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Abstract

The organic market depends on an effective and effi-
cient certification system. Control bodies or authori-
ties are pivotal to this system. From a social point of
view, our objective is to theoretically optimize inspec-
tion strategies. For this, sanctions and inspection
frequencies have to be implemented in a way that the
net social damage arising from farmers’ non-
compliance with an organic standard will be mini-
mized. In scenarios that combine different kinds of
social damages, fines and compliance cost distribu-
tions for an assumed set of farms we use Monte Carlo
simulations to model farmers’ non-compliance and
resulting social damages. Depending on potential
reputation losses and compliance cost variability
among farms we identify different adequate control
frequencies.

Key Words

organic farming standard; enforcement; economics of
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Zusammenfassung

Der Markt fur 6kologische Produkte basiert auf einem
wirksamen und effizienten Kontrollsystem. Kontroll-
stellen bzw. -behdrden sind ein zentrales Element
dieses Systems. Unser Ziel ist es, die Kontrollstrategie
anhand eines theoretischen Modells zu optimieren.
Dabei sollen Strafen und Kontrollhdufigkeiten so fest-
gelegt werden, dass der volkswirtschaftliche Netto-
Schaden, der sich aus der Verletzung eines Oko-
Standards ergibt, minimiert wird. In Szenarien, die fur
eine Gruppe von Landwirten Verteilungen zu den
betrieblichen Kosten der Standardeinhaltung, unter-
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schiedliche volkswirtschaftliche Schaden und Strafen
kombinieren, werden mit Hilfe von Monte-Carlo-
Simulationen die Anzahl der jeweils resultierenden
Standardverletzungen und die daraus folgenden
volkswirtschaftlichen Schaden abgeschatzt. Unter
Beriicksichtigung mdglicher Reputationsverluste so-
wie der Variabilitdt der Kosten der Standardeinhal-
tung unter den Oko-Landwirten werden entsprechend
optimierte Kontrollhaufigkeiten abgeleitet.

Schlisselworter

Oko-Landbau; Richtlinien; Kontrolle; 6konomischer
Ansatz zur Erklarung von Kriminalitat; Kontrollstrate-

gie

1 Introduction

An organic farming standard governs the organic farm
production process by detailed rules. The adherence to
the rules of an organic standard by a farm producer is
inspected by an independent third party, the control
body (CB) (DABBERT et al., 2012). A system of quali-
ty control and corresponding labeling is pivotal for the
existence of a global organic food and beverage mar-
ket, whose sales in 2013 were found to approach 72
billion US dollars (SAHOTA, 2015: 120).

Enforcing compliance with organic farming
standards can be seen as a public good for organic
producers and consumers. Our objective is to theoreti-
cally determine socially optimal inspection strategies
to provide for this public good. From a social point of
view the questions whether a state run agency or an-
other third party should implement the necessary in-
spections and whether taxpayers or organic producers
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should finance them are secondary and will not be
treated in this article. In the European Union public
authorities or private control bodies (both subsumed
under CB in the following) need to perform at least
one annual inspection per organic operator. In addi-
tion further inspections are implemented. These addi-
tional controls are often discussed in the context of the
request to implement a risk based inspection system
(EUROPEAN COURT OF AUDITORS, 2012). For every
rule contained in an organic standard a CB trying to
perform risk based farm inspections needs to ponder
both the risk of non-compliance and the related possi-
ble social damages (BMELV, 2012).

There are recent studies that empirically and
quantitatively investigate non-compliance with or-
ganic farming standards (LIPPERT et al., 2014; ZORN
et al., 2013; GAMBELLI et al., 2014; ZANOLI et al.,
2014). Based on data from CBs these papers attempt
to find out which factors do significantly increase the
probability of non-compliance. A multitude of hy-
potheses is investigated and in the different studies
several significant effects are found; however, the
only common element detected is that already ob-
served non-compliance — either in the past or as dif-
ferent kind of non-compliance in the same year —
seems to increase the likelihood of non-compliance.
The approach of these papers — while novel with re-
spect to using original data from CBs — implies some
limitations due to the nature of the data used. The
mentioned authors are not able to directly statistically
explain the probability of detected non-compliance,
because the term non-compliance is not legally clearly
defined and thus cases of “non-compliance” were not
adequately coded in the data bases of the investigated
CBs; besides, data changes over time with one CB and
is not comparable across CBs. Thus, in their analysis
they investigate the probability of issued and reported
sanctions or of different groups of issued sanctions as
a proxy for actual detected non-compliance. A further
problem that limits the direct applicability of these
studies for implementing better control strategies with
CBs is that some variables that are unobservable but
nevertheless important are not taken into account.
Thus it can be concluded, that a broader, more theo-
retically based approach would be needed to devise
better control strategies.

This article theoretically analyses enforcement
measures by CBs designed to reduce the occurrence of
non-compliance with an organic standard in a broader
view (for an overview of reported past non-com-
pliances in Germany see ZORN et al., 2012). We pos-
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tulate that — besides accounting for inspection costs,
detection probabilities and deterring effects — CBs
planning their inspections should continuously bal-
ance all relevant social costs including all possible
societal damages linked to different kinds of non-
compliance. In principle, we apply the established
economics of crime approach (see below) to the prob-
lem of non-compliance in organic farming. Two types
of social costs matter in this context: “the net harm
caused by crime and the resources spent on preventing
it” (COOTER and ULEN, 2008: 510). Efficient deter-
rence means to balance these two kinds of cost
(CooTER and ULEN, 2008). In our case relevant social
costs or social damages corresponding to harm caused
by crime are the environmental and consumer damag-
es due to defective organic production and income
losses of the whole organic farming sector caused by
non-compliance that remains undetected at farm level
but later may lead to organic food scandals once the
faulty produce is put on the market. Neglecting the
costs of lawsuits as well as the costs of implementing
and sustaining the legal system and the administrative
costs of the organic certification system, considered as
fixed cost here, resources spent on prevention in our
case correspond to the costs of farm inspection visits.
The behavioral models developed by HIRSCHAUER
(2004) and HIRSCHAUER and MURHOFF (2007) refer
to principal-agent theory to analyze food risks.
Extending this approach, we focus on the decision
problem of a third party next to sellers and buyers, an
independent CB, which has to implement a cost-
efficient control system. In contrast to current practice
in the organic farming sector this independent CB is
fully entitled to decide on how frequently different
farm types are to be inspected. Relying on few quali-
tative assumptions mainly founded in the theory of
economics of crime we set out to build an economic
model to explain farmers’ non-compliance. This mod-
el is used to derive hypotheses on farmers’ behavior
and number of non-complying farms. Next, different
kinds of social damages linked to non-compliance
with organic farming process standards are introduced
and a social damage function relating these damages
to the number of non-complying farms is built. Going
from the general to the specific we finally make quan-
titative assumptions on the functional forms and pa-
rameter values of the model’s equations and inequali-
ties in order to model the interplay of important fac-
tors that are likely to determine non-compliance in
organic farming, all the more as the econometric stud-
ies quoted above, because of lacking data in this field,
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did not deal with any inspection induced changes of
compliance behavior or with any social cost of non-
compliance. Hence, our quantitative decision model
finally obtained is a rule-based model not to be seen
as a direct representation of reality but helping to bet-
ter analyze and perhaps improve the organic control
system.

The structure of this paper is as follows. In sec-
tion 2, the decision of an opportunistic and/or inad-
vertent farmer to comply with a certain process stand-
ard is modeled, based on the theory of economics of
crime. In section 3, a more specific decision model for
CBs is developed that is built upon the calculus model
from section 2, and then used to optimize a CB’s in-
spection frequency given the assumed inspection costs
and the inspection frequency’s impact on non-com-
pliance and on the related social costs. In section 4, for
selected functional relationships and parameter set-
tings, optimum inspection strategies are discussed
using a ceteris paribus analysis. Section 5 contains our
main conclusions.

2 Theoretical Model
Explaining Organic Farmers’
Non-compliance

Following the economics of crime approach® estab-
lished by BECKER (1976) and STIGLER (1970), an
economic model explaining organic farmers’ non-
compliance should reproduce for a given standard the
main relationships between the factors mentioned in
the introduction. Most notably, as in the case of other
offences (see EHRLICH, 1974; EIDE et al., 1994; AN-
TONY and ENTORF, 2002), the long-term relationship
between inspection frequency and incidence of non-
compliance should be negative.

We assume that at least part of the organic farm-
ers behave opportunistically in that they will make
only minimal efforts to comply with the given organic
standard or will even consciously cheat if the expected
sanctions, due to detected non-compliance, are con-
sidered low when compared with the compliance cost.
The compliance cost may also contain different indi-
vidual efforts required to obtain all information that is
needed to fulfill the considered standard.

Hence, our starting point is from the perspective
of a single organic farmer who tries to maximize her

1 For an overview on the economics of crime approach

with special regard to compliance in agriculture, see
HERZFELD and JONGENEEL, 2012: 251ff.
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expected utility and who deliberately (i.e., opportunis-
tically, in the original sense) or unconsciously (i.e.,
opportunistically due to carelessness) will infringe
upon the standard when such action is deemed to be
beneficial for her. For simplicity, our analyses are
built upon the assumption of risk-neutrality.

Thus, similar to the theoretical approach by AL-
MER and GOESCHL (2008: 6f.)>, we assume a risk-
neutral opportunistic farmer’s decision either to com-
ply with a certain organic standard or not as deter-
mined by the following inequality (see LIPPERT et al.,
2014: 314f1f.). If

Bine,y =Ci (81, f)) =Py ()P, (SFL)(F+L(.)
+&,>0

)

then NC;
Pa(.)

L()

t

i

1, NC;; = 0 otherwise, with

Pa(si, fci, 1Fw1, IR1)

L(si, fci, d(fcy))

time period (e.g., year)

farm number (i=1, ..., n)

= Net benefit of non-compliance
Non-compliance (NCi; = 1 if farmer i
does not comply in time period t, NC;; = 0
otherwise)

Compliance cost saved when infringing
upon the standard and which depends on-
site s (location of the farm) and a vector
fc containing farm and farmer character-
istics like farm size and type (e.g., dairy
farm or arable farm), farmer’s experience
and farmer’s liquidity

(Subjective) probability of being detected
in the case of non-compliance during the
respective time period depending on s
and fc as well as on

IF = (perceived) inspection frequency and
IR = (perceived) inspection rigor (e.g., de-
termined by inspection duration and ac-
curacy observed during former inspection
Visits)

(Subjective) probability of being sanc-
tioned when detected, which depends on
SF = (perceived) sanction frequency in the
case of detected non-compliance related
to the kind of standard (its seriousness)
that has to be observed

Bnei=y)
NC

2 The modified empirical part of the analysis by ALMER

and GOESCHL (2008) has been also published in ALMER
and GOESCHL (2010). However, this latter publication
does not contain the theoretical model we are referring
to here.
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Fine related to the sanction (assumed to
be given and constant over time)

Present value of future profits lost due to
sanction-related marketing restrictions,
which depend on s, fc as well as on the
farmer specific discount rate d

Error term reflecting further individually

different net benefit-determining factors,
such as the “warm glow” discussed here-
in, as well as a random error.

Hence, we address an incentive constraint, which, in
our case, is fulfilled when the net benefit of non-
compliance Bc;=1), as defined in inequality (1), is
negative, thus motivating farmers already in the or-
ganic farming business to comply with the agreed
standard. We assume that the participation constraint
is fulfilled in either case, i.e. organic farmers’ utility
derived from correctly farming organically is always
greater than the respective reservation utility (for an
application of different models of principal agency
theory to food safety issues, see HIRSCHAUER, 2004).
Inequality (1) is intended for a situation in which
farmers have an interest to stay in the organic busi-
ness, as they expect future profits from farming organ-
ically and selling their produce as organic. Otherwise,
L in the above inequality would be zero. In other
words, L is the present value of a so-called reputation
rent that can be lost if cheating is detected. In this
sense, our approach differs from standard economics
of crime, as we are incorporating elements of the theo-
ry of self-enforcing agreements — according to which
a ,,firm will honor its implicit quality contract as long
as the difference between the capital values of the
noncheating and cheating strategies [...] is positive®
(KLEIN and LEFFLER, 1981: 622) — in our model (for a
similar application in the context of food safety stand-
ard enforcement, see LIPPERT, 2002). Consequently,
an indirect sanction resulting from additional market
sanction-related losses L is added to the possible di-
rect sanction (fine F). In our model, the non-
compliance related losses do not occur certainly and
without any third-party inspection as in the case of the
original idea of self-enforcing agreements (which
implies experience qualities). Instead — as in organic
farming immaterial credence qualities matter — these
losses are to be borne only at a certain probability,
which strongly depends on the CB’s detection efforts.
Consequently, the following model does not ap-
ply to anonymous fraudulent actors who just sell their
conventional produce as organic and then disappear
from the market (i.e. a “hit and run” strategy). In prac-
tice, the amount of L is a farm individual expectation
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value depending, among other things, on the quantity
of future produce excluded from organic marketing
when a certain non-compliance is detected, as well as
on the corresponding time span during which organic
marketing will be prohibited. In the case in which a
batch of cheese ready for sale has been incorrectly
labeled this time span will only cover a few days,
whereas it may extend to “eternity” in a case of delib-
erate severe non-compliance such as the large-scale
use of forbidden pesticides.?

In organic agriculture, some rules’ compliance
costs, C;, are likely to strongly vary over the years
depending on weather conditions. For instance, a hu-
mid spring that leads to increased pressure from fun-
gal plant diseases could strongly increase opportunity
cost, C;, which consists of profit reductions when re-
nouncing forbidden fungicides.

Notice that compliance costs, C;, do not only con-
tain opportunity and/or production costs directly re-
sulting from observing the specific organic standard,
but they also contain information and transaction costs
that must be borne because compliance implies being
well informed about the corresponding process stand-
ard. The individual information costs depend, among
other things, on the education and the cognitive facul-
ty of every farmer i. In this sense, careless, non-
compliant farmers (who apparently do not consciously
cheat) can also be considered to be implicitly acting
according to inequality (1).

Again depending on the personality of the respec-
tive farmer, costs, C;, may be completely compensated
by the good feeling — a “warm glow” — linked to com-
pliance with the organic standard. Consequently, a
given group of farmers may consist of two subgroups:
non-opportunistic farmers for whom NC;; is always

® Since L is a present value of future losses its amount

does not only depend on the future (expected) income
possibilities when selling organic produce but also on
the rate at which these future (possibly lost) benefits are
discounted. Ceteris paribus, L will decrease with an in-
creasing discount rate (with a higher time preference) of
the farmer. Further, L is also influenced by the (as-
sumed) probability of being detected sometime in the
future when not being detected in the present time peri-
od. For an intertemporal theoretical analysis on how
compliance behavior is simultaneously affected by the
producer’s discount rate and the detection probability
see VETTER and KARANTININIS (2002: 273f.) and the
similar approach in the context of forest certification by
LIPPERT (2009: 145ff.). These analyses also explicitly
account for the possibility that non-compliance may be
detected at later time periods.
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zero and opportunistic farmers who will continuously
ponder their behavior according to inequality (1).

Let x be any farm specific factor that determines
the magnitude of the net benefit, B, of a given type of
non-compliance that when detected and punished,
entails direct (F) and/or indirect (L) sanctions. Thus, it
follows that as long as

Bine,) _ B

OX OX
a relevant increase of the benefit determining factor x
will lead

>0 2

(i)  to a higher probability P(NC;; = 1) that a certain
opportunistic farmer i does not comply with the
corresponding standard and

(i)  to a higher overall number of non-complying
farmers (NCF) as the net benefit Byc=1) in in-
equality (1) will become positive for more op-
portunistic farmers.

Because

oB
>, P()(F+L())<0 (2a)

the number of non-complying farmers, NCF, should
decrease with the probability of being detected in the
case of non-compliance. The same holds for increas-
ing the inspection frequency or the monetary value of
sanctions.

Building on the microeconomic theory as treated
in this section, in subsection 3.1, we outline a general
model structure that illustrates the interactions and
implications of important factors that impact the min-
imization of the social cost related to non-compliance.
In subsection 3.2, we develop a simplified decision
model that — using assumptions for parameters and
social damage functions — allows for analyzing the
interplay of these factors when designing inspection
strategies.

Model for the Optimization of
Inspection Strategies to
Reduce Organic Farmers’
Non-compliance

3.1 General Model Structure

Our normative analysis is based on the idea that a CB
should implement a combination of sanctions and
inspection frequencies in such a way that the resulting
incidence of non-compliance will be socially optimal
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(for a background, see BECKER, 1974; BECKER, 1976;
PYLE, 1983; for an application to food safety perfor-
mance standards, see LIPPERT, 2002).

In the following, we consider a group of ny or-
ganic farmers who are identical with respect to site
conditions s and some of the farm characteristics fc.
However, the members of this group are different with
respect to some other individual attributes that are
difficult to observe such as the availability of liquid
assets and present values of future profits lost due to
possible sanctions, L. The corresponding differing
characteristics between the farms determine the dif-
ferences in compliance behavior within the group.
NCFy; < ny is the number of non-complying farmers in
time period t within the group.

Notice that the inspections considered in our
model are spot checks that verify whether a certain
rule has been observed. These checks occur during a
given period of time t. Their frequency lies between 0
(i.e., no inspection visit at all) and 1 (i.e., all n, farms
are inspected within period t). A further simplification
consists of the isolated consideration of different or-
ganic farming rules, which means that we do not con-
sider all of the rules to be met when farming organ-
ically but only single rules such as the interdiction of
mineral nitrogen fertilizers, the banning of certain
pesticides or the implementation of specific documen-
tary requirements. Such a separated consideration of
the rules is necessary because of the varied magnitude
of the related damages. Damages resulting from an
infringement of documentary requirements are likely
to be small, whereas ecological and other (sectoral)
social damages linked to the use of a forbidden pesti-
cide can be very high.

With respect to the social damage generated by
the breach of a specific organic standard or rule, we
distinguish three different categories:

DE(NCFy) = Ecological damage resulting from fore-
gone positive externalities linked to
compliance,

DC(NCFy) = Consumer damage to be borne by the
purchasers of organic products who
(ignorantly) do not receive the product
for which they actually paid and

DS(NCFy) = Sectoral damage resulting from dimin-

ished total revenues of the entire organ-

ic sector because of loss of consumer

trust when a standard breach emerges.
Relevance, size and marginal damage strongly differ
for the different categories depending on the organic
product and the rule considered. For the first category,
it seems plausible to assume a cubic damage function
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Fig. 1.

Examples for possible social damage functions
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DE = Ecological damage, DC = Consumer damage, DS = Sectoral damage, NCF, = number of non-complying farmers, n, = number of

all organic farmers in the group, m = number of always complying organic farmers; DEax

maximum possible ecological damage;

DCyax = maximum possible consumer damage and DS, = maximum possible sectoral damage.

Source: authors

as the one displayed in Fig. 1a, which means Ecologi-
cal damage (DE) — for example, due to pesticide
emissions — is characterized by increasing marginal
damages until a certain number of non-complying
farms is reached. From this point on marginal ecolog-
ical damage (ODE(NCF)/ONCF},) is still positive but
declines until a maximum damage (DE.y) is attained.
With only several non-complying farms, the marginal
ecological damage is relatively low because of natural
buffer capacities. With many non-compliers, the envi-
ronment may be already so strongly degraded that a
further non-complying farm would not add much ad-
ditional harm.

Consumer damage (DC) occurs either when a
purchaser unwittingly consumes faulty food items.
These products could come from undetected non-
complying farms whose products do not have the
characteristics paid for. In this case, the related mar-
ginal damage is difficult to assess as it may be differ-
ent for each consumer. As it cannot be established
whether a defective product will be consumed by
somebody who valuates this fact more or less serious-
ly, a constant marginal damage is assumed, leading to
a linear damage function, as the one shown in Fig. 1b.
In some cases, the corresponding marginal damage
could be derived from the price differences between
faultless (organic) and faulty (conventional) products.
Due to the fact that some individuals have a willing-
ness to pay that exceeds organic market prices, such
an estimate would be a lower bound of the true social
damage ODC(NCF)/ONCF,.

An important sectoral damage (DS) can occur
when non-compliances with a rule, such as the ban of
certain pesticides, are not detected on the farm in time
period t but are revealed later, e.g., in time period t+1.
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In such cases, just one non-complying farm not duly
excluded from organic business could result in a huge
loss of consumer trust in the organic farming business.
As consumer trust is an important prerequisite for
obtaining premium prices in the organic sector (see
GIANNAKAS, 2002; JANSSEN and HAMM, 2011), the
resulting expected social damage would consist of the
sector’s diminished total revenues along with future
income possibilities lost due to the respective “scan-
dal”. “Expected” in this context means that the as-
sumed sectoral damage must be multiplied by the
(subjective) probability that the non-compliance relat-
ed scandal actually occurs. For important organic
rules, such as pesticide bans, the sectoral damage
function is likely to resemble the one displayed in Fig.
1c: only a few, or even one, non-complying farmer
may cause maximum possible sectoral damage.

Considering both, the mentioned social costs
linked to non-compliance and the CB’s costly inspec-
tion and sanction effort E,, the objective is to optimize
the number of non-complying farmers NCFy. There-
fore, from the perspective of a CB, acting on behalf
of the natural environment, consumers and the
whole organic sector, the following net damage G
has to be minimized by choosing an optimum inspec-
tion frequency IF; (symbols used as introduced
above):

G = DE(NCF,,) + DC(NCF, @)

+ DSM([l— P (IF, IR)] NCFkt)
+E(IF, IR, SF)
P, (IF,, IR) SF, NCF,,F min!

with
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NCF, =NCF, (Pd (”:t—l’ IRt—l)’ PS(SFt—l)’ F) (4)

where DS..4(.) is the discounted future sectoral dam-
age as defined above resulting from non-complying
farms not detected ((1-P4) NCFy) in time period t.

The dynamic problem is to minimize net damage
G every year again balancing the time dependent vari-
ables contained in Equations (3) and (4). The dynam-
ics result from the fact that a change of the CB’s be-
havior in time period t-1 (e.g., an increase in inspec-
tion frequency IF.;) entails a change of the number of
non-complying farms (NCF,) in the next time period
which in turn will make the CB adapt its inspection
frequency IF; again etc. This leads to (optimum) time
paths for the variables inspection frequency and num-
ber of non-complying farms. Next, to facilitate the
theoretical analysis we assume that within this dynam-
ic system sooner or later a steady state will be
reached, where, for all relevant variables, the opti-
mized values v = Vg = V; = V1. In such a steady state
an equilibrium detection probability and an equilibri-
um number of non-complying farmers is given in a
way that neither the farmers nor the CB will adapt
their behavior in the following time periods as long as
there is not any exogenous change of variables or
model parameters. By means of the simplified heuris-
tic model below, we compare steady states brought
about by the different model parameters like, e.g., the
fine in case of detected non-compliance. In doing so,
farmers’ compliance cost C; — which in reality may be
time dependent especially for some crop production
standards — are supposed to vary among farmers but to
be time-invariant.

The damages DE and DC are directly related to
the number of non-complying farms (NCF,) whereas
DS depends on the number of undetected non-
complying farms ((1-P4) NCFy) as only the produce
of these farms, once being marketed, results in social
damages to the whole organic farming sector.

An increase in the inspection frequency may have
two damage reducing effects: an indirect effect result-
ing from deterrence (less DE, DC and DS because of
fewer non-complying organic farmers) and a direct
effect because, in the future, less faulty organic pro-
duction will be brought to the market as more non-
complying farms are found today (i.e., reduced DS).

Finally, a further aspect needs to be mentioned.
Following the idea already put forward by JEREMY
BENTHAM in 1823 (1907: 171, 175) that an offender’s
harm due to punishment should not exceed the dam-
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age to be avoided, from an overall social point of
view, this constraint should be observed:

P, (IF, IR)P, (SF) [F + Ly ]
oDE oDC

< +
oNCF,,  ONCF

K e

oDS
ONCF,,

(5)

+(1-P, (IF,IR))

Thus, the expected non-complying farmer’s loss due
to the sanction (corresponding to compliance cost
Cwnc of the marginal offender i = nync < ny, according
to (1)) should be less or equal to the related expected
marginal damage caused to other members of the so-
ciety (i.e. environmentally concerned citizens, con-
sumers and the whole organic sector).

3.2 Simplified Decision Model

To demonstrate further implications for optimum in-
spection strategies, sensible parameter values assuring
realistic orders of magnitude have been specified (see
the parameters given below Figures 2 through 7).

For simplification we assume that in the analyzed
steady state, P4(IF) = IF such that 0Py/0IF = 1. A fur-
ther simplification of assumptions affects both inspec-
tion rigor IR and sanction frequency when non-
compliance is detected (in the following, Ps = SF = 1).
We thus assume these values to be given, they cannot
be influenced.

Next, for simplicity, we neglect consumer dam-
age DC and imagine a situation in which the non-
compliance does affect the environment but does not
affect the material food qualities (e.g., forbidden pes-
ticide use, which reduces biodiver-sity but does not
lead to residues in food). Hence, we can set the con-
stant marginal damage 0DC/ONCFk = 0.

In the scenarios in which it is relevant, the sec-
toral damage, DS, will be modeled as represented in
Fig. 1c. Thus, DSmax, which could be the difference
in sales revenues from marketing the entire organic
sectors’ produce either organically or conventionally,
may be reached relatively soon. It only takes several
non-complying farms being detected by traders, jour-
nalists or other actors to lose consumer trust and com-
pletely ruin the organic market. The ecological dam-
age, DE, will continuously increase with the number
of non-complying farmers. It should be zero at NCF
=0, and it will reach its maximum at DE(ny) = DEax.
As mentioned, we assume a cubic damage function
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(i.e., initially increasing, later decreasing marginal
damage, see Fig. 1la). When assuming DE(0) = 0,
DE(ny) = DEna and 0DE(0)/ONCF\ = 0DE(ny)/ONCF
= 0, this function can be written as

DE (NCF, ) =3 25mex NCF 2 (6)
nk
2P ope,
nk

In practice, if available, a rough estimate of the dam-
age, DEnax, could be the society’s willingness to pay
for the higher biodiversity linked to ny farms farming
organically.

A simple way to model a CB’s inspection cost for
a given inspection rigor, IR, is to assume

E(IF|IR)=E(IF)=c,n IF ()

with ¢, = cost per inspection visit.

Finally, the relationship between the equilibrium
probability (i.e., the probability in the assumed steady
state) of being detected when not complying and the
number of offenders NCF(P4) must be modeled. This
modeling is achieved using Monte Carlo experiments.
For this purpose, m members of the group of n, farm-
ers are assumed to be always honest and perfectly
informed. Consequently, they will always comply
with the considered organic standard no matter how
disadvantageous this may seem for them, whereas the
remaining n, — m farmers within the group will act
opportunistically. According to inequality (1), an op-
portunistic farmer’s compliance costs, C;, and her
expected overall losses, Py (F + L;), when being de-
tected as non-compliant determine whether she will
comply with the standard or not (see corresponding
inequality (1b), below).

In the following, the variables L; and C; are
assumed to be normally distributed (N(u, ¢.%):
N(uc, oc®) and independent). Especially, in case of
compliance costs in reality also a positively skewed
distribution (i.e., few farms with particularly high
compliance costs) could be relevant. Note, that a rela-
tively broad range of possible costs, C;, may also cov-
er the high compliance costs of inadvertent or careless
farmers who do not cheat consciously but who make
mistakes because they do not know how to fulfill the
required rules. In every model simulation below, us-
ing the assumed normal distributions, random values
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for C; and L; are drawn. Then, every risk-neutral® op-
portunistic farmer i (i = 1, ..., n, — m) checks for the
given fine, F, at every probability P4 between 0 and 1
whether

B

e =C—P (F+L) >0. (1b)

Those farmers for whom the net benefit Bic;=y) ac-
cording to inequality (1b) is positive will be non-
compliers (NC; = 1). Summing up all non-compliers at
different probabilities, Py, yields a curve, NCF(Py),
that is used to calculate the respective net damage,
G(Py), as defined in Equation (3).

For the simulations of the reference scenario, we
set a total of n, = 500 farms of which m = 200 are
always complying with the considered standard. The
maximum possible damage, DE ., is 500,000 €. Fur-
thermore, in the reference scenario, we set F = 0 €
(i.e., no fine in the case of detected non-compliance),
¢, =200 € and the average compliance cost, uc = 800 €;
the average loss L is x = 1,600 €. Initially, the stand-
ard deviations are set to o, = 160 € and oc = 250 €. A
cubic damage function corresponding to Eq. (6) and
Fig. 1ais used.

4 Model Simulations to Identify
Optimum Inspection Strategies
under Different Scenarios

In this section we present one reference scenario and
five additional scenarios in which important model
parameters have been modified when compared to the
reference scenario (for a complete overview on the
model parameters used in the different scenarios see
the summarizing representations below Figures 2
through 7). After the reference scenario without any
fine and with zero sectoral damage we introduce a fine
of 2,400 € in scenario | (this fine is then retained in
scenarios | through V). In addition, in scenario Il the
standard deviation of the compliance cost is increased;
in scenario Il it is reduced when compared to the
reference situation. In scenario IV we keep the pa-
rameter values assumed in scenario | except the aver-
age compliance cost that are supposed to be higher
now. Scenario V — again based on the parameter values
of scenario | — illustrates the effects of an important

*  Risk-averse behavior could be modeled by subtracting

a risk premium r; (Pq, F+L;) from the left-hand side of
inequality (1b). However, this addition would strongly
complicate the analysis as it implies assigning individual
utility functions to the different farmers.
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Fig. 2a. Number of non-complying farms NCF, Fig. 2b. Net damage G (Eq. (3)) depending on
depending on detection probability Py detection probability Py
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Equilibrium P,

Model parameters for the reference scenario:

P4(IF) = IF; SF = 1; n, = 500; m = 200; DE s = 500,000 €; ¢, =200 €; x = 1,600 €; o = 160 €;

DSiax =0 €; ODS/ONCF=0€; uc =800 €; 6c=250€; F=0¢€
Source: authors

sectoral damage, DS, already occurring in case of only
few non-complying farms. For every scenario, five
Monte Carlo simulations are performed. In each simu-
lation, n, — m combinations of C; and L; are drawn
from the assumed distributions. Then, for 100 proba-
bilities between 0 and 1, each farm i is assigned its
compliance status according to inequality (1b). Finally,
for every simulation, the curves NCF(Py) and G(Py)
can be displayed. The latter curve will be used to
approximate the optimum inspection frequency for
the set of assumed parameters in the respective sce-
nario.

In the reference scenario, the possible future sec-
toral damage is neglected (i.e., DS(.) = 0). The result-
ing curves NCF(P4) and G(Py) for the five simula-
tions of the reference scenario are shown in Fig. 2a
and 2b. Depending on the simulation, the optimum
inspection frequency corresponds to approximately
74%, and the corresponding minimized net damage is
between 75,000 and 80,000 €. In the optimum, be-
tween 18 and 30 non-complying farms would be ac-
cepted by the CB. However, if, in addition, restriction
(5) was to be observed, the inspection frequency
should be lowered (to approximately 57% in simula-
tion 1) until the damage, 0DE/ONCF, of the marginal
non-complying farm (NCF, = 95 in this case) exceeds
Pg . = 0.56 - 1,600 = 896 € (which is a rough esti-
mate of the marginal offender’s expected loss). In
doing so, inspection costs could be saved while the
resulting additional damage, DE, would be overcom-
pensated by the saved compliance costs of the addi-
tional non-complying farmers.
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Next, in scenario I, a fine of F = 2,400 € in the
case of detected non-compliance is introduced. All
other parameters are kept constant, and again the cor-
responding Monte Carlo simulation is performed five
times, which leads to the results displayed in Fig. 3a
and 3b. Now, the optimum inspection frequency is
approximately 25%, and the corresponding minimized
net damage is approximately 9,000 €. In the new op-
timum, more non-complying farms (= 60 except for
simulation 2) would exist. Nevertheless, the net dam-
age is much lower than in the reference scenario be-
cause the expected fines and the inspection costs
saved over-compensate the damage caused by the
additional non-complying farmers. However, in this
context, it should be considered that fines are not so-
cial benefits but merely a transferred welfare. Again,
observing restriction (5), the inspection frequency
could be further reduced, but only slightly (to approx-
imately 22% in simulation 1).

While maintaining all other parameters from sce-
nario | in the following two scenarios, we vary the
standard deviation of compliance cost oc. Fig. 4 (sce-
nario Il, high ac) and 5 (scenario Il1, low ac) reflect
the resulting effects on the number of non-complying
farms and on net damage. Obviously, when opportun-
istic farmers are rather homogeneous regarding their
compliance costs (i.e., low oc) an optimum detection
probability is easier to find. In addition, close to this
optimum detection probability, an increase in inspec-
tion frequency is more effective in this case.

Especially with respect to organic crop farming,
compliance costs for the fulfillment of certain rules
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Fig. 3a. Number of non-complying farms NCF
depending on detection probability Py

Fig. 3b. Net damage G (Eq. (3)) depending on
detection probability Py
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Fig. 4a. Number of non-complying farms NCF,
depending on detection probability Py

Fig. 4b. Net damage G (Eq. (3)) depending on
detection probability Py
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Fig. 5a. Number of non-complying farms NCF
depending on detection probability Py

Fig. 5b. Net damage G (Eq. (3)) depending on
detection probability Py
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may strongly vary between regions. For instance, due
to humid weather conditions during the growing season,
the opportunity costs for renouncing certain banned
pesticides could be greater at a certain place. In sce-
nario IV (see Fig. 6), we maintain all parameters as-
sumed in scenario | except the average compliance
cost, uc, for which we simulated an increase of 50%.
As a consequence, in the model, the CB’s optimum
inspection frequency increases from approximately
25% to roughly 34%. At the same time, minimized net
damage, as defined by Eq. (3), are reduced by more
than 5,000 € because the increased ecological damag-
es and inspection costs are overcompensated by ex-
pected revenues from fines. Despite the higher control
frequency leading to an increase in farmers’ expected
fines and future income losses, the number of non-

Fig. 6a. Number of non-complying farms NCF
depending on detection probability Py

complying farmers increases from approximately 60
to 77.

Finally, in scenario V (see Fig. 7), we analyzed
the effects of an important possible sectoral damage,
DS, on optimized inspection frequencies and overall
damage. We assumed that for a fundamental organic
rule, a hidden non-compliance of 10% (i.e., 50 non-
complying model farms that are not detected during
spot check controls) will eventually lead to a scandal
that completely ruins the regional organic market for
one year. Estimating a related damage, DSpa, Of
7,500,000 € and using a damage function such as the
one displayed in Fig. 1c, we obtain a marginal dam-
age, ODS/ONCF, of 150,000 € per initially undetected
non-complying farm when (1 — P4) NCF, < 50 and a
marginal damage of zero otherwise. All other para-

Fig. 6b. Net damage G (Eq. (3)) depending on

detection probability Py
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Fig. 7a. Number of non-complying farms NCF
depending on detection probability Py

Fig. 7b. Net damage G (Eq. (3)) depending on

detection probability Py
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meters are the same as in scenario |. In scenario V, the
optimum inspection strategy consists of extending the
spot check controls until all farms comply with the
respective standard. Depending on the simulation, this
occurs in the model for inspection frequencies be-
tween 37% and 42% (instead of approximately 25% in
the optimum of scenario I). Consequently, no ecologi-
cal damage, DE, or sectoral damage, DS, occurs.
Costs of inspection visits, not diminished by revenues
from fines, are the only remaining damages. Note that,
given the farmers’ good reactivity for the set of model
assumptions analyzed in this scenario, it is not neces-
sary to inspect all farms in order to make all farmers
comply with the standard.

In principle, similar model analyses could be
used by CBs to approximately optimize inspection
strategies for groups of farmers in which the farmers
within each group have a similar detection probability
function Py(., IF).

5 Discussion

Our theoretical considerations and model analyses
have shown that CBs planning efficient inspection
strategies, should carefully ponder on the following
factors: possible social damages from standard in-
fringements, costs of inspection measures and compli-
ance costs dependent on the farmers’ abilities to
change their behavior. These factors must be balanced
when choosing or updating inspection frequencies for
the supervision of different organic rules (e.g., in the
case of low social damage due to non-compliance but
very costly inspection measures, spot checks or tests,
if conducted at all, should be conducted rarely).

Due to differences in compliance costs and losses
resulting from sanctions different types of farms may
demonstrate different compliance behaviors for the
same rules. Thus, inspection frequencies should be
targeted to farm types in such a way that a CB applies
a higher inspection frequency when the respective
farm category has shown a greater probability of
non-compliance in the past. Only under the assump-
tion of a farm-type independent detection probability,
such a strategy means directing inspections towards
farmers with a truly higher probability of non-
compliance. Even if this assumption is not fulfilled, this
approach would be sensible provided the CB is inter-
ested in directly avoiding sectoral damages (see DSi1
in Eg. (3)).

Separating farms into relatively homogenous
groups when designing inspection strategies means
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that the effects of different control strategies on farm-
ers’ compliance behavior are easier to assess as all
farmers react similarly (see section 4).

Inequality (1) in section 1 also illustrates that
opportunistic farmers’ expectations are based on pre-
vious experiences. It is thus suggesting that these
farmers will adapt their compliance behaviors accord-
ing to perceived past inspection and sanction frequen-
cies. Consequently, a CB should adapt its inspection
strategy continuously. This could be done using
regularly up-dated discrete choice models that explain
the determinants of actual non-compliance probabili-
ties. Furthermore, CBs can occasionally vary the fre-
guencies of unannounced inspections IF, (some farm-
ers are controlled more frequently and others less
frequently) to gain a better understanding of how cor-
responding farms react (i.e., to approximate the effect
ONCF\(/OIF ).

By including a non-compliance dependent social
cost function the model developed in this article ex-
tends the model elaborated in the theoretical part of
LIPPERT et al. (2014), that merely addresses the de-
terminants of farmers’ compliance behavior as ex-
pressed by inequality (1). In this earlier work inequali-
ty (1) was used to systematically derive hypotheses
for the incidence of non-compliance. In contrast, the
extended model above should be seen as an attempt to
structure a CB’s problem of optimizing its inspec-
tions. We are well aware that it is based on several
simplifying assumptions like risk neutrality of oppor-
tunistic organic farmers or the assumption that actual
control frequencies are equivalent to perceived control
frequencies. However, the model can still be helpful
when abandoning one of these assumptions as it then
illustrates the ceteris paribus effects of the corre-
sponding previously neglected factor. For instance,
allowing for farmers being risk averse (i.e., subtract-
ing farm individual risk premia r; from the left-hand
side of inequalities (1b), see also footnote 4) leads to a
ceteris paribus increase of the number of farmers for
whom the benefit of hon-compliance in equality (1b)
is negative; consequently the NCF,-curves in the
model analyses and the related optimum inspection
frequencies in the figures in section 4 would be shift-
ed leftwards. Further, if — due to bounded rationality —
farmers were supposed not being aware of sanctions
or detection probabilities the number of non-
complying farms NCF, would be independent of these
factors (thus, Equation (4) being irrelevant) but still
the optimization problem outlined by means of Equa-
tion (3) would be relevant (in this case with a constant
given number NCF,).



GJAE 65 (2016), Number 1

Finally, some caveats need to be mentioned. As
illustrated in section 4, the implementation or increase
of fines can facilitate standard enforcement and re-
duce corresponding damages. However, in practice,
further transaction costs for related law suits and ad-
ministration must be also considered when trying to
improve the efficiency of the certification system.
Moreover, with respect to elevated fines, the fines
may have an undesired effect on the participation
constraint mentioned in section 2. That is, assuming a
certain probability of being sentenced innocently,
conventional farmers may refrain from converting to
organic farming.

Also we need to mention that the simulation
model is still an abstraction from reality with respect
to the legal situation within the organic sector. The
idea, that a proactive CB should balance all relevant
social costs when independently choosing its inspec-
tion frequencies, so far does not correspond to com-
mon inspection practices. One should be aware that
the legislation would have to be changed if corre-
sponding inspection strategies are to be implemented.
Currently, also fines are not part of the sanctions a CB
can impose. The current legal framework does not
allow less than one inspection per operator and year —
but this could be changed in the future. Also in princi-
ple the approach presented applies to the additional
controls beyond the annual control.

Our model incorporates the concept of self-
enforcing agreements (see section 2), which implies
that higher (expected future) prices for organic pro-
duce will increase the number of complying farms
because of rising possible losses, L;. Hence, in our
model, greater price premiums for organic products
are expected to reduce fraudulent behavior. However,
in this context, it should be noticed that this conclu-
sion is based on the specific market situation of organ-
ic farmers who usually cannot act anonymously. In
another market situation, for example, when unknown
traders attempt to sell their produce only once, high
price premiums may have the opposite effect and at-
tract more cheaters to the market.

We did not include in our model clearly irrational
or “crazy” behavior. In practice, this omission means
that despite high expected sanction values along with
low compliance costs, some non-compliance may still
occur. Similarly, a sequence of unfortunate events
may have such an effect. Thus, in the case of large
possible damages, DS, it may be advisable to conduct
further spot checks even if, in principle, every reason-
able opportunistic farmer is supposed to comply for
her own sake.
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Moreover, the socio-legal literature on compli-
ance with regulations suggests that compliance behav-
ior is not just determined by the fear of sanctions and
rational self-interest (see AMoDU, 2008). Among oth-
er factors, the general context and the design of regu-
lations are important as are the inspectors’ enforce-
ment activities that go beyond imposed sanctions
(Amobu, 2008). According to psychological litera-
ture, people are inclined to comply when the respec-
tive rules are perceived as fair and appropriate (see the
literature quoted in HERZFELD and JONGENEEL, 2012:
255). In this context, a rule that does not make sense
for the farmers is less likely to be strictly observed.
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