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Abstract

Businesses, researchers, and policymakers in the agricultural and food sector regularly make use of large 
public, private, and administrative datasets for prediction, including forecasting, public policy targeting, and 
management research. Machine learning has the potential to substantially improve prediction with these 
datasets. In this study we demonstrate and evaluate several machine learning models for predicting demand 
for new credit with the 2014 Agricultural Resource Management Survey. Many, but not all, of the machine 
learning models used are shown to have stronger predictive power than standard econometric approaches. 
We provide a cost based model evaluation approach for managers to analyze returns to machine learning 
methods relative to standard econometric approaches. While there are potentially significant returns to 
machine learning methods, research objectives and firm-level costs are important considerations that in 
some cases may favor standard econometric approaches.
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1. Introduction

There is an ever-increasing number of large datasets that can be used by businesses, government, and academic 
researchers to solve challenges facing agriculture, food, and the environment. Sonka (2014) emphasizes that 
both firms and government will have to make fundamental management and organizational changes for the 
benefits of ‘Big Data’ to be fully realized for the ag sector. Management and warehousing of this data is an 
ongoing challenge (Woodard, 2016), and there are serious issues with maintaining the privacy and security 
of farm data (Sykuta, 2016). Along with these challenges, researchers must also adapt to methodological 
advances that have the potential to improve management research. Many standard econometric models are 
not designed to take advantage of large datasets with detailed information for each observation, i.e. each 
farm, customer, or plot of land.

In this study we consider the potential of machine learning to improve the prediction of demand for new credit, 
using a dataset that is well-known to U.S. agricultural economists: the Agricultural Resource Management 
Survey (ARMS). ARMS data is used for a variety of official statistics, forecasting, and economic research. 
Improved prediction has many practical business and policy uses, as well as research applications. Machine 
learning and prediction may be useful to policymakers. When targeting is necessary, say for policies 
aimed towards specific groups, such as beginning farmers, machine learning methods could be used with 
administrative data to lower costs. Statistical agencies must collect data from farms, which have a wide range 
of response rates (Weber and Clay, 2013). Better targeting could save public resources while improving 
official statistics. Some research has also suggested that ‘Big Data’ can improve the United States Department 
of Agriculture (USDA) forecasts (Tack et al., 2017).

Businesses spend substantial resources predicting demand and targeting potential customers, and machine 
learning is widely used in private industry for prediction (Einav and Levin, 2014). Many firms have large 
private databases and sales data, in addition to access to public datasets. More accurate targeting of potential 
customers or prediction of demand could improve profitability of agribusinesses. There are many examples 
of machine learning being used by food and agricultural businesses. ‘Big data’ firms are currently competing 
to solve agriculture and food sector problems through data analytics and new technology (Sparapani, 2017). 
John Deere recently acquired a company that is developing machine learning technology to identify weeds 
to selectively spray herbicide on (Graham, 2017). Walmart has developed a product that uses machine 
learning to identify how soon produce will spoil, which is believed to have improved produce quality and 
already saved $86 million in food waste costs (Musani, 2018). Machine learning has also made demonstrated 
improvements to general business processes, including customer service and relationships, hiring processes, 
and supply chains (Wellers et al., 2017). Coble et al. (2018) provide many additional examples of ‘Big Data’ 
applications for food and agriculture.

There are multiple ways that machine learning is used in the management and marketing literature. George 
et al. (2014) discuss how ‘Big Data’ has the potential to “transform management theory and practice”. 
Part of this process includes how ‘Big Data’ and techniques such as machine learning allow research to 
move beyond a sole focus on P-values and establishing causality, to develop a broad base of evidence on 
management issues from a diverse range of sources (“cosilience”). Cui et al. (2006) used machine learning – 
Bayesian Networks with Evolutionary Programming – to estimate response to direct marketing with a large 
direct marketing dataset. Dzyabura and Hauser (2011) use machine learning techniques to test for whether 
consumers use heuristic decision rules, which has useful implications for marketing and demand modeling. 
Bajari et al. (2015) used several machine learning techniques to estimate demand for salty snacks with grocery 
store scanner data and found that the techniques were better at prediction than standard econometric models.

In addition to improving prediction, other methodological issues surrounding research using food and 
agricultural datasets may benefit from machine learning methods. Future research could apply the machine 
learning methods demonstrated here to statistical inference and estimation of heterogeneous treatment effects, 
i.e. (Wager and Athey, in press). Prediction with machine learning can also generally improve a variety of 
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econometric models, for example through variable selection or dimension reduction (Mullainathan and 
Spiess, 2017).

Another issue is that many variables commonly used in research have imputation for missing responses (i.e. 
Morehart et al. (2014)). Machine learning may improve imputation, in cases when imputation is desirable. 
Given that these models can handle a larger number of variables, machine learning methods could also 
accommodate a less restrictive approach by explicitly including raw survey responses and variables indicating 
missing observations in statistical models.

We provide a step-by-step guide on how to setup a machine learning problem and how these methods 
can be evaluated and compared to prediction with standard econometric models. Throughout, we address 
commonly-held concerns regarding machine learning, with a focus on over-fitting of data, and explain how 
well-established methods can be used to mitigate these concerns. After comparing the benefits and drawbacks 
of machine learning methods relative to standard methods for our research question, we provide a cost-based 
evaluation approach that would allow managers to analyze machine learning relative to standard econometric 
methods, based on the costs associated with incorrect predictions faced by their firm. We conclude with 
a discussion of other important considerations for firms and management researchers considering use of 
machine learning methods.

2. Background

In this study we apply machine learning methods to ARMS to predict if a farm applied for new financing. 
The U.S. farm sector is entering its fourth year of declining income, and demand for credit faces upward 
pressure. As liquidity built up during high-income years is depleted, more farms may require additional 
lines of credit to cover operating expenses. Better predictions of farms desiring additional financing enables 
agricultural finance industry participants to better understand the characteristics of their potential customers 
and meet their needs. Additionally, the results inform the industry segments demanding greater financing 
and where credit constraints might occur. Farm lenders could also use our approach to better predict which 
farms are more likely face challenges with loan repayment.

There are some consistent descriptive findings in what U.S. farm and farm operator characteristics are related 
to debt use. Dairy and poultry operations have higher levels of credit use, while crop farms are less leveraged 
on average. Commercial farms and farms with younger primary operators also have higher levels of debt use 
(Ifft et al., 2014). Operator objectives may also drive demand for credit, for example operators may demand 
more credit because they want to increase the size of their operation or farm ‘full time’. For example, many 
U.S. dairy farms used credit to fund investments to expand capacity over recent decades (MacDonald et 
al., 2007). While it is well-established that farm financing requirements vary by production specialization 
and operator age, these general relationships may not be sufficient to accurately predict new credit demand.

Studies that use farm-level data to model credit demand are rare. One exception, Katchova (2005), used 
2001 ARMS data to explore determinants of various credit decisions, including use of credit and level of 
credit. This paper illustrates one approach to addressing truncation in modeling credit demand, by separately 
estimating the discrete decision to use any credit and the decision on amount of credit to use. Key factors 
found to influence the decision to use credit across farm types are gross farm income, risk management 
strategies, operator age, and risk aversion.

Prior to Katchova (2005), studies relied on bank data or farm data from outside the U.S. to estimate credit 
demand. More recently, Fecke et al. (2016) modeled individual loan amounts using data from a German bank 
and identified many factors that influence loan amount, including loan terms, value of farm production, and 
business expectations. They also note that sample selection bias is a common issue in the consumer credit 
choice literature as well as their study. Future research on the decision to apply for a loan is recommended. 
Using farm survey data from Ireland, Howley and Dillon (2012) found that in addition to the standard 
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relationships between farm size and operator age with debt levels, motivations such as business or lifestyle-
orientation for farming, also drive debt use.

The 2014 ARMS included research questions that asked respondents to indicate whether a respondent applied 
for new financing. The dataset allows us to categorize whether farm operations applied for new financing 
and determine if the demand for new credit can be predicted given other observable data about the operation. 
As a starting point we use a typical model1 commonly used in econometric studies, logistic regression, to 
predict if each operation applied for financing. To demonstrate the potential benefits of machine learning 
methods for applied economics and management researchers, we explain the typical machine learning project 
process and terminology. We then employ nine additional machine learning algorithms to classify whether 
a farm operation responded to the 2014 ARMS survey indicating that they had applied for new financing. 
These are then compared to the ‘literature driven logistic regression’ model.

3. Data

The data used in this study comes from the 2014 Agricultural Resource Management Survey. ARMS is an 
annual survey that is the USDA’s primary source of information on U.S. farm businesses’ financial performance 
and position, production practices, and resource use. The survey enables a broader understanding of the U.S. 
farm sector by including questions about the farm business along with questions on the demographics and 
economic well-being of the primary farm operator’s household. The survey is constructed to be representative 
for the continental United States and to enable estimates at the state-level for the top agricultural States.

Beyond the typical questions asked in the ARMS survey, the USDA asks additional research questions that 
are included for just one year or are repeated sporadically. In 2014 additional research questions focused 
on the debt portion of the farm’s balance sheet, specifically in regards to applying for new loans or lines of 
credit. Section K of the 2014 ARMS survey included the following questions:

 ■ Question 7: did you apply for any new loans or line of credit for agricultural purposes in 2014? 
(Yes/No)

 ■ Question 7a: was a request for credit or loan application for agricultural purposes either turned down 
or were you not given as much credit as you applied for in 2014? (Yes/No)

 ■ Question 8: what was the MAIN reason you did not apply for any new loans or line of credit for 
agricultural purposes in 2014?

We focus our research on question 7 regarding whether the farm operator applied for any new loans or lines 
of credit for agricultural purposes in 2014. Of the 29,733 usable responses in the 2014 ARMS sample, all 
but 1,132 (3.8%) answered this question.2 32% (9,226 farm operators) answered affirmatively that they did 
apply for a new loan in 2014. Our variable excludes existing real estate and machinery (non-real estate) 
loans, as well as existing lines of operating credit that do not require reapplication. Banks may provide a 
line of operating credit that covers several years, typically secured by farm real estate. However generally 
operating loans are provided on a one-year basis and require annual reapplication.

There are differences in the characteristics of the farms and farm operators that applied for a new loan (which 
we will refer to as credit applicants) and farm operators that did not apply for a new loan (which we will refer 
to as non-applicants) in 2014. Similar to other research, these groups vary by demographic characteristics 
including age and sex, but have similar educational attainment. Farm characteristics including the commodity 
specialization, acres operated, and the farm’s geographic location are also related to demand for credit, as 

1  Logistic regression and many other standard econometric models are technically simple machine learning models. We refer to logistic regression 
as ‘literature-based logistic regression’ to emphasize our comparison between existing or standard econometric methods and the advanced machine 
learning techniques we test.
2  We also included people that reported a new loan in the debt table from 2014 as having applied for new agricultural financing. The high response 
rate was likely influenced by language in the survey that stated “response to this inquiry is required by law”, which may have influenced responses 
to debt-related questions.
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well as financial characteristics of the farm business and the farm household. The number of surveyed farms 
in each category and the respective share of credit applicants are reported in Table 1.

Perhaps the starkest contrast between credit applicants and non-applicants is by farm size, as defined by 
gross cash farm income (farm sales). More than half of credit applicants had sales greater than $350,000. 
Less than 20% of non-applicants reached that sales level. The difference between the two groups increases 
as the sales benchmark increases. 25% of credit applicants had more than $1,000,000 in sales compared to 
less than 8% for non-applicants. To some degree, this may reflect that ARMS over samples large farms, who 
are well-known to use more credit. We do not use survey weights in our analysis, as not all machine learning 
algorithms can accommodate survey weights and our research objective is not to estimate parameters that 
are representative of all U.S. farms.

Table 1. Summary statistics.1

Number Share credit applicants (%)2

Commodity specialization Corn 2,802 49
Soybean 2,295 43
Wheat 725 39
Cotton 308 53
Specialty crop 2,963 25
Other crop 6,993 31
Cattle & calve 8,598 25
Dairy 1,700 50
Hog 385 45
Poultry & egg 1,526 31
Other livestock 1,438 16

Age ≤34 1,136 52
35-44 2,569 47
45-54 5,646 39
55-64 11,115 33
≥65 9,267 21

Acres owned <1% 2,537 46
1-20% 2,632 54
20-40% 2,731 51
40-60% 2,751 46
60-80% 2,551 40
80-100% 2,110 39
>100% 14,421 17

Education Less than high school 1,747 30
High school 11,410 31
Some college 8,174 36
College 8,402 31

Sales Low-sales small farms 16,504 17
Moderate-sales small farms 4,420 40
Midsize farms 4,923 52
Smaller million dollar farms 3,220 60
Larger million dollar farms 666 61

Total 29,733 32
1 Survey weights are not applied.
2 Non-respondents excluded from calculation. $
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4. Model selection and evaluation

To illustrate how machine learning can be applied to common agricultural datasets and prediction problems, 
we follow a ‘prediction pipeline’ frequently used in the machine learning literature (Foster et al., 2016). 
Because our goal is to predict the farms that will apply for a new loan, we are interested in separating our 
data observations into one of two groups: new credit applicants or non-applicants. Unlike statistical inference 
where the estimated coefficients are important, accurate prediction is the goal. Hence many of the issues 
associated with explanatory variable selection for inference do not apply. Instead it is often preferable to 
include many more variables and many machine learning algorithms are explicitly designed to provide 
greater predictive accuracy in this context.

To evaluate the benefits of applying machine learning to predict if a farmer applied for a loan, we evaluate 
the predictive performance of several machine learning models relative to standard econometric techniques. 
Many machine learning models are designed to be able to take advantage of a larger set of features than in 
normal statistical models; therefore, any performance improvements could reflect the models underlying 
ability to take advantage of this extra information. Additionally, the models could show more predictive 
power than standard econometric approaches given the same information. To enhance our comparison, we 
also evaluate the predictive performance of each machine learning model using the same subset of literature-
guided variables used in our standard econometric approach.

In addition to choosing the models and evaluating their performance, many models require a user to choose 
several hyperparameters which govern how the model will fit the data. Throughout the model selection section, 
we have highlighted important hyperparameters. Often referred to as tuning parameters, the number and 
purpose of these parameters varies by machine learning algorithm, but generally affects the degree to which 
a model under- or over-fits the data. Because models that are under- or over-fit are unlikely to generalize to 
new data well, model hyperparameters can typically be tuned empirically by gauging the impact on out-of-
sample predictive performance. In practice this can involve a grid-search over the relevant parameter space. 
We select each of the tuning parameters for the models using out-of-sample cross-validation to determine 
the model with the best predictive performance for the research question at hand.

4.1 Model selection

While there are many applicable supervised machine learning methods, we choose 9 common approaches 
not typically used in the standard econometric literature to explore the relative benefits of using machine 
learning for agricultural prediction problems. The chosen machine learning models fall into five broad 
categories: generalized linear models, Bayesian models, ensemble models, support vector machines, and 
nearest neighbor models. Selected models from each group are described below along with their potential 
strengths and weaknesses.

 ■ Generalized linear models

The most basic family of models is known as generalized linear models. Many commonly used models in the 
agricultural economics literature, including ordinary least squares and logistic regression models, fall into 
this category of models. To provide a baseline we first estimate a simple logistic regression, predicting the 
likelihood a farmer applied for a loan using the prevailing literature to guide variable selection for this model.3

We then build on the standard logit model by using several regularization techniques designed to determine 
if there are any features that can be removed from the model, while still producing ‘good’ forecasts. The use 
of regularization or penalization for model complexity has a long history and we apply two of the classic 

3  Measures of income, location of farm (state/region), commodity specialization, farm operator demographics, as discussed in the Background 
section and indicated in Table S1.
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examples, Ridge and Lasso, to the logit model. The Ridge complexity penalty is a function of the sum of 
squared coefficients. Therefore, Ridge tends to encourage many features with small coefficients rather than 
completely zeroing out a feature (Hastie et al., 2009). On the other hand, Lasso’s penalty is a function of the 
sum of absolute value of the coefficients. Lasso is therefore more likely to zero out coefficients, effectively 
removing those features from the model (Hastie et al., 2009). Because both regularization models have 
penalties that involve sums of estimated coefficients, the coefficients scale and therefore the scale of the 
underlying features need to be similar. A common approach for solving this issue, which we use, is to normalize 
all features to mean of zero and variance of 1. The performance of Ridge and Lasso logistic regression is 
dependent on the relative strength of hyperparameter governing either the Ridge or Lasso regularization 
penalty. A stronger penalty encourages greater sparsity, while a weaker penalty results in less regularization.

 ■ Bayesian models

Bayes models are a family of supervised machine learning models that employ Bayes theorem of conditional 
updating to make predictions. We use the naïve Bayes models, which also makes the added ‘naïve’ assumption 
that the features are independent (Kuhn and Johnson, 2013). From this family of models, we choose the 
Gaussian naïve Bayes, which further assumes that the likelihood of the features follows the normal distribution 
(Kuhn and Johnson, 2013). For obvious reasons, this model will not perform well if the feature variables 
are not independent or if the likelihood function of the features is not normally distributed. An advantage of 
Bayes models is that they tend can perform well even if there is a relatively small amount of training data 
and are computationally efficient.

 ■ Ensemble models

Dating back to the seminal work of Bates and Granger (1969), a large body of research on forecast accuracy 
has found that combining forecasts from multiple models can result in more accurate forecasts. In this 
spirit, ensemble or weighted machine learning models combine forecasts from numerous base models. To 
illustrate common ensemble approaches, we compare four ensemble models that take different approaches 
to combining base models.

The first is bootstrap aggregation (bagging), where the base model is fit to multiple re-samples of the training 
data (Hastie et al., 2009). The mean or mode of the individual bootstrap samples are then used as the model’s 
prediction. We implement a bagged-k-nearest neighbor method model, which requires the number of bagged 
models along with the choice of k nearest neighbors to be chosen.

Bagging can improve model performance by reducing the variance component of prediction error. Therefore, 
it can have an even greater benefit when applied to models that have inherently greater variability, such as 
classification trees (Hastie et al., 2009). We use two common variants on bagging to combine tree based 
models. Random forest models (RF) take the concept of bagging a step further by randomizing the subset 
of features used to build each tree. This results in less correlation between the models on each re-sampled 
dataset, which should allow for further reduction in the variance component of prediction error relative to 
simple bagging (Hastie et al., 2009). We also test a variant on RF models, known as extremely randomized 
trees, that randomize both the subset of features and splitting thresholds (Hastie et al., 2009).

Each of these tree-based ensemble models fits multiple classification trees and averages the results. For 
each tree, the data is split into two groups based on the particular feature that best splits the data between 
positive and negative cases. Each new subset of data is split again based on another feature that best splits 
the data. This is performed for each tree until additional splits are not found to improve the individual tree. 
RF tends to be most sensitive to the number of randomly selected features used to create each tree and this 
hyperparameter is commonly tuned to improve predictive performance.
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The final ensemble model we consider uses a technique called boosting. Unlike bagging where the base models 
are learned independently, boosting methods apply the base model sequentially while seeking to minimize 
added bias at each step. We specifically choose gradient tree boosting, which iteratively adds decision trees 
in stages. After each stage, a new tree is built for the residual error remaining after the previous stage; the 
weighted combination of the predictions is then combined to result in the final ensemble prediction (Hastie 
et al., 2009). In this way, the model seeks to gradually learn from the data to improve predictive accuracy. 
The learning rate controls the weighting used to combine each stage’s predictions, while the number of 
boosting steps controls the number of iterative steps undertaken. Ultimately there is a trade-off between the 
two parameters, smaller learning rate values typically require greater number of boosting iterations (Hastie 
et al., 2009).

 ■ Support vector machine models

The Support Vector Machine (SVM) algorithm splits the data into two classes by fitting an optimal decision 
boundary. While kernel techniques allow the SVM algorithm to incorporate a variety of nonlinearities, we 
implement a linear version. In cases where the classes are completely separable, the algorithm’s goal is to 
maximize the margin between the decision boundary and support vectors. A larger margin means slight 
changes in the data are unlikely to result in incorrect classification. In practice, the outcome classes are often 
not completely separable and the SVM algorithm must trade off the benefits a larger margin with the cost of 
misclassifying some existing observations as the margin increases. In practice, the tolerance for classifying 
existing observations incorrectly is treated as a hyperparameter.

 ■ Nearest neighbor models

The k-nearest neighbor method makes predictions using information from other data points local to the 
observation being predicted (Hastie et al., 2009). This model uses a distance function to determine how similar/
dissimilar the features of the data point to be predicted are relative to those of the other known observations. 
The most commonly observed class among the k closest points is then used to form a prediction. Because 
neighbors are judged on the basis of feature distance, the k-nearest neighbors approach is sensitive to the 
scaling of features. As with the regularized logit models, we normalize all features so variables with broader 
scales do not dominate the distance calculations. The number of nearest neighbors, k, used is typically chosen 
to minimize prediction error.

4.2 Model evaluation

In many economic analyses using ARMS data the focus is on inference rather than prediction. Accordingly, 
the focus is on the economic interpretation and statistical significance of estimated regression coefficients. 
However, our emphasis is demonstrating the benefit of machine learning methods to successfully predict the 
farms that indicated they applied for new credit in the 2014 ARMS data. Therefore, we analyze the predictive 
accuracy of each method considered.

 ■ Model evaluation strategy

Given that most econometric and machine learning methods minimize some measure of inaccuracy, evaluating 
predictive accuracy on the same data used to fit the model, called in-sample prediction, results in overly 
optimistic accuracy estimates. These over-fit models tend to generalize poorly, resulting in poor predictive 
performance when applied to other data. Therefore, we base our analysis on out-of-sample rather than in-
sample predictions. To accomplish this, we split our original data into a ‘training data’ set used to fit the 
model and then apply the trained model to the ‘test data’ in order to evaluate its accuracy. While there are 
many methods of assigning observation to the test data, we use repeated stratified k-fold cross-validation.
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In k-fold cross-validation, the data set is randomly assigned to k equally sized subsets called folds. Stratified 
k-fold cross-validation adds a constraint to the random fold assignment, requiring that the subsets preserve 
the proportion of observations observed in each class of the response variable in the full data set. The 
model is then fit k times. Each time k-1 of the folds are used to fit the model and the left-out fold is used to 
evaluate model accuracy. Repeated stratified k-fold cross-validation repeats this process r times with the 
data randomly assigned to new k-fold subsets each time, reducing the impact of the random fold assignments 
on model evaluation.

The decision on the number of folds requires consideration between computational resources, as well as the 
bias/variance trade-off associated with the estimated accuracy statistics. As k increases, the proportion of data 
used to fit each model increases, resulting in lower potential bias in estimated accuracy measures (James et 
al., 2013; Kuhn and Johnson, 2013). On the other hand, using a smaller value of k will result in additional 
bias but less variance. Depending on the exact trade-off this can potentially improve estimates of a model’s 
predictive performance. Although there are no set rules, 5- or 10-fold cross-validation has been shown to 
result in predictions with bias and variance that are not too high and are therefore commonly used (James 
et al., 2013; Kuhn and Johnson, 2013). We choose to use 10-fold cross-validation to evaluate each model in 
our analysis and to repeat the cross-validation process 10 times. This has the benefit of reducing the variance 
resulting from the random assignment to each of the k folds, without adding too much computational burden.

Since the same repeated 10-fold cross-validation process is applied to each model, the resulting 100 measures 
of model performance can be compared to gauge whether differences across the estimated models are 
statistically different. When comparing accuracy metrics estimated via cross-validation, the results from 
each model for a given fold are calculated on the same holdout observations. Therefore, statistical tests for 
dependent or paired sample must be used. Rather than make an assumption on each performance metric’s 
distribution, we choose to use the Wilcoxon Signed Rank test, a nonparametric test for matched samples, to 
compare statistical differences in model accuracy.

 ■ Model performance metrics

The terminology used can sometimes differ, but the methods used to evaluate the predictive accuracy of 
machine learning models aligns with the forecast evaluation literature. In our analysis, true positives are 
the correctly predicted cases where a farm applied for an application and true negatives are the correctly 
predicted cases where the farm operation did not apply for new credit. Alternatively, false positives occur 
when the model incorrectly predicts that a farm applied for a loan and false negatives occur when the model 
incorrectly predicts that a farm did not apply for a loan.

A model’s overall accuracy shows the percentage of correctly predicted outcomes out of all the predictions.
                    True positives + True negatives
Accuracy =                                                     (1)
                                All predictions

Accuracy provides a high-level view of a model’s accuracy, but it weights the ability to identify applicants 
and non-applicants equally well. Because our analysis’ goal is to predict farm operations that applied for 
credit, we also consider each model’s ability to discern between applicants and non-applicants. A model’s 
recall, also commonly referred to as sensitivity, measures the ability to correctly predict the event of interest 
having occurred in the sample of observations where the event actually occurred. In the context of predicting 
credit applications, recall can be interpreted as the percent of farms that were correctly predicted as applying 
for a loan out of the total that actually applied.

                                                True positive 
Recall(sensitivity) =                                                      (2)
                                 True positives + False negatives

While recall is useful in assessing model accuracy, it is conditioned on the event of interest, in our case 
having applied for credit, having occurred or not occurred (Kuhn and Johnson, 2013). Precision, is a measure 
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of the unconditional probability of the model’s prediction being correct. In our case, precision measures the 
percentage of times the model predicted a farm applied for a loan and the farm actually was a credit applicant.

                                                                             True positives 
Precision (Positive predictive value) =                                                     (3)
                                                               True positives + False positives

In each of the outlined model performance metrics, incorrect predictions are given an equal weight. An 
alternative is to account for differences between the cost of false negative and false positive predictions, 
which can be unequal in practice. In the case of an agricultural finance institution targeting whether farmers 
will apply for a loan, the cost of a false positive would be the marketing and customer acquisition costs. 
Alternatively, the cost of a false negative is the income that is not earned from the never targeted farm 
operation. Depending on the size of these costs, an agribusiness manager choosing between models may 
prefer a model that tilts its incorrect predictions toward false negatives or false positives. In practice, an 
agribusiness manager choosing between models could apply knowledge of their operations actual costs 
associated with each of these items; however, we illustrate this approach using the cost adjustment term 
lambda to weight inaccurate predictions. If lambda is between 0 and 1, the cost of a false negative is lower 
than a false positive. On the other hand, lambda values above one signal that the cost of a false negative is 
larger than a false positive.

C = λ × False negatives + False positives (4)

 ■ Feature importance

The importance of each feature can be constructed for decision tree based models, including random forest 
and gradient tree boosting. Feature importance is a relative score determined by the amount that splitting 
at that feature node in the decision tree improves some predictive metric. We use the average Gini impurity 
metric proposed in James et al. (2013). Feature importance scores can be ranked and compared to determine 
the most important features.

While feature importance rankings can provide information on the relative importance of each variable in 
making predictions, it cannot be interpreted the same way as statistical significance in a typical regression 
model. Feature importance should not be interpreted in a similar manner to regression coefficients or 
marginal effects, as they only measure the importance to prediction and are not a precise measure of impact 
on probabilities or other economic interpretations. In fact, a feature can have a low feature importance 
score not because it is a bad predictor, but because it is highly correlated to another feature and therefore 
does not add much to the prediction. Instead, the ranking of each feature indicates its relative importance 
for prediction for the particular model used. Hence highly ranked features are important indicators of how 
each feature contributes to prediction, but a low rank does not necessarily mean that a particular variable is 
not a determinant of the outcome.

5. Results

The metrics described in the evaluation section are reported for each model in Table 2. We use these metrics 
to evaluate the success of each model in predicting whether a farm operation applied for credit in 2014 and 
provide context on how an agricultural finance institution might determine whether or not to use a machine 
learning model instead of a standard econometric approach to target customers. Table 2 summarizes the 
model evaluation metrics by averaging across the repeated cross-validation output. In the first three columns, 
each model was limited to the same features used in the literature based logistic regression, providing insight 
into whether the machine learning algorithms can glean greater predictive ability from the same data. For 
columns 4-6, the results are estimated using the expanded set of features to quantify the benefit of each 
machine learning model’s ability to handle a large number of features. Finally, Table 3 is used to illustrate 
how an agribusiness manager could use their knowledge of the differential cost of inaccurate predictions to 
decide which model their business should use.
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Table 2. Results by method.1

Model Literature selected features All features

Accuracy Recall Precision Accuracy Recall Precision

Comparison models
Literature based log. regression 0.7004 0.2386 0.5881 0.7004 0.2386 0.5881

Linear models
LASSO logistic regression 0.7004 0.2386 0.6430 0.7482*** 0.4916*** 0.6437***

Ridge logistic regression 0.7004 0.2386 0.6435 0.7481*** 0.4919*** 0.6435***

Naıve Bayes models
Gaussian naıve Bayes 0.6218 0.5836*** 0.4357 0.6487 0.8332*** 0.4754

Ensamble models
Random forest 0.7324*** 0.4711*** 0.6106*** 0.7594*** 0.5537*** 0.6491***

Extremely randomized trees 0.6998 0.418*** 0.5454 0.7468*** 0.5270*** 0.6282***

Gradient tree boosting 0.7337*** 0.4835*** 0.6101*** 0.7585*** 0.5553*** 0.6465***

Bagged K-nearest neighbor 0.7056*** 0.2427*** 0.6103*** 0.7304*** 0.3701*** 0.6426***

Other models
Linear support vector machine 0.6138 0.3850*** 0.4542 0.6708 0.4729*** 0.5275
K-nearest neighbor 0.6702 0.4192*** 0.4870 0.7043*** 0.4219*** 0.5548

1 *, **, *** Metric for model is statistically significantly better (higher) than the literature based logistic regression model at the 
α=0.10, α=0.05, and α=0.01 levels, respectively; the best (highest) value of each metric is in bold.

Table 3. Model results by relative costs of false negatives and false positives.1,2

Model λ value

0.01 0.1 0.2 0.5 1 2 5 10 100

Comparison models
Literature based log. 
regression

159.9 223.3 293.8 505.1 857.3 1,561.60 3,674.70 7,196.40 70,587.90

Linear models
LASSO logistic regression 255.9 298.1 345 485.7*** 720.3*** 1,189.3*** 2,596.5*** 4,941.7*** 47,156.2***

Ridge logistic regression 256.2 298.4 345.3 485.9*** 720.3*** 1,189.1*** 2,595.5*** 4,939.5*** 47,131.5***

Naıve Bayes models
Gaussian naıve Bayes 852.3 866.2 881.6 927.7 1,004.70 1,158.6*** 1,620.3*** 2,389.9*** 16,241.8***

Ensemble models
Random forest 280.5 317.6 358.7 482.3*** 688.1*** 1,099.9*** 2,335.1*** 4,393.9*** 41,451.4***

Extremely randomized trees 292.3 331.5 375.2 506.1 724.3*** 1,160.6*** 2,469.7*** 4,651.4*** 43,922.9***

Gradient tree boosting 284.5 321.4 362.5 485.6*** 690.7*** 1,101.0*** 2,331.9*** 4,383.4*** 41,310.4***

Bagged K-nearest neighbor 195.8 248.1 306.2 480.6*** 771.1*** 1,352.3*** 3,095.7*** 6,001.5*** 58,305***

Other models
Linear support vector 
machine

437.3 481.1 529.7 675.6 918.7 1,405.0*** 2,863.8*** 5,295.1*** 49,058.5***

K-nearest neighbor 317.7 365.7 419 579 845.7*** 1,379.0*** 2,979.1*** 5,645.9*** 53,648.3***

1 *, **, *** metric for model is statistically significantly better (lower) than the literature based logistic regression model at the α=0.10, 
α =0.05, and α =0.01 levels, respectively; the best (smallest) value of each metric is in bold.
2 Reported values measure the cost of false positive and false negative predictions according to the formula C = λ × false negatives + 
false positives. λ less than 1 implies false negatives are less costly than false negatives, λ=1 implies equivalent cost of false positives 
and false negatives, λ greater than 1 implies false positives are less costly than false negatives.
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Focusing first on comparing each model while restricting the features to the subset from the literature 
based logistic regression model (marked with an * in Supplementary Table S1), enables one to ascertain 
the differences in each models’ predictive ability due to model performance alone. The literature based 
regression was able to correctly classify a farm as having applied for credit or not in just over 70% of cases. 
When restricted to using the same data, some but not all the machine learning models improved on this, but 
the improvements tended to be relatively small ranging from 0.7 to 4.8 percentage points. However, given 
the goal of identifying credit applicants, recall and precision provide a better gauge of model performance.

The literature based logistic regression model was only able to recall on average just under 24% of the farms 
that applied for a loan. All the machine learning models except for the penalized logistic regressions were 
able to statistically significantly outperform the literature based logistic regression model. The improvement 
in identifying credit applicants also tended to be somewhat larger, with the machine learning algorithms 
identifying between 2 to 145% more credit applicants.

However, the machine learning algorithms identified more farm applicants in part by being more likely to 
indicate a farm would apply for a loan when they actually did not. The literature based logistic regression 
model’s prediction that a farm would apply for a loan had an average precision of 59%. Only three of the nine 
machine learning algorithms tested, including random forest, gradient tree boosting and bagged k-nearest 
neighbors, were able to correctly label farms as applicants with a statistically significant improvement in 
precision.

Because the machine learning algorithms can handle a greater number of variables, using additional features 
can often lead to further performance improvements. Our results show that each machine learning model 
achieved higher average accuracy, recall and precision scores when applied to the expanded set of features. 
Corresponding to the improved performance metrics, a greater number of the machine learning algorithms 
outperformed the literature based logistic regression once they were applied to additional features. All nine 
machine learning models outperformed the literature based logistic regression in terms of recall at the 1 
percent significance level, while six of the nine algorithms had higher precision at the 1% significance level.

In addition to more machine learning models performing statistically significantly better than the literature 
based logistic regression, the degree of improvement is also larger once the expanded data set is used. Each 
machine learning model identified a greater portion of credit applicants and the average recall scores were 
56 to 252% better than the literature based logistic regression baseline. Not only were the machine learning 
models able to better identify applicants, the precision of these predictions was 3.6 to 12.7% better.

These results indicate an agricultural finance institution looking to target potential customers could benefit 
from the use of machine learning. However, the company would still need to determine the machine learning 
approach they should use. When using the expanded feature set, the Gaussian naïve Bayes approach had 
the highest average recall score, identifying more than 8 out of every 10 applicants. But the Gaussian naïve 
Bayes approach also had a lower average precision score than the literature based logistic regression and 
several other machine learning models. This would make the Gaussian naïve Bayes model a potentially good 
choice if the focus was identifying potential applicants, even at the cost of potentially having a high number 
of false positives. On the other hand, if falsely identifying additional credit applicants created a large cost 
burden, the ensemble machine learning models or LASSO and RIDGE logistic regression models would be 
good candidates since they have the highest average precision scores.

Directly considering the costs associated with inaccurate predictions provides an alternative method of 
weighting the trade-off between predictive recall and precision. Although a business might use estimates 
of its actual costs associated with false positives and false negatives, we use nine values of lambda ranging 
from 0.01 to 100 to arrive at a measure of the cost of each model’s inaccuracy. Even though the literature 
based logistic regression does not identify as many applicants, it also avoids false positives. Therefore, 
when the cost of false negative predictions is smallest relative to false positives (lambda values of 0.01, 0.1, 
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and 0.2), such as when the cost of customer acquisition is high relative to a customer’s potential value, the 
literature based logistic regression model tends to perform well using a cost based approach. But as the cost 
of foregone customer value (false negatives) relative to customer acquisition (false positives) increases, 
the costs associated with using the literature based logistic regression rise more quickly than the machine 
learning approaches.

In addition to providing the potential to improve predictive performance, several of the tested machine learning 
models provide the ability to glean information on the features most useful for prediction (Supplementary 
Table S2 and S3). Perhaps one of the most interesting findings related to feature importance is a farm 
operators reliance on off-farm income interacted with the county unemployment rate in the prior year was 
ranked as one of the top 25 most important features for both models. This could indicate that household 
financial stress could push farm operators to apply for new credit or reflect the broader relationship between 
the farm economy and the rural non-farm economy. As discussed in the implementation section, a feature 
that has a low feature importance score does not necessary indicate that the feature is not related to applying 
for a new loan. The feature may just be highly correlated with another feature and therefore not add much 
to predictive power of the model. Still, some of the features typically included in a literature based model of 
credit use including location of the farm, demographics of the primary farm operator, and even commodity 
specialization of the farm, were not ranked as highly important features. Other important features, such as 
farm size (assets, gross cash farm income, acres), operator age, and off farm income are consistent with the 
agricultural finance literature.

6. Conclusions

We are able to show that machine learning provides a set of potentially useful prediction tools when applied 
to a standard farm survey data set, although the prediction outcomes varied based on the method. Even when 
restricted to using the same literature selected features, several machine learning approaches were found to 
perform significantly better than the comparison literature driven logistic regression model. This suggests 
that machine learning models can lead to better predictions, even when applied to the same data used in 
typical econometric studies. While additional variables can improve performance of standard econometric 
approaches, at some point there will be convergence or degrees of freedom issues. When allowed to use more 
of the expansive set of features available in the ARMS data, the machine learning algorithms performed even 
better, highlighting the usefulness of machine learning as data sets expand. Accordingly, machine learning 
represents a potentially useful tool for agribusiness managers and policymakers to consider for prediction 
problems.

At the same time, whether a machine learning algorithm will improve predictive performance depends on 
how model performance is being evaluated. We explain several common measures of predictive performance 
and illustrate how they could be used by agribusiness managers to judge model performance. In our analysis 
each of the machine learning models had higher recall when allowed to learn from the expanded set of 
features. But in several cases, this came at the expense of precision, or a higher incidence of false positives. 
In the end, the best model for a given problem depends on data available and the prediction outcome that is 
most important to person or organization that will use the model.

As we demonstrated using the cost based model evaluation approach, a business that is interested in accurately 
targeting users, may prefer a model with high precision if the cost of customer acquisition is high compared 
to the customer’s potential value. In our analysis this would favor the use of the literature driven logistic 
regression model. However, if the cost of customer acquisition is low, say the cost of mailing a flyer, relative 
to a customer’s potential value, a model with better recall, like the Gaussian naïve Bayes model in our results, 
would be more appropriate.

While our results highlight how an agricultural firm could apply machine learning to improve predictive 
performance, our analysis also emphasizes the importance of not blindly applying machine learning models. 
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It is difficult to rank individual machine learning models, as the appropriate model in practice depends on 
business objectives, organizational costs or other model specific characteristics. Further, the additional cost of 
implementing additional models is typically small, as most software packages include several. Additionally, 
Bajari et al. (2015) showed that model results could be combined for superior prediction. While this approach 
is beyond the scope of this paper, it is a commonly used machine learning approach. Each of the machine 
learning models compared in this analysis have different strengths and weaknesses, that need to be considered 
in respect to research objectives. As we explained in the model selection section they are also governed 
by hyperparameters, which must be tuned to optimize predictive performance. Researchers and modelers 
remain key “inputs” in the modeling process by considering the appropriate data, testing different models, 
choosing appropriate tuning parameters and understanding the benefits and drawbacks to each model in the 
context of the research objective.

There are additional considerations for whether machine learning methods more beneficial than standard 
econometric methods. For some data sets, machine learning methods may be feasible in cases where 
standard approaches are not – for example for very large data sets or when the number of relevant product 
characteristics is larger than the number of products being analyzed. This study demonstrates that machine 
learning methods are useful for data sets such as ARMS that are not considered ‘Big Data’. In some cases, 
computing power, data availability, or research objectives may lead the researcher to use standard econometric 
modeling. Human resources is another consideration. Data science and analytics are increasingly being taught 
in both undergraduate and graduate programs, but the benefit for some firms may outweigh the training or 
hiring costs. Likewise, the cost of computing power has declined and there are a variety of free open source 
software packages like Python and R that can be used to implement machine learning models. Ultimately, 
researchers will need to weigh their research question or business/policy objectives with available computing 
resources and data to determine the preferred methodology.

Researchers in food and agricultural economics may be “uniquely positioned” to take advantage of ‘Big Data’ 
to address many problems facing the sector (Coble et al., 2018). Through detailing how machine learning 
methods are typically implemented, we illustrate how machine learning can be used transparently and avoid 
over-fitting. Our approach can be used for applying machine learning methods to ARMS data as well as other 
policy, food and business datasets. As discussed in the introduction, machine learning models are already 
widely used in industry and banking, for example by credit card companies to evaluate applicants credit 
worthiness. As indicated by our findings, machine learning does not always improve prediction, let alone 
the challenges related to statistical inference. Machine learning methods have some limitations, as with all 
methodologies. One serious concern is P-hacking or use of ‘data mining’ in economic research. Transparent 
use of these methods and testing of different approaches, such as in this paper, can mitigate these concerns.

In this study, we demonstrate how methodological advances – machine learning models – can be applied to 
improve prediction. In addition to improving forecasting capabilities, machine learning can provide a variety 
of improvements to current methodologies being used in applied research in the farm and food sector. While 
machine learning is not a panacea to the methodological challenges of prediction and statistical inference 
and in many cases standard approaches may be preferable, there are benefits to its application to research 
using ARMS and other food and farm data sets. To be able to fully take advantage of new methodologies, 
researchers, firms and policymakers will need to change the way that data is collected and managed. This 
and many other concerns raised by Sonka (2014) and others will need to be addressed before the promises 
of ‘Big Data’ can be fully realized for food and agriculture. Future studies should explore additional uses 
for machine learning as well as the broader challenges in managing large datasets.
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Supplementary material

Supplementary material can be found online at https://doi.org/10.22434/IFAMR2017.0098.

Table S1. Features used in machine learning models.
Table S2. Top 25 feature importance scores, random forest.
Table S3. Top 25 feature importance scores, gradient tree boosting.

Disclaimer

The views expressed herein are those of the authors and do not necessarily reflect the views of Farmer Mac. 
Senior authorship is shared.
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