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Examining the Risk-Return Relationship
between Agribusiness Stocks and the Market

Volatility and the trade-off between risk and returns have been considered key components
of finance theory at least since Merton’s intertemporal capital asset pricing model (ICAPM,
1973). In this study, we employ several bivariate GARCH-M models to investigate Merton’s
ICAPM for agribusiness industries and examine the best specification to use in estimating
the relationship of asset returns in these industries with the broader market. The expected
positive relation between stock return and its risk holds for both industries and we found a
high posterior probability of a positive tradeoff for the agricultural production portfolio.

Keywords : Asset pricing; Bayesian econometrics; Bivariate GARCH-M; Risk return trade-
off

Introduction

The idea that investors expect higher returns in exchange for holding riskier assets has
been widely accepted throughout economics and finance. This was formalized by Merton
(1973) in his intertemporal capital asset pricing model (ICAPM). Since then, numerous
studies have explored this risk-return tradeoff in attempts to estimate the magnitude of
the tradeoff itself.

However, researchers have encountered two major difficulties in estimating the risk-return
tradeoff for U.S. market portfolios. Some studies have found a positive relation between
expected return and risk but others have even estimated negative risk-return tradeoffs
(cf., Nelson, 1991 and Glosten, Jagannathan, and Runkle, 1993). More importantly, the
estimated risk-return tradeoffs are not statistically significant in most studies. This has
led researchers to investigate possible causes and solutions to this difficulty. For instance,
Lundblad (2007) finds that a very long data span is required to discover a strong relation
between expected return and risk. Anderson and Bollerslev (1998) and Bali and Peng
(2006) show that high frequency data dramatically improve conditional volatility estima-
tion. Despite these suggestions, a robust answer for the risk-return tradeoff is still being
investigated.

In this paper, we investigate the nature of the risk-return tradeoff for the market portfolio
and agribusiness assets (agricultural production and food manufacturing portfolio) using
bivariate GARCH-M models. We also employ Bayesian inference to avoid a drawback
of maximum likelihood estimation (MLE) which has usually been employed to estimate
conditional volatility in GARCH specifications and take advantage of the existence of prior
information. Lanne and Saikkonen (2006) report that high correlation between maximum
likelihood estimates exists which leads statistical tests for a positive risk-return tradeoff
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to have low power. Employing Bayesian estimation can help avoid this problem. Using
the prior density, inequality constraints on the GARCH-M model volatilities are imposed
properly in comparison with some previous studies.

We estimate high probabilities of positive risk aversion coefficients for the time-varying
covariance and conditional volatility for agricultural production and the market portfolio.
Since previous empirical results are very sensitive to variance specification, we also consider
symmetric and asymmetric volatility specifications and, with two possible assumptions of
the risk-return tradeoff, we find that Merton’s theory is proper to explain the relation
between return and risk.

Econometric Methodology

Theoretical model

The Merton(1973) ICAPM implies the following relation between risk and return:

ri − rf = λimσim (1)

rm − rf = λmσ
2
m (2)

where ri, rm and rf represent a return of a risky asset, the market portfolio and a risk free
asset return, respectively, and σim and σm are the covariance between the return of the
risky asset or portfolio i and the market portfolio m and conditional volatility of the market
portfolio. λim in Eq. (1) and λm in Eq. (2) are the coefficients of relative risk aversion
for a ith asset and the market portfolio, respectively, and both of them are expected to be
positive.

Empirical framework

GARCH in mean models (GARCH-M: Engle, Lilien, and Robins, 1987; Bollerslev,
Engle, and Wooldridge, 1988) have usually been employed to investigate the risk-return
tradeoff. In this study, we use bivariate GARCH-M models and examine an ith asset
or portfolio and the market portfolio jointly. GARCH-M consists of mean and variance
equations. In this study, two different mean equations and sets of volatility specification
are considered. The first set of mean equations we employ can be written as follows:

ri,t − rf,t = µi + λimhim,t + εi,t

rm,t − rf,t = µm + λmhm,t + εm,t (3)
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where him,t is the time-varying covariance between the returns of the market portfolio and
the ith asset and hm,t is the conditional volatility of the return of market portfolio. The
second set of mean equations used are:

ri,t − rf,t = µi + λihi,t + λimhim,t + εi,t

rm,t − rf,t = µm + λmhm,t + εm,t (4)

where hi,t is the conditional volatility of the return of ith risky asset.

The mean equation in Eq. (3) describes Merton’s ICAPM, but in Eq. (4), we assume
that an individual risky asset is explained by the time varying covariance with the market
portfolio and its own conditional volatility.

Since the multivariate GARCH specification was introduced to model effects of time-
varying conditional variances and covariances by Bollerslev, Engle, and Wooldridge (1988),
many researchers have developed revised versions of multivariate GARCH model (for ex-
ample, Engle and Kroner, 1995; Bollerslev, 1990; Engle, 2002).

In this study, we employ both symmetric (Bollerslev, Engle, and Wooldridge, 1988) and
asymmetric VECH (Vector-GARCH) specifications (Kroner and Ng, 1998) to model the
conditional variances and covariances. These specifications can be described as follows.

Symmetric VECH (Standard GARCH):

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1

hm,t = ωm + αmε
2
m,t−1 + βmhm,t−1

him,t = ωim + αimεi,t−1εm,t−1 + βimhim,t−1 (5)

Asymmetric VECH (TARCH):

hi,t = ωi + αiε
2
i,t−1 + Iγiε

2
i,t−1 + βihi,t−1

hm,t = ωm + αmε
2
m,t−1 +Mγmε

2
m,t−1 + βmhm,t−1

him,t = ωim + αimεi,t−1εm,t−1 + γimIεi,t−1Mεm,t−1 + βimhim,t−1 (6)

where I and M are indicator functions for εi,t−1 and εm,t−1 respectively. If εi,t−1 or εm,t−1

is negative, the respective indicator function, I or M , equals one, and otherwise, they
equal zero. The asymmetric VECH (TARCH) model is designed to allow negative errors
to increase volatility more than positive errors. This phenomenon that negative errors
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produce bigger risk than the same amount of positive one is usually called the “leverage
effect.” The effect of negative errors is reflected in the parameter γ in each volatility
specification and, as Campbell and Hentschel (1992) point out, the sign of γ is expected to
be positive since a positive γ makes the conditional variance and covariance in next period
increase.

We assume that the error term follows a normal density (see Campbell and Hentschel,
1993; Bali, 2008, for example) and the log-likelihood function is constructed by summing
the log normal densities. The log-likelihood function (ignoring normalizing constants) for
the bivariate model can be written as

L(r|θ) =
∑
t=1

Lt(r|θ); Lt(r|θ) = −1/2 · log |Ht| − 1/2ε′tH
−1
t εt (7)

where θ is a vector of the unknown parameters and εt and Ht denote the error vector and
time varying covariance matrix, respectively,

εt =
[
εi,t
εm,t

]
and Ht =

[
hi,t him,t
hmi,t hm,t

]
(8)

where him,t, the time-varying covariance, doesn’t need to be positive but the covariance
matrix, Ht, has to be positive definite.

Bayesian Inference

In a Bayesian analysis of a statistical model there are two key components: the prior
distribution and the likelihood function. The prior distribution describes the researcher’s
subjective prior beliefs concerning the relative probabilities of different possible values
of model parameters; the likelihood function summarizes the information about those
same relative probabilities of the values of model parameters conveyed in the data being
analyzed. The posterior distribution results from the combination of the prior and the
likelihood and is an optimal combination of those two information sources. Therefore, the
posterior distribution summarizes all available information from the likelihood function
and the prior information (Zellner, 1971).

The researchers’ subjective beliefs are that 1) the conditional volatility over time needs
to be positive without imposing any restrictions on the variance equation to keep all
volatility estimates positive and 2) the conditional covariance can be negative but the time-
varying covariance matrix must be positive definite over time. Using an indicator function,
the positivity constraints are imposed on the conditional volatility directly instead of the
parameters to keep the time-varying variance positive. This allows the parameters on
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the variance equations to be negative because of the absence of inequality constraints
and if negative parameters are more proper than positive ones, coefficients in variance
equations (5) and (6) could be negative. This removes the chance of possible bias being
introduced into the parameter estimates through unneeded nonnegativity constraints on
the parameters in the (co)variance equations.

Another reason for being Bayesian is difficulties with maximum likelihood estimation
(MLE). Lanne and Saikkonen (2006) point out that high correlation typically exists be-
tween ML estimators of the intercept, µ, and risk aversion coefficient, λ, in the mean
equation on the univariate GARCH-M model. This creates a problem similar to multi-
collinearity in a normal regression model and leads to low power for statistical tests of
whether λ is positive. Using Bayesian estimation, the difficulties of MLE can be avoided.

The prior densities for the individual parameters are set to independent normal densities
with zero means and variance = 102. This prior distribution is informative but due to the
magnitute of prior variances, our prior distribution can be considered a diffuse prior. The
prior distribution can be described as below:

p(θ) = I(Ht) ·
K∏
i=1

Nθi
(0, 102) (9)

where θ is the (K × 1) vector of parameters such as µ, λ, ω, α, and β and θi indicates
the ith component of the parameter vector. The indicator function, I(Ht), in the prior
density equals one if the conditional variances for each time-series and covariance matrix
in all time periods satisfy the conditions of positivity and zero otherwise.

Most of the information for the researcher’s prior beliefs is created by the indicator function,
I(Ht). As Bauwens and Lubrano (1998) did, the initial variances hi,0, hm,0, and him,0 are
treated as known constants. We can write our posterior distribution as

p(θ|r) ∝ p(r|θ)p(θ) (10)

where p(θ|r) denotes the posterior density and p(r|θ) and p(θ) are the likelihood function
and the prior distribution, respectively.

Previously, numerous studies have employed Bayesian inference to investigate the nature
of GARCH processes (for example, Geweke, 1989; Kleibergen and van Dijk, 1993; Bauwens
and Lubrano, 1998 and 2002; Nakatsuma, 2000; Vrontos, Dellaportas, and Politis, 2000;
Osiewalski and Pipien, 2004; Lanne and Luoto, 2008). Since it is not feasible to compute
the posterior analytically when the prior distribution is nonlinear or complicated, posterior
simulators are employed in most of the studies. In this study, we employ the Random
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Walk Chain Metropolis-Hastings algorithm because of its benefits in the absence of a good
approximating density for the posterior distribution (Koop, 2003). In the Random Walk
Chain Metropolis-Hastings algorithm, candidate draws are generated by a random walk
process,

θ∗ = θ(s−1) + z, (11)

where z is called the increment random variable. θ∗ and θ(s−1) are a candidate and previous
draw from the posterior simulation, respectively. The coefficients of maximum likelihood
estimation (MLE) are used as an initial value of candidate draws, θ(0).

The choice of distribution for z, the increment random variable, determines the candidate
generating density and the multivariate normal distribution is chosen in this study due
to its convenience and our assumption of normality for the error term in Eq. (7). The
candidate generating density can be described as follows:

q(θ∗|θ(s−1)) = N(θ(s−1), c · Σ̂) (12)

where Σ̂ is the covariance matrix from MLE and c is set to achieve an optimal acceptance
rate.

The candidate draws are accepted or rejected with an acceptance probability that is com-
puted as

α(θ∗|θ(s−1)) = min
[ p(θ = θ∗|r)
p(θ = θ(s−1)|r)

, 1
]

(13)

where p(θ|r) is the posterior distribution. If the current draw is accepted, θ(s) is θ(∗). If
rejected, the previous one is reused (θ(s) = θ(s−1)).

The acceptance rate of generated draws is critical for an accurate numerical approximation
to the true distribution. However, there is no general rule for the optimal acceptance rate.
Suppose that this rate is too high. In this case, the estimated posterior distribution will
be very similiar to the candidate generating density. On the other hand, too small an
acceptance rate implies that the chain will not move enough to get information about
the entire posterior density because candidate draws are almost always rejected and the
region where the chain explores stays too close to the initial value. In both cases, it is
highly doubtful that the posterior simulator investigates the entire posterior distribution
well and the estimated posterior distribution is likely inaccurate. As Koop (2003) points
out, the rule of thumb of the acceptance rate for candidate draws is around 0.5. If you
achieve roughly 0.5 as the acceptance rate, the posterior simulation is likely to approximate

6



the posterior density correctly. To follow Koop’s suggestion, our acceptance rates for all
estimations are calibrated to roughly 0.45 by choice of c in Eq. (12).

The posterior mean is commonly used as the point estimator of the posterior distribution.
Since each accepted candidate draw is weighted equally in the Metropolis-Hastings algo-
rithm, the simple average of all accepted candidate draws becomes the posterior mean.
The posterior mean, ĝS , can be written as

ĝS =
1
S

S∑
s=1

g(θ(s)). (14)

where g(θ(s)) denotes any general function of the model parameters and S is the number
of accepted draws.

We gather 55,000 accepted draws and discard the first 5,000 accepted draws as the initial
burn-in to eliminate the effect of initial values. If a candidate draw does not satisfy the
condition of positivity for the variance and covariance matrix, a draw is regenerated until
it satisfies the researcher’s subjective belief (this is an accept-reject step within our poste-
rior simulator to handle the truncation of the posterior distribution due to the indicator
function in the prior for Ht).

For each estimation, we perform Geweke’s (1992) diagnostic to check the convergence of
our Metropolis-Hastings algorithm. Let SA and SC denote first 10% and last 40% accepted
draws. The test statistic for Geweke’s convergence diagnostic (CD) can be written as

CD =
ĝSA
− ĝSC

σ̂SA√
SA

+ σ̂SC√
SA

−→ N(0, 1) (15)

where ĝSA
and ĝSC

denote the posterior means of SA and SC , respectively. The terms
σ̂SA√
SA

and σ̂SC√
SC

are the numerical standard errors of these two estimates.

In the MCMC algorithm, the posterior standard errors are different than the numerical
standard errors (NSE) since the draws are correlated and a typical central limit theorm
does not work. We compute the numerical standard errors using the formula suggested by
Koop, Poirier, and Tobias (2007). The formula for the NSE is:

NSE(ĝS) =

√√√√σ2

m

[
1 + 2

m−1∑
j=1

(
1− j

m

)σj
σ2

]
(16)
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where σj is the covariance between vectors [θ1 θ2 · · · θm−j ] and [θj+1 θj+2 · · · θm] and
σ2 denotes the posterior variance of each parameter. Typically, σj >0 and the numerical
standard error is bigger than the posterior standard errors.

A posterior model probability is used to compare model specifications. A posterior model
probability is computed by the product of marginal likelihood and prior model probability.
Let Mi denote each of I different considered models for i = 1, · · ·, I and let p(r|Mi) and
p(Mi) be the marginal likelihood of and a prior model probability of Mi, respectively. A
posterior model probability can be described as

p(Mi|r) ∝ p(r|Mi)p(Mi). (17)

We set equal prior weights for all considered models, thus posterior model probabilities are
proportional to the marginal likelihood values from the considered models. The marginal
likelihood is computed to compare different models by simple averaging of all posterior
densities of accepted draws. The model that has highest posterior model probability is
considered the best specification.

Data Description

We use monthly return data on agricultural production and food manufacturing portfo-
lios, the market portfolio, and the one-month Treasury bill rate as a risk free asset from
the Kenneth R. French data library. The value-weighted CRSP index of NYSE, AMEX,
and Nasdaq is employed for the U.S. total market returns and the return of agricultural
production and food manufacturing portfolios. The two industries are part of the industry-
specific returns from the 48 industry dataset. Agricultural production contains firms pro-
ducing crops, livestock, commercial fishing, feeds for animals and agricultural services.
Food manufacturing is industries such as food and kindred products, meat products, dairy
products, etc. Exact details of the two industries are on the French data library webpage
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).

Emprical results of bivariate GARCH-M models

Since this study is focused on the risk-return tradeoff for agribusiness portfolios and the
market portfolio, we report only the results of parameters λi, λim and λm in the tables. For
simplicity, we call the combination of Eq. (3) and Eq. (5) model (A) and the combination
of Eq. (3) and Eq. (6) model (B). Models (C) and (D) will be the combination of Eq. (4)
and Eq. (5) and the pairing of Eq. (4) and Eq. (6), respectively, in this section. Bayesian
posterior simulation for each estimation satisfies Geweke’s convergence diagnostic (test
statistics available from the author).
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Table 1 provides the empirical results of bivariate GARCH-M models between the market
portfolio and agricultural production portfolio. For model (A), the coefficient for the time-
varying covariance, λim, has greater than 95% posterior probability of being positive and
the risk-return tradeoff for the market portfolio λm also has strong posterior support of
being positive. For model (B), we also estimate positive λims and λms with high posterior
probability.

In models (C) and (D), the risk aversion coefficient for the time-varying variance of the
return on individual portfolio, λi, is added as a explanatory variable. The posterior dis-
tribution for λi in models (C) and (D), does not have strong posterior support of being
positive or negative but the risk aversion coefficient for agricultural production and the
market portfolio, λim and λm, both have over a 95% posterior probability of being pos-
itive. Based on the posterior model probabilities for four different frameworks, Merton’s
ICAPM employed in models (A) and (B) is heavily favored relative to the mean equation
in models (C) and (D) and the GARCH specification in model (A) is slightly favored over
the TARCH specification in model (B).

In table 2, the empirical results for bivariate GARCH-M models between the market port-
folio and food manufacturing portfolio are provided. Regardless of model specification,
the risk aversion coefficients for conditional market volatility, λm, don’t have as strong
posterior support of being positive as with the agricultural production model. The risk
aversion coefficients for time-varying covariance in models (A) and (B) don’t have strong
posterior support of being positive and surprisingly, strong posterior support for λim be-
ing negative is revealed in models (C) and (D). However, risk aversion coefficients for
conditional volatility of food manufacturing portfolio, λi have greater than 95% posterior
probability of being positive. The only similar pattern of the posterior GARCH-M results
between agricultural production and food manufacturing portfolios is that model (A) has
the largest posterior model probability. This supports that Merton’s ICAPM is the favorite
specification among the models we consider.

Figure 1 displays the conditional variances for agricultural production and the total U.S.
market return and their time-varying covariance in model (A). The conditional volatility
for agricultural production is much larger than that of the total U.S. market and the
conditional covariance is similar in magnitude to the conditional volatility of the total
U.S. market. Figure 2 shows the same series for the food manufacturing model in model
(A). The conditional volatility of food manufacturing is smaller than that of the total U.S.
market and the conditional covariance is also slightly smaller than the conditional volatility
of the total U.S. market.
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Conclusion

Since Merton’s intertemporal capital asset pricing model was introduced, the relation be-
tween expected return and risk has been a centerpiece of modern finance. In this study, we
investigate the risk-return tradeoff in the agricultural production and food manufacturing
industry portfolios and the market portfolio using bivariate GARCH-M models.

With the agricultural production portfolio, we can estimate positive relations between
stock return and its risk for the market portfolio with strong posterior supports but the
posterior probability of a positive tradeoff for the market portfolio is lower with the food
manufacturing industry. The agricultural production portfolio shows a positive risk-return
tradeoff with high posterior probability but for the food manufacturing portfolio, a strong
posterior support of a positive risk-return tradeoff is not revealed. Model (A) is favored
over other models in both estimations. This implies that Merton’s ICAPM and standard
GARCH have strong posterior support.

The positive sign on the covariance between each industry and the total market, suggests
that periods where agribusiness returns are more tightly correlated with the broader market
are correctly perceived by the stock market as riskier periods for holding those assets.
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Table 1 Estimates of Bivariate GARCH-M Models for Agricultural Production

Model (A) Model (B) Model (C) Model (D)

λi 0.426 0.588

(0.685) (0.703)

λim 5.029 3.762 4.104 3.188

(1.000) (0.988) (0.953) (0.951)

λm 2.427 1.569 2.268 1.759

(0.996) (0.949) (0.991) (0.988)

Post. Model Prob. 0.564 0.406 0.015 0.015

Numbers in parentheses are a posterior probability of positive λ.
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Table 2 Estimates of Bivariate GARCH-M Models for Food Manufacturing

Model (A) Model (B) Model (C) Model (D)

λi 4.186 4.141

(0.991) (0.992)

λim 1.160 0.983 -2.765 -3.054

(0.906) (0.864) (0.041) (0.046)

λm 0.917 0.776 0.524 0.204

(0.879) (0.829) (0.745) (0.609)

Post. Model Prob. 0.586 0.000 0.414 0.000

Numbers in parentheses are a posterior probability of positive λ.
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Conditional Volatility Conditional Volatility Conditional covariance
of Agriculture of Total Market between Ag. and Market

Figure 1 Conditional volatilities and covariance from the agricultural produc-

tion bivariate model

Conditional Volatility Conditional Volatility Conditional covariance
of Food of Total Market between Food and Market

Figure 2 Conditional volatilities and covariance from the food manufacturing

bivariate model
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