
∆fy Futures Ethanol ($/gal)      1.000 
 
System weighted R2:  0.053 
  

 
Table 2 also reports the contemporaneous correlation matrix.  The largest correlation, is as 
expected, between the random shocks to the corn cash price equation and the random shocks to 
the corn futures price equation (0.931).  The correlation between the ethanol cash and futures 
price equations is much lower (0.120).  The correlation between the random shock to the corn 
futures price and the ethanol futures price is surprisingly large (0.706).   
 
Closer inspection of the data reveals that the ethanol spot prices display no intra week variation.  
Further analysis based on these weak data will not be meaningful as data deficiencies will 
generate suspect results.  Further work will incorporate improved data.  The analysis will then 
proceed as follows.  Spot and futures processing margins will be recomputed using the revised 
ethanol spot price series.  Distillers dried grains will be included as an additional output from 
ethanol refining.  The integrating relationships in (9a), (9b), (12a) and (12b) will be re-estimated 
along with the model in (14a) though (14d).  Our current results indicate the likely usefulness of 
this price behavior model and better data will only add to this.  The parameter estimates will be 
used to simulate the cash flow and hedge outcome risks for ethanol refiners.  These results will 
be summarized in a manner similar to that shown in figure 1b.  Finally, the methodology for 
finding the overall risk minimizing hedge ratio will be derived. 
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Summary and Conclusions 
 
The testable null hypothesis of this study was that the cash flow risk implicit in hedging can be 
disregarded because its magnitude is negligible or its cost is immaterial.  This notion is refuted 
based on interviews with ethanol refinery risk managers and based on the behavior of cash flow 
variance under typical assumptions in a simple long hedge.  We found that even when the 
maintenance margin level is well below the initial margin level, the variation in the cash flows 
attributable to a simple hedge were considerable and comparable in magnitude to the variance of 
the unhedged outcome. 
 
The approach used for simulating the long hedge was generalized to represent a processing 
hedge.  Despite problems with the data used, we found that the vector error correction 
specification was a useful representation of the price generating process for hedging analysis.  
This finding is important in several respects.  First, this model bridges the gap between market 
efficiency studies where the cointegration model is frequently employed and hedging studies 
which typically rely ordinary least squares (equation 1b) or seemingly unrelated regression 
analyses.  Second, this model incorporates the multiple basis and crushing relationships which a 
commodity processor considers in implementing a hedging plan.  Third, it allows the ratio to 
depend on the hedge horizon even when futures markets are efficient.  Lags in spot price 
adjustment account for this hedge ratio elasticity.  Finally, this model generalizes the analytical 
solution for hedge ratios in the traditional portfolio approach to hedging.  This solution still 
depends on the covariance between cash and futures price changes but the simultaneous 
determination of both in the market is explicitly recognized.   
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