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A Unified Framework for Estimating Preferencesfor
Schools and Neighborhoods

Patrick Bayer, Fernando Ferreira, and Robert McMillan

Abstract
This paper sets out a framework for estimating household preferences over a broad range of housing
and neighborhood characteristics, some of which are determined by the way that households sort
in the housing market. This framework brings together the treatment of heterogeneity and selection
that has been the focus of the traditional discrete choice literature with a clear strategy for dealing
with the correlation of unobserved neighborhood quality with both school quality and neighborhood
sociodemographics. We estimate the model using rich data on a large metropolitan area, drawn from
a restricted version of the Census. The estimates indicate that, on average, households are willing
to pay an additional one percent in house prices - substantially lower than in prior work - when the
average performance of the local school is increased by 5 percent. There is also evidence of
considerable preference heterogeneity. We also show that the full capitalization of school quality
into housing prices is typically 70-75 percent greater than the direct effect as the result of a social
multiplier, neglected in the prior literature, whereby increases in school quality also raises prices by

attracting households with more education and income to the corresponding neighborhood.

JEL Classification: D58, HO, H4, H7, 12, R21, R31

Keywords: Capitalization, Local Public Goods, School Quality, Discrete Choice Models, Hedonic
Price Regression, Education Demand



1 INTRODUCTION

Economists have long been interested in estimating the demand for non-marketed goods
such as school quality, and for good reason. From a policy perspective, recovering an accurate
household vauation of school qudity alows the direct benefit of education reforms to be
quantified. Egtimates of a wider range of underlying preferences parameters also play an
important role in understanding the way that households sort in the housing market, which in turn
determines the pattern of residential segregation and the matching of households to schoals.
Building on theoreticad work studying the effects of household sorting on equilibrium in the
housing market," researchers have used equilibrium models more recently to simulate policy
changes, notably choice-based education reforms, identifying important generd equilibrium
effects as households re-sort that do not appear in partia equilibrium.> However, parameters in
this body of research have typically been chosen through calibration or more arbitrarily. Based
on direct estimation of demand parameters, more reliable and coherent sets of preference
estimates can be used, with the potential to improve our understanding of policy reforms and the
workings of the urban economy more generaly.

Despite their usefulness, recovering demand parameters from observed choices in the
housing market poses considerable challenges for estimation. Underlying household preferences
are likely to be heterogeneous, depending on a wide range of household characterigtics, to
uncover these heterogeneous preferences requires extensive data on both households and the
detailed characteristics of choices in the choice set, typicaly unavailable in public-use datasets.
Even with the richest data, it is not possible to characterize fully the factors that make certain
houses and neighborhoods particularly desirable — there will invariably be a component that is
unobserved to the econometrician. And given that households sort on a non-random basis, in part
influenced by these unobservable choice characteristics, endogeneity problems arise as
neighborhood sociodemographic composition and school quality will be corrdated with these
unobservables.

Of the two most prominent approaches to estimating demand in the literature, hedonic
price regressions relate house prices to housing and neighborhood attributes including school

! Much of the intuition for how household sorting affects the equilibrium in the housing market and
conseguently the matching of households with schools derives from along line of theoretical work in local
public finance. Important contributions to this literature date back to the work of Tiebout (1956) and
include more recent research by Epple and Zelenitz (1981), Epple, Filimon, and Romer (1984, 1993),
Benabou (1993, 1996), Fernandez and Rogerson (1996), and Nechyba (1997).

2 Direct analyses of choice-based and education finance reforms have been conducted by Epple and
Romano (1998), Nechyba (1999, 2000), and Fernandez and Rogerson (2003) among others.



characterigtics, while traditional discrete choice models estimate preferences by attempting to
match the location decisions of the households in the data®* An attractive feature of the recent
hedonic price regression literature has been its focus on addressing the likely correlation of school
qudity with unobserved housing and neighborhood quality, making use of a boundary fixed
effects strategy.” However, it is difficult to address the additional endogeneity problems that arise
within the standard framework due to non-random sorting by households. Further, it is difficult
to determine how the estimates of a hedonic price regression relate to fundamental preferencesin
the population, both because the equilibrium price function need not correspond to mean
preferences [see Tinbergen (1956) and Rosen (1974)] and because this approach provides no
clear way of estimating heterogeneous preferences.

While dealing with heterogeneity in preferences in a straightforward fashion, the discrete
choice literature in urban and public economics has traditionally assumed away any systematic,
unobserved differences in the quality of houses and neighborhoods. Thus when housing prices
are included in the indirect utility function, the postive corrdation of price with unobserved
housing and neighborhood quality has been routinely ignored, leading to a severe understatement
of price dasticities and to biases in the estimation of other taste parameters.® Moreover, the likely
correlation of test scores with unobserved neighborhood quality has not been adequately
addressed in that literature.

The current paper makes two primary contributions. Firgt, it sets out a new framework
for estimating household preferences over a broad range of housing and neighborhood
characteristics, some of which are determined by the way that households sort in the housing
market. Here, we bring together in a unified framework the treatment of heterogeneity and
selection that has been the focus of the discrete choice literature while aso addressing the
correlation of school quaity with unobserved neighborhood quality that has been the focus of

3 This framework was first introduced for the study of housing markets by McFadden (1978). Examples
related to estimating preferences for school quality include Quigley (1985), Nechyba and Strauss (1998),
Bayer (1999), and Barrow (1999).

* Hedonic demand models studied by Rosen (1974), Epple (1987), Bajari and Benkhard (2002), Ekeland,
Heckman, and Nesheim (2002) and Heckman, Matzkin, and Nesheim (2003) among others provide another
approach to estimating demand for non-marketed goods and attributes. These models have not been
employed to date to estimate demand for schooling, although Nesheim (2001) proposes such an empirical
exercise. The fundamental difference between hedonic demand and discrete choice models as applied to
location choice problems relates to whether households are assumed to be able to select the level of
consumption of each element of the bundle of attributes determined by the location decision in order to
satisfy the first order condition associated with that element or whether households are constrained to
choose among the set of choices (bundles) that exist in the data.

® See, for example, Black (1999), Clapp and Ross (2002), and Kain, Staiger, and Samms (2003).



recent work in the hedonic price regression literature. To account for the non-random sorting of
households, we model the sorting process directly, generdizing the traditiona discrete choice
approach to incorporate unobserved housing and neighborhood qudlity. The framework we
develop nests both of the main approaches as direct redtrictions. It provides an intuitive
correction for biases in hedonic price regressons that arise when the margina household's
preferences differ from those of the mean household.

An important feature of our approach is the solution we provide to the endogeneity
problem aisng when neighborhood unobservades and observed neighborhood
sociodemographics are correlated. Here, we adapt an approach already used in the hedonic price
literature to control for the correlation of school quality and unobserved neighborhood quality
using boundary fixed effects, showing how it can profitably be applied to the problem of
estimating consigtently the vauation of neighborhood sociodemographic compostion. The
essentia idea is intuitive: important sociodemographics are discontinuous at boundaries due to
household sorting - we show clear evidence on this below. This means that boundaries become
useful places to learn about the valuation of such variables. Boundary fixed effects serve as an
attractive way of absorbing out fixed unobservable components when estimating preferences for
these sociodemographics’ - our estimates lend support to the idea that thisis a promising strategy.

The second contribution is to estimate the model using the richest data available, to
obtain a broad range of underlying preference estimates that account the measurement difficulties
already referred to. Here, we benefit from using restricted-access Census microdata that provide
detailed household and housing information including the precise resdentid location of nearly a
quarter of a million households in the San Francisco Bay Area. With the resulting estimates in
hand, we are then able to use our equilibrium framework to explore their genera equilibrium
implications, drawing attention to important effects neglected in the prior literature. Obtaining
consistent estimates of a broad range of preferences is necessary for this task.

Our estimates of preferences for school quality indicate that on average households are
willing to pay an additiona one percent in house price when the average performance of the local
school isincreased by 5 percent, substantialy lower than in prior work. These estimates control
directly for detailed measures of neighborhood sociodemographic compasition, which previous

researchers often have been unable to include in their anaysis. We show that the failure to

® Recent papers by Bayer (1999), Bgjari and Kahn (2002), and Bayer, McMillan,and Rueben (2002) include
a term that captures the unobserved (to the econometrician) quality of houses in neighborhoods in the
utility specification and address the endogeneity of pricein this context.



control for neighborhood sociodemographics leads to the overstatement of the mean margina
willingness to pay for school qudity by over 200 percent. The estimates also revea substantia
heterogeneity in preferences for school quaity — for instance, households with children and more
educated households value school quality more than those without. Further, we find evidence of
very strong socid interactions — highly educated households, for instance, are willing to pay a
much higher price to live with other highly educated households than those who are not so well
educated. This heterogeneity in preferences implies that smple hedonic price regressions will
typically not return average preferences and we demonstrate that price regressons lead to
sgnificant biases in the estimation of mean preferences for neighborhood sociodemographic
characteristics.

Our framework provides a naturd device for exploring the general equilibrium
implications of these estimates, offering both a complete characterization of the heterogeneity in
preferences for schools and neighborhoods and a way of understanding how these aggregate to
determine the equilibrium in the housing market. We show that the estimated heterogeneity gives
rise to substantia variation in the capitaization of school quality in housing prices throughout the
metropolitan region. Further, the full capitdization of school quality into housing prices is
typicaly 70-75 percent greater than the direct effect, as the result of a social multiplier. Focusing
on the direct effect only, the vast prior literature on capitalization has neglected this significant
genera equilibrium mechanism,® whereby increases in school quality also raise housing prices by
attracting households with more education and income to the corresponding neighborhoods.

The rest of the paper is organized as follows. the sorting modd is presented in the next
section.  Section 3 discusses estimation issues. The unique data used to estimate the model are
described in Section 4. Estimation results are presented in Section 5, and results of genera
equilibrium smulations, in Section 6. Section 7 concludes.

2 A MODEL OF RESIDENTIAL SORTING

This section of the paper sets out an equilibrium modd of a sdlf-contained, urban housing
market in which households sort themselves among the set of housing types and locations
avallable in the market. The model consists of two key eements. the household residential

location decison problem and a market-clearing condition. While maintaining this smple

"It is important to stress that our analysis calls into question the narrow use of boundaries in the prior
literature, though. As soon as households sort non-randomly, asthey certainly do in practice, capitalization
of house prices at school attendance boundaries picks up more than just differencesin school quality.



dructure, the mode is quite powerful, alowing households to have heterogeneous preferences
defined over housing and neighborhood attributes in a very flexible way; it adso dlows for
housng prices and neighborhood sociodemographic compositions to be determined in
equilibrium.  Importantly, the exact characterization of the conditions for equilibrium is not
necessary for the estimation of the model, i.e., recovering the underlying preference parameters.
We characterize the equilibrium conditions here primarily because we use the full model later in
the paper to carry out a series of genera equilibrium simulations, exploring the implications of
the preference estimates for the capitalization of school quality into local house prices.

The Residential Location Decision

We modd the residential location decision of each household as a discrete choice of a
sngle resdence. The utility function specification is based on the random utility model
developed in McFadden (1978) and the specification of Berry, Levinsohn, and Pakes (1995),
which includes choice-specific unobservable characteristics. Let X, represent the observable
characteristics of housing choice h including characteristics of the house itself (e.g., Size, age, and
type), its tenure status (rented vs. owned), and the characteristics of its neighborhood (e.g.,
sociodemographic composition, school, crime, and topography). Let p, denote the price of
housing choice h. Each household chooses its residence h to maximize itsindirect utility function
V"

@ '\{lhf)ix Ve =ay X, -a,p, +x, +e,.

The error structure of the indirect utility is divided into a correlated component associated with
each house that is valued the same by al households, x,, and an individua-specific term, €. A
useful interpretation of X, is that it captures the unobserved quality of each house, including any
unobserved quality associated with its neighborhood.®

8 This has a long history of study in the literature. See, for example, Oates (1969), Kain and Quigley
(1975), Hayes and Taylor (1996), Black (1999), Bogart and Cromwell (2000), Figlio and Lucas (2000),
Clapp and Ross (2002), and Kane, Staiger, and Samms (2003).

® We employ an indirect utility function that is linear in housing prices primarily because it facilitates
comparisons with standard hedonic price regressions, aswe discussin Section 3 below. This structure does
not seriously limit the flexibility of the model in terms of income elasticities, however, as we allow for
interactions of income with all of the choice characteristics and directly with house price. This
specification ensures, for example, that households without much income very rarely choose expensive
homes. Alternative specifications of the indirect utility function could certainly be estimated, as the linear
formisnot essential to the model.



Each household's valuation of choice characteristics is allowed to vary with its own
characteristics, Z, including education, income, race, employment staius, and household
composition.  Specifically, each parameter associated with housng and neighborhood
characteristics and price, a'j, for j 1 {X, g, vaies with a household’s own characteristics

according to:

i & [
@ aj=ag+taa;Z,

r=1

and equation (2) describes household i’s preference for choice characteristic j.

Given the household’s problem described in equations (1)-(2), household i chooses
housing choice h if the utility that it receives from this choice exceeds the utility that it receives
from dl other possible house choices - that is, when

@ Vi>V, b Wi+el>W+el b el -el SWi-W " ktih

where W, includes dl of the non-idiosyncratic components of the utility function V... As the
inequalities in (3) imply, the probability that a household chooses any particular choice depends
in genera on the characterigtics of the full set of possible house choices. Thus the probability P,
that household i chooses housing choice h can be written as a function of the full vectors of
house/neighborhood characteristics (both observed and unobserved) and prices { X, p, x}:

@  R=f(Z.Xpx

aswell as the household’s own characteristics Z'.

Equilibrium™***
We define a sorting equilibrium to be a set of residentia location decisions and a vector

of housing prices such that the housing market clears and each household makes its optimal

19 For amuch broader discussion of the assumptions, conditions, and properties of the sorting equilibrium
defined here, see Bayer, McMillan, and Rueben (2002). The notion of a sorting equilibrium we develop is
closely related to that of Brock and Durlauf (2001, 2002).

1 The equilibrium concept developed here treats the supply of housing as fixed. This is done for
expositional simplicity. A more generic housing supply function could be incorporated in the analysis.



location decison given the location decisons of dl other households. The computational
requirements of this equilibrium concept are grestly smplified if we smooth the residentia
location decision problem. In particular, we assume that each household observed in the sample
represents a continuum of households with the same observable characteristics, letting the
measure of this continuum bem When the set of draws {€';} for each household observed in the
dataisinterpreted as unobserved heterogeneity in preferences for each location, we can then work
with the choice probabilities defined in equation (4) when deriving the conditions required for
equilibrium.  These choice probabilities characterize the distribution of housing choices that
would result for the continuum of households with a given set of observed characteristics as each
household responds to its particular unobserved preferences.

This assumption concerning the distribution of households requires an analogous
assumption about the set of housing choices observed in the sample. In particular, we assume
that each house observed in the sample represents a particular type of housing in the observed
location, and that the continuum of this housing type aso has measure m Aggregating the
probabilities in equation (4) over al households yields the predicted number of households that

choose each housing type in each location h, N, :

A~

®) Nh:m-é_Ph‘.

In order for the housing market to clear, the number of households choosing houses of type h
must equal the measure of the continuum of houses that each observed house represents:*

Z>
I
3
o0
iv)
Qo
Suv)
I
H
>

©)

That the probabilities add to one for each house observed in the data smply implies that supply
must equal demand for each type of housing in each location.

The implications of this market clearing condition for prices are intuitive, with excess
demand for a housing type causing price to be bid up and excess supply leading to afal in price.
In equilibrium, the location decisions that arise as a result of these market-clearing prices must
aggregate up to give rise to the neighborhood sociodemographic compositions used in caculating



the market-clearing prices. Bayer, McMillan, and Rueben (2002) establish the existence of a
sorting equilibrium as long as (i) the indirect utility function shown in equation (1) is decreasing
in housing prices for al households, (ii) indirect utility is a continuous function of neighborhood
sociodemographic characteristics, and (iii) e is drawn from a continuous density function. We
describe a method for calculating an equilibrium in Section 6 where we conduct a ®ries of
counterfactua general equilibrium simulations.

3 ESTIMATION

Estimation of the model follows a two-step procedure related to that developed in Berry,
Levinsohn, and Pakes (1995)."° In this section of the paper, after briefly describing this
estimation procedure, we discuss several additional issues related to the estimation and
identification of the model. We begin that discussion by making clear the relation between our
framework and a smple hedonic price regression, showing that the latter results from restricting
household preferences to be homogeneous — i.e, ruling out any sorting of households across
locations and housing choices on the basis of sociodemographic characteristics. In the presence
of heterogeneous preferences, the hedonic price regresson does not typically bear any direct
relationship to the structural preference parameters. Using the broader sorting model, however,
we are able to show that a modified price regression that forms the basis for the second step of
our estimation procedure does indeed return mean preferences. In this way, we are able to
provide intuition for the likely biases in a hedonic price regresson, when such a regresson is
viewed as returning mean margina willingness to pay measures, and aso to make clear that the
same variation in the data that forms the basis for estimating hedonic price regressions is aso
exploited as part of edtimating the broader sorting model. Finaly, we describe how our
framework can be adapted to ded with the correlation of school quality and neighborhood
sociodemographic characteristics with unobservable local characteristics.

The Estimation Procedure

We begin by describing the estimation of the model, and here it is helpful to introduce
some notation that simplifies the exposition. In particular, we rewrite the indirect utility function
as.

12 Note that the measure nrops out of the market-clearing condition in equation (6), and so serves simply
asarhetorical device for understanding the use of the continuous choice probabilities shown in equation (4)
rather than the actual discrete choices of the individuals observed in the datain defining equilibrium.



(7) \/h=dh+|h+eih
where

(8) dh =ax xh - aOp Pn +Xh
and

©) Iy =6 @ Zy X, - a a2 zpy-
k=1 7] k=1 7]

In equation (8), d, captures the portion of the utility provided by housing choice h that is common
to dl households, and in (9), k indexes household characteristics. When the household
characteristics included in the model are constructed to have mean zero, d, is the mean indirect
utility provided by housing choice h. The unobservable component of dy, x,, captures the portion
of unobserved preferences for housing choice h that is correlated across households, while e,
represents unobserved preferences over and above this shared component.

The first step of the estimation procedure is a Maximum Likelihood estimator, which
returns estimates of the heterogeneous parameters in | and mean indirect utilities, d,. The ML
edtimator is based on maximizing the probability that the mode correctly matches each
household with its chosen house. In particular, for any combination of the heterogeneous
parameters in | and mean indirect utilities, d,, the modd predicts the probability that each
household i chooses house h. We assume that e, is drawn from the extreme value distribution; in

which case this probability can be written:

(10 P _exp@, +|Aih) A N
a exp@i +1 )
k

Maximizing the probability that each household makes its correct housing choice gives rise to the
following log-likelihood function:

13 We provide a more technical discussion of the estimation procedure: relating it to the BLP procedure,
discussing methods for simplifying the computation, and describing the asymptotic properties of the
estimator, in atechnical appendix.

10



1) =3 4R

where I'y, is an indicator variable that equals 1 if household i chooses house h in the data and 0
otherwise. The first step of the estimation procedure consists of searching over the parametersin
| and the vector of mean indirect utilities to maximize ¢. Notice that the likelihood function
developed here is based solely on the notion that each household' s residentia location is optimal
given the set of observed prices and the location decisions of other households.

The Mechanics of the First Step of the Estimation

Intuitively, it is easy to see how this first step of the estimation procedure ties down the
heterogeneous parameters — those involving an interaction of household characteristics with
housing and neighborhood characteristics. If more educated households are more likely to choose
houses near better schools in the data for instance, a positive interaction of education and school
qudity will dlow the modd to fit the data better than a negative interaction would.

What is less intuitive is how the vector of mean indirect utilities is determined. To better
understand the mechanics of the first step of the estimation, it is helpful to write the derivative of
the log-likelihood function with respect to dy:

@ Y = &M AT = alR)ALR) = LA R)-0

i=h i=h ith i

As this equation shows, the likelihood function is maximized at the vector d that forces the sum

of the probabilities to equa one, é_ (Phi )=1 for each house. That this condition must hold for all

houses results from a fundamenta trade-off in the likelihood function. In particular, an increase
in any particular d, raises the probability that each household in the sample chooses house h.
While this increases the probability that the mode correctly predicts the choice of the household
that actualy resides in house h, it decreases the probability that al of the other households in the
sample make the correct choice. In this way, the first step of the estimation consists of choosing
the interaction parameters that best match each individual with their chosen house, while ensuring

that no house is systematically more attractive than any other house according to the metric

ar)
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For any set of interaction parameters (those in | ), a smple contraction mapping can be

used to calculate the vector d that solves the set of first order conditions: é (Phi ) =1" h. For

our gpplication, the contraction mapping is smply:

(13  dt=d- In(Q R)

where t indexes the terations of the contraction mapping. Using this contraction mapping, it is

possible to solve quickly for an estimate of the full vector d even when it contains a large
number of eements, thereby dramatically reducing the computationa burden in the first step of
the estimation procedure.™*

Notice that while we have not explicitly enforced the market clearing conditions derived
above, the conditions that result from maximizing the likelihood with respect to d are identical to
the market-clearing conditions shown in equation (6). Thus, there is a clear dudlity between the
equilibrating role of prices in our characterization of equilibrium in the housng market and the
way that the vector of mean indirect utilities is determined as a result of maximizing the
likelihood that each household chooses its appropriate house. In the context of the modd itsdlf,
we provide intuition below for why the level of mean indirect utility varies across houses in
equilibrium.  For the interested reader, we provide a more extensive discussion of the estimation
procedure in atechnical appendix.

The Second Stage of the Estimation

Having estimated the vector of mean indirect utilities in the first stage of the estimation,
the second stage of the estimation involves decomposing d into observable and unobservable
components according to the regression equation (8). Notice that the set of observed residentia
choices provides no information that distinguishes the components of d. That is, however d is
broken into components, the effect on the probabilities shown in equation (10) is identica. In
estimating eguation (8) important endogeneity problems need to be confronted. Most obvioudly,
to the extent that house prices partly capture house and neighborhood quality unobserved to the

econometrician, so the price variable will be endogenous. Egtimation via least squares will thus

141t is worth emphasizing that a separate vector d is calculated for each set of interaction parameters— and
at the optimum, this procedure returns the ML estimates of the interaction parameters and the vector of
mean indirect utilitiesd.



lead to price coefficients biased towards zero, producing mideading willingness-to-pay estimates
for a whole range of choice characteristics. In Section 5 below, we describe the construction of
an instrument for price. When correctly specified, the right hand side of (8) will include a variety
of other choice characterigtics, including those related to the way that households sort across
neighborhoods. Later in this section, we present an appedling strategy for dealing with the
correlation between neighborhood sociodemographic characteristics and fixed, unobservable
neighborhood quality.

A Restricted Version of the Model

For now, we abstract from these endogeneity issues in order to demonstrate that a
hedonic price regression isadirect restriction on the full model.  Consider a specification of the
utility function in which al households share the same value for each house up to an idiosyncratic

error term:
(14) UL:aoxxh‘aOpph +X, +€|

where e, is i.i.d across households and choices. In this case, because the choice probabilities

shown in (10) are identical for all households, the first order conditions, § (R')=1" h, imply

that the ML estimates of d, must be identical (equal to a constant K) for al houses. In this case,

then, equation (8) can be re-written:
(15  a X, -84, P, X, =K (4 Pn :ao%o;a X, +%opxh

Equation (15) is a standard hedonic price regression. This equivalence makes clear that a hedonic
price regression properly returns the mean valuation of housing and neighborhood attributes when
heterogeneity in preferencesis limited to only an idiosyncratic component.™

Note that equation (8), which forms the basis for the second stage regression in the
estimation of the sorting model, bears more than a passing resemblance to the hedonic price
regression shown in equation (13). In particular, moving price to the left-hand side of equation
(8) yidds:

15 This condition holds no matter what assumption is made concerning the distribution of the idiosyncratic
error term and in the absence of such idiosyncratic preferences.

13
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Consequently, in the presence of heterogeneous preferences, the mean indirect utility d, estimated
in the first stage of the estimation procedure provides an adjustment to the hedonic price equation
so that the price regression accurately returns mean preferences.

It is useful to spell out the significance of (16). In the context of our mode, it provides
intuition as to why the equilibrium price function differs from the mean margina willingness-to-
pay when households have heterogeneous preferences. Figure 1 provides this intuition in a
simple example in which households value a single, discrete characteristic of a house, such as a
view of the Golden Gate Bridge."® If such aview were rare, as represented by H; in Figure 1, the
difference in price between houses with versus without a view would reflect the margina
willingness-to-pay (MWTP) of a household with a relatively strong taste for a view, as indicated
by p,” in the figure. Put another way, the equilibrium price of a view is set by the households on
the margin of purchasing a house with a view rather than by the household with mean MWTP,
which in this case is clearly inframarginal. If, on the other hand, a view were widdly available,
the price of the view would generaly reflect the MWTP of someone much lower in the
distribution of tastes for a view, as indicated by pz*. In the first case, the price of these houses
would be exceedingly high relative to the MWTP of the mean household, which is indicated by
pw , While in the second case, the price of a view in equilibrium would more closdy resemble
mean MWTP.

This example also makes clear that d, can vary across houses in equilibrium. In the first
case, the mean indirect utility of a house with aview would be less than that of a house without a
view, as evidenced by the fact that the mean household prefers the house without a view in this
case. In the second case, the mean household would prefer the house with a view and,
consequently, the mean indirect utility of a house with a view would be greater. In more general
cases, the mean indirect utility that house provides will be a function of is characteristics, the
distribution of characteristics across the set of available houses, and the distribution of tastes. In
essence, the sorting model controls for which individua in the distribution of tastes sets the price
of a given datribute given the supply of that attribute. This provides an adjustment that reflects
the difference between this household's valuation and that of the mean household so that the
adjusted hedonic price regression accurately reflects mean preferences. In the first case, that the

18 For this example, we ignore the idiosyncratic preference term for expositional simplicity.
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mean indirect utility of a house with aview is less than that without a view effectively reduces the
left-hand side of equation (16) for houses with a view so that it reflects the amount the mean
household would be willing to pay for a view.” Without incorporating the adjustment for the
difference in mean utilities, a hedonic price regression would clearly return different estimates in
the two scenarios.

Hedonic Price Regressions and Selection Bias

Equation (16) aso provides intuition for why a seemingly natura way to learn about
heterogeneous preferences does not work. In particular, consider estimating a separate hedonic
price regresson using only the sample of houses chosen by a well-defined subset of the
population — households of a particular race for instance. Such regressions might be referred to
astype-specific hedonic price regressions and intuitively these regressions would seek to estimate
the preferences of this subset of the population by exploiting within-type price variation — the
variation in price and housing/neighborhood characteristics among the set of houses chosen by
this type of household. Using equation (16), however, it is straightforward to show that type-
specific hedonic price regressions are subject to an important form of selection bias.

To see the selection bias problem more clearly, consider a simple example with two types
of households — type 1 and type 2 - in which d, is defined to represent the indirect utility provided
by housing choice h to type 1 households.® In a bid to recover the preferences of type 1
households, suppose a researcher attempted to estimate a hedonic price regression using only the
set of houses chosen by that type (i.e, using only within-type price variation). By reveaed
preference, the set of houses chosen by type 1 households will provide higher indirect utility to
those households, given by d,, than those not chosen. But by estimating a smple hedonic price
regression without making any correction, the researcher omits the d, term from the left-hand side
of equation (16). This is essentially a case of sample selection on the dependent variable. The
prices of these chosen houses will tend to be low, conditional on the observed choice
characteristics X, given the omission of the d, term, and this will lead to an understating of the
willingness-to-pay for these characteristics. In essence, e first stage of the full estimation
procedure outlined above provides the adjustment to the hedonic price regresson so that it
accurately returns the preferences of the baseline household category (type 1 households in our

example or mean utility when household characteristics are constructed so as to have mean zero).

17 Notice that the coefficient on d in equation (14) essentially converts utility to prices for the mean
household.
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This simple example makes clear two issues related to the estimate of heterogeneous
preferences. First, in order to properly estimate heterogeneous preferences it is necessary to use
another fundamental source of variation in the data related to heterogeneous preferences - choice
variation (i.e., variation in the characteristics and price of houses chosen versus not chosen by
households of a particular type) in order to properly estimate heterogeneous preferences. The use
of type-specific price variation aone leads to biased preference estimates. Second, while the
estimation of discrete choice models superficialy appears to be based entiredly on choice
vaiaion, when traditiona discrete choice models are augmented to allow for terms that capture
the unobserved quality of aternatives, the estimation of the full model does indeed use the same
form of price variation that forms the basis for hedonic price regressions, as illustrated by the
second-stage regression equation shown in (16).

The Endogeneity of School Quality and Neighborhood Sociodemographic Composition

In attempting to estimate preferences for school quality, an important endogeneity issue
has been raised in the literature, starting with Black (1999). (See aso Clapp and Ross (2002), and
Kane et al. (2003) among others) These authors point out that the quality of local schoals is
likely to be positively correlated with unobserved housing and neighborhood quality, though they
do so in the context of a hedonic price regression. The identification strategy developed in Black
(1999) uses a sample of houses near school attendance zone boundaries, estimating a hedonic
price regression that includes boundary fixed effects. By including these, this strategy essentially
compares the prices of houses in otherwise smilar neighborhoods, but that fall on opposite sides
of a boundary determining where students will attend school. Any differences in prices not
associated with housing characteristics are then interpreted as the margina willingness-to-pay for
school quality.

There are very good reasons to think that households will sort on a non-random basis
with respect to boundaries so that other differences will help drive differences in capitalization -
at the end of Section 4, we present clear evidence showing that sociodemographics vary across
boundaries. However, boundary fixed effects are likely to do a good job of absorbing out fixed
factors, including ones that are unobservable. In doing so, they provide an appealing means of
obtaining more reliable estimates of the valuation of a variety of neighborhood characteristics
(including school quality) that would otherwise be correlated with unobservables. In particular,
one of the most chalenging endogeneity problems in the literature relates to the correlation of

18 Under this interpretation, the interaction terms in the utility specification represent the additional
preferences of type 2 relative to type 1 households.
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neighborhood sociodemographic characteristics and unobserved housing and neighborhood
qudity, a correlation that is mechanica given the non-random sorting of households across
locations. To the extent that sorting with respect to school district boundaries is driven by
differences in school quality and neighborhood sociodemographics themselves, the use of
boundary fixed effects isolates variation in neighborhood sociodemographics that is uncorrelated
with variation in unobserved housing and neighborhood quality. Thus, the use of boundary fixed
effects provides an appealing way to ded not only with the corrdation of school quality with
unobservable neighborhood qudity, but aso that of neighborhood sociodemographics.

Based on this discussion, it is straightforward to incorporate boundary fixed effects into
our sorting model. To that end, we assign each house to a region r. When ahouseis closeto a
boundary between two school digtricts, it will fal into a boundary region and when a house is
more centrally located within a school digtrict, it will fal into a central region. Letting y, be a
region fixed effect for the region r to which house h belongs, we can re-write the utility function
shown in equation (1) as:

(17) I\(/Ihi)iX Vo =ay Xy -a p, +y X, e

Having accounted for a region fixed effect, x, now represents the unobserved quality associated
with the particular housing unit h within region r.

In extending this dentification strategy to the broader sorting model, an additiona issue
concerns the treatment of houses not near a school district boundary. In essence, while we seek
to use only the variation in the data at the boundaries to estimate preferences for school qudlity,
the logic of the choice mode developed in Section 2 requires the use of al houses in the choice
set. Notice, however, that given the specification of equation (17), equations (8)-(9) become

(18) d, =a X, - Q,, P, Ty, X,

and

.o o) aaf i 0
(19) [ :é A L Xy - &Q Ay Ly Py -
k=1 2 k=1 2

That is, the boundary fixed effect appears only in the mean indirect utility regression. Thus, the

first stage of the estimation procedure remains unchanged, returning estimates of the interaction

parameters and the vector of mean indirect utilities. In the second stage of the estimation
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procedure, (i.e., the estimation of equation (18)), we use only an appropriately weighted sample
of houses in boundary versus centra regions. Thus the estimation of the interaction
(heterogeneity) parameters in the utility function shown in equation (19) is based on the full
sample of houses, while the estimation of the mean preference parameters (those in equation (17))
is based only on across-boundary variation in prices.

At first glance it may appear that the indirect utility function specified in (18) and (19)
may lead to an overstatement of the interactions between certain household and choice
characteristics — eg., overstating the willingness of high-income households to pay for school
quaity — as the indirect utility function does not include interactions of household characteristics
and unobservable choice characterigtics. In fact, this problem is avoided by letting the coefficient
on price to vary with household characteristics, which in turn permits households with more
income, for example, to have a greater margina willingness-to-pay for unobserved housing and
neighborhood qudity. Suppose (19) did not have such interactions with price. Then high income
households would not be dlowed to place a higher value on unobserved qudity (postively
correlated with price), and the mode specification would force them to demand more school
quality, also postively correlated with unobserved quality, leading preferences for school quality
to be overstated. The more flexible specification that we adopt thus alows for the proper
estimation of heterogeneity in preferences for school quality, even in circumstances where school
qudlity is correlated with unobservable housing and neighborhood attributes valued more strongly
by some households versus others.

While the boundary fixed approach methodology provides an attractive way of
controlling for much of the correlation between unobserved housing/neighborhood quality and a
number of relevant neighborhood characteristics, including school quality, there are important
reasons to expect that such boundary fixed effects do not control for all of this correlation. In
particular, because housing and school qudity are both likely to be norma goods, for both their
own consumption and for the future re-sdle value of their homes, home-owners on the better
school quaity side of a boundary are likely more likely to invest in improving the quaity of their
housng unit. This introduces a postive bias between housng and school quality that is very
difficult to address given the fact that many of these improvements are likely to be unobserved in
the data® Thus, while the use of boundary fixed effects should control for much of the
corrdlation of school quaity with unobserved housing and neighborhood quality, we ill expect
the estimated preferences for school quality to be dightly overstated.

19 We do, however, show evidence below that the observed housing and neighborhood characteristics are
not markedly different on the high versus low side of the school district boundaries used in the analysis.
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4 DATA

Having laid out many of the issues concerning the equilibrium mode of sorting,
edimation, and identification, we now describe the data used in our analysis as well as some
empirical issues related to these data. Our analysis is facilitated by access to restricted Census
microdata for 1990. These restricted Census data provide the detailed individual, household, and
housing variables found in the public-use verson of the Census, but unlike the public-use data,
aso include information on the location of individual resdences and workplaces a a very
disaggregate level of geography. In particular, while the public-use data specify the PUMA (a
Census region with approximately 100,000 individuals) in which a household lives, the restricted
data specify the Census block (a Census region with approximately 100 individuals), thereby
identifying the loca neighborhood that each individua inhabits, as well as the characteristics of
each neighborhood, far more accurately than has been previoudy possible with such alarge-scale
data set.

We use data from six contiguous counties in the San Francisco Bay Area: Alameda,
Contra Costa, Marin, San Mateo, San Francisco, and Santa Clara. We focus on this area for two
main reasons. Firg, it is reasonably sdf-contained. Examination of Bay Area commuting
patterns in 1990 revedls that a very small proportion of commutes originating within these six
counties ended up a work locations outside the area; and similarly, a relatively small number of
commutes to jobs within the six counties originated outside the area. Second, the area is sizeable
adong a number of dimensions, including over 1,100 Census tracts, and amost 39,500 Census
blocks, the smallest unit of aggregation in the data. The sample consists of about 650,000 people
in just under 244,000 households.

The Census provides a wedth of data on the individuas in the smple — race, age,
educationd attainment, income from various sources, household size and structure, occupation,
and employment location.”® The Census data also provide a variety of housing characteristics:
whether the unit is owned or rented, the corresponding rent or owner-reported value, property tax
payment, number of rooms, number of bedrooms, type of structure, and the age of the building.
In constructing neighborhood characteristics, we begin by characterizing the stock of housing in
the neighborhood surrounding each house. Using the Census data, we aso construct
neighborhood racia, education and income distributions based on the households within the same

20 Throughout our analysis, we treat the household as the decision-making agent and characterize each
household’s race as the race of the ‘householder’ — typically the household’s primary earner. We assign
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Census block group, a Census region containing approximately 500 housing units. We merge
additional data describing local conditions with each house record, constructing variables related
to crime rates, land use, local schools, topography, and urban density. For each of these
measures, a detailed description of the process by which the origina data were assigned to each
house is provided in a Data Appendix. The ligt of the principad housing and neighborhood
variables used in the analysis, dong with means and standard deviations, is given in the first

column of Table 1.

Refining the House Price Variables Provided in Census

For a variety of reasons, the house price variables reported in the Census are ill-suited for
our anaysis. House values are self-reported and top-coded, and rents may reflect substantial
tenure discounts. Moreover, because we have implicitly defined the model and developed its
equilibrium properties in terms of a single price variable for both owner-occupied and rental
properties, we must relate house values to rents in some way.”* Consequently, we make four
adjustments to the housing price variables reported in the Census aiming to get a single measure
for each unit that reflects what its monthly rent would be at current market prices. We describe
the reasoning behind each adjustment briefly here, leaving a detailed description of the
methodology for the Data Appendix.

Because house values are self-reported, it is difficult to ascertain whether these prices
represent the current market value of the property, especialy if the owner purchased the house
many years earlier. Fortunately, the Census also contains other information that helps us to
examine thisissue and correct house values accordingly. In particular, the Census asks owners to
report a continuous measure of their annual property tax payment. The rules associated with
Proposition 13 imply that the vast mgority of property tax payments in Cdifornia should
represent exactly one percent of the transaction price of the house at the time the current owner
bought the property or the value of the house in 1978. Thus, by combining information about
property tax payments and the year that the owner bought the house, we are able to construct a

messure of the rate of appreciation implied by each household's self-reported house value. We

households to one of four mutually exclusive categories of race/ethnicity: Hispanic, non-Hispanic Asian,
non-Hispanic Black, and non-Hispanic White.

2L This requirement may seem more restrictive than it actually is. Note that we treat ownership status as a
fixed feature of a housing unit in the analysis - whether a household rents or owns is endogenously
determined within the model by its house choice. We allow households to have heterogeneous preferences
for home-ownership (a positive interaction between household wealth and ownership, for example, will

imply that wealthier households are more likely to own their housing unit, as we find below) and other
house characteristics. Thusthe use of a single house price variable does not impose any serious restrictions
on the model.
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use this information to modify house values for those individuals who appear to be reporting
values much closer to the original transaction price rather than current market value.

A second deficiency of the house values reported in the Census is that they are top-coded
at $500,000, a top-code that is often binding in California. Again, because the property tax
payment variable is continuous and only top-coded at $15,000, it provides information useful in
distinguishing the values of the upper tail of the ditribution.

The third adjustment that we make concerns rents. While rents are presumably not
subject to the same degree of misreporting as house values, it is ill the case that renters who
have occupied a unit for a long period of time generally receive some form of tenure discount. In
some cases, this tenure discount may arise from explicit rent control, but implicit tenure discounts
generdly occur in rental markets even when the property is not subject to forma rent control. In
order to get a more accurate measure of the market rent for each renta unit, we utilize a series of
local hedonic price regressions in order to estimate the discount associated with different
durations of tenure in each of over 40 sub-regions within the Bay Area.

Findly, we construct a single price vector for al houses, whether rented or owned. In
order to make owner- and renter-occupied housing prices as comparable as possible, we seek to
determine the implied current annua rent for the owner-occupied housing units in our sample.
Because the implied relationship between house values and current rents depends on expectations
about the growth rate of future rents in the market, we estimate a series of hedonic price
regressions for each of over 40 sub-regions of the Bay Area housing market. These regressions
return an estimate of the ratio of house values to rents for each of these sub-regions and we use
these ratios to convert house values to a measure of current monthly rent. Again, the procedure is
described in detail in the Data Appendix.

School Characteristics

While we have an exact assgnment of Census blocks to school didtricts, we have only
been able to attain precise maps that describe the way that city blocks are assigned to schools in
1990 for Alameda County. In the absence d information about within-district school attendance
areas, we employ four alternative approaches for linking each house to a school. The crudest
procedure assigns average school district characteristics to every house fdling in the school
district. A refinement on this makes use of distance-weighted averages. For a house in a given
Census black group, we caculate the distance between that Census block group and each school
in the school district. We then construct weighted averages of each school characteristic,

weighting by the reciprocal of the distance-squared as well as enrollment. As athird approach we
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smply assign each house to the closest school within the appropriate school digtrict.  In our
fourth and preferred approach, we adjust this closest school assignment procedure to ensure that
the predicted enrollment of each school as calculated by summing over the school-aged children
in each Census block group assigned to a school equals the actua enrollment of that school. We
describe this pocedure in detall in the Data Appendix. In practice, al four methods of defining
school characteristics yielded very similar results, with the estimates based on school district
averages reveding a small amount of aggregation bias. To keep the exposition of the results
manageable below, we smply report results for the fourth method described here.

As our measure of school quality, we use the average test score for each school, averaged
over two years. Averaging over two years helps to reduce any year-to-year noise in the measure.
When variables that characterize the sociodemographic composition of the school or surrounding
neighborhood are included in the analysis, the estimated coefficient on average test score picks up
what households are willing b pay for an improvement in average student performance a a
school holding the sociodemographic composition constant.  While the average test score is an
imperfect measure of school quality, it has the advantage of being easily observed by both parents
and researchers and consequently has been used in most analyses that attempt to measure demand
for school quality.

Boundary Fixed Effects

A number of empirical issues arise in incorporating boundary fixed effects into our
anadysis, following the description in Section 3. The first issue concerns the choice of jurisdiction
for which the boundaries are defined. While Black (1999) uses school attendance zones within a
school district, in the analysis presented in this paper we use boundaries between school districts
in the Bay Area®® A central feature of local governance in California helps to eliminate some of
the problems that naturaly arise with the use of school district boundaries, as Proposition 13
ensures that the vast mgority of school districts within California are subject to a uniform
effective property tax rate of one percent. A second issue concerns the width of the boundaries.
While a narrow band makes the assumption that unobserved neighborhood quality is the same on
opposite sides of the boundary more accurate, a wider band allows the use of more data. We
experimented with a variety of distances and report the results for 0.25 miles, as these were far
more precise due to the larger sample size.™

22 This difference implies that our results are not directly comparable to Black (1999). It is important to
keep this distinction in mind throughout our discussion of the boundary fixed effects.
23 See data appendix for details about the construction of the distance to the boundaries.
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Table 1 displays descriptive statistics for various samples related to the boundaries. The
first two columns report means and standard deviations for the full sample; the third column
reports means for the sample of houses within 0.25 miles of a school district boundary, the fourth
and fifth columns report means on the high versus low average test score side of the school
district boundary; the sixth column reports ttests for difference in means of fourth and fifth
columns; and the seventh column reports weighted means for the sample of houses within 0.25
miles of a school district boundary (we describe the weight below).

Comparing the first column to the third column of the table, it is immediately obvious
that the houses near school district boundaries are not fully representative of those in the Bay
Area as awhole. Houses near boundaries tend to be dightly more expensive, more often owner-
occupied, and larger in neighborhoods that are less dense and have lower crime rates than the
sample as awhole. To address this problem, we create sample weights for the houses near the
boundary according to the following procedure: Using a logistic regression, we first regress a
dummy variable indicating whether a house is in a boundary region on the vector of housing and
neighborhood attributes. Fitted values from this regression provide an estimate of the likelihood
that a house is in the boundary region given its attributes. We use the inverse of this fitted value
as a sample weight in subsequent regression analysis conducted on the sample of houses near the
boundary. Column 7 of Table 1 shows the resulting weighted means. As the numbers clearly
demongtrate, using these weights makes the sample near the boundary much more representative
of the full sample, column 7 typically being much closer to column 1 than column 3is.

The principa issue arising from Table 1 concerns differences across school district
boundaries, which are displayed in columns 4 and 5. Comparing the average characteristics of
houses with 0.25 miles of the boundary on the high versus low school quality side reveals that
houses on the high school quality side cost $53 more per month and are assigned to schools with
a 43-point average test score increase. The standard deviation of the test score measure is 74, so
this trandates into a raw mean marginal willingness to pay for a one standard deviation increase
in school quality of approximately $91 in monthly rent or $24,100 in house vaue® The
remaining differences in average housing characteristics on opposite sides of the school didtrict
boundary are fairly smal (relative to the overdl standard deviation of each variable), but the

24 As described above, we construct asingle price vector for all houses, whether rented or owned. Because
the implied relationship between house values and current rents depends on expectations about the growth
rate of future rents in the market, we estimate a series of hedonic price regressions for each of over 40 sub-
regions of the Bay Area housing market. These regressions return an estimate of the ratio of house values
to rents for each of these sub-regions and we use the average of these ratios for the Bay Area, 264.1, to
convert monthly rent to house val ue for the purposes of reporting results at the mean.
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effect of these differences on housing prices is generdly in the direction of increasing prices on
the high school qudity side of the boundary.

More significantly, houses on the high school quality sde of the boundary are more
likely to be inhabited by white households and households with more education and income. This
pattern is evident when looking at the difference in means test: while percent white, percent high
education and average income of the neighborhood have t-stats of 5.14, 9.62 and 10.23
respectively, ownership, elevation and number of rooms have 1.04, 1.14 and 3.13. These types of
across-boundary differences in sociodemographic composition are what one would expect if
households sort on the basis of preferences for school quality, thereby leading those with stronger
tastes or increased ability to pay for school quality to choose the higher school quaity side of the
boundary

Figures 3 to 6 summarize the points made in Table 1. Figure 1 shows differences in
average test scores close to the boundaries. Each point in Figure 1 represents the average test
score assigned to all houses located a given distance, within .01 mile ranges, from the boundaries
- negative ranges indicate houses located on the lower test score side of the boundary. By
construction, there is a clear discontinuity close to the boundaries, and the magnitude of this jump
is around 40 points. The same picture is congtructed in Figure 4 for house prices. It is evident
that the discontinuity is less pronounced close to the boundaries, where cell sizes are smdll, but it
increases as we move further into the high score side. As pointed out by Kane, Staiger and
Samms (2003), this effect may be induced by the negative selection of households on the low
score side - i.e,, those households may have lower income and educationa levels. To the extent
that the neighborhood composition on the low score side affects prices and neighborhood
composition in the high score side, we should not expect to see a dramatic discontinuity in prices
at the boundaries. Instead, we observe an increase in prices as we move further from the
boundary line.

In order to directly identify the capitalization of school qudity into house prices using the
measured discontinuities a the boundary, al other relevant variables would need to be continuous
at the boundary. Figure 5, however, shows that this is not true for average household income.
Families on the higher side of the boundary have incomes that are on average $3,000 - $4,000
higher than families on lower side, providing clear evidence of sorting. This is not the case for
other variables, such as number of rooms. Figure 6 shows that the discontinuity for the number
of rooms is much less pronounced, indicating that the use of boundary fixed effects is likely to
control for much of the correlation of school quality with unobserved features of housing and
neighborhood quality unrelated to household sorting.
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In proceeding to the empirical analysis below, we draw two main conclusions from Table
1 and Figures 3 to 6. First, there is a significant amount of sorting with respect to school district
boundaries on the basis of race, education, and income. Consequently, models that do not take
residential sorting into consderation are likely to greatly overdate the capitdization of school
qudity into housing prices. Second, the boundary fixed effects likely absorb much of variation in
unobserved neighborhood quality unrelated to school quality and sorting.

5 RESULTS

We begin this section by presenting a series of estimates of the residential sorting model.
In so doing, we describe our instrumental variables strategy for dealing with the endogeneity of
house prices, before offering a detailed interpretation of the results. We then present a
corresponding series of hedonic price regression — i.e., a restricted version of the sorting model,
as these can be compared with results in the prior literature. In doing so, we draw attention to and
explain important biases that appear in earlier work making use of our more general estimation

framework.

Estimates of the Residential Sorting Model

Estimation of the full model proceeds in two stages, as described in Section 3, the first
stage recovering interaction parameters and choice-specific constants. Table 2 reports estimates
of the interaction parameters for a specification that does not include the variables that
characterize neighborhood sociodemographic composition.  This specification smultaneoudy
controls for the effect of each of a series of household characteristics (income, education, race,
work status, age, and household structure) on a household’s marginal willingness-to-pay for each
of a series of housing and neighborhood attributes. While the numbers reported in Table 2 are not
directly interpretable in dollar terms (we make this conversion in Table 6 below), the estimates of
the coefficients reved significantly positive interactions of household income, education, and the
age of the householder with school quaity and significantly negative interactions with school
quality if a household has children or is Asian, Black, or Hispanic versus White. The remaining
pattern of signs and megnitudes in the table are what one would expect in every important case,
with, for example, utility declining rapidly in commuting distance for working individuas and the
interaction of income and price revealing a positive income eadticity of demand far housing,
especialy for home-ownership and larger houses.

Table 3 extends the andyss of Table 2 by including a series of neighborhood
sociodemographic characteristics.  The incluson of variables characterizing neighborhood
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sociodemographic composition reduces the magnitude of the interaction of income with school
qudity by 60 percent, of education with school quality by amost 75 percent, and of Black and
Hispanic with school quality by 80-90 percent. These reductions are not surprising in the
presence of strong sorting socid interactions. If, for example, more highly educated households
want to live together and have a relatively high taste for school quality, households will stratify
on the basis of education in equilibrium, with more highly educated households living in better
quality school districts. If one did not account for the fact that part of the corresponding higher
prices in these neighborhoods was due to the willingness of these households to pay to live with
other highly educated households, one would expect to severely overstate the preference of highly
educated households for school quality, as in Table 2. The results for household structure also
appear more reasonable in the specification of Table 3 versus Table 2, as households with
children now have a dgnificantly pogtive interaction with school quality rather than a
sgnificantly negative one.

Forming an Instrument for Price

Having estimated the vector of mean indirect utilities in the first stage of the estimation
procedure, the second stage of the estimation procedure uses these in a decomposition of the
mean preferences parameters shown in equation (8), re-written in equation (17) to include
boundary fixed effects. For general forms of the utility function, both housing pice, py, and
mean utility, dy, will be correlated with the unobserved housing/neighborhood qudity, X, in
equilibrium. In this case, the estimation of equation (8) requires an additiona variable that is
correlated with p;, but not with unobserved housing/neighborhood qudity, Xp.

We develop a type of instrument that rises naturally out of the sorting model when
households value only the feastures of their own house and attributes of the surrounding
neighborhood, where the size of this neighborhood could be potentidly quite large. That is, as
long as households do not value the features of housing and neighborhoods beyond some
threshold distance from their own home when making their residentiad location decison, the
exogenous attributes of houses and neighborhoods that are located beyond this threshold make
suitable ingruments for housing price.  In developing this type of instrument, we exploit an
inherent feature of the sorting process — that the overal demand for houses in a particular
neighborhood is affected not only by the features of the neighborhood itself, but also by the way
these features relate to the broader landscape of houses and neighborhoods in the region. Thus
we assume that the exogenous attributes of houses and neighborhoods a sizeable distance away
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from a house influence the equilibrium in the housng market, thereby affecting prices, but have
no direct effect on utility.

In practice, the precison of the estimation is improved significantly when the logic of
this IV strategy is used to construct a single instrument for price that approximates the optimal
instrument. The optimd instrument for p;, in the mean indirect utility regression (equation (8)) is
given by:

@ . 9=Elp,1W
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e

- that is, the expected value of py, conditionad on the information set W, which contains the full
distribution of exogenous choice characteristics (X,) and individual characteristics (Z). Notice
that this instrument implicitly incorporates the impact of the full distribution of the set of choices
in exogenous characteristic space as well as information on the full distribution of observable
household characteristics into a single instrument for price.

For computational purposes, we use a well-defined instrument that maintains the inherent
logic of this optima nstrument while being straightforward to compute.  This ‘quas-’ optima
instrument is based on the predicted vector of market-clearing prices calculated for an initia
estimate of the parameter values with the vector of unobserved characteristics x set identicaly
equal to zero and using only the exogenous features of locations®® Operationaly, the estimation
proceeds as follows:

1. Include a full set of variables in the model that account for housing and neighborhood
atributes in the region that households vaue directly when making ther location
decison — for the analysis conducted below, we assume households care about the land
use within five miles of their house.

2. Using a conjecture of the moddl’s parameters, setting x,=0 for dl h, and including only
exogenous choice characteristics in X, calculate the vector of housing prices that clears
the market, P (X,,Z'). In practice, we make a reasonable conjecture as to the price
coefficient and then simply run equation (8) via OLS. In calculating the vector of market
clearing prices, we use only variables that describe land use, not those related to
neighborhood sociodemographic composition, tests scores, or crime.

3. Using p’ asan instrument for p, estimate the mean indirect utility regression.?®

5 This condition corresponds to using the prediction at the mean instead of the expected value.
28 |n practice, we repeat Steps 2 and 3 of this procedure using the estimated parameters from step 3 to
construct a new price instrument in step 2 for the next iteration. While this iterative process is not
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Like the optimal instrument, the instrument that we propose provides a measure of the
way that the full landscape of possible choices affects the demand for each house/neighborhood.
In essence, this instrument extracts additiond information from W than that which is contained in
the vectors of choice characteristics X aready appearing in estimating equation (8). In the
regressions reported below, we include a full set of controls for the characteristics of the house
itself and its neighborhood as well as five variables that described land use”” in each of the 1, 2, 3,
4, and 5 mile rings around the house. In sum, the additional information embedded in our
instrument derives from the exogenous features of the land use in a region beyond five milesfrom
the house in question. Importantly, this information is collapsed into a single instrument that uses
this information in a concise manner consistent with the logic of the sorting model.

Table 4 reports first stage price regressions analogous to the hedonic price regression
reported later in Table 7 but including the optimal price instrument. Table 4 presents the results
from six price regressions and these same six specifications form the basis for the analysis that
follows. The dependent variable in these regressions is our constructed monthly house price
measure, which equals monthly rent for renter-occupied units and an imputed monthly rent for
owner-occupied units (see Section 4 for more details). Results are reported for the full sample
and for a sample of houses within 0.25 miles of school district boundaries, with and without
including fixed effects. For each of these three specifications, results are reported for a
specification that does not then does include five neighborhood sociodemographic variables:
average income, percent of households with a college degree, percent Asian, percent Black, and
percent Hispanic, each measured at the Census block group level. In al cases, when the sample
of houses is restricted to those within 0.25 miles of a boundary, sample weights (as described in
Section 4) are used in order to make this sample as close to representative of the full sample as
possible.

The price instrument, which is derived entirely from the exogenous characteristics of the
aternatives and the distribution of household characteristics in the population, adds significantly
to the predictive power of these regressions. In each specification, the optimal price instrument is

necessary to ensure consistency, it does ensure that the final estimates are not sensitive to our initial
conjecture of the coefficient on price. For this reason, we believe that thisiterative procedureislikely to be
more efficient than applying the procedure once, but do not have a proof of this.

27 percent industrial; Percent commercial; Percent residential; Percent open space (lakes and parks); Percent
other.
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strongly predictive of price, over and above the set of variablesincluded in X, increasing the R of
each regression by approximately 2-4 percentage points.”®

Estimates of the Mean Indirect Utility Equation

Using the optimal price instrument as an instrument for price, we report in Appendix
Table 1 the results of six specifications of the mean indirect utility regresson that forms the
second stage of the estimation procedure. For these regressions, we use the estimated d vector
from the specification shown in Table 2 when sociodemographic characteristics are excluded and
in Table 3 when they are included. Table 5 reports the implied measures of the mean willingness
to pay for school quality that result from these six specifications. The estimates are generated by
dividing the coefficient associated with each choice characteristic in the d regressions by the
coefficient on price; the six specifications reported in Table 5 are analogous to those reported in
Table 4.

No clear changes emerge when the sample is reduced to only those houses near a school
digtrict boundary. When neighborhood sociodemographic characteristics are excluded, for
example, the implied margind willingness-to-pay for a one standard deviation increase in school
qudity moves from $126 in monthly rent ($33,300 in house vaue) to $123 in monthly rent
($32,500 in house value), when the sample is restricted to houses near a boundary. The estimated
mean MWTP for a one standard deviation in school quality declines to $82 ($21,500) when the
boundary fixed effects are included in the anadlysis. This more or less mirrors the rav MWTP of
$91 ($24,100) caculated using the descriptive statistics in Table 1. Thus, contralling for a host of
fixed housing and neighborhood characteristics does very little to this estimate.  Including
neighborhood sociodemographic characteristics in the analysis dramatically reduces the estimated
MWTP for school qudity to $20 in monthly rent ($5,300 in house value) when boundary fixed
effects are not included in the regression and $26 ($6,900) in monthly rent when they are
included.

The find two specifications of Table 5 aso show the impact of including boundary fixed
effects on the estimates of mean preferences for neighborhood sociodemographic characteristics.
Comparing the coefficients on the neighborhood sociodemographic characteristics with and
without the inclusion of boundary fixed effects (columns 5 and 6) yields the pattern of results one
would expect if the boundary ixed effects control for unobserved components neighborhood

2 As aside note, it is also important to point out that the coefficients on the other characteristics do not
have much meaning as they represent the effect of these characteristics on price controlling for the
estimated market-clearing price given only the exogenousattributes of the set of alternatives.
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quality unrelated to the sorting of households across the boundary. In particular controlling for
fixed effects reduces the coefficient on percent Black from —$319 to —$267; increases the
coefficient on percent Hispanic from $18 to $139; changes the sign of the coefficient on percent
Asian from $96 to $155; reduces the coefficient on the percent of households with a college
degree from $206 to $138; and reduces the coefficient on average neighborhood income
(/$10,000) from $96 to $88 per month. Thus, while the boundary fixed effects do not seem to be
effective in controlling for differences in the sociodemographic composition across
neighborhoods, they do seem to be effective in controlling for nore fixed aspects of unobserved
neighborhood quality, and thus provide a way of properly estimating preferences for
neighborhood sociodemographic characteristics in the presence of this important endogeneity
problem.

That the estimated mean MWTP for a one standard deviation increase in school quality of
$26 in monthly rent or $6,900 in house value is relatively smal may relate to the fundamenta
informational problem that households face in attempting to distinguish the quality of a school.
The ability of households to glean from average test score data the quaity of a school as opposed
to increased performance due directly to its sociodemographic composition may be very difficult
indeed; empirical researchers know that to do this well requires an immense amount of data.
Consequently, to the extent that households have difficulty measuring school quality, one would
not expect them to value it much when making their residentia location decison. Put another
way, to the extent that households instead use the posted average test score or the
sociodemographic composition of the neighborhood as proxies for school quality when making
their location decison, the location decision will be driven much more heavily by neighborhood
sociodemographic variables rather than by school quality itself.?

One concern is that the average test score used in the analysis may be a noisy measure of
student performance and consequently that neighborhood sociodemographic differences partially
capture unobserved differences in school quality as well. To address this issue, we compare the
results presented above, which average a school’s average test score over two years to results
based on a test score for only the first year of these two years of data. We find no difference in
the estimate when the test score is based on a one- versus two-year average.*

29 Rothstein (2002) tries to disentangle parental choice of school quality in two components: school
effectiveness and peer groups. Instead of modeling residential location and schooling decisions, he uses
variation aross school districts applied to a set of 1994 SAT-takers, finding little evidence that parents
choose schools on the basis of school effectiveness.

30 Kane, Staiger and Samms (2003) point out that the change in average test scores form year to year
exhibits a great deal of noise unrelated to actual school quality. Not surprisingly, the level exhibits far less
noise.



Heterogeneity in Willingness-to-Pay

Table 6 reports the implied estimates of the heterogeneity in MWTP for school quality
and neighborhood sociodemographic characteristics across households with  different
characteristics for our preferred specification, which includes both neighborhood
sociodemographic characteristics and boundary fixed effects. Focusing first on the heterogeneity
in tastes of school quality, a household's willingness-to-pay increases with income, the presence
of children, education, employment, and age. Black households have a sgnificantly lower
willingness to pay for school quality relative to White households, athough this may result in part
from unobservable difference in, for example, wedlth that are not included in this analysis.

The presence of children increases demand for house size and school quality, but
decreases demand for owner-occupied and newer housing, both of which might proxy in part for
housing quality. That the presence of children generally decreases demand for housing quality is
most likely due to the fact that disposable income declines as a result of having children. The
increased demand for house size and school quality is especially noteworthy given this decline in
disposable income. More income and education increases demand for al aspects of housing and
school qudity as well as for more educated and higher income neighbors.  College-educated
households in particular have a strong preference to live near other college-educated households.

Findly, Table 6 reveds strong segregating racial interactions, with households of each
race preferring to live near others of the same race. The $97 estimate listed in the fourth row and
fifth column of the table, for example, implies that Black (versus White) households are willing
to pay $97 more per month to live in a neighborhood that has 10 percent more Black versus
White households. It is important to point out that this is a difference between the positive
MWTP of Black households for this change and the negative MWTP of White households. It is
also important to point out that these interactions pick up any direct preferences for living near
others of the same race (e.g., a recent immigrant from China may want to interact with neighbors
who also have immigrated from China) as well as any unobservable neighborhood or housing
amenities valued more strongly by households of this group (e.g., recent immigrants from China
may have similar tastes for shops, restaurants, and other neighborhood amenities). As discussed
below, it is these strong segregating racial interactions that cause the large difference between the
estimates of the neighborhood racia characteristics in the hedonic price regressions and the mean
MWTP estimates derived from the broader choice model.
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Hedonic Price Regressions

Having set out our preferred estimates, it is instructive to compare these with a series of
hedonic price regressions that correspond to estimating a model using the nai ve assumption that
households have homogeneous preferences and there is no sorting across boundaries. These
hedonic price regressions alow us to explore a number of aternative assumptions about the use
of boundary fixed effects, the sample, and the effect of including various additional controlsin a
setting where it is easy to compare results across models. We aso show additional evidence that
the incluson of neighborhood sorting variables changes the results dramaticaly while smply
controlling for boundary fixed effects does not.

Table 7 presents the results from six hedonic price regressions analogous to those
reported in Table 5 for the full sorting model. As the first row of Table 7 makes clear, the
estimated mean MWTP for a one standard deviation increase in school quality as estimated by the
hedonic price regressions is generdly dightly more than the estimate obtained from the full
sorting moddl. For the specification that excludes both boundary fixed effects and neighborhood
sociodemographic characteristics, the mean MTWP for a one standard deviation increase in
school quality estimated using the sorting mode is $123 in monthly rent as compared to the $145
estimate obtained using the standard hedonic price regresson. When only boundary fixed effects
are included, the estimated mean MWTP is $82 as compared with $101 in the hedonic price
regresson. And, finaly, when neighborhood sociodemographic characteristics and boundary
fixed effects are included in the model, the estimated mean MWTP rises from $26 ($6,900 in
house value) to $28 in monthly rent ($7,400).

Because of the unusualy rich nature of our data, the estimates reported for our preferred
specification of the hedonic price regressons in Table 7 (the final column) cannot be compared
directly with the results in the prior literature. Black (1999), for example, was never able to
include neighborhood sociodemographic variables in her preferred specification because the
public use Census data do not match school attendance areas. In comparing our estimates without
sociodemographic variables with the Black (1999) results, the corresponding numbers are very
similar, athough as the fina three columns of Tables 5 and 7 make clear, these can be quite
mideading as to the true extent of any capitalization. Thus the restricted access Census data
alow us both to control properly for neighborhood sociodemographic characteristics as well as
modd the sorting of households across locations, which is made possible by the information
matching households with their housing units in the restricted version of the Census.

The Biasin the Hedonic Price Regression

32



It is important to point out that we can sign the direction of the bias in the hedonic price
regression smply under the assumption that price enters indirect utility negatively (aq, > 0). Re-

writing equation (16) as:

(21 P, :%%OP X, - %Opdh +%0pxh,

it is immediately obvious that the hedonic price regression includes a negative function of the
mean indirect utility that a house provides in the error term. Thus, to the extent that an included
regressor is postively corrdlated with the vector of mean indirect utilities, the hedonic price
coefficient is biased downwards and consequently understates mean preferences for the attribute
in question. Table 8 shows the partia correlations of key choice attributes with d for various
specifications of the sample and inclusion of boundary fixed effects. In each case, the reported
partial correlation conditions on the full set of covariates used in the hedonic price regression
including neighborhood sociodemographic characteristics. Focusing on the final column, which
includes the boundary fixed effects, the negative correlation between d and most of the variables,
especially the percentage of a block group that is Black and the average income of a block group,
implies that a hedonic price regresson will tend to overstate mean preferences for these
characteristics. The correlation of d with average test is only dightly negative and, consequently,
we expect the mean MWTP for average test score that we estimate using the reterogeneous
preferences model to be dightly smaller than that estimated via the hedonic price regression. The
one partid correlation that is positive in the final column of Table 8 is that with the percentage of
the block group that has a college degree or more. Consequently, this coefficient will increase in
moving from the hedonic price regression to the estimated mean preferences obtained from the
equilibrium choice modd.

Comparing the hedonic price regressions reported in Table 7 to the mean MWTP
estimates derived from the sorting model in Table 5 reveals the expected pattern of biases given
the correlations reported in Table 8. It is worth exploring why a difference arises between these
specifications for certain housing and neighborhood attributes and not others. Comparing results
of our preferred specification (column 6) in both tables, which includes both boundary fixed
effects and neighborhood sociodemographic characteristics, reveas that the estimates related to
housing characteristics, school qudity, and crime tend to be dightly overstated in the hedonic
price regression, while those related to neighborhood sociodemographic composition and race in

particular change dramatically. Here, the analysis of Figure 1 is helpful in understanding why



thisisthe case. Consider, for example, the estimated mean coefficient on Percent Black, which is
-$267 in the full sorting mode as opposed to only -$41 for the hedonic price regression. For
smplicity, assume that neighborhoods are completely segregated, so that the equilibrium price of
a Black neighborhood is driven by the MWTP of the Black household with the lesst MWTP for a
Black neighborhood (or, aternatively, the White household with the greatest MWTP). Here, the
hedonic price regression returns the MWTP of the household on the margin between choosing a
Black versus White household, which in this case is substantialy greater than the MWTP of the
mean household, which is estimated in the more genera sorting model. Put another way, a much
lower differentia in price between Black and White neighborhoods is required to equilibrate the
housing market than would be required to make the mean household indifferent between these
neighborhoods.

The case of school qudity is aso worth discussing in some detail. Because the Bay Area
contains over 700 schoals, the equilibrium difference in housing prices between each of the
neighborhoods associated with each school is more appropriately characterized by Figure 2,
which again smplifies the problem to one dimension of the choice characteristic space. In this
case, the equilibrium difference in price between each pair of schools ranked according to quality
is the MWTP of the household on the corresponding boundary between schools. These
equilibrium prices are represent by the p;” terms on the vertical axis. If there are roughly an equal
number of students in each school, averaging the equilibrium price over dl of the houses in the
sample corresponds roughly to the mean MWTP and consequently there is only a dight
difference between the estimates returned from the model with heterogeneous preferences and the
hedonic price regression.

In genera, when we can view the choice problem as single-dimensiond, one would
expect the hedonic price regression to diverge from mean preferences for choice characteristics
(especialy those in fixed or limited supply) for which the preferences of the margina household
differ systematically from those of the mean household in the population. Which household is on
the margin depends explicitly on the set of dternatives and the attributes available in the market
as well as on the distribution of households and their preferences. Consequently, the valuation of
attributes returned by the hedonic price regression will dgpend on these distributions, especially
for certain types of attributes. It is important to stress that the broader sorting mode explicitly
accounts for the digtribution of characteristics in the population as wel as in the set of
alternatives.

The intuition that derives from viewing the choice problem as single-dimensond

abstracts from the fact that in making their location choices, households choose over discrete



bundles of goods (e.g., housing attributes, neighborhood attributes, commuting distance). In fact,
the main argument for using a discrete choice versus hedonic moddl of demand is precisely that
the set of available bundles may not span important subspaces of the multi-dimensiona attribute
gpace. This bundling issue is relevant when examining the change from the hedonic regression
for the percentage of neighbors with a college degree. In this case, the estimated mean MWTP is
greater than the corresponding coefficient in the hedonic price regression. This suggests that the
mean household would generaly want to increase its consumption of college-educated neighbors
at the equilibrium price. In practice, however, because college-educated households themselves
demand more housing and neighborhood attributes, this may be difficult to do without aso
increasing the consumption of these other goods. Consequently, because the single residentia
location decision determines a full bundle of goods, households may not be able to perfectly
satisfy their preferences for any particular element of this bundle even if they are willing to pay
the implied margina price for that element, especidly when the eements of the bundle are
correlated. In this case, increasing one's consumption of percent college educated will tend to

imply increases in the consumption of other housing and neighborhood attributes.

6 SIMULATIONS

With estimates of the distribution of preferences for school qudity and neighborhood
sociodemographic composition in hand, our equilibrium framework can then be used as a tool for
exploring a series of economic and policy questions related to equilibrium in the housing market.

In this section, we illustrate the power of the equilibrium framework by exploring the
capitalization of an exogenous change in the average test score for each school throughout the
metropolitan region. For each school, we calculate both a ‘partia equilibrium’ increase in house
vaues that accompanies a rise in school quality, holding neighborhood sociodemographic
measures constant, and a ‘general equilibrium’ increase that accounts for the way that
neighborhood sociodemographic characteristics would change in moving to a new sorting
equilibrium.®* The differences between the partial and general equilibrium estimates inform us as
to the importance of a socia multiplier in the overall elagticity of demand faced by each schoal.
Such a social multiplier arises because the exogenous change in school quality induces higher

income and more educated to sort into the corresponding neighborhood, thereby leading to a

31 We do not model the dynamics of household mobility directly and, consequently, the household mobility
that corresponds to the movement to a new equilibrium may be expected to take place over a number of
years. As long as these movements are anticipated following the exogenous increase in school quality,
however, house values should move close to their new equilibrium levels almost immediately.
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further increase in house prices. Our preference estimates aone indicate that this type of
multiplier may be powerful.

In Section 5, we drew attention to a number of problems with estimating household
preferences that had not been adequately addressed in prior work. Here, it isimportant to stress
that, even if these problems had been solved and reliable preference estimates had been obtained,
these estimates would not provide a useful indication as to the full capitdization effect. As we
show in this section, the partid equilibrium effect is dgnificantly smaller than the genera
equilibrium effect that alows neighborhood sociodemographics to adjust. Thus the full sorting
model is needed not only as a way of properly estimating preferences but also for recovering a
reliable estimate of the capitalization of an exogenous change in school qudity into housing
prices, an exercise for which a hedonic price regression naively seems well suited.

Simulation Details

Each of the smulations that we conduct begins by raising the average test score of a
given school by one standard deviation (74 points). In this counterfactua environment, we
caculate a new equilibrium for the model. Here, an equilibrium consists of a set of location
decisions for each household and a set of housing prices such that (i) each household's decision is
optimal given the decisions of al other households, and (ii) the set of housing prices clears the
market.

The basic structure of the smulations consists of a loop within a loop. The outer loop
calculates the sociodemographic composition of each neighborhood, given a set of prices and an
initid sociodemographic composition of each neighborhood. The inner loop caculates the
unique set of prices that clears the housing market given an initia sociodemographic composition
for each neighborhood. Thus for any change in the primitives of the model, we first calculate a
new set of prices that clears the market; as discussed in Section 2, Berry (1994) ensures that there
is a unique set of market clearing prices. Using these new prices and the initial sociodemographic
composition of each neighborhood, we then calculate the probability that each household makes
each housing choice, and aggregating these choices to the neighborhood level, calculate the
predicted sociodemographic composition of each neighborhood. We then replace the initia
neighborhood sociodemographic measures with these new measures and start the loop again —
i.e, cdculate a new sat of market clearing prices with these updated neighborhood
sociodemographic measures. We continue this process until the neighborhood sociodemographic

measures converge. The set of household location decisions corresponding to these new



measures along with the vector of housing prices that clears the market then represents the new
equilibrium.*

It is important to point out that because the modd itself does not perfectly predict the
housing choices that individuals make, the neighborhood sociodemographic measures initialy

predicted by modd, Z """, will not match the actual sociodemographic characteristics of each

neighborhood, Z/°™"".  Consequently, before caculating the new equilibrium for any

smulation we first solve for the initia prediction error associated with each neighborhood n:

— 5 ACTUAL _ 5 PREDICT
22 w,=Z, -Z,

In solving for the new equilibrium, we add this initid prediction error w;,, to the sociodemographic
measures calculated in each iteration before substituting these measures back into the utility

function.

Adjusting Crime Rates and Average Test Scores

Because some neighborhood attributes, such as crime rates and average test scores,
depend in part on the sociodemographic compasition of the neighborhood, it is natura to expect
these neighborhood characteristics to adjust as part of the movement to a new sorting equilibrium.
Getting precise measures of the impact of neighborhood sociodemographic characteristics on
crime rates and test scores is, of course, an exceedingly difficult exercise, as selection problems
abound. For example, an OLS regression of crime rates on neighborhood sociodemographic
characteristics amost certainly overstates the role of these characteristics in producing crime as it
ignores the fact that households sort non-randomly across neighborhoods. As aresult, we take an
approach that seeks to provide bounds for the characteristics of the new equilibrium that results
for each of our smulations. For one bound, we calculate a new equilibrium without alowing
crime rates and average test scores to adjust with the changing neighborhood and school
sociodemographic compositions.  For the other bound, we calculate a new equilibrium, adjusting
crime rates and average test scores according the adjustments implied by an OLS regression of
the crime rate and average test score on neighborhood and school sociodemographic composition.

32 While this procedure always converges to an equilibrium, the model does not guarantee that this
equilibrium is generically unique. In all of the calculations presented in this paper, we report results that
start from the initial equilibrium and follow the procedure summarized here. In general, the counterfactual
simulations conducted do not change the overall economic environment very much at all, and
consequently, we believe that this procedure yields reasonabl e results.
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These smple production functions are shown in Appendix Table 2, with dl of the variables
constructed to have mean zero and standard deviation one. The first bound will understate the
impact of sociodemographic shifts on the implied crime rate and average test score in each
neighborhood, while the second bound will tend to overstate the impact of these
sociodemographic shifts. As the results below indicate, these bounds provide atight range for the
predictions from our smulations.

Partial and General Equilibrium Capitalization

Table 9 reports the distribution of average house price changes in the neighborhood
corresponding to each school that result from increasing the average test score of that school by
74 points (1 standard deviation).*® The partia equilibrium results reveal a mean capitalization
estimate of $27.10 per month ($7,200 in house value) and a median estimate of $26.40 per month.
Not surprisingly, these numbers closdly resemble the estimated mean MWTP in our preferred
specification of $26 per month and in the hedonic price regression of $28 per month. Thus, the
hedonic price regression comes close to measuring the mean partial equilibrium capitaization of
amargina change in school quality. The genera equilibrium results reveal a mean capitaization
estimate of $46-48 per month ($12,100-$12,600 in house vaue) and a smilar median estimate.
Thus, the full genera equilibrium capitdization of school qudity is 70-75 percent greater than the
direct (partia equilibrium) effect of school quality on housing prices.

The table aso shows changes in sociodemographics for the school neighborhoods where
test scores have been increased. Increasing test scores leads to an increase in the proportion of
high-income households in the relevant neighborhood and a reduction in the proportion of poor
households. The change is magnified comparing the genera equilibrium change to that in partial
equilibrium, where the sociodemographics are not allowed to adjust fully. For instance, while the
change in the proportion of highly educated households rises by 0.7 percentage points in partial
equilibrium, it rises by 1.6-1.7 percentage points in generd equilibrium. In line with this change,
a one standard deviation increase in its test score would raise average incomes in a school’s
vicinity by an average of $1050 in partid equilibrium, and $1650-$1770 in generd equilibrium.
And in terms of race, the proportion of white households rises while the proportion of black
households fals, the former by over one percentage point, the latter by 0.7-0.8 percentage points
in genera equilibrium.

3 In each simulation, average house prices in the Bay Area as a whole are constrained to equal the pre-
simulation level.



The other dignificant feature of these smulation results is the heterogeneity in
capitalization across the metropolitan area.  In generd equilibrium, the price increase
accompanying a one standard deviation increase in school quality is roughly twice as large at the
90" percentile ($56.80-$59.10) as at the 10™ percentile ($28.80-$29.60). These numbers, which
reflect both the underlying heterogeneity in the population in preferences for neighborhood
sociodemographic characteristics as well as school quality, again emphasize the importance of
using the broader heterogeneous preferences model when exploring questions related to the
demand for school quality. Partia equilibrium estimates are unlikely to be reliable.

7 CONCLUSION

This paper has developed a comprehensive framework for recovering heterogeneous
preferences for attributes of schools and neighborhoods, drawing attention to two important and
related considerations in empirical work: the notion that households sort on a non-random basis
across neighborhoods, and the notion of equilibrium.

The idea that households sort non-randomly is far from new, but it has been given
insufficient attention in empirical applications. Using very rich data relating to household
choices, we have presented direct evidence that significant sorting does occur, and in a manner
that one would expect. For example, a the boundary between high and low quality school
districts, higher income and better educated households sort onto the ‘high’ side of the boundary.

Sorting gives rise to difficult challenges for estimation. To address these, we have set out
a new approach to estimating preferences for characteristics that are dependent on the way that
households sort, including house prices, neighborhood sociodemographics and school qudity.
Here, we build on the discrete choice literature, modeling the household sorting process directly,
aso drawing on recent developments in the 10 literature that alow households to have
preferences over unobservable choice characteristics. This is important: in any data set,
researchers are unlikely to observe neighborhood qudity entirdly, and ignoring the correlation of
house prices and neighborhood unobservables, for example, is likely to lead to significant biases
in estimates in willingness-to-pay.

Estimating our sorting model makes significant data demands. In this regard, we have
been fortunate to have access to a vast data set on a large metropolitan area, providing detailed
information on the characteristics and actual housing and neighborhood choices of a very large
sample of households. Our estimation results make three things very clear. Firg, it is essential to
control directly for detailed neighborhood sociodemographics when estimating household

valuations of important choice characteristics. In prior work, researchers have often been unable
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to control for these directly, but the falure to do so involves a fundamental misspecification,
leading to more than a 200 percent overstatement of the mean margina willingness to pay for
school qudlity in our data

Second, heterogeneity in preferences is an important phenomenon. We would not expect
households with children to have the same preferences for school quality as households without,
and they do not. Further, we find evidence of very strong socid interactions — highly educated
households, for instance, are willing to pay a much higher price to live with other highly educated
households than those who are not so well educated. Such heterogeneity in preferences implies
that smple hedonic price regressons will typicaly not return average preferences, for reasons
discussed at some length in Section 3 — and in fact we find that the use of simple hedonic price
regressions leads to significant biases in the estimation of mean preferences for neighborhood
sociodemographic characteristics. Preference heterogeneity aso has very important implications
for the interpretation of the results, to be discussed shortly, as it gives rise to strong multiplier
effects in genera equilibrium.

Third, given the importance of heterogeneous preferences in driving sorting and the
likelihood that households sort, in part, on the basis of unobservables, it is incumbent on the
researcher to address an important endogeneity problem - namely the correlation of neighborhood
unobservables and observed neighborhood sociodemographics. Here, we have adapted an
approach dready used in the hedonic price literature to control for the likely correlation of school
qudity and unobserved neighborhood quality using boundary fixed effects, showing how it can
profitably be applied to the problem of estimating consstently the vauation of neighborhood
sociodemographic composition. The essentid idea is intuitive: having shown that important
sociodemographics are discontinuous at boundaries due to household sorting, boundaries become
useful places to learn about the valuation of such variables; particularly, boundary fixed effects
provide an attractive way of absorbing out fixed unobservable components when estimating
preferences for these sociodemographics. Qur estimates lend support to the idea that this is a
promising strategy. It is important to stress that our analysis calls into question the narrow use of
boundaries in the prior literature, though. As soon as households sort non-randomly, as they
certainly do in practice, capitalization of house prices at school attendance boundaries picks up
more than just differences in school quality. This indicates that prior estimates will overstate the
valuation of school quality. Thisis something else that we find.

Having summarized the main results from the estimation of preferences, drawing
attention to the notion that households sorting cannot be ignored, we now turn to the second key

idea in the research: the notion of equilibrium. We have dwelt on the difficulties that researchers



face in trying to obtain reliable estimates of a broad range of preference parameters, difficulties
that have shaped our own estimation approach. Even if researchers were able to accurately
estimate preferences for a variety of dioice characteristics, it is not clear that those estimates
aone would provide a useful guide when gauging the economic significance of the results, given
the size of the interactions we have found. This is because there is likely to be a strong socia
multiplier that drives a significant wedge between any partia versus generd equilibrium effects.

We demondrate this point very clearly in the context of school capitalization — the impact
of an exogenous increase in school quaity on house prices. The partid equilibrium estimate we
obtain, relidble in its own terms, sgnificantly understates the full impact of a school quality
increase on house prices. When school quality at a given school goes up, reinforcing changes
occur as certain types of household move, and these effects compound as more highly educated
and higher income households move into the neighborhood. In order to explore these genera
equilibrium effects, it is necessary to specify a modd that can accommodate the relevant
feedback channels. We have set out a smple equilibrium model for that purpose that alows usto
explore the generd equilibrium implications of our structural estimatesin a clear way.

We believe the approach we have developed and the estimates obtained using it have two
key implications for empirical work. First, in a wide variety of settings, researchers should be
wary of assuming that sorting can be abstracted from. In our application, doing so produces
estimates that are very wide of the mark. While the challenges are non-trivia, we have set out a
new approach that addresses a number of these challenges and which can be applied elsewhere.
Second, partid equilibrium intuitions can be very mideading as to likely effects in practice, once
plausible genera equilibrium feedbacks are dlowed. This point has been made eloquently using
calibrated genera equilibrium anaysis by Nechyba, among others (see, for example, Nechyba
(2000)). We make an analogous point in an equilibrium framework based on a broad set of
econometric estimates derived from very detailed household-level data.

In future work, we plan to use the equilibrium model of sorting and the rich dataset we
have assembled to analyze a number of related applications. The estimated model provides a
well-defined characterization of the relative importance of schooling versus other housing,
neighborhood, and geographic factors in driving the location decisions of the heterogeneous
households of a major metropolitan area.  This combination is extremely powerful for conducting
economic and policy research involving the interplay of household mobility/stratification and
schools, making it possible, for example, to caculate the easticity of neighborhood house prices
and rents as well as the sociodemographic composition of the local neighborhood and school with
respect to school quality for each school in the metropolitan region. These ‘demand’ eladticities
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provide a series of measure of the competitiveness of a school’s local environment and can be
used to explore many aspects of the relations between household mobility and school
competition. Moreover, a dightly extended version of the model provides a way of calculating
the strength of preferences for school quality (on the basis of both observed and unobserved
characteristics) among the households that select into a particular school. This permits the
researcher to control directly for the non-random sorting of households across schools and school
digtricts which leads to a form of selection bias (often referred to as Tiebout bias in the loca
public finance literature) in the estimation of education production functions, voting models, or
other modes that condition implicitly on the set of households in a particular school or
juridiction.
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Figure 1: Demand for a View of the Golden Gate Bridge
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Table 1. Comparing the Sample Near School District Boundaries

Sample full sample within 0.25 miles of boundaries
Boundary/Weights actual sample high test score side* low test score side* t-test for weighted sample
Observations 242,100 27,958 13,348 14,610 differencein 27,958
(€ @) ©) @ ®) means (6)
Mean S.D. Mean Mean Mean ((4) versus (5)) Mean
Housina/Neighborhood Char acteristics
monthly house price 1,087 755 1,130 1,158 1,105 571 1,098
average test score 527 74 536 558 515 50.96 529
1if unit owned 0.597 0.491 0.629 0.632 0.626 1.04 0.616
number of rooms 5114 1.992 5.170 5.207 5134 313 5.180
1if builtin 1980s 0.143 0.350 0.108 0.118 0.099 5.09 0.148
1if built in 1960s or 1970s 0.391 0.488 0.424 0.412 0.437 422 0.406
elevation 210 179 193 194 192 114 212
population density 0.434 0.497 0.352 0.349 0.355 2.08 0.374
crime index 8.184 10.777 6.100 6.000 6.192 2.36 7.000
% Census block group white 0.681 0.232 0.704 0.712 0.686 9.62 0.676
% Census block group black 0.081 0.159 0.071 0.065 0.076 6.21 0.080
% Census block group Hispanic 0.110 0.114 0.113 0.107 0.119 8.62 0.117
% Census block group Asian 0.122 0.120 0.112 0.110 0.113 2.50 0.121
% block group college degree or more 0.438 0.196 0.457 0.463 0.451 5.14 0.433
average block group income 54,744 26,075 57,039 58,771 55,457 10.23 55,262
Household Characteristics
household income 54,103 50,719 56,663 58,041 55,405 4.20 55,498
1if children under 18 in household 0.333 0.471 0.324 0.322 0.325 0.54 0.336
1if black 0.076 0.264 0.066 0.062 0.070 2.69 0.076
1if Hispanic 0.109 0.312 0.111 0.102 0.119 454 0.115
1if Asian 0.124 0.329 0.112 0.114 0.110 1.06 0.121
1if white 0.686 0.464 0.706 0.717 0.696 3.86 0.682
1if less than high school 0.154 0.361 0.141 0.134 0.147 3.12 0.152
1if high school 0.184 0.388 0.176 0.177 0.175 0.44 0.183
1if some college 0.223 0.417 0.222 0.222 0.223 0.20 0.225
1if college degree 0.291 0.454 0.294 0.295 0.294 0.18 0.286
1if more than college 0.147 0.354 0.166 0.172 0.161 2.46 0.155
age (years) 47.607 16.619 47.890 48.104 47.699 1.99 47.660
1if working 0.698 0.459 0.705 0.702 0.709 1.28 0.701
distance to work (miles) 8.843 8.597 8.450 8.412 8.492 0.82 8.490

*Note: in constructing columns (4) and (5), we assign each house in the full sample to the nearest school district boundary, noting whether itslocal school has a higher test score
than the school that the closest Census block on the other side of the boundary is assigned to. Hence we determine whether it is on the 'high' versus 'low' side of the boundary.
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Table 2. Interaction Parameter Estimates - Model Without Neighborhood Sociodemogr aphics

House Characteristics Neighborhood Attributes
Average Monthly Owner Number of Builtin Builtin Elevation Population Crime Index Distance to
Test Score House Price Occupied Rooms 1980s 1960-1979 Density Work
Household Characteristics (+1sd.) (/2000) (/100
household income 0.050 0.121 0.305 0.074 0.142 0.038 0.016 0.028 -0.001 -0.004
(/10,000) (0.004) (0.003) (0.010) (0.002) (0.011) (0.009) (0.001) (0.013) (0.001) (0.001)
1if children under 18 in household -0.190 0.063 -0.102 0.544 -0.316 0.146 0.010 -0.740 0.015 0.036
(0.047) (0.065) (0.094) (0.025) (0.112) (0.083) (0.022) (0.101) (0.005) (0.005)
1if black -1.395 -0.941 -0.510 0.152 0.004 0.401 -0.062 -1.285 0.110 -0.023
(0.080) (0.127) (0.167) (0.044) (0.211) (0.144) (0.041) (0.159) (0.007) (0.011)
1if Hispanic -0.642 0.168 -0.036 -0.268 -0.180 -0.157 -0.104 -0.155 0.050 0.014
(0.072) (0.122) (0.130) (0.036) (0.164) (0.115) (0.040) (0.136) (0.007) (0.007)
1if Asian -0.167 0.315 1.765 -0.503 1.037 0.686 -0.015 0.941 0.030 0.003
(0.062) (0.080) (0.122) (0.031) (0.145) (0.108) (0.028) (0.095) (0.006) (0.007)
1if college degree or more 0.787 0.917 -0.032 -0.012 0.489 -0.045 0.225 -0.007 0.031 -0.006
(0.053) (0.071) (0.108) (0.029) (0.135) (0.093) (0.024) (0.111) (0.006) (0.006)
1if working 0.007 0.244 0.563 0.032 0.641 0.406 -0.048 -0.437 -0.027 -0.858
(0.049) (0.067) (0.103) (0.027) (0.125) (0.086) (0.025) (0.097) (0.005) (0.008)
age (years) 0.015 0.010 0.090 0.004 -0.034 -0.009 0.003 -0.006 0.001 -0.001
(0.001) (0.002) (0.003) (0.001) (0.004) (0.003) (0.001) (0.003) (0.000) (0.000)

Note: The parameters shown describe the elements of the utility function that interact household characteristics, shown in row headings, with choice characteristics, shown in column headings. Standard errors are in
parentheses.
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Table 3. Interaction Parameter Estimates - Model With Neighbor hood Sociodemogr aphics

House Characteristics

Neighborhood Attributes

Neighborhood Sociodemographics

Average Monthly Owner Number of  Builtin Builtin Elevation Population Crime Index % Block % Block % Block % Blk Grouy Blk Group Distance to
Test Score House Price Occupied Rooms 1980s 1960-1979 Density Group Black Group HispGroup Asiar  College  Avg Income Work
Household Characteristics (+1sd) (/1000) (/100) (miles)
household income 0.020 0.121 0.303 0.076 0.144 0.028 0.010 0.011 -0.001 -0.223 0.113 -0.009 0.385 0.012 -0.004
(+10,000) (0.005) (0.004) (0.011) (0.003) (0.012) (0.009) (0.002) (0.017) (0.001) (0.060) (0.064) (0.039) (0.034) (0.002) (0.001)
1if children under 18 in household | 0.102 0.231 -0.238 0.582 -0.399 0.095 0.051 -0.947 0.002 1.594 2.294 1.857 -2.171 0.055 0.027
(0.058) (0.075) (0.103) (0.028) (0.122) (0.092) (0.025) (0.127) (0.006) (0.416) (0.527) (0.387) (0.331) (0.016) (0.005)
1if black -0.282 0.143 -1.006 0.002 0.027 0.577 -0.068 -1.106 0.045 14.874 7.082 7.371 2.607 -0.023 -0.010
(0.116) (0.170) (0.205) (0.053) (0.253) (0.184) (0.052) (0.228) (0.009) (0.560) (0.888) (0.747) (0.680) (0.035) (0.013)
1if Hispanic -0.077 0.204 -0.138 -0.246 -0.147 -0.248 -0.067 -0.128 0.005 4435 12471 2.757 0.830 0.011 0.012
(0.089) (0.139) (0.147) (0.041) (0.185) (0.131) (0.045) (0.169) (0.008) (0.568) (0.620) (0.587) (0.492) (0.022) (0.008)
1if Asian 0.072 0.558 1.633 -0.571 0.612 0.457 -0.006 -0.053 0.006 4.236 3.330 14.060 -0.016 -0.022 0.012
(0.078) (0.095) (0.138) (0.035) (0.166) (0.123) (0.033) (0.132) (0.007) (0.562) (0.721) (0.429) (0.449) (0.022) (0.007)
1if college degree or more 0.200 0.501 0.428 0.006 0.588 0.106 0.031 0.486 0.022 1.279 -0.638 -1.935 8.986 0.009 0.009
(0.065) (0.079) (0.118) (0.032) (0.148) (0.101) (0.027) (0.134) (0.007) (0.504) (0.607) (0.450) (0.366) (0.020) (0.007)
1if working 0.093 0.272 0.604 0.021 0.897 0.425 0.023 -0.515 -0.019 -0.712 -0.335 -0.434 -1.931 0.033 -0.896
(0.062) (0.074) (0.113) (0.030) (0.138) (0.096) (0.028) (0.125) (0.007) (0.444) (0.563) (0.436) (0.350) (0.016) (0.009)
age (years) 0.013 0.011 0.097 0.003 -0.033 -0.010 0.003 -0.011 0.001 -0.022 -0.085 -0.005 -0.018 0.001 -0.001
(0.002) (0.002) (0.003) (0.001) (0.004) (0.003) (0.001) (0.003) (0.000) (0.013) (0.016) (0.013) (0.010) (0.001) (0.000)

Note: The parameters shown describe the elements of the utility function that interact household characteristics, shown in row headings, with choice characteristics, shown in column headings. Standard errors are in parentheses.
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Table 4: First Stage Price Regressions

Without Neighborhood Scoiodemographics With Neighborhood Scoiodemographics

Sample full sample  within .25 mile of boundaries full sample  within .25 mile of boundaries
Boundary Fixed Effects No No Yes No No Yes
Observations 242,100 27,958 27,958 242,100 27,958 27,958
@ @ ©) 4 ®) (6)
average test score (in standard deviations) 25.92 18.57 -9.51 4.96 5.29 11.02
(1.83) (5.06) (6.27) (1.69) (4.68) (5.81)
1if unit owned 44.16 6.62 37.09 37.57 22.32 33.86
(3.16) (8.93) (8.77) (3.02) (8.47) (8.47)
number of rooms 37.36 33.20 38.65 31.27 30.20 29.18
(1.24) (341) (341 (1.20) (3.45) (3.41)
1if built in 1980s 19.24 -34.31 13.81 14.84 5.18 17.91
(3.90) (10.79) (11.44) (3.72) (20.57) (11.22)
1if builtin 1960s or 1970s -0.98 -19.80 -8.97 -4.10 -9.59 -11.29
(2.78) (8.05) (8.36) (2.64) (7.58) (7.74)
elevation (/100) 6.72 -18.47 33.57 1.70 -14.55 15.99
(0.79) (2.53) (4.89) (0.75) (2.36) 4.77)
population density -59.53 -113.08 -102.61 10.70 32.79 16.09
(4.18) (15.18) (18.67) (4.24) (15.48) (19.12)
crime index -0.77 -0.11 4.01 0.53 -0.84 257
(0.18) (0.70) (2.74) (0.20) (0.80) (1.81)
% Census block group Black -36.28 -50.69 0.47
(6.88) (31.74) (37.90)
% Census block group Hispanic 9.14 26.41 138.64
(20.19) (46.21) (59.42)
% Census block group Asian -6.50 -9.46 239.71
(11.55) (37.22) (50.47)
% block group college degree or more 163.75 16.06 -47.61
(16.58) (30.12) (42.45)
average block group income (/20000) 280.60 29.12 21.17
(14.24) (55.33) (60.03)
Optimal priceinstrument 0.738 0.771 0.663 0.736 0.740 0.731
(0.006) (0.018) (0.018) (0.008) (0.022) (0.022)
constant 175.28 158.49 204.63 180.23 187.33 226.98
(1.90) (7.39) (17.87) (2.17) (7.99) (17.92)
F-statistic for price instrument 13973 1843 1411 9398 1151 1130
R? 0.40 0.42 0.47 0.46 0.49 0.51

Note: All regressions shown in the table also include controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4,
and 5 mile rings around location and six variables that characterize the housing stock in each of these rings. The dependent variable is monthly house price,
which eguals monthly rent for renter-occupied units and a monthly price for owner-occupied housing cal culated as described in the text. Standard errors are
in parentheses.

51



Table5: Implied Mean MWTP Measures

Without Neighborhood Sociodemographics ~ With Neighborhood Sociodemogr aphics

Sample full sample  within .25 mile of boundaries full sample  within .25 mile of boundaries
Boundary Fized Effects No No Yes No No Yes
Observations 242,100 27,958 27,958 242,100 27,958 27,958
@ @ ©)] 4 ©) (6
averagetest score (in standard deviations) 126.08 122.89 81.53 20.17 20.19 26.22
(1.96) (5.36) (7.72) (2.72) (4.77) (6.13)
1if unit owned 209.76 178.37 184.54 165.38 150.77 161.05
(3.29) (8.99) (11.39) (3.19) (8.76) (9.24)
number of rooms 148.98 149.36 138.71 122.03 121.12 118.93
(1.51) (4.24) (5.49) (1.48) (4.23) (4.40)
1if built in 1980s 129.93 74.74 106.17 99.69 85.50 95.55
(3.94) (10.87) (14.41) (3.79) (10.69) (11.84)
1if builtin 1960s or 1970s 28.48 9.46 15.39 13.79 7.40 4.50
(2.78) (8.03) (10.48) (2.67) (7.71) (8.51)
elevation (/100) 21.09 -4.82 46.46 -1.06 -18.04 12.83
(0.81) (2.48) (6.35) (0.75) (2.46) (5.04)
population density -100.43 -153.53 -133.08 19.41 41.68 30.33
(4.23) (15.64) (23.85) (4.30) (15.76) (20.09)
crime index -2.95 -2.30 1.78 0.00 -1.39 1.96
(0.18) (0.70) (2.20) (0.20) (0.81) (1.91)
% Census block group black -324.67 -318.83 -267.08
(10.14) (32.15) (39.84)
% Census block group Hispanic -4.42 18.06 138.95
(14.35) (46.87) (63.13)
% Census block group Asian -97.39 -96.22 155.27
(11.15) (37.39) (55.73)
% block group college degree or more 286.02 206.02 137.71
(20.50) (30.58) (44.53)
average block group income 87.08 96.11 87.61
(1.25) (3.86) (4.00)
F-statistic for boundary fixed effects 5.349 4.162

Note: Specifications shown in the table also include controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4,
and 5 mile rings around location and six variables that characterize the housing stock in each of these rings. MWTP measures are reported in terms of a
monthly house price. Standard errors are in parentheses.
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Table 6. Heterogeneity in Marginal Willingness to Pay for Select Housing/Neighborhood Attributes

House Characteristics Neighborhood Sociodemographics
Average Own vs. Rent +1 Room Built in 1980s +10% Black vs. +10% Hispvs. +10% Asianvs. +10% College Blk Group
Test Score vs. pre-1960 White White White Educated Avg Income
+1sd. + $10,000
Mean MWTP 26.22 161.05 118.93 95.55 -26.71 13.90 15.53 13.77 87.61
(6.13) (9.29) (4.40) (11.84) (3.98) (6.31) (5.57) (4.45) (4.00)
Household Income (+$10,000) 157 21.84 6.12 10.51 -1.53 0.77 -0.05 2.62 154
(0.35) (0.71) (0.17) (0.76) (0.39) (0.41) (0.25) (0.22) (0.11)
Children Under 18 vs. 7.10 -12.87 40.06 -24.52 10.38 15.03 12.17 -14.18 5.05
No Children (3.78) (6.67) (1.80) (7.94) (2.70) (3.41) (2.51) (2.15) (1.06)
Black vs. White -18.05 -63.55 1.56 2.95 96.82 46.13 48.02 16.99 -0.45
(7.50) (13.25) (3.40) (16.38) (3.62) (5.75) (4.84) (4.40) (2.27)
Hispanic vs. White -4.64 -6.44 -14.14 -8.07 28.89 81.36 18.01 5.43 2.07
(5.80) (9.53) (2.63) (12.00) (3.68) (4.01) (3.81) (3.19 (1.41)
Asianvs. White 5.79 113.65 -32.92 43.94 27.74 21.95 92.49 -0.05 1.99
(5.08) (8.96) (2.27) (10.77) (3.64) (4.67) (2.78) (2.91) (1.41)
College Degree or More vs. 14.12 33.83 4.50 42.06 8.34 -4.16 -12.70 59.29 3.66
Some College or Less (4.24) (7.67) (2.05) (9.57) (3.27) (3.94) (2.91) (2.37) (1.29)
Householder Working vs. 6.63 42.72 3.69 60.60 -4.71 -2.17 -2.81 -12.62 3.88
Not Working (4.02) (7.31) (1.94) (8.92) (2.88) (3.65) (2.82) (2.27) (1.04)
Age (+10 years) 0.86 6.49 0.30 -2.07 -0.15 -0.56 -0.03 -0.12 0.11
(0.11) (0.21) (0.06) (0.25) (0.08) (0.10) (0.08) (0.06) (0.03)

Note: Thefirst row of the table reports the mean margina willingness-to-pay for the change reported in the column heading. The remaining rows report the difference in willingness to pay associated with the change listed in the row
heading, holding all other factorsequal. Standard errors are in parentheses.
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Table 7: Hedonic Price Regressions

Without Neighborhood Sociodemogr aphics With Neighborhood Sociodemographics

Sample full sample  within .25 mile of boundaries full sample  within .25 mile of boundaries
Boundary Fixed Effects No No Yes No No Yes
Observations 242,100 27,958 27,958 242,100 27,958 27,958
(€ @) (©) 4 ©) (6)
average test score (in standard deviations) 145.62 144.96 101.17 28.76 27.63 28.43
(1.57) (3.85) (4.15) (2.70) (4.76) (5.88)
1if unit owned 151.59 124.67 140.84 125.59 112.21 123.91
(3.12) (8.77) (8.47) (2.94) (8.16) (8.16)
number of rooms 153.00 155.79 143.40 121.88 122.48 121.15
(0.79) (2.24) (2.20) (0.76) (2.16) (2.16)
1if built in 1980s 129.28 91.28 130.12 89.48 92.79 109.41
(3.89) (11.01) (11.22) 3.71) (10.36) (11.01)
1if builtin 1960s or 1970s 22.98 8.82 93.30 4.13 4.33 6.96
(2.85) (8.20) (8.05) (2.69) (7.74) (8.20)
elevation (/100) 31.80 3.50 48.34 253 -17.42 13.29
(0.79) (2.53) (3.25) (0.76) (2.43) (4.85)
population density -78.26 -155.27 -145.41 46.14 61.17 33.54
(4.29) (15.63) (18.97) (4.31) (15.79) (19.43)
crime index 0.75 2.16 6.84 141 0.49 4.97
(0.19) (0.71) (1.79) (0.20) (0.81) (1.85)
% census block group Black -71.56 -113.70 -40.74
(10.21) (32.21) (38.37)
% census block group Hispanic 128.63 146.56 240.31
(14.42) (46.21) (60.74)
% census block group Asian -1.38 -76.33 200.60
(11.25) (37.85) (53.62)
% block group college degree or more 286.57 192.17 91.51
(10.16) (30.31) (43.25)
average block group income (/20000) 100.32 110.84 101.26
(16.14) (55.33) (60.03)
F-statistic for boundary fixed effects 23.345 8.754
R? 0.37 0.38 0.44 0.44 0.47 0.49

Note: All regressions shown in the table also include controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4,
and 5 mile rings around each location and six variables that characterize the housing stock in each of these rings. The dependent variable is monthly house
price, which equals monthly rent for renter-occupied units and amonthly price for owner-occupied housing, calculated as described in the text. Standard
errors are in parentheses.

54



Table 8. Partial Correlations Between Choice Variables and Choice Specific Constant (d)

Sample full sample within .25 miles of boundaries within .25 miles of boundaries
Boundary Fixed Effects No No Yes
Observations 242,100 27,958 27,958
D @ (©)
Housing/Neighborhood Variables
monthly house price -0.057 -0.057 -0.056
(0.001) (0.002) (0.002)
average test score -0.016 -0.015 -0.003
(0.001) (0.002) (0.002)
% Census block group black -0.078 -0.050 -0.038
(0.001) (0.002) (0.002)
% Census block group Hispanic -0.030 -0.023 -0.012
(0.001) (0.002) (0.001)
% Census block group Asian -0.034 -0.004 -0.004
(0.001) (0.002) (0.001)
% block group college degree or more -0.001 0.003 0.031
(0.001) (0.002) (0.001)
average block group income -0.054 -0.066 -0.045
(0.001) (0.002) (0.002)
number of rooms 0.001 -0.009 -0.013
(0.001) (0.002) (0.002)

Note: Figuresin thetable are partia correlations conditional on all other covariates. Other covariates include all housing and neighbrohood characteristics
shown in Table 2 aswell as controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4, and 5 milerings around
location and six variables that characterize the housing stock in each of theserings. Standard errors are in parentheses.
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Table 9a. The Capitalization of School Quality: Distribution of Housing Price Changes

Partial Equilibrium General Equilibrium
Unadjusted Adjusted
Per centile of
Simulated Monthly Price Monthly Price Monthly Price

Distribution Increase Increase Increase

90 $33.95 $56.83 $59.05

50 $26.38 $45.80 $47.32

10 $19.45 $28.83 $29.64

Mean $27.10 $46.00 $47.70

Table 9b. Changesin Sociodemographic Composition of Catchment Areas where Quality is | ncreased

Partial Equilibrium General Equilibrium
Unadjusted Adjusted

Change in Average Income 1,049 1,646 1,771

Percentage Point Change White 0.66% 1.25% 1.35%
Percent. Pt. Chg. Black -0.53% -0.75% -0.83%
Percent. Pt. Chg. Hispanic -0.43% -0.86% -0.90%
Percent. Pt. Chg. Asian 0.31% 0.38% 0.40%
Percent. Pt. Chg. College Degree or More 0.73% 1.61% 1.69%

Note: The figures shown in the upper panel of this table report the mean and distribution of changes in monthly housing prices for a
corresponding catchment area following an increase in a school's average test score by 74 points (1 standard deviation). The first
column shows partial equilibrium results, which do not account for any subsequent changes to the neighborhood sociodemographic
distribution. The second and third columns report general equilibrium results, which account for sociodemographic changes to the
neighborhood. In this case, the second column (unadjusted) reports results of simulations that hold crime and the average test score
and pre-simulation levels, while the third column adjusts crime and average test scores according to production functions estimated via
OLS reported in Appendix Table 2. The lower panel of the table shows the corresponding changes in the sociodemographic
composiiton of the corresponding neighborhood. In calculatin the partia equilibrium, these changes in sociodemographic
compositions are not accounted for in the utility function.
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Appendix Table 1: Choice-Specific Constant Regressions

Without Neighborhood Sociodemographics ~ With Neighbor hood Sociodemographics

Sample full sample  within .25 mile of boundaries full sample  within .25 mile of boundaries
Boundary Fized Effects No No Yes No No Yes
Observations 242,100 27,958 27,958 242,100 27,958 27,958
monthly housing price (/1000) -10.23 -9.73 -11.34 -15.94 -15.97 -16.19
(1.39) (1.13) (1.36) (1.71) (1.56) (1.69)
average test score (in standard deviations) 1.29 1.20 0.92 0.32 0.32 0.42
(0.02) (0.05) (0.01) (0.03) (0.08) (0.01)
1if unit owned 215 174 2.09 2.64 241 261
(0.03) (0.09) (0.01) (0.05) (0.14) (0.01)
number of rooms 1.52 1.45 1.57 1.95 1.93 1.93
(0.02) (0.04) (0.01) (0.02) (0.07) (0.01)
1if built in 1980s 133 0.73 1.20 1.59 1.37 155
(0.04) (0.11) (0.02) (0.06) 0.17) (0.02)
1if builtin 1960s or 1970s 0.29 0.09 0.17 0.22 0.12 0.07
(0.03) (0.08) (0.01) (0.04) (0.12) (0.01)
elevation (/100) 0.22 -0.05 0.53 -0.02 -0.29 021
(0.01) (0.02) (0.01) (0.01) (0.04) (0.01)
population density -1.03 -1.49 -151 0.31 0.67 0.49
(0.04) (0.15) (0.03) (0.07) (0.25) (0.03)
crime index -0.03 -0.02 0.02 0.00 -0.02 0.03
(0.00) (0.01) (0.00) (0.00) (0.01) (0.00)
% Census block group black -5.18 -5.09 -4.32
(0.16) (0.51) (0.06)
% Census block group Hispanic -0.07 0.29 2.25
(0.23) (0.75) (0.10)
% Census block group Asian -1.55 -154 251
(0.18) (0.60) (0.09)
% block group college degree or more 4.56 3.29 223
(0.17) (0.49) (0.07)
average block group income 1.39 1.53 142
(0.02) (0.06) (0.01)
F-statistic for boundary fixed effects 4.545 3.963

Note: Specifications shown in the table also include controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4,
and 5 mile rings around location and six variables that characterize the housing stock in each of these
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Appendix Table 2: OLS Crime and Education Production Functions

Production Function

Dependent Variable crime index average test score
Observations 242,100 242,100
R? 0.33 0.41
Percent Black 0.285 -0.188
(0.005) (0.005)
Percent Hispanic 0.099 -0.074
(0.004) (0.003)
Percent Asian 0.088 -0.041
(0.003) (0.003)
Percent College Degree or More 0.017 0.127
(0.004) (0.004)
Average Income -0.071 0.311
(0.046) (0.043)

Note: This table shows the results of the OL S estimation of simple crime and education production functions.
These functions are used in the simulations that adjust crime and school quality with changing neighborhood
sociodemographic composition. We use these 'adjusted' results to provide a bound on the simulation results.
Standard errors are provided below estimated coefficient. All variables are normalized to have mean zero and
standard deviation one.
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Technical Appendix

Introduction

This appendix supplements the description of the estimation procedure provided in the main text
of the paper. To avoid repetition, this document assumes that the reader has read the discussion in the
main text. In that dscussion, we abstract from many of the issues discussed here, which are of a more
technical nature, in order to maintain the focus on issues associated with the identification of preferences
for schools and neighbors and on relating our approach to other approaches that appear in the labor and
public, rather than the 10O, literatures.

Defining the Choice Set

In order to provide a coherent discussion of the properties of the estimator, it is helpful to provide
an exact characterization of the choice problem — in particular, whether it should literaly be viewed asthe
choice of a single residence from the full census of residences available in the Bay Area housing market
or as the choice of a representative housing type. The assumption that the underlying individud
component of the error term €'}, is distributed according to the extreme value distribution alows us some
flexibility in terms of the interpretation of the underlying choice problem. Given that the I1A property
holds for each individua, the econometrician has some flexibility in usng a subset of the full set of
aternatives in estimating the model. As it turns out, however, it is much more straightforward to develop
the equilibrium properties of our model as well as the asymptotic properties of the estimator if we assume
that the full census of available houses can be characterized by a smaller set of representative housing
types.

Accordingly, we characterize the economic environment as follows. The mode is estimated on
data drawn from a single, large metropolitan area.  The complete metropolitan area housing market
consists of atotal of | individuals who must choose from H distinct types of housing, with H assumed to
be less than |. Each individud i is characterized by a set of characteristics Z' and a set of idiosyncratic
preferences {€} defined over the full set of distinct housing dternatives, and identicaly and
independently distributed across choices according to the extreme value distribution.  Households are
assumed to follow the model’s decision rule at the true parameter vector. Each distinct housing typek is
characterized by the set of characteristics { X, x}. The { X, X} vectors are assumed to be exchangeable
draws from some larger population of possible house types.

We do not observe the full census of households and houses in the metropolitan area, but instead
observe a random sample of households S of size N and their corresponding houses S;. We assume that
N is large relative to H so that the market shares for the H distinct types of housing are given by ny/N,
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where ny is the number of times that a house of digtinct type H is sampled. Thus the relative market share
of each house type can be calculated exactly using the observed sample of housing alternatives.

Relationship to the Estimator in BLP and Other 10 Applications

Before discussing the equilibrium and asymptotic properties of the modd, it is helpful to relate
our estimator to that of Berry, Levinsohn, and Pakes (1995). The first step of our estimation procedure is
a Maximum Likelihood estimator, which returns estimates of the heterogeneous parameters g, and mean
indirect utilities, d,. As we show in the text, maximizing the log-likeihood function with respect to
d impliesthat g and d must be chosen such that the sum of the probabilities over individuas equals one,

é (Ph' ):1, for each house in the sample of houses S;.  For any q;, a Simple contraction mapping can be

used to solve for the vector d that forces these conditions to hold exactly.  For our application, the
contraction mapping is smply:

(M dit=di-In(@ R

where t indexes the iterations of the contraction mapping. Using this contraction mapping, it is possible
to solve quickly for an estimate of the full vector d even when it contains a large number of eements,
and consequently the likelihood function can be concentrated as: ¢(d ,q, ):E"@(qI )., ) This reduces
our free parameter search to q, thereby dramatically reducing the computational burden in the first step
of the estimation procedure.

Many of the features of the first step of our estimation and the interpretation of the parameters
and mean indirect utilities have a clear analogy to those in BLP (1995). It is important to draw a
distinction, however, as to how the conditions enforced by the contraction mapping come about in the two
applications. In particular, as part of the first step of the estimator developed in BLP, the authors force

the model to fit the market share of each product directly. In the context of our estimator, analogous
conditions come about directly from the first order conditions of the likelihood function, which imply that

the condition é (Ph' ) =1 holds at the maximum of the likelihood function for each house h in the sample

of houses S”.

One can view these conditions as forcing the ‘market share’ of each house in the sample to be
1IN, but this interpretation can lead to confusion, especially because it naturally leads one to view the
choice set as the full census of houses available in the market. More precisdly, given the characterization



of the data generating process above, these conditions force the market share of each distinct house type
H to be ny/N, which is its true market share. In this way, an analogy with 10 applications is fairly direct

under our preferred interpretation of the choice problem; and the fact the conditions wind up as

é (Phi ) =1 smply reflects the fact that these sums are taken over the houses in the sample, not distinct

house types .

Sampling

An important aspect of the underlying 1A property for each individua is that we can estimate the
mode using only a sample of the aternatives not selected by the individud, following McFadden (1978).
This permits estimation despite having many aternatives — i.e., many distinct house types. The particular
procedure that we use is as follows. Using the sample of households S and their corresponding houses S,
from the full data set, for each household i observed in this sample, we construct a subset S, that consists
of the household's chosen house and a random sample of the remaining aternatives in S;. In practice,
because we estimate a mean indirect utility for each house observed in the sample, the precision of the
estimation procedure increases greatly if we ensure that each alternative appears in the choice set of the
same number of households. To this end, we employ the following random sampling procedure: Starting
with the assignment of each household’s chosen house, we assign each household a first additiona (not
chosen) alternative by randomly re-shuffling the full set of houses across households. We then repest this
random re-shuffling of houses as many times as is necessary to generate the desired size of the sample of
additional (not chosen) dternatives. In this way, with an additional random draw for each household, we
ensure that each alternative is sampled exactly once.

In this way, the probability that household i chooses house h can be written as:

(2) Pi - (C +1) . exp(dh +rﬁ1)
"N exp@+il)

K Sh

where N is the tota number of dternatives in the sample, C is the number of additional (not chosen)
alternatives sampled for each household and the sim in the denominator is now taken over only those
aternatives in the subset associated with household i. The probability in (2) is used in the log-likelihood
function — athough notice that the multiplicative component does not affect the first order conditions.

The use of a random sample of the full census of aternatives for each household necessitates a
dight adjustment to the calculation of the predicted number of households that choose each house that is
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used in the BLP-style contraction mapping that makes up part of the first stage ML estimation. In
particular, because the sampling procedure ensures that each household's actual choice is included in the
subset of dternatives when calculating the choice probabilities shown in equation (2), the sum of the
probabilities for each house must be corrected for this inherent over-sampling. This requires the
following straightforward adjustment:

® ar=3r+MN2 3p

i i=h W Sh.ith

where the notation i=h refers to the household that actually chooses house h. In equation (3), the first
term captures the contribution to N, made by the household who actualy chose house h, while the

second term sums the contributions of the other households in the sample which could have chosen house
h (i.e., the house was in the household’ s randomly drawn choice set) but did not.

Asymptotic Properties of the Full Estimator

Finaly, the characterization of the choice problem as a choice of a representative house is aso
helpful in developing the conditions that ensure the consistency and asymptotic normality of our
estimates. Under the assumptions concerning the data generating process described above, our problem
fits within a class of models for which the asymptotic distribution theory has been developed. In this
section, therefore, we summarize the requirements necessary for the consistency and asymptotic
normality of our estimates and provide some intuition for these conditions.

In general, there are three dimensions in which our sample can grow large, namely asH, N, or C
grow large. For any set of digtinct housing aternatives of size H and any random sampling of these
aternatives of size C, the consistency and asymptotic normdity of the first-stage estimates (d, q,) follows
directly as long as N grows large. This is the centrd result of McFadden (1978), justifying the use of a
random sample of the full census of dternatives. Intuitively, even if each household is assigned only one
randomly drawn aternative in addition to its own choice, the number of times that each house is sampled
(the dimension in which the choice-specific constants are identified) grows as a fixed fraction of N.

If the true vector d were used in the second stage of the estimation procedure, the consistency and

asymptotic normality of the second-stage estimates gy would follow as long as H> ¥.' In practice,

! This condition requires certain regularity conditions. See Berry, Linton, and Pakes (2002) for details.

62



ensuring the consistency and asymptotic normality of the second-stage estimates is complicated by the
fact the vector d is estimated rather than known. Berry, Linton, and Pakes (2002) develop the asymptotic
distribution theory for the second stage estimates qq for a broad class of models that contains our model as
a special case and, consequently, we employ their results. In particular, the consistency of the second-
stage estimates follows as long as H> ¥ and N grows fast enough relative to H such that
HlogH /N goes to zero, while asymptotic normality at rate JH follows as long as H 2/N is bounded.
Intuitively, these conditions ensure that the noise in the estimate of d becomes inconsequential
asymptotically and thus that the asymptotic distribution of qq4 is dominated by the randomnessin x asit

would beif d was known.



DATA APPENDIX

1. [Introduction
Thisdocument details the sourcesfor the data and the construction of the variablesused in “ A Unified Approach

for Measuring Preferences for Schools and Neighborhoods,” by Patrick Bayer, Fernando Ferreira, and Robert McMillan.

2. CensusVariables
House Prices

Because house values are self-reported, it is difficult to ascertain whether these prices represent the current
market value of the property, especialy if the owner purchased the house many years earlier. Fortunately, the
Census contains other information that helps us to examine this issue and correct house values accordingly. In
particular, the Census asks owners to report a continuous measure of their annual property tax payment. The rules
associated with Proposition 13 imply that the vast majority of property tax payments in California should represent
exactly 1 percent of the transaction price of the house at the time the current owner bought the property or the value
of the house in 1978. Thus, by combining information about property tax payments and the year that the owner
bought the house (also provided in the Census in relatively small ranges), we are able to construct a measure of the
rate of appreciation implied by each household’s self-reported house value. We use this information to modify
house values for those individuals who report values much closer to the original transaction price rather than current
market value. In our study most households list the purchase price of their house rather than an estimated market
value for their house. Thusif two identical houses were found in the census data but one was last sold in 1989 and
one was last sold in 1969 we find on average the listed market price of the more recently sold house is on average 15
percent higher than the other house.

A second deficiency of the house values reported in the Census is that they are top-coded at $500,000, a
top-code that is often binding in California. Again, because the property tax payment variable is continuous and not
top-coded, it provides information useful in distinguishing the values of the upper tail of the value distribution. We
find that top-coding was fairly predominant in the Bay Area and that higher top-codes may be useful to gain a better
understanding of house pricesin expensive markets like Californiaor New Y ork.

The exact procedure that we use to adjust self-reported house valuesisasfollows. Wefirst regressthelog of self-
reported house value on the log of the estimated transaction price (100 timesthe property tax payment), and a series of

dummy variables that characterize the tenure of the current owner:
@ log(V;)=a,log(T)) +a,y; +w,

where V; represents the self-reported house value, T; represents the estimated transaction price, and y; represents a

series of dummy variables for the year that the owner bought the house. If owner-estimated house values were



indeed current market values and houses were identical except for owner tenure, this regression would return an
estimate of 1 for &5 and the estimated &, coefficients would indicate the appreciation of house valuesin the Bay Area
over the full period of analysis. If owners tend to underreport house values, especially when they have lived in the
house for along time, the estimated &, parameters will likewise underreport appreciation in the market. In this way,
the estimated & parameters represent a conservative estimate of appreciation. Given the estimates of equation (2),
we construct a predicted house value for each house in the sasmple and replace the owner-reported value with this
measure when this predicted measure exceeds the owner-reported value. In practice, in order to alow for different
rates of appreciation in different regions of the housing market, we conduct these regressions separately for each of
the 45 Census PUMA (areas with at least 100,000 people) in our sample and allow appreciation to vary with a small
set of house characteristics within each PUMA. In this way, the first adjustment that we make to house pricesisto
adjust owner-reported values for likely under-reporting.

The adjustment to top-coded house prices uses the same approach, using the information on property taxes
that are continuous and not top-coded. Using estimates of equation (2) based on a sample of houses that does not
include the top-coded house values, we construct predicted house values for all top-coded houses. Thisallowsusto

assign continuous house values for top-coded measures.

Reported Rental Value

We next examined questions of reported monthly rents. While rents are presumably not subject to the same
degree of misreporting as house values, it is still the case that renters who have occupied a unit for along period of
time generally receive some form of tenure discount. In some cases, this tenure discount may arise from explicit
rent control, but implicit tenure discounts generally occur in rental markets even when the property is not subject to
formal rent control. Thus while, thiswill not lead to errors in the answering of the listed census question it may lead
to an inaccurate comparison of rents faced by households if they needed to move. In order to get a more accurate
measure of the market rent for each rental unit, we utilize a series of locally based hedonic price regressionsin order
to estimate the discount associated with different durations of tenure in each of over 40 sub-regions within the Bay
Area
In order to get a better estimate of market rents for each renter-occupied unit in our sample, we regress the log of
reported rent R; on a series of dummy variables that characterize the tenure of the current renter, y;, aswell asa

series of variables that characterize other features of the house and neighborhood X;:
@  lo(R)=hby; +b,X; +u,

again running these regressions separately for each of the 45 PUMASs in our sample. To the extent that the
additional house and neighborhood variables included in equation (3) control for differences between the stock of

rental units with long-term vs. short-term tenants, the & parameters provide an estimate of the tenure discount in
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each PUMA! In order to construct estimates of market rents for each rental unit in our sample, then, we inflate
rents based on the length of time that the household has occupied the unit using the estimates of & from equation
(2). Inthisway, these three price adjustments bring the measures for rents and house values reported in the Census

reasonably close to market rates.

Calculating Cost Per Unit of Housing Across Tenure Status

Findly, in order to make owner- and renter-occupied housing prices comparable in our analysis we need to
calculate a current rental value for housing. Because house prices reflect the expectations about the future rents for
the property they incorporate beliefs about future housing appreciation. To appropriately deflate housing values—
and especialy to control for differences in expectations about appreciation in different segments of the Bay Area
housing market — we regress the log of house price (whether monthly rent or house value) B; on an indicator for
whether the housing unit is owner-occupied o; and a series of additional controls for features of the house including
the number of rooms, number of bedrooms, types of structure (single-family detached, unit in various sized

buildings, etc.), and age of the housing structure as well as a series of neighborhood controlsX;:

®  log(P,)=g0, +g,X; +h,

We estimate these hedonic price regressions for each of 40 sub-regions (Census Public Use Microdata Areas- PUMAS) of
the Bay Areahousing market. These regressionsreturn an estimate of the ratio of house values to rentsfor each of these

sub-regions and we use these ratios to convert house values to a measure of current monthly rent.

3. BExeand Data

We next discuss the additional variables we have added to the Census data to provide a more nuanced
understanding of the neighborhood characteristics that affect house prices and residential location decisions. These
data sets are linked to census blocks and can be used to determine the appropriateness of the questions and sampling
techniques used. Thisadditional dataincludes:

School and School District Data

The Teale data center in California provided a crosswalk that matches all Census blocks in Californiato the
corresponding public school district. We have further matched Census blocks to particular schools using a variety
of procedures that takes account of the location (at the block level) of each Census block within a school district and
the precise location of schools within the district using information on location from the Department of Education.

Other school information in these datainclude:

! Interestingly, while we estimate tenure discounts in all PUMAS, the estimated tenure discounts are substantially
greater for rental units in San Francisco and Berkeley, the two largest jurisdictions in the Bay Area that had formal
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1992-93 CLA S dataset provides detailed information about school performance and peer group measures. The
CLASwas atest administered in the early 1990s that will give usinformation on student performance in math,
literature and writing for grades 4, 8 and 10. This dataset presentsinformation on student characteristics and
grades for students at each school overall and across different classifications of students, including by race and
education of parents.

1991-2 CBEDS (California Board of Education data sets) datasets including information from the SIF (school
information form) which includesinformation on the ethnic/racial and gender make-up of students, PAIF—which
is ateacher based form that provides detailed information about teacher experience, education and certification
backgrounds and information on the classes each teacher teaches, and (LEP census) a language census that

provides information on the languages spoken by limited-English speaking students.

Proceduresfor Assigning School Data:

While we have an exact assignment of Census blocks to school districts, we have only been able to attain
precise maps that describe the way that city blocks are assigned to schools in 1990 for Alameda County. In the
absence of information about within-district school attendance areas, we employ the alternative approaches for
linking each house to a school. The crudest procedure assigns average school district characteristicsto every house
falling in the school district. A refinement on this makes use of distance-weighted averages. For ahousein agiven
Census block, we calculate the distance between that Census block and each school in the school district. We have
detailed information characterizing each school and construct weighted averages of each school characteristic,
weighting by the reciprocal of the distance-squared as well as enrollment.

As a third approach we simply assign each house to the closest school within the appropriate school
district. Our preferred approach (which we use for the results reported in the paper) refines this closest-school
assignment by using information about individual children living in each Census block - their age and whether they
are enrolled in public school. In particular, we modify the closest-school assignment technique by attempting to
match the observed fourth grade enrollment for every school in every school district inthe Bay Area. Adjusting for
the sampling implicit in the long form of the Census, the 'true’ assignment of houses to schools must give rise to the
overall fourth grade enrollments observed in the data.

These aggregate numbers provide the basis for the following intuitive procedure: we begin by calculating
the five closest schools to each Census block. Asaninitial assignment, each Census block and all the fourth graders
init are assigned to the closest school. We then calculate the total predicted enrollment in each school, and compare
this with the actual enrollment. If a school has excess demand, we reassign Census blocks out of its catchment area,
whileif aschool has excess supply, we expand the school's catchment area to include more districts.

To carry out this adjustment, we rank schools on the basis of the (absolute value of) their prediction error, dealing

with the school s that have the greatest excess demand/supply first. If the school has excess demand, we reassign the Census

rent control in 1990.
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block that hasthe closest second school (recalling that we record the five closest schoolsto each Census block, in order), as
long as that second school has excess supply. If aschool has excess supply, wereassign to it the closest school district
currently assigned to aschool with excessdemand. We make gradua adjustments, reassigning one Census block from each
school in disequilibrium each iteration. Thisgradual adjustment of assignments of Census blocksto schools continues until
we have 'market clearing' (within acertain tolerance) for each school. Our actua algorithm converges quickly in practice,

and produces plausible adjustments to theinitial, closest-school assignment.

Land use
Information on land use/land cover digital datais collected by USGS and converted to ARC/INFO by the EPA
available at: http://www.epa.gov/ost/basins/ for 1988. We have calculated for each Censusblock, the percentage of landin

a4, 2, 3, 4 and 5-mileradii that isused for commercial, residential, industrial, forest (including parks), water (1akes,

beaches, reservoirs), urban (mixed urban or built up), transportation (roads, railroad tracks, utilities) and other uses.

Crime data

Information on crime was drawn from the rankings of zipcodes on a scale of 1-10 on therisk of violent crime
(homicide, rape or robbery). A score of 5 isthe average risk of violent crime and a score of 1 indicates arisk 1/5 the
national average and a 10 is 10 or more times the national average. Theseratings are provided by CAPindex and were

downloaded from APBNews.com.
Geography and Topography

The Teale data center in California provided information on the elevation, latitude and longitude of each Census
block.
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