%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

e

g

¢
5,‘

I

R

k"\

3
\“i%‘ s

F

Fi
p

R

&

¢
g

POTENTIAL CONTRIBUTION OF OPERATIONS RESEARCH
METHODS IN FARM MANAGEMENT*
by
Oscar R, Burt
University of Missouri |
The methodology of operations research is not ea511y delineated
and no attempt will be made here to do so. Nevérthéless', it would
seem that opéraﬁms research is’ essentially application of the scien-
tific method to operational problems, and the discipline as we cbserve
it today has evolved from the many diverse applications which have been
made since World War II in government, industry, and the military.
These applications, and the research in mathematics stimulated by them,
have given rise to a body of knowledge overlapping many disciplines,
but still identifiable as a field of its o which we call operations

~ research.

The bulk of this knowledge is of a mathematical nature, or at

"least highly refined logic, and is élosely akin to econamics as well

as several other disciplines. Our concern is its relation to farm
management research, and I am Very optimistic about its potential
application in this field. However, the full potential of operations -

research in farm management (and other fields of agricultural economics)

*Paper delivered at the summer meetings of the American Farm Econamics
Association, August 1965. '



will not be achieved unless it is realized that operations research
provides more than a bag full of tricks or techniques. The techniques
are bn].y a means to facilitate application of the scientific method to
operational problems. - o

No pretense is made that the group of techniques considered here
is carprehenglve, The ones d'zosen for discussion are the most pram.smg
in the Vopinicn and limited knowledge of the speaker. The basic techniques
of opetatiorxs ;:eseard'l are modern mathematics of optimization which are
primarily linear, nonlinear, and dvnaxnic programming. Many of the
camonly cited categéries of operations research such as inventory
control, queuing models, and replacememt rely heav11y on dynamlc pro-
gramming apphed to stochastic processes.

The tem math.emat:.cal p:_rogramm.ng is used to encampass linear
. programming with"which you are all familiar, and its straightforward
eXtension to nonlinear cbjective and constraint functlons Such pro-
gramming can include optimization over vtime‘, but the term dyﬁamic
programm.ng is resexved for a spec:Lal method quite dlfferent than
tradltlonal programming.

Several applications of mathematical and dynamic programming axe
outlined for problems in farm management .researc’:h It is anticipated
that these appllcata.ons will illustrate same of the leverage that
operations research methodology has in copmg w1th oanplex quest.mns
in farm management. thtle attentlm is given to fea51b111ty of est:unatmg |
parameters in the models discussed, but hopefully, the suggested appll-
cations are not unrealistic in this respect. Only models for which
efficient computational algorithms are avalléble are cms:.dered but

efﬁc:.ency is relative and same algorlthms are more routine than others.



Mathematlcal Programmng Applications

'Ihe ingenuity that has been shown in applications of linear programming

to vaned and complex fann nmagement models is noteworthy. Use of
linear programming as a substltute for budgetlng of farm enterpnses

is almost a standard method of the profession, and few would dJ.spute its - |

usefulness. A natural extension was its application to allocation of
resources over t.une in the framework cammonly ealled dynaxﬁic linear
pmgramning.l It is surprising that there have been so few applications
of linear programming to temporal resource allocation, but from my |
cbservations, there is a renewed interest in it.

" Dynamic linear progréming would seem to be an appropriate model
for analyzing the important factors affecting growth of the firm. Few
empirical answers have been provided to the question of what limits
farm size. 1Is it increésing i:isk, capital rationing, management
limitations, imperfections in the land market, or what? Imaginative
implementation of dynamic linear programming could help answer this
question. o

For exanple, initial capital constraints and equity reqm.rerents
on fmancmg could be utilized in such a model to learn samething of

the effects of capital ratlom.ng A land purd‘xase activity made access:.ble

' only at widespread po:.nts in tlme would yield an mputed value to land

which is available at dlscqntmums points in the firm's existence.

lL. D. Loftsgard and E. 0. Heady, "Appllcatmn of Dynamlc Proqranm:mg
Models for Optimal Farm and Home Plans,“ J. Farm Econ., Vol. 41, pp.
51-62 (1959).



~ This latter device might shed same light on the forces behind land
~prices currently being dbserved, particularly if parametric prograrmwing |
were applled to both land and capital constraints.
Sane aspects of firm growth that might want to be examined are
likely to lead to nonlinear relatlonshlps. If one were to postulate |
management as an mportant force in limiting firm s:Lze, a nonlinear
dbjective function would result. The decreas:.nq returns associated
with management would prdoably hold for each act;v1ty taken separately,
‘and with respect to groups of activities or all ectivities as an aggregate.
One of the simplest nonlinear dojective_ functions, but yet,qtt:tite‘ versatile,
is a Qenerel '@m&aﬁc relatien in the activities. | Several efficient |
quadratic pregranming algorithms are available, 2:3 put the vmmber of
time periods in the model would have to be kept fairly smali. Empirical
measures of the diminishiﬁg. returns associated with management would
surely be difficult to obtaln, but SO are many other emp:.r:.cal estmates.‘
It is surprising that the early work of Freund, Whld’l brmght risk
into farm management activity analys:.s, has not been used:to more advantage.4

2Pl'u'.l‘ip Wolfe, "The Simplex Method of Quadratie Programming,”

Econavetrica, Vol. 27, pp. 382-398 (1959).

3Georqe B. Dantzig, Linear Programming and Eb_ctensims, Princeton
Univ. Press, 1963, pp. 490-498. | o
4R, J. Freund, "The Introduction of Risk into a Programming Model," -

-Econametrica, Vol. 24, pp. 253-263 (1956) For an altematlve utlhty

. function ‘specification which glves the same model see D. E. Farrar, '

The Investment Decision Under Uncerta.mty, Prentlce-Hall, 1962, pp. 19-22.




When lodsing at our farm management research, we fmd erbitraxy ccnstramts
imposed on high risk crops within a standard linear programming model,
~instead of a utlllty ma:umlzatlm model that moorporates risk. Same
en'plrlcal research on the magmtude of this risk aversion factor would
be very welcome; but without it programming models patterned .after
Freund's using risk aversion factors wh:.ch produce reasdnable results
would seem superior toarbltraxy constraints on various high expected
return activities.‘ | .

A similar conclusion could be zeadled in regard to estimating
 supply response with 11near programn.ng where arbltrary constraints
are- J.mposed on the adjustment process in order to get reasonable
results. Introductim of risk into the programming analysis ‘might.
alleviate the need for adjusm\ent constraints. | |

The risk model of Freund does not appear. readlly adaptable to
resource allocation over time, but it could be used in canjunction
with dynamic programning by delineating efficient cmbiriatims of “
act1v1ties. The role of nsk as a deterent to firm grmth is discussed
1ater under sequentlal dec:.smn models. ‘

Let us now take a look at how mccme tax considerations might be
incorporated into a multiperiod programming model. We know that income
taxes have an important mfluence on J.nvestment dec:.smcns of the fim
through the differential in capltal gains ccmpared to 1nccme taxes,
particularly since the income tax is progress:.ve and the tax on capltal
ga:ms is a fixed proport:.on. Probably all of us have encotmtered
situations where tenporal allocatmn of resources are affected qulte
dlrectly by these taxes, but- I have not Seen a study where the:.r

effects were analyzed in much detall.
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A nonlinear analogue of dynamic linear progr&nn:i.ng can be used to
analyze these tax aspects of farm investments and growth. Income -
producing activities are routed into the capital constraint, and in the
abjective function they enteri nonlinearly in a tax payment relation.
Special activities are created to transfer capital into income or £rom
one time period to another and to make investments of longer life than
one time period. These special activities enter thé dbjective function
nonlinearly. vAll the constraints canvbe kept linear except possibly
one for each time period which would prevent deficit financing of tax
payneﬁts on taxable portions of investments and provide a precise tax
free amount fdr fanily' living. '

Camputer hardware and appliéd mathematics have advanced to a state
where nonlinear prograntnihg is operationally feasible, and it is primarily
a qLuestion of whether the required resources for its application to a
particular analysis are warranted. A prcmising‘ algorithm for general |
application is the sequential method of Fiacco and McCormick.> Their
method is general in the sense that nonlinearities can occur in both
the objec‘tive’vfmbction and the constraint set. Another ‘nonlinear
programming algorithm, which utilizes the simplex method of linear |
programming and is apparently performing satisfactorily computationally,
is that of Hartley and Hocking.® In cases where all the restrictions

5A. V. Fiacco and G. P. McCormick, "The Sequential Unconstrained

Minimization Technique fdr Nonlinear Programming, A Primal-Dual Method,"

Management Science, Vol. 10, pp. 360-366, also pp. 601-617 (1964).

6H. 0. Hartley and R. R. Hocking, "Convex Programming by Tangential

Approximation," Mgt. Sc., Vol. 9, pp. 600-612 (1963).



7

are linear, the abjective function can often be approximated as quadratic
and a quadratic programming routine applied to dbtain an approximate
solution. | |

Another seément of mathematical programming that shows promise
in farm management research is integer or discrete programming. Quite
often an activity has a realistic interpretation only at integer values.
For example, machinery purchase activities in farm management applications
of linear programming should be restricted to integer levels because a
fraction of a machine is an impossibility. Also, labor and land must
be purchased in discrete .quantities in commonly postulated conditions
under which the farm firm operates. There are undoubtedly many additional
situations where activities would ideally be restricted to integer levels.
Econamies of scale studies are particularly in need of impienentation
of integer restrictions on part of the activities since many scale
economies are a direct result of these integer restrictions in the real
world. | | ’

The most pratﬁ.sing algorithms b/for integer, émd mixed integer and
continuous, progranming models are those pioneered by Gamry; For these
methods and references to the original papers, you are referred to
7

Dantzig’ or Hadley.8 Canputational results fram these algorithms have

not been as good as might be expected. Although cchvergence is insured

7Dantzig, op. cit., ch. 26.

8G. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley,

1964, ch. 8
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for a finite nutber of iterations, the number has been very large in

several applications of rather modest dimension.’

Nevertl1eléss, progress
in this a_rea"hasv been very signifibcant‘and we can expect improvements
to be forthcoming. | | |

In farm management ‘app;lications, nonlinear programming is sometimes
an alternative to restriction of activities to integers. A tractor
purchase activity can be désigned so that a chQice of various size
tracf.ors is penm.tted with nonlinearities in the objective function.
Where tractor services are used in the resoui'ce constraint vector,
relaxation of the constraint by a tractor puri;ﬁase activity would take
plaée at decreasing costs per service unit up to the largest pracﬁical
tréctor size. This nonlinear cost relationship coul.d‘ be used with the
activity constrained to less than or equal to unity, where the unit
designates the largest tracﬁox: permitted. Thus a fractional level of the
activity would approximate a tractor some sizé less than maximum. The
same approach could be used on labor or land since presumably either
‘labor or land could be purchased in arbitrarily small amounts if the

price paid were high enough.

Within our own profession there is the recent contribution of

Maruyama and Fuller to the area of mixed integer progranm:i.nq.]'O It

9bid., p. 252. | |

10y, Maruyama and E. I. Fullér, "Altemative Solution Procedures
for Mixed Integer Programming Problems," J. 'F_a_rm_ Econ., Vol. 46, pp.
1213-1218 (1964). | | | o



is too early to evaluate their method as a general algorithm, but it
apparently has an advantage for situations where most of the activities
are continuous and there are only a few activities restricted either to

zero or unity.

Dynamic Programming Applications

Dynamic programming could be briefly described as backward mathematical
induction applied to sequential decision problems. Rather than try to
explain the method, the type of problem where it is feasibly applied is
described, as well as the form of decision rules evolving under its
use. 11 Althouéh dynamic programming finds its largest use m decision
pro?ceéses through time, it can also be fruitfully applied to problems
where the sequential nature of the érocess is artificially created to
exploit the method. _

Same terminology is introduced as it would be applied to a sequential
decision proéa;ss‘ taking plaQe in time. A stage of the process is associated
with an interval of time, and although not necessary, the time interval
is assumed constant from stage to stage. The state of the process is
defined for each stage (time iﬁterval) , and the state describes the
decision process in same meaningful way at a particular stage. :

An example will clarify these two terms. Suppose a dryland wheat
farmer makes a deéisim each year on whether to leave a tract of land
fallow or to plant it to wheat on the basis of soil moisture at wheat

planting time. 'Ihe.'staqe" of the process is denoted by a year within

11a good reference is R. E. Bellman and S. E. Dreyfus, Applied

Dynamic Programming, Princeton Univ. Press, 1962.
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the farmer's planning horizon and the point' in tlme Within‘ that year
| wh1d1 is s:.gm.flcant 1s wheat plant:ng time. 'Ihe state of the process
at a given stage is level of soil moisture. o

The state must describe the condition of the process in such a
way tha_t’ decisions are facilitated. In this example, the farmer‘ seeks
a conditional decision rule wh:.da says to‘plant' wheat if moisture exceeds
same point and fallow if it falls below that level; and he wants the
rule optimal by some criterion such as long run average net returns or
expected present value of net returns.

There are then three important factors in a sequential decision
problem: (1) stages, (2) states, and (3) a conditional decision rule.
In general, the decision rule is dependent on both the state and stage
of the process. o -

It is convenient to introduce the notion of state and‘,d‘ecision
variables. State variables are those determining the state of the process
such as soil moisture for wheat-fallow decisions. Decision variables
are those subject to direct control at each stage of the proc‘essv. In
the wheat-fallow example, land utilization is the decision variable and
it assumes only two values——one ead‘x for wheat planting and fallow.

A very desirable property of dynamic programming models is that
stochastic elements in a problem are still manageable, and the conceptual
framework is hardly changed when using an expected valué criterion.

Most stochastic dynamic émgranming mdels can bev1ewed as choosing
a Markov process which maximizes expected present '{ralue of profits
(or minimization of costs). -Usually_the stochastic part of the process |

arises from a decision in one stage specifying only the probability
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distribution of the state in the foliming stage. In the wheat-fallow
example, soil moisture next year, for a glvm ‘level this year, is a

random variable under a choice of either fallow or wheat.

Crop Rotations

The example of wheat-fallow dec151ons was a very simple crop rotation

12 ¢ is easilyb

model which has been explained in detail elsevhere.
generalized to choosing among several crops mzderv"dxyland farming.
The choice might be from amang gram sorgm, com, wheat and fallow.
With both _sprimj and fall planted crops, the year must comprise two
stages. Even better decisions could be made if significant dependence
exists between smsive periods of rainfall. Such 'c.lependence would
provide infoﬁnation in addition to soil moisture ’fer choosing a crop.
Under intensive farming, crop rotations are saneti;xies requlred to
effect diseaseof soil pest controls. Nematode infestation in soils
producing sugar beets is an example. The nematode populatlm densz.ty
would be a likely choice of state vanable in a dynamlc programmng
model to determine whether to plant beets or an altematlve crop which’
would help reduce the :Lnfestatlon in subsequent years. Presumably a |
critical level of infestation exists where sugar beets are optimal if
the infestation 1s belcw that level and the alternate crOp is optmal

for gxeater mfestatlon levels in splte of 1ts lcwer mmed.late proflts.

120 R. Burt and J <« R All:.sm, "Fa.rm Manac_renent Decis:.ons w1th

Dynamic Programing' " J. Fam Econ., Vol 45, pp. 121-136 (1963).
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Nematode population changes are undoubtedly subject to randcm vanatlon

'whidn would require a stochastic model.

| Selection of Farm Enterprises Under Risk

It was mentioned earl:.er that nsk m:.qht want to be examined as
a lmu.tatlon to expansion of the fim; or at leas_t,’ its role in J.nfluencing
growth of the farm fimm is of interest. A stochastic dynamic pmgramning
fornulation is given for application to this type of question. Implicit ’
in the model is the assumption of capital limitations, either direct
or indirect through restrictions on the equity-debt ratio.

Let the stage of the process be a year and the state is primarily
determined by the‘ firm's liquidation valﬁe. Tt is assumed thatv the
firm has considerable latitude in selecting a mixture of 'enter"pfises
where the various mixtures yield profits which are random variables.
The fimm would like high expected profits with‘ low variance, but the
economics are such that these two (:_J;iteria are inversely related for
the various enterprise combinations. |

High variability of profits causes diffidilt_y because several bad
years in succession could lead ’to bankruptcy.‘ A zero or smaller lig-
uidation value is defined as bankruptcy where the firm ceases to exist.

Let our criterion be maximization of an expected utility function, with

.llquldatlon value at the end of a fmlte planning horizon its argument.

An optimal decision rule is sought which specifies the cambination

of enterprises as a function of fim liquidation value and the year

within the planning horizon. In early years with few assets, one would

expect considerable conservatism, while a large liquidation value would -
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be expected to encourage taking high risks for the chance' of large
gains. This type of model would be particularly inté_resting to apply
in reéions where high risk enterprises such as truck crops or cattle

feeding are a likely choice.

Replacement DecCis ions

There have been a few applications of dynamic programming to
replacement of assets, but in our profession they have been stochastic

only in a very limited manner. 13,14 potential application is great

~ in this area, particularly when integrated with broader preblems. One

such problem is culling of beef cow herds (essentially a replamht
decision) in conjunction with optimal stocking of dryland pastures
under climatic uncertainties. If we want to became even more ambitious,
we could bring seasonal and cyclical ‘cattle_ price variations into the
‘ picﬁure. This overall cattle inventory and cﬁlling question could be
posed in a dynamic programming framework, but a good deal of ingenuity
would be requlred to obtain numerical results fmﬁ an application.
‘Some otﬁer examples, not quite so ambitioﬁs, are farm machinery

replacement, dairy cow culling, timing of pasture rejuvenation, and

135, N. Halter and W. C. White, "A Replacement Decision Process
(An Application to-a Caged Layér Enterprise) ," Ky. Exp. Sta. Bul. 677
(March 1962). o |
1%. B. Jenkins and A. N. Halter, "A Multi-stage Stochastic Replacement
Decision Model (Application to Replacement of DaJ.ry Cows) ," Oregon

Exp. Sta. Tech. Bul. 67 (April 1963).
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forest rotatJ.ons. To give an idea of the potential somlstlcatlon
achievable in repladatent decisions, let us take a ook at automobile
replacement w1th wh1d1 we are all fam:.llar. | |

Scme people will tell you that 1t 1s not the age ‘but the mleage
that counts, and the med'xanlcally informed w1].1 tell you that it is the
entue mechanical condition of the car which is important for replaoment
_decz.s:u:ms Assuming all of these cbservatlons have same ment, they
must be reflected in an optimal dec:.s:.on rule. Thus, a condltlonal ,
@mslm rule is sought which tells us whether to replace or not as a
function of age, mlleage, and mechanical co;nd:rtmn. _'Ihese are state
veriables in a dynamic programming context, and with some ﬁfiﬁanents, .
a model of this sort could be applied to autamcbile replacement. For
a much simpler application to autamobile replacemeﬁt see _Hc:vwa.rd15 which

is also a good general reference for stochastic dynamic progréﬁming.

Other Operations Research Techniques .

Simulation is gaining popularity in agricultural econamics, but its
use thus far is difficult to evaluate. Apparently it is locked upon
more as a method for gaining ‘general mderstandmg of complex decision
processes tha‘nv as an eptjmiZatiai model. ‘This current e‘@hasis should
not distract us from the possibillties sitimlatim has as an eptimiiation
model, Simulation can be used to generate observatlms on ocmplex

phenamena much as a tradltmnal expenment 1s used leewn.se, a criterion

lsRcis'xa'ld Howard, Dynamic Progrmng and Markov Proeesses, ‘l‘eclmology

Press and Wiley, 1960, pp. 54-59.
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function can be éxploreci by the same methods used to explore statistical
response surfac&é. In same extremely complex problems, particularly
those o;\‘. a stodmaétic nature, sinulatién used in this manner is about
the only recourse that we have for quantitative analysis‘. |

As faming operations beccmemre mechanized and larger scale,
potential applications of operations research methods will grow.
Specialties of operatiohs research, which include sequencing, scheduling,
and queuing, could become important in large scale agriculture. Problems
such as comparism}of farm work methods analyzed by Morris‘iand Nygaard |
are becoming increasingly inportant.16 It may be of interest that the
optimizing path algorithm appl:.ed by them is identical to fhat arising
from application of dynémic programming 'to the decision process.

vPoténtial' applicétims of operations researd'i in farm management
"are probably far greater than we realize. If growth of linear programming |
uses over the past decade is ényiridicatimofwhattoe:cpectinthe
future for othér techniques, 6§erations research is still in its infancy

as far as farm management is conc_:emed. _

16w, H. M. Morris and A. Nygaard, "Application of an Optimizing
Path Algorithm in the Comparison of Farm Work Methods," J. Farm Econ.,
~ Vol. 46, pp. 410-417 (1964).



