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Allocative Inefficiency under Heterogeneous Technology in

Bolivian Agriculture

Travis McArthur⇤

ABSTRACT

Low utilization rates of apparently profitable agricultural inputs in developing countries have puzzled de-

velopment economists for decades. This paper investigates whether farmers in Bolivia are using an optimal

input mix, conditional on their target output level, the technology available to them, and their input price

environment. It differs from prior work in that it estimates the entire production technology rather than

using reduced form approaches. To estimate the cost function that is dual to the production function, this

paper develops a new technique for estimating a censored system of equations with endogenous selection.

A comparison of Bolivia’s statistics of inorganic fertilizer use with neighboring countries appears to support

the hypothesis of underuse of inorganic fertilizer. However, the econometric estimates indicate that fertilizer

use levels are appropriate. Farmers do use an inefficient input mix, but the misallocation stems from overuse

of other inputs. The misallocation raises farmers’ costs, but the consequences are minor.

⇤Assistant Professor, University of Florida, Food and Resource Economics Department. Contact: tmcarthur@ufl.edu.
This work benefited from comments from Bradford Barham, Jean-Paul Chavas, Jeremy Foltz, Cornelia Ilin, Matthew Klein,
Daniel Phaneuf, and Emilia Tjernström. This version January 2019.
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1 Introduction

If farmers in Bolivia were using inorganic fertilizer as intensively as their counterparts in other South Amer-

ican nations, they would be using ten times the amount they use today. Increasing fertilizer use could be

a way of boosting agricultural productivity and providing a pathway out of poverty. But Bolivian farmers

may already be doing the best they can, conditional on the prices and agroclimactic conditions they face.

Figure 1 indicates that fertilizer use in Bolivia is negligible compared to that of other nations in the

Andean region. To answer the question of whether Bolivian farmers could raise their welfare by using more

fertilizer, in this work I test whether their current input mix is minimizing cost. Traditional approaches to

testing for cost minimization assume that firms use one homogenous technology. I relax this homogenous

technology assumption. Farmers who use fertilizer may possess an unobserved productivity advantage over

those who do not use fertilizer. Therefore, I use an estimation methodology that accounts for unobserved

factors that encourage or discourage adoption of fertilizer.

Only 23 percent of farmers use any fertilizer at all. Furthermore, observed heterogeneity exerts a large

influence on this extensive margin decision. Figure 2 displays the proportion of plots where fertilizer is used,

broken down by crop and agroproductive zone. In the valles region – the middle of the country – fertilizer

is employed on upwards of 30 percent of potato plots, while only 10 percent of potato plots in the altiplano

region in the west use fertilizer. It is apparent that farmers select into fertilizer use based on observable

characteristics. This fact leads to my hypothesis that there is also selection on characteristics that cannot

be observed in the data, like farmer skill, or factors that are only imperfectly observed, such as soil quality.

My approach begins by estimating a cost function that permits the possibility of farmers optimizing to

the “wrong” input prices - the shadow prices. If farmers optimize to the wrong prices, they are not minimizing

cost and therefore are considered to be “allocatively inefficient”.

To tackle unobserved heterogeneity, I exploit the fact that many farmers do not use fertilizer and estimate

the first-stage choice to use a positive amount of fertilizer. The error terms of this discrete choice model can

then be used to correct for the unobserved technological heterogeneity in the cost function. The data I use

comes from a 2008 government survey of about 7,000 farmers. It asked questions about everything needed

to estimate a cost function: crop output, input amounts, and their prices.

Myriad conditions can cause the low fertilizer use that we observe in Bolivia. My approach shrinks the

space of possible reasons for low fertilizer use. First, it conditions on all input prices. “High” fertilizer prices

may lead to low use, naturally, but what really matters is the ratio between fertilizer prices and other inputs.

If labor, for example, is cheap, then substituting away from fertilizer and toward labor is optimal. Since
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Bolivia is a developing country with cheap labor (and a low opportunity cost of household labor), this price

ratio factor must be accounted for.

Figure 1: Fertilizer use in the Andean nations

Source: Food & Agriculture Organization

Second, credit constraints do not affect the abil-

ity of farmers to minimize cost. Therefore, my esti-

mation can cleanly separate a failure to use an op-

timal input max and an institutional environment

where farmers cannot obtain credit. A drawback is

that I cannot separately estimate the effect of credit

constraints; they are ignored.

I can also safely reject the lagging effect of learn-

ing as a possible source of low fertilizer use. Inor-

ganic fertilizer has been available for decades and

any learning about its effects should have taken

place long ago. Empirically, we can see that there

has not been the steep adoption rate over time that

may indicate learning: in 1984, 16 percent of farm-

ers used fertilizer, while in 2008, 23 percent of them

did so, a rise in 7 percentage points over 24 years.

2 Literature review

Most studies that have examined the determinants

of fertilizer use in developing countries approach the

question from a “reduced form” perspective. Typically, they use a double-hurdle model to explain fertilizer

use. This model is similar to Tobit, but it allows the signs of the effects of the variables to differ for the

extensive margin and intensive margin decisions.

Coady (1995) was one of the first studies to examine fertilizer demand with a double-hurdle model. In

his sample of Pakistani farmers, 81 percent of respondents use at least some fertilizer. Access to credit is

positively associated with the extensive margin decision. Conditional on choosing to use fertilizer, having

slightly saline soil positively affects the amount of fertilizer purchased, while having irrigation negatively

affects the amount purchased. Distance to the nearest town did not affect the amount purchased.
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Figure 2: Fertilizer use by agroproductive zone
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Croppenstedt, Demeke, & Meschi (2003) use a double-hurdle model on Ethiopian data. Literacy, years of

education, and household size increased the probability of purchasing any amount of fertilizer. Soil type also

has an effect on the extensive margin decision. Age of the household head positively affected the amount

purchased. Female headed households tended to purchase a lower amount.

Xu et al. (2009) investigated fertilizer demand in Malawi with a double hurdle model. Distance to the

nearest district town negatively affected the probability of purchasing fertilizer. Household assets increased

the amount of fertilizer purchased.

Zerfu & Larson (2010) investigate the determinants of fertilizer use in Ethiopia. Using data collected

in 2004 and 2006, they estimate a panel selection model, which is closely related to double-hurdle model.

Sixty-eight percent and 63 percent of their sample use fertilizer in 2004 and 2006, respectively. Years of

education of the household head, access to credit and extension services, and historical precipitation are

positively associated with the extensive margin decision to purchase fertilizer. Age of the household head is

negatively associated with the extensive margin decision. Neither household size nor age of the household

head has a statistically significant effect upon the intensive margin decision, but years of education of the

household head is positively associated with more fertilizer use.

Ricker-Gilbert, Jayne, & Chirwa (2011) estimated a double hurdle model on Malawian data. Sixty-three

percent of their sample purchased fertilizer. The household’s distance to nearest paved road, age of the

household head, and long run average rainfall negatively affected the probability of purchasing fertilizer.

Access to credit positively affected it. Household assets and long run average rainfall increased the amount

of fertilizer purchased.

The reduced form approaches above did not directly estimate the technology parameters of the firms

being studied. Some of the studies included output price and fertilizer price as possible determinants of

fertilizer use, but they did not consider the price of other inputs. My project is to estimate farmers’ actual

technology.

Unlike the reduced form studies, Sheahan, Black, & Jayne (2013) estimate the maize production func-

tion of Kenyan farmers to determine whether farmers are using an optimal amount of fertilizer. Once the

production function is estimated, the authors use maize and fertilizer prices to calculate profitability. They

find that over time Kenyan farmers have converged to the optimal fertilizer use level, with farmers in only a

few areas not currently using the optimal fertilizer amount. Their approach differs from mine in that they

test whether farmers achieve profit maximization, while I test whether farmers achieve cost minimization.

Cost minimization is a necessary but not sufficient condition for profit maximization.
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In another line of reasoning, Duflo, Kremer, & Robinson (2011) hypothesize that time-inconsistent prefer-

ences can explain low fertilizer use even when the returns to fertilizer are high. They conduct an experiment

in Kenya where farmers are offered at harvest time a small discount on fertilizer delivery at planting time.

They find that this small nudge can apparently overcome the propensity to procrastinate. However, people

should procrastinate on buying all inputs, so my allocative inefficiency framework should be able to get

around this issue without directly addressing it. Furthermore, the estimates of Sheahan, Black, & Jayne

(2013) above contradict the premise of Duflo, Kremer, & Robinson that farmers in Kenya are not using

enough fertilizer.

In a contribution to the understanding of the effects of heterogeneity upon fertilizer use, Marenya &

Barrett (2009) use direct measurements of plots’ soil quality in Kenya to investigate the profitability of

fertilizer use. They estimate a maize production function that incorporates soil organic matter and nitrogen

content. Then they use average maize and fertilizer prices to calculate the break-even point for profitability

of fertilizer use. Fertilizer application to about one-third of plots in their sample would be unprofitable. This

study illustrates that heterogeneity in soil quality can lead to low fertilizer use even if the average return to

fertilizer use is high.

Suri (2011) finds that unobserved heterogeneity influences Kenyan farmers’ decisions to adopt hybrid

seeds. Average returns to hybrid seeds in Kenya are high, but not all farmers adopt the improved seed. She

finds that farmers select into the technology based on their expected returns to adoption. Hence, hybrid

seed users are observed as having high returns, but non-users would not see high returns if they were to

adopt. In substance and methods, this paper is most closely related to mine since the author uses a sample

selection model to investigate differences in agricultural output.

In addition to contributing to the literature on fertilizer use, I add to the methodological choices avail-

able for estimating allocative inefficiency. The literature on estimation of inefficiency under heterogenous

technology focuses on technical efficiency rather than allocative inefficiency. A firm is technically efficient if,

given a certain quantity of inputs, it maximizes the output of those inputs. Tsionas & Kumbhakar (2014),

Tsionas (2002), and Orea & Kumbhakar (2004) develop techniques for estimation of technical inefficiency

under technological heterogeneity. Tsionas & Tran (2014) use local maximum likelihood to estimate firm-

specific technology parameters in an allocative inefficiency framework. However, their technique requires

panel data, which is not available for Bolivian farms. My main contribution to the allocative inefficiency

literature is account for heterogeneity while estimating allocative inefficiency with cross-section data. My

minor contribution is related: handling cases where the non-negativity constraint on input quantity binds.
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I have not encountered a study of allocative inefficiency where zero use of certain inputs is observed in the

data.

I also contribute to the literature on the estimation of a censored system of equations with sample

selection. I develop a new estimator that is consistent, produces parameter estimates with low mean squared

error, computationally feasible even with many equations, and requires no assumptions on the distribution

family of the disturbance terms of the censored equations. Prior work on estimators for censored systems

of equations suffer from a number of shortcomings. An early attempt to solve the estimation problem the

problem by Heien and Wessells (1990) was later found to be inconsistent (Chen & Yen 2005). Shonkwiler &

Yen (1999) later proposed a consistent estimator of a censored system. However, the variance of its parameter

estimates can be very large and it is inconsistent if the either of its assumptions of joint normality or

homoskdasticity of the disturbance terms is incorrect (Tauchmann 2005; Sam & Zheng 2010). The estimator

developed by Yen (2005) is consistent in the presence of endogenous selection, but it is computationally

infeasible for even a moderate number of equations – perhaps more than three – owing to the need to

perform numerical integration over multi-dimensional integrals. And Kasteridis & Yen (2012) solve the

problem of computational infeasibility, but at the expense of not handling any selection issues.

3 Data

My data source is the microdata from Bolivia’s National Agricultural Survey, collected in June-July of 2008.

This data has been publicly released. There are 7,169 crop-producing farms in the sample that manage

23,321 plots of land. Since I intend to estimate crop-specific technologies, the effective sample size is defined

by the number of plots. These sample sizes for the top five crops are reported in Table 1. Some farmers

grew the same type of crop in multiple plots, so some – approximately ten percent – of the observations are

not independent at the farm level.

Table 1: Number of plots in sample

Crop Plots
Potatoes 4,058
Maize 3,440
Barley 2,048
Wheat 1,647

Fava Beans 1,484

Since I am estimating production technologies, I use the survey data on input and output quantities
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and input prices. The variable inputs are inorganic fertilizer, purchased seeds, hired labor hours, tractor

hours, organic fertilizer, and pesticides. Organic fertilizer includes manure but also more potent organic

fertilizer like guano. The fixed inputs are family labor (the number of family members listed as working on

the farm), a binary irrigation variable, and plot land area. The National Statistical Institute, a government

body, managed collection of the data. Farmers were asked to report data on inputs and outputs for the

one-year period preceding June 30, 2008. To reduce the influence of outliers, I excluded from the analysis

any observations that exceeded the 97.5th percentile of price or input quantity of any variable input.

Censoring

Table 2 illustrates the degree of censoring in the input levels. Even in potatoes, which is the crop that is

most likely to use fertilizer, only 24 percent of plots actually use fertilizer. The extensive margin of use is

low for other inputs as well. Table 3 shows that plots that use fertilizer are more likely to use other inputs

as well. For example, about 60 percent of potato plots that used fertilizer also used pesticides while only

about 19 percent of potato plots that did not use fertilizer used pesticides.

Table 2: Percentage of plots where each input is used, by crop

Potatoes Maize Barley Wheat Fava Beans

Inorganic fert 24.0 6.2 0.9 2.0 3.7
Purchased seeds 36.9 25.5 32.5 11.9 23.6

Tractor 22.1 14.3 22.2 8.5 12.8
Plaguicidas 28.7 11.7 1.1 5.9 9.5
Hired labor 6.3 5.7 4.0 3.7 4.8
Organic fert 25.7 16.4 3.1 4.7 8.4

Table 3: Percentage of plots where each input is used, conditional on whether fertilizer was used

Input Conditional on Potatoes Maize Barley Wheat Fava Beans

Purchased seeds Used fert 46.8 47.5 38.9 24.2 49.1
Purchased seeds Did not use fert 33.9 24.1 32.4 11.6 22.6

Tractor Used fert 25.2 26.9 27.8 12.1 18.2
Tractor Did not use fert 21.0 13.5 22.1 8.4 12.6

Plaguicidas Used fert 60.2 36.1 11.1 54.5 43.6
Plaguicidas Did not use fert 18.8 10.1 1.0 4.9 8.1
Hired labor Used fert 10.6 5.0 11.1 12.1 14.5
Hired labor Did not use fert 5.0 5.8 3.9 3.5 4.5
Organic fert Used fert 40.4 30.1 16.7 18.2 20
Organic fert Did not use fert 21.1 15.5 3.0 4.4 8.0
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Price imputation

Naturally, plots where farmers use zero quantity of a given input have missing data for input price. For the

most part, I follow Deaton’s (1997) suggestion for recovering unobserved prices: “In cases where prices are

available, and where the items being consumed are similar to those that are sold nearby, imputation is not

difficult, although there are often difficulties over the choice between buying and [selling] prices.” In other

words, I rely on the law of one price to generate price estimates for missing prices.

For each missing input price observation, I implement the following procedure. First, if the farmer

purchased the input for use on another plot, I used that price. Next, I checked whether at least three plots

in the “segment” census unit used the input. If there are at least three such plots, I used the median price of

these. In the case that less than three plots fit this criteria, I repeated this process for sector, canton, section,

province, department, and finally nationwide if necessary. This imputation could cause measurement error

if the imputed values do not closely resemble the prices that people actually face.

Geographic-linked data

The survey data specifies the canton of each farm. The median canton is populated by 411 households, so

it is a fairly small geographic unit. I link the geographic coordinates of each canton to several global data

sources to generate three additional fixed inputs.

I use the Harmonized World Soil Database to approximate the soil conditions that farmers face. The

FAO and various other agencies developed this database. By interpolating soil samples across the world,

they developed a complete global map of soil characteristics at a resolution of one square kilometer. The

high resolution gives the database high “precision”, but since actual soil samples may be sparse across any

given area of land, the accuracy may be low. Then, using estimates of Jaenicke and Lengnick (1999) for the

impact of soil pH and water absorption on maize yield, I calculate a soil quality index.

I derived a rainfall measure from the “Terrestrial Precipitation: 1900-2010 Gridded Monthly Time Series”

database developed by the University of Delaware’s Department of Geography. The main source of the data

is weather station readings. The resolution of this database is one-half degree, which is approximately squares

of 50 ⇥ 50 kilometers. The main shortcoming of this database is that it cannot capture the microclimates

that arise due to Bolivia’s mountainous terrain. Satellite readings provide an alternative, but the advantage

in their higher resolution is offset by the fact that the satellite only takes a snapshot of precipitation every

twelve hours. Since estimation of a cost function is supposed to reflect input purchases that firms undertake

based on anticipated conditions, I compute the average rainfall during the growing season in the five years
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before the survey period rather than the rainfall that actually occurred in the year of survey.

The final fixed input is elevation. The digital elevation model of the Shuttle Radar Topography Mission

is used to to construct the elevation variable. The resolution of this data was 30 arc-seconds, or about one

square kilometer.

4 Theoretical model

Allocative inefficiency framework

Any firm that fails to minimize costs for a target level of output is allocatively inefficient. Despite the

behavioral assumption of cost minimization, a firm may not meet the usual condition of the marginal rate of

technical substitution between any two variable inputs being equal to the ratio of their prices. It may face

other constraints that prevent the achievement of unconditional cost minimization. These constraints may

come in the form of government regulations, input costs not reflected in nominal price, or cognitive biases

among firm owners that cause systematic mistakes in input choice. In the model, all firms in the market

face the same set of constraints.

A firm facing such an environment must solve for the following cost function:

C (w, y,q) = min
x

{x ·w}

s.t.

f (x, [q, U ]) = y

Rs (x) = 0, s = 1, . . . , S

where x is the vector of N variable inputs for the farming technology, w is the vector of prices for these

variable inputs, q is the vector of fixed inputs for the farming technology, y is the output, f is the agricultural

technology, and Rs is the s’th constraint that causes allocative inefficiency.

Let f and Rs be quasi-concave in x and let f fulfill the Inada conditions. Hence there is a unique interior

solution.

Form the Lagrangian:

L = x ·w + � [y � f (x,q, La)] +
SP
s

µs [Rs (x)]

[xk] wk � � · fxk (x,q, La)+
SP
s

µsRs

xk
(x) = 0, 8k

[�] y � f (x,q, La) = 0
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[µs] Rs (x) = 0, 8s

Now, [xk] implies:

� · fxk (x,q, La) = wk+
SP
s

µsRs

xk
(x)

fxk (x,q, La)

fxj (x,q, La)
=

wk +
P

S

s
µsRs

xk
(x)

wj +
P

S

s
µsRs

xj
(x)

, 8k 6= j

If we denote wk +
P

S

s
µsRs

xk
(x) as w⇤

k
, then:

fxk (x,q, La)

fxj (x,q, La)
=

w⇤
k

w⇤
j

, 8k 6= j

w⇤
k

is the shadow price of the kth input. If w⇤
k
6= wk , then the firm is allocatively inefficient.

Figure 3 is a visual representation of the shadow prices approach to allocative inefficiency with two inputs.

Figure 3: Allocative inefficiency and shadow prices

Heterogeneous technologies

The motivation of the heterogenous technology framework starts with the firm’s primal problem, even though

parameters of the cost function are actually estimated in the empirical application. Let there be N variable

inputs x and J fixed inputs q. For the purposes of this illustration, assume that the production function’s

functional form is quadratic. Then the firm’s production function is:
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f (x,q) = ↵+
NP
i=1

�ixi+
JP

i=1
�iqi+

NP
i=1

NP
j=1

�ijxixj+
JP

i=1

JP
j=1

!ijqiqj+
NP
i=1

JP
i=1

 ijxiqi

where ↵, �i, �i, �ij , !ij , and  ij are the technological parameters.

Let the J ’th fixed factor be observable to the firm but not to the econometrician. Call it U . Rewrite the

production function:

f (x, [q, U ]) = ↵+
NP
i=1

�ixi+
J�1P
i=1

�iqi + �UU+
NP
i=1

NP
j=1

�ijxixj+
J�1P
i=1

J�1P
j=1

!ijqiqj + 2⇥
J�1P
i=1

!iUqiU + !UUU2+

NP
i=1

J�1P
i=1

 ijxiqi+
NP
i=1

 iUxiU

For simplicity, assume all technology parameters associated with U are zero except for  lU for some l.

Let  lU > 0 and imagine that the lth variable input is fertilizer. Then the marginal product of fertilizer is

@f (x, [q, U ])

@xl

= �l + 2⇥
NP
i=1

�ilxi+
J�1P
i=1

 ljqi +  lUU

Since  lU > 0, the marginal product of fertilizer rises when U is higher, i.e.
@2f (x, [q, U ])

@xl@U
> 0

Now we proceed to the investigation of the firm’s cost minimization problem under this condition.

The firm’s problem is:

C (w, y, [q, U ]) = min
x

{x ·w}

s.t.

f (x, [q, U ]) = y

The solution to this problem implies

fxk (x, [q, U ])

fxj (x, [q, U ])
=

wk

wj

, 8k 6= j

Let two firms m and p face the same w and the same qi for every i, except for the Jth fixed input, which

is U . Let the m’th firm face a lower U than the p’th firm and denote their sets of fixed inputs [q, Um] and

[q, Up], respectively. Since  lU > 0, we have fxl (x, [q, U
m]) < fxl (x, [q, U

p]) for a given value of x. By cost

minimization, the x choice of firm m must ensure that the marginal rate of technical substitution equals
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that of firm p:

wl

wj

=
fxl (x, [q, U

m])

fxj (x, [q, U
m])

=
fxl (x, [q, U

p])

fxj (x, [q, U
p])

, 8j

Since f is concave in its inputs x, firm m must choose a lower xl (fertilizer level) and/or a higher xj to

achieve this equilibrium condition. That is to say, the firm self-selects into a lower xl intensity based on its

lower draw of U . Relatedly, a low U draw will increase the likelihood that the firm does not use any fertilizer.

Hence, this factor that is observed to the firm but not the econometrician creates a sample selection bias if

the estimation does not account for this.

Combined model

My full proposed model combines the allocative inefficiency and heterogeneous technology models.

Hence the problem is:

C (w, y, [q, U ]) = min
x

{x ·w}

s.t.

f (x, [q, U ]) = y

Rs (x) = 0, s = 1, . . . , S

The solution to this problem implies

fxk (x, [q, U ])

fxj (x, [q, U ])
=

wk +
P

S

s
µsRs

xk
(x)

wj +
P

S

s
µsRs

xj
(x)

, 8k 6= j

5 Identification strategy and assumptions

First, I must put to rest some concerns that stem from the fact that farms are embedded in households.

When households own the farm and some input markets are missing, households may not operate their farm

as a profit maximizing enterprise. Household-specific utility characteristics in part determine the optimal

production level. Household utility and production decisions are called “nonseparable” in this case.

The allocative inefficiency framework assumes that the firm’s goal is cost minimization; any deviation

from cost minimization is due to market distortions or systematic mistakes by firm owners. If nonseparability

affected cost minimizing behavior, then the allocative inefficiency framework would not be appropriate since

the true goal is utility maximization. I argue, via Proposition I, that cost minimization still occurs under

these circumstances.
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Proposition Ia

Establish an agricultural household model with a homogenous agricultural good, a nonagricultural good,

and a missing labor market for household labor. Assume standard regularity conditions on the utility

function and production function so that the model has interior solutions to the utility maximization and

cost minimization problems. Conditional on fixed inputs and the desired household labor contribution,

households will minimize the cost of producing their target quantity of output.
aProof in the appendix

Secondly, one hypothesized cause of low fertilizer use is inadequate credit markets. A feature of my model

is that it permits the existence of credit constraints, but it does not mistake these constraints for allocative

inefficiency. This is formalized in Proposition II.

Proposition IIa

Establish the same agricultural household model as in Proposition I. Assume, in addition, that a household

is prohibited from spending more than some value M on the sum of consumption goods and agricultural

inputs. Conditional on fixed inputs and the desired household labor contribution, households will minimize

the cost of producing their target quantity of output.
aProof in the appendix

Any effect of credit constraints upon the choice of inputs is not captured within my model. Therefore,

any misallocation that appears in my model is the result of factors beyond credit constraints.

Empirical approach

By Shepard’s Lemma, the i’th firm with the cost function C (wi, yi,qi) has input demands

@C

@wk,i

= xk,i (wi, yi,qi) , k = 1, . . . , N

Due to measurement error in xk and unobserved characteristics of the firm, there is an additive distur-

bance term ✏

@C

@wk,i

= xk,i (wi, yi,qi) + ✏i, k = 1, . . . , N (1)
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Now let the equation governing whether xk,i = 0 be

zi = hk,i (wi, yi,qi) + ⌫i, k = 1, . . . , N

Hence we have zi reflects the influence of heterogenous technology.

@C

@wk,i

= xk,i (wi, yi,qi) + ✏i if zi > hk,i (wi, yi,qi) + ⌫i

zi  hk,i (wi, yi,qi) + ⌫i

k = 1, . . . , N

Let ⌦✏⌫ be the variance-covariance matrix of [✏,⌫]. If ⌦✏⌫ is not block-diagonal (the elements correspond-

ing to ✏ and ⌫ being the two blocks) an endogeneity problem arises in the econometric model if we attempt

to directly estimate the parameters of the equations in (1).

How can we solve the endogeneity problem and avoid inconsistent parameter estimates? The approach I

use is based upon a maximum likelihood technique developed by Perraudin & Sørensen (2000). Their max-

imum likelihood method would be computationally infeasible for the 6 demand equations that I ultimately

estimate, so below I describe how I modify their estimator.

They estimated U.S. consumers’ Marshallian demand functions for asset portfolios. Importantly, their

method allowed them to account for unobserved heterogeneity that influenced the probability of holding

a certain portfolio of assets. It is a control function approach related to a Heckman selection correction.

The possible portfolios are all combinations of money, stocks, and bonds. The general idea behind their

approach is that the decision to choose among a set of possible portfolios reveals information about the

underlying heterogeneity in demand for each portfolio. Now I turn to my own problem, which is estimation

of a heterogeneous technology.

Imagine that the set of input choices can be divided into regimes. Let the inputs be enumerated 1, . . . , N

and denote the set of all inputs as N. Then the set of regimes is the set of all possible combinations of use

or nonuse of the inputs. This is the power set, P(N). For example, the regime {2, 4, 5} denotes the use of

the second, fourth, and fifth input. Let an element of this power set be denoted j.

Now let the i’th farmer’s value function be defined as:

Vi = Gi (y)�min
n
Cj

i
: j 2 P(N)

o

where y is crop output chosen by the farmer and Gi is some function translating output into money or

utility. If farmers are profit maximizers, then Gi (y) = p · y, where p is the price of the output.
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Cj

i
is the cost function C (w, y,q) under the j’th regime.1 (w is the vector of input prices and q is the

vector of fixed inputs.) In other words, Cj

i
is the cost function where the inputs in the j’th set are used,

while inputs not in the j’th set are not used. This merely describes the partitioning of the original cost

function.

The technology partition transforms the firm’s problem into a two-stage problem. The first stage is to

choose among the input regimes. The second stage is to choose the optimal amount of each input.

Now let Cj

i
be written as

Cj

i
= cj

i
+ ej

i

where ej
i

is a regime-specific productivity term known to each farmer, but that is unobserved by the

econometrician. Once again the conditional input demand functions may be derived from Shepard’s lemma:

@Cj

i

@wk

= xj

k,i
(w, y,q)

So every regime j has a separate demand function for every input k.

Unobserved heterogeneity

Now let there be some unobserved heterogeneity among farmers U . In the cost function, this unobserved

heterogeneity can be handled as if it is another fixed input. That is to say, in the functional form of the cost

function, U can be made to appear wherever an additional fixed cost may appear. So let q̃ =


q U

�
.

How can the value of U be recovered? The choice of regime helps reveal U .

Holding in mind that Cj

i
was re-written as cj

i
+ ej

i
above, a farm will choose a particular regime r if and

only if for all other regimes j we have:

cr
i
+ er

i
 cj

i
+ ej

i
, which is the same condition as cr

i
� cj

i
 ej

i
� er

i

Then the following probability can be defined:

P j

i
⌘ Pr {farm facing prices w with target production y and fixed inputs q chooses regime j}

= Pr
n
cj
i
� cl

i
 el

i
� ej

i
8l 6= j

o

If each ej has a Type I extreme value distribution, then the above conditional probability can be modeled

as a multinomial logit.

1
n
Cj

i : j 2 P(N)
o

is just set builder notation for
n
;, C{1}

i , C
{2}
i , . . . , C

{1,2}
i , C

{1,3}
i , . . . , C

{1,...,N}
i

o
.
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This logit form allows the recovery of the conditional expectation of U . Let each uj be an indepen-

dent, extreme-valued random variable such that E
h
Ui|u{1}

i
, . . . , u{1,...,N}

i

i
=

P
j2P(N)

�juj

i
, where each �j is a

constant parameter.

Then the expected value of Ui conditional on the chosen regime being j is proportional to:

Ej [Ui] ⌘ Ej [Ui|j = chosen regime] = ��j logP
j

i

1� P j

i

+
P

k2P(N)

�k
logP k

i

1� P k

i

The proportionality factor is unknown and can be normalized to one. Once Ej [Ui] is in hand, it can

stand in for the unobserved U in the q̃ vector.

The cost function with unobserved heterogeneity is then Cj (w, y, q̃). The associated input demand

functions are xj

k
(w, y, q̃).

Tauchmann (2010) shows that any estimator of a censored system of demand equations that uses a

Heckman-like selection correction term such as Ej [Ui] must condition on the entire pattern of positive

binary variables for positive use of each input – i.e. the regimes – rather than just each binary variable

equation-by-equation. An estimator that does not do this would be inconsistent. Therefore, the complex

apparatus of estimating choice for each regime, though seemingly cumbersome, is necessary.

The model can be estimated in one step or two. Both approaches are consistent, but the one-step approach

yields more precise parameter estimates. In a one-step approach, the parameters of the multinomial logit

model that determine regime choice are estimated simultaneously with the parameters of the input demand

equations xj

k
for each regime. In the two-step approach, the multinomial logit is first estimated, recovering

Ej [Ui], and the input demand equations are estimated with the Ej [Ui] adjustment term. The two-step

approach, which is the approach that I take, requires estimation of parameter estimates via bootstrapping

since Ej [Ui] is a generated regressor. In both approaches, the set of parameters for the input demand

equations are different for the two regimes.

Adding allocative inefficiency

Inserting measurement of allocative inefficiency in this framework is straightforward. Estimation can proceed

via the shadow price approach. This involves multiplying each price by a shadow price parameter. So define:

w⇤
k
= ✓kwk, 8k, where ✓k is a shadow price parameter to be estimated.

Then the new cost function is Cj (w⇤, y, q̃) and the associated input demand functions are:
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@Cj

@w⇤
k

= xj

k
(w⇤, y, q̃)

Functional form

The cost function can be represented by many functional forms, but I argue that the Symmetric Generalized

McFadden (SGM) cost function is preferred in this application (Pierani & Rizzi 2003). The main reason

is that among linear flexible forms, the SGM is unusual in that it can be made globally concave in input

prices via a relatively simple parametric restriction. Global concavity is important generally since a cost

function only represents an underlying production function if it is concave. In the particular application of

measuring allocative inefficiency, concavity takes on additional importance. Concavity of the cost function

guarantees that being in an allocatively inefficient state costs a firm more than being in an allocatively

efficient state. Without the enforcement of concavity, estimation results can imply that firms are better off

being allocatively inefficient, which is nonsensical.

The SGM cost function is:

G

y
=

P
N

r

P
N

k
srkw⇤

r
w⇤

k

2
⇣P

N

k
 kw⇤

k

⌘ +
NP
k

bykw⇤
k
+

NP
k

bk
w⇤

k

y
+

✓
NP
k

�kw⇤
k

◆
byyy+

NP
k

JP
j

dkj
w⇤

k
qj
y

+
JP
j

cjqj

✓
NP
k

�kw⇤
k

◆
+

1

2

JP
j

JP
l

cjl
qjql
y2

✓
NP
k

⌘kw⇤
k

◆
(2)

Where G is the sum of variable cost. Both sides of the equation have been divided by y to ease estimation.

The Greeks characters are not parameters to be estimated. Rather, they are all set to the average input

quantity for the whole sample:

x̄k =  k = �k = �k = ⌘k, 8k

When the multinomial logit is used to estimate the choice of regime, the left side of the equation is an

indicator for whether the fertilizer regime is chosen.

All the parameters of the cost function can be recovered simply by estimating (2) alone. This could

be done via nonlinear least squares. The benefit of estimating the input demand equations with the cross-

equation restrictions on the parameters is that statistical power is greatly enhanced. In a certain sense, by

estimating the entire equation system, the effective number of observations in the sample is multiplied by

the number of equations.
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The SGM input demand function for the n’th input is:

xn

y
=

8
><

>:

P
N

k
snkw⇤

kP
N

k
 kw⇤

k

�  n

2

P
N

r

P
N

k
srkw⇤

r
w⇤

k

⇣P
N

k
 kw⇤

k

⌘2

9
>=

>;
+

byn +
bn
y

+ �nbyyy+
JP
j

dnj
qj
y

+ �n
JP
j

cjqj +
⌘n
2

JP
j

JP
l

cjl
qjql
y2

To ensure that the cost function is homogeneous of degree one, the restriction
NP
k

srk = 0 8r is imposed.

Symmetry is also necessary: cjl = clj and srk = skr.

Enforcement of the concavity of the cost function in prices is achieved via the Cholesky decomposition:

Let S be the square matrix composed of the srk parameters. Then estimation proceeds by ensuring that for

some T , the following is satisfied:

S = �TT 0 , where T is a lower triangular matrix.

Key hypothesis tests

If the estimated shadow price parameters ✓k all equal 1 for each input, then there is no systematic allocative

inefficiency. If this hypothesis is rejected, then Bolivian farms are systematically allocatively inefficient.

Farms underuse fertilizer compared to another input j if the shadow price parameter for the jth input is

less than the shadow price parameter for fertilizer. Finally, if the �m = 0, 8m hypothesis is rejected, then

unobserved heterogeneity causes a selection into fertilizer use.

6 Estimation of the model

Estimating a censored demand system is challenging, and a number of approaches have been proposed. As a

base framework I use the Generalized Maximum Entropy (GME) approach of Golan, Judge, & Perloff (1996)

and Golan, Perloff, & Shen (2001). A complete reference to econometric estimation via entropy maximization

is Golan, Judge, & Miller (1996).

The GME approach has a several of advantages over maximum likelihood techniques such as the ones

outlined in Shonkwiler & Yen’s (1999), Yen (2005), and Yen & Lin (2006). First, GME does not assume a

particular distribution family for the error term, but only requires that the support be specified. Second,

the computational demands of GME do not explode as the number of equations increases. With maximum
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likelihood approaches, additional equations require numerical integration over additional dimensions, making

estimation infeasible in some cases. Finally, GME estimators tend to have low mean squared error. In

simulations of a single censored equation, the GME estimator achieved lower mean squared error than a

maximum likelihood estimator even when the error distribution was normal (Golan, Perloff, & Shen 2001).

Recall that maximum likelihood estimators are only guaranteed to be asymptotically efficient, not necessarily

efficient in finite samples. The GME estimator is described in the appendix.

In sum, I estimate a sample selection correction method developed by Perraudin & Sørensen (2000) via

GME rather than maximum likelihood. I estimate two steps, the first being the multinomial logit on regime

choice using Golan, Judge, & Perloff (1996), a consistent estimator. Then with the consistent estimate of

Ej [Ui] in hand, I use Golan, Perloff, & Shen’s (2001) consistent estimator of a censored system of equations.

Give that both steps are consistent, the combined two-step estimator is also consistent (Pagan 1986).

7 Results

The censored system of demand equations with selection correction was estimated for barley and potatoes.

Since these crops have very different characteristics, concentrating offers a high contrast. Potatoes are

viable as commercial product rather than just suitable as a subsistence crop, as barley is. The mean

production quantity of potato farmers would earn 522 U.S. dollars in revenue at national market prices

(Food & Agriculture Organization 2017). Mean barley output is such that the average barley output would

generate only 107 U.S. dollars. A drawback of potato growing, however, is that they are more challenging to

grow than barley. Barley can better tolerate weather shocks, so it can act as a backstop crop if other crops

fail. The input profiles of these two crops reflect their contrasting roles. In terms of the extensive margin,

potatoes have higher levels of use of inputs that almost every other crop, as Table 2 shows. Very low use of

intermediate inputs characterizes barley farming, on the other hand.

To obtain correct standard errors with the two-step estimation method, about 130 bootstrap iterations

were performed. Tables 4 and 5 display the shadow price parameters for the models with and without the

selection correction. The price of organic fertilizer is set at one since it is arbitrarily chosen as the reference

shadow price.

The overall hypothesis of ✓k = 1 for all k can be strongly rejected for both crops. Therefore, the input

mix used by farmers in the sample is allocatively inefficient. The estimates provide enough statistical power

to examine individual shadow prices. The most striking result is the low estimate of the shadow price of
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Table 4: Estimated shadow price parameters - Barley

Parameter No selection correction SE t-stat Selection correction SE t-stat
✓01 1.12 0.18 0.64 1.20 0.50 0.39
✓02 0.95 0.23 -0.23 0.60 0.31 -1.29
✓03 0.91 0.26 -0.37 1.05 0.37 0.14
✓04 0.96 0.18 -0.22 0.92 0.25 -0.33
✓05 0.79 0.14 -1.45 0.60 0.28 -1.39
No selection correction: �2

5 Wald statistic on ✓k = 1, 8 k: 415.48 (p < machine precision).
Selection correction: �2

5 Wald statistic on ✓k = 1, 8 k: 77.55 (p = 2.78e-15).
�2
5 Wald statistic on ✓No correction

k
= ✓Correction

k
, 8 k: 3.09 (p = 0.686).

Table 5: Estimated shadow price parameters - Potatoes

Parameter No selection correction SE t-stat Selection correction SE t-stat
✓01 0.74 0.25 -1.02 1.51 0.44 1.16
✓02 1.63 0.26 2.45 0.08 0.57 -1.63
✓03 0.39 0.23 -2.59 0.33 0.74 -0.90
✓04 1.41 0.32 1.26 1.34 0.82 0.41
✓05 0.57 0.14 -3.12 0.99 0.30 -0.04
No selection correction: �2

5 Wald statistic on ✓k = 1, 8 k: 620.33 (p < machine precision).
Selection correction: �2

5 Wald statistic on ✓k = 1, 8 k: 42.77 (p = 4.11e-08).
�2
5 Wald statistic on ✓No correction

k
= ✓Correction

k
, 8 k: 14.48 (p = 0.0129).

purchased seed for both crops. The parameter estimate of ✓Seed = 0.08 for the selection-corrected potato

model indicates farmers’ choices would be allocatively efficient only if purchased seed was about 10 percent

of the price of organic fertilizer, the numeraire input. Farmers are overusing purchased seed compared to

most of the intermediate inputs.

The estimates for the shadow prices of inorganic fertilizer are not statistically different from one. This

result suggests that the difference summary statistics of fertilizer use in Bolivia versus its Andean neighbors

was a red herring.

The hypothesis that there is no endogenous selection into input regimes cannot be rejected for barley.

The Wald statistic for �m = 0 for all m is 4.0 on 19 degrees of freedom, which yields a p-value of almost

one. The non-rejection of this hypothesis is corroborated by the similarity of the shadow price parameters

for the corrected and uncorrected specifications as displayed in Tables 4 and 5. A formal Wald test fails to

reject the hypothesis that the shadow price parameters are the same for both specifications.

One interpretation of this failure to reject endogenous selection into the various input regimes is that the

inclusion of fixed inputs for environmental conditions – rainfall, elevation, and soil quality – in the model

adequately capture the selection effects. The observed variables may capture all the factors that lead to

heterogenous technology, and there are no remaining unobserved factors to correct for with the econometric
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selection technique.

In contrast, the hypothesis that there is no endogenous selection into input regimes is rejected for potatoes.

The Wald statistic for �m = 0 for all m is 225.9 on 32 degrees of freedom, which yields a p-value of less than

machine precision. The nonzero value for the � parameters, in turn, affects the shadow price parameters: a

Wald test rejects the hypothesis that the model without the selection correction has the same shadow price

parameters as the model with the selection correction.

The technology parameters are displayed in the appendix. Given the numerous interaction terms, direct

interpretation of the parameter estimates can be difficult. An exception is byy. Its negative sign indicates

that the technology for both crops exhibits declining marginal cost in y, indicating increasing returns to

scale. An important difference between the technologies is in how cost responds to elevation according to

the first-order effects cj . Higher elevation for barley translates into lower costs, whereas the opposite is true

for potatoes. This result is consistent with the fact that barley is better adapted to high altitudes. The

parameter estimates thus seem to confirm what may be our prior beliefs about the realities of the production

technologies of the two crops. A word of caution is in order here, since the true marginal effects of the fixed

inputs varies over the range of the data due to the interaction terms.

Excess cost due to misallocation

The consequences of misallocation cannot be judged from the shadow prices alone. The shape of the technol-

ogy partly determines the difference between the attainable minimum cost and the cost that farmers actually

incurred due to allocative inefficiency.

Table 6: Excess cost due to allocative inefficiency - Barley

Statistic Mean St. Dev. Min Median Max

Inefficient expenditure 1,240.44 3,496.76 1.35 379.64 83,289.80
Efficient expenditure 1,235.48 3,490.54 1.22 377.70 83,253.53
Percent difference 0.49 0.74 0.0002 0.19 10.37

The 2008 exchange rate was about 7.4 Bolivianos per USD.

Input demand actually observed is xk (w⇤, y, q̃). Calculation of the allocatively-efficient counterfactual

demand involves simply setting ✓k = 1 for all k, but keeping the remaining technological parameters at their

estimated values (Kumbhakar & Lovell 2000). The efficient input demand would then be xk (w, y, q̃). Then

total expenditure for each is simply
NP
k

wk · xk (w⇤, y, q̃) and
NP
k

wk · xk (w, y, q̃). Since these quantities

are data-dependent, they can be obtained by calculating the predicted input demand for each observation,
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Table 7: Excess cost due to allocative inefficiency - Potatoes

Statistic Mean St. Dev. Min Median Max

Inefficient expenditure 882.75 1,605.22 10.83 376.03 20,220.12
Efficient expenditure 845.66 1,543.48 1.93 361.90 19,005.68
Percent difference 7.89 130.22 0.0002 3.21 6,589.68

The 2008 exchange rate was about 7.4 Bolivianos per USD.

setting any negative demand values to zero, and summing to obtain total expenditure. Tables 6 and 7

display summary statistics for these inefficient and efficient cost calculations. The median barley farmer

spends about 0.2 percent more due to using an inefficient input mix, a negligible amount. The median

potato farmer, on the other hand, spends 3.2 percent, or 2 U.S. dollars, more due to misallocation. The low

quantity in absolute terms reflects the overall low cash spending on inputs. The higher cost for potatoes

could be due to the challenging nature of potato production as compared to barley. Farmers may have more

difficulty in hitting the target optimal input mix for potato production.

In 2008, the mean per capita income of the poorest 40 percent of Bolivians (composed largely of rural

dwellers) was $1,100 in 2011 U.S. dollars in purchasing power parity terms. The losses due to inefficiency

therefore is not particularly harmful to farmers’ welfare.

The computed inefficiency cost is fairly small despite the shadow price parameters being far from unity.

The excess cost is governed by a subset of the technological parameters. The only terms in the SGM n’th

input demand equation that are affected by setting ✓k = 1 for all k are

P
N

k
snkw⇤

kP
N

k
 kw⇤

k

�  n

2

P
N

r

P
N

k
srkw⇤

r
w⇤

k

⇣P
N

k
 kw⇤

k

⌘2

Only the srk parameters enter into consideration. These parameters determine the substitution patterns

across the inputs. The elements of srk form the negative semi-definite matrix S. If all the elements of S

are zero, then nominal allocative inefficiency actually has no negative consequences for farmers in the form

of excess cost. This fact drives home the point that structural estimation of the production technology is

necessary to decide if allocative inefficiency matters for farmers.
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8 Conclusion

Bolivian potato and barley farmer are using a suboptimal input mix, conditional on their input price envi-

ronment, target output level, and the technology available to them. Despite summary statistics suggesting

underuse of inorganic fertilizer compared to their Andean peers, Bolivian farmers’ inefficiency does not stem

from insufficient fertilizer use, but rather is mostly centered on an overuse of purchased seed The practical

consequences for farmers are modest, however, being on the order of 3 percent excess cost due to inefficiency.

Most prior work that has investigated low use of agricultural inputs in developing countries has used

reduced form approaches. In this paper I took a new structural approach to reveal the existence and

magnitude inappropriate input mixes by estimating allocative inefficiency

Besides contributing to knowledge about agricultural input use, I developed a new estimator for estimating

censored systems of equations that has desirable statistical properties. I did detected endogenous selection

into positive levels of input use for potatoes, but not barley. This estimator holds promise for future use in

other applications.
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Table 8: Technological parameters of cost function

Barley Potatoes

Parameter Estimate SE t-stat Estimate SE t-stat

b01 0.341 1.43 0.239 7.11 2.34 3.04

b02 -8.82 3.74 -2.36 9.33 5.03 1.86

b03 -0.972 1.4 -0.693 -2.07 0.852 -2.43

b04 0.72 3.63 0.199 -3.47 2.72 -1.28

b05 0.222 2.01 0.11 -0.643 2.18 -0.295

b06 -0.951 1.35 -0.703 1.65 2.56 0.647

by01 -0.000947 0.00333 -0.284 0.00661 0.0136 0.485

by02 -0.64 0.114 -5.63 0.0335 0.0778 0.431

by03 -0.034 0.00753 -4.51 0.0018 0.000758 2.38

by04 -0.0259 0.0227 -1.14 0.0194 0.013 1.49

by05 -1.35 0.348 -3.88 -0.0141 0.122 -0.115

by06 -0.827 0.185 -4.48 -0.113 0.339 -0.333

byy -2.85e-07 5.76e-08 -4.94 -6.2e-08 1.28e-08 -4.84

c01 0.000533 0.000151 3.53 0.000271 0.000117 2.32

c0101 -17.6 6.81 -2.59 -6.68 7.37 -0.906

c0102 -5.44 5.05 -1.08 6.19 6.06 1.02

c0103 0.0014 0.00614 0.228 -0.00949 0.00946 -1

c0104 -8.29 3.87 -2.14 2.16 8.25 0.261

c0105 1.9 1.76 1.08 -0.0846 2.3 -0.0368

c0106 -7.58 6.5 -1.17 -5.62 5.27 -1.07

c0202 -6.68e-05 0.000229 -0.292 0.000489 6.46e-05 7.56

c0203 -0.00598 0.00569 -1.05 -0.00357 0.00341 -1.05

c0204 6.48 4 1.62 14.5 8.2 1.77

c0205 -1.16 1.04 -1.11 -2.57 1.59 -1.61

c0206 -2.67 5.37 -0.496 -3.78 2.51 -1.5

c03 2.84e-07 2.06e-07 1.38 1.01e-07 9.72e-08 1.03

c0303 -2.6e-07 4.13e-06 -0.0629 4.11e-06 5.21e-06 0.789
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c0304 0.00668 0.0207 0.323 0.00684 0.0196 0.349

c0305 -0.0014 0.00384 -0.365 -0.00124 0.00334 -0.37

c0306 0.00113 0.00389 0.291 -0.00371 0.00455 -0.815

c04 0.0368 0.00596 6.18 0.00216 0.00141 1.53

c0404 2.64 1.5 1.75 4.14 5.08 0.816

c0405 -0.0736 2.4 -0.0307 -0.921 3 -0.307

c0406 3.19 5.25 0.608 -7.34 8.44 -0.869

c05 0.000338 0.000226 1.5 -0.000342 5.4e-05 -6.34

c0505 -0.118 0.903 -0.13 -0.0114 1 -0.0114

c0506 0.256 1.36 0.188 1.92 1.6 1.2

c06 -0.00127 0.00043 -2.96 0.000113 8.65e-05 1.31

c0606 -8.07 4.8 -1.68 -0.241 3.53 -0.068

d0101 0.0761 0.242 0.314 0.406 0.858 0.474

d0102 0.191 0.417 0.458 -1.13 0.631 -1.78

d0103 -0.000114 0.000333 -0.342 0.00124 0.000733 1.69

d0104 -0.0398 1.39 -0.0287 -7.84 2.7 -2.91

d0105 -0.144 0.323 -0.446 -0.388 0.44 -0.882

d0106 0.148 0.168 0.88 0.802 0.781 1.03

d0201 7.97 2.56 3.12 19.1 5.19 3.69

d0202 2.06 2.02 1.02 2.35 2.86 0.82

d0203 -0.000166 0.00141 -0.118 0.00395 0.0071 0.557

d0204 7.76 4.87 1.59 14.8 4.62 3.21

d0205 0.22 1.04 0.212 -4.23 1.92 -2.2

d0206 3.99 2.74 1.46 -0.111 2.59 -0.043

d0301 0.387 0.189 2.04 0.636 0.128 4.96

d0302 0.101 0.127 0.793 -0.0389 0.0497 -0.784

d0303 -5.56e-05 0.000116 -0.481 1.32e-06 7.85e-05 0.0168

d0304 1.4 2.16 0.646 2.4 1.25 1.91

d0305 -0.02 0.0929 -0.215 0.0831 0.0435 1.91

d0306 0.0644 0.12 0.535 0.0142 0.0624 0.227

d0401 0.666 1.53 0.435 0.532 0.983 0.541
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d0402 0.333 1.04 0.319 0.576 0.626 0.92

d0403 -0.000998 0.00379 -0.264 -0.000239 0.000885 -0.27

d0404 0.604 3.12 0.194 2.92 3.21 0.91

d0405 -0.421 1.99 -0.211 0.324 0.525 0.617

d0406 0.599 0.744 0.805 1.72 0.707 2.44

d0501 0.13 2.86 0.0455 8.61 2.67 3.22

d0502 1.03 2.88 0.358 2.48 4.24 0.585

d0503 -0.00535 0.00414 -1.29 0.0107 0.00889 1.21

d0504 0.176 1.49 0.118 -0.281 1.41 -0.2

d0505 0.146 1.27 0.115 1.22 0.997 1.23

d0506 5.89 5.34 1.1 -4.49 2.02 -2.22

d0601 -0.0285 4.44 -0.00642 -0.424 3.46 -0.123

d0602 7.21 3.48 2.07 14.6 6.08 2.4

d0603 0.0353 0.0164 2.15 -0.00954 0.0196 -0.488

d0604 -0.444 0.866 -0.513 1.31 1.84 0.714

d0605 -2.98 1.83 -1.63 3.38 2.06 1.64

d0606 -2.7 4.05 -0.666 1.02 5.44 0.188

s0202 -6.27 3.47 -1.81 -9.77 2.19 -4.46

s0203 -0.232 0.12 -1.94 -0.351 0.0739 -4.75

s0204 0.689 0.83 0.83 -2.33 0.6 -3.89

s0205 2.52 1.48 1.7 5.46 1.96 2.79

s0206 3.22 1.64 1.96 6.83 2.26 3.03

s0303 -0.0217 0.0126 -1.72 -0.0283 0.0168 -1.69

s0304 0.0326 0.0529 0.616 -0.05 0.0146 -3.41

s0305 -0.0911 0.0697 -1.31 0.394 0.15 2.63

s0306 0.322 0.157 2.06 0.0667 0.0973 0.686

s0404 -0.881 2.1 -0.418 -1.11 0.322 -3.44

s0405 0.274 0.899 0.305 -1.06 0.581 -1.82

s0406 -0.129 0.517 -0.25 4.99 1.09 4.6

s0505 -4.2 2.56 -1.64 -13.4 3.12 -4.3

s0506 1.63 1.18 1.38 10.5 2.77 3.8
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s0606 -5.12 2.7 -1.9 -25.4 4.97 -5.12

See equation 2 for the model specification. Price wi are 1 = inorganic fertilizer in Bolivianos/kg;

2 = purchased seed in Bs/kg; 3 = tractor Bs/hours; 4 = plaguicidas Bs/kg; 5 = hired labor Bs/hours;

6 = organic fertilizer Bs/kg. Fixed inputs qi are 1 = hectares cultivated; 2 = has irrigation;

3 = family labor hours; 4 = soil quality; 6 = elevation in km; 5 = precipitation in cm/season.
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Proof of Proposition I

First note the following fact about cost minimization:

The firm’s cost minimization problem can be expressed as:

min
x

{x ·w}

s.t. y � f(x,q, La) = 0

where

x is the vector of variable inputs for the farming technology

w is the vector of prices for these variable inputs

q is the vector of fixed inputs for the farming technology

La is the household’s agricultural labor

Let � be the Lagrange multiplier in this problem.

If a production technology f(x,q, La) is quasi-concave in x, then the x⇤ that satisfies

wk � �fxk(x,q, La) = 0, 8k

and

y � f(x,q, La) = 0

solves the firm’s cost minimization problem, provided it is an interior solution.

Note finally that

wk � �fxk(x,q, La) = 0 () fxk(x,q, La)

fxj (x,q, La)
=

wk

wj

, 8k 6= j

Recall also that cost minimization is a necessary but not sufficient condition for profit maximization.

Therefore, the absence of profit maximization does not indicate the absence of cost minimization.

Let there be a household i. It is a unitary actor, so there is no intrahousehold bargaining. Where input

and output markets exist, it is a price taker.

The household seeks to maximize its utility given by utility function U (·).

Arguments to its utility function are:

l, leisure
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ga, a homogenous agricultural good

gm, a homogenous nonagricultural good

z, Household-specific characteristics

U (·) is strictly increasing in l, ga and gm.

The household can directly produce ga, but gm must be purchased with cash.

There is an off-farm labor option for the household.

The household’s problem is:

max
{x,Lm,La,l,gm,ga}

{U (l, ga, gm, z)}

s.t.

Agricultural technology: f(x,q, La) � y

Budget constraint: Lm · ! + y � pmgm + paga + x ·w

Time constraint: Lm + La + l = 1

Non-negativity constraints: Lm, La, l, gm, ga,x � 0

where:

x is the vector of variable inputs for the farming technology

w is the vector of prices for these variable inputs

q is the vector of fixed inputs for the farming technology

La is household labor used in agricultural production

Lm is household labor used on off-farm activities

! is the wage rate for off-farm activities

y is the farm output

pm and pa are the market prices of the nonagricultural and agricultural goods

The household’s choice variables are: x, Lm, La, l, gm, and ga

Notice that if agricultural production, y, is greater than desired agricultural consumption, ga, then the

household can sell y to allow more consumption of gm. Notice also that we must have x · w  y since

a household would not farm if the cost of production was higher than the value of the output. Assume

that the household produces some output y since otherwise there is no problem is analyze. The budget

constraint binds since the utility function is strictly increasing in goods gm and ga. In this setting, household

and hired labor are not interchangeable due to the principal-agent problem, and the market for household

labor is missing. Assume that the household is technically efficient in its farm production, so the technology
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constraint binds. Assume non-negativity constraints do not bind, by Inada conditions on the utility function

and the production function.

Combine the constraints into one constraint:

(1� La � l) · ! + pa · f(x,q, La) = pm · gm + pa · ga + x ·w

Form the Lagrangian:

L = U (l, ga, gm, z) + µ [(1� La � l) · ! + pa · f(x,q, La)� pm · gm � pa · ga � x ·w]

[xk] pa · fxk(x,q, La)� wk = 0, 8k

[l] Ul (l, ga, gm, z)� µ = 0

[La] �µ+ pa · fLa(x,q, La) = 0

[gm] Ugm (l, ga, gm, z)� µpm = 0

[ga] Uga (l, ga, gm, z)� µpa = 0

[µ] (1� La � l) · ! + pa · f(x,q, La)� pm · gm � pa · ga � x ·w = 0

From [xk], we have:

pa · fxk(x,q, La) = wk. Dividing this equality by any j equation yields:

pa · fxk(x,q, La)

pa · fxj (x,q, La)
=

wk

wj

=) fxk(x,q, La)

fxj (x,q, La)
=

wk

wj

, 8k 6= j

This, along with the technical efficiency assumption of f(x,q, La) = y, proves that the household mini-

mizes cost in agricultural production. ⌅

Proof of Proposition II

Assume that the total permitted expenditure by the household is M .

Off-farm and farm income come after the end of the period and so Lm ·!+pa ·y cannot help the household

relieve this M liquidity constraint. Hence:

pm · gm + pa · ga + x ·w  M . Assume that this constraint binds.

The new problem is:

max
{x,Lm,La,l,gm,ga}

{U (l, ga, gm, z)}

s.t.

Agricultural technology: f(x,q, La) = y

Budget constraint: Lm · ! + pa · y � pm · gm + pa · ga + x ·w
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Time constraint: Lm + La + l = 1

Liquidity constraint: pm · gm + pa · ga + x ·w = M

Reformulate constraints:

(1� La � l) · ! + pa · f(x,q, La) � pm · gm + pa · ga + x ·w

pm · gm + pa · ga + x ·w = M

Form the Lagrangian:

L = U (l, ga, gm, z) + µ [(1� La � l) · ! + pa · f(x,q, La)� pm · gm � pa · ga � x ·w]�

�� [pm · gm + pa · ga + x ·w �M ]

[xk] µ [pa · fxk(x,q, La)� wk]� �wk = 0

[l] Ul (l, ga, gm, z)� µ = 0

[La] �µ+ pa · fLa(x,q, La) = 0

[gm] Ugm (l, ga, gm, z)� µpm � �pm = 0

[ga] Uga (l, ga, gm, z)� µpa � �pa = 0

[µ] (1� La � l) · ! + pa · f(x,q, La)� pm · gm � pa · ga � x ·w = 0

[�] pm · gm + pa · ga + x ·w �M = 0

From [l], we have Ul (l, ga, gm, z) = µ

Hence from [xk]:

Ul (l, ga, gm, z) · [pa · fxk(x,q, La)� wk]� �wk = 0

Now simplify [gm]:

Ugm (l, ga, gm, z)� Ul (l, ga, gm, z) · pm = �pm

Ugm (l, ga, gm, z) /pm � Ul (l, ga, gm, z) = �

Now plug the above expression for � into [xk]:

Ul (l, ga, gm, z) · [pa · fxk(x,q, La)� wk]� [Ugm (l, ga, gm, z) /pm � Ul (l, ga, gm, z)]wk = 0

Ul (l, ga, gm, z) · [pa · fxk(x,q, La)� wk] + [Ul (l, ga, gm, z)� Ugm (l, ga, gm, z) /pm]wk = 0

Ul (l, ga, gm, z) ·pa ·fxk(x,q, La)�wk ·Ul (l, ga, gm, z)+wk ·Ul (l, ga, gm, z)�wk ·Ugm (l, ga, gm, z) /pm = 0

Ul (l, ga, gm, z) · pa · fxk(x,q, La)� wk · Ugm (l, ga, gm, z) /pm = 0

Ul (l, ga, gm, z) · pa · fxk(x,q, La) = wk · Ugm (l, ga, gm, z) /pm

This implies:
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Ul (l, ga, gm, z) · pa · fxk(x,q, La)

Ul (l, ga, gm, z) · pa · fxj (x,q, La)
=

wk · Ugm (l, ga, gm, z) /pm
wj · Ugm (l, ga, gm, z) /pm

and therefore:

fxk(x,q, La)

fxj (x,q, La)
=

wk

wj

, 8k 6= j

This, along with the technical efficiency assumption of f(x,q, La) = y, proves that the household mini-

mizes cost in agricultural production. ⌅

Generalized Maximum Entropy Estimator

GME estimation requires choosing the support space for the parameters values and error terms. Define

these support spaces as

z =


z1 z2 . . . zH

�
for parameters

v =


v1 v2 . . . vD

�
for error terms

The endpoints of these support spaces define the minimum and maximum possible values of the param-

eters and error terms. To reduce computational complexity, typical these support vectors have just three

elements and are symmetric about zero. Then corresponding weight vectors are the choice variables.

GME takes the form of the following constrained maximization problem:

max
p,w

⇢
�

HP
h

phk · ln phk�
DP
d

wdit · lnwdit

�

Subject to:

the product of the support space and the weight vectors add to the parameters and error terms:

HP
h

phkzh = �̂k, where �̂k stands in for every parameter to be estimated

DP
d

wditvd = ✏̂it, where ✏̂it is the estimated residual of the i’th observation and t’th equation
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the weight vectors add to one so as to be proper probabilities:

DP
d

wd = 1

HP
h

ph = 1

the weight vectors have non-negative elements so as to be proper probabilities:

wd > 0, 8d; ph > 0, 8h

and the estimated parameters and residuals are consistent with the data and the model:

yit = ft
⇣
xit, �̂

⌘
+ ✏̂it when yit > 0

0 > ft
⇣
xit, �̂

⌘
+ ✏̂it when yit = 0

ft
⇣
xit, �̂

⌘
is the model for the t’th equation. In my case these are the cost function and the six input

demand equations. To estimate the parameters of the multinomial logit, I use a GME technique developed

by Golan, Judge, & Perloff (1996).

The general idea behind is approach is that there are two opposing forces at work. Both the weight

vectors associated with the parameters and the weight vectors associated with the residuals would “prefer”

to force the parameters and residuals to equal the means of their support vectors. For residuals this mean

is zero. For parameters, I have specified the mean to be zero for all parameters except that the support

space vectors for the shadow price parameters have mean of unity. This is meant to reflect the idea that the

estimation should prefer the null hypothesis if the data is uninformative.

In the case that the model is “uninformative”, i.e. has poor fit, GME allows the estimated residuals

to deviate far from zero while making the estimated parameters zero. If the model is informative, the

maximization process forces the residuals toward zero by shifting the values of the parameters away from

the mean of their support spaces. GME is thus a type of shrinkage estimator. It is biased in finite samples,

but it gains lower variance in return for its biasedness.

Figure 4 displays an example support space and weight vector for a single residual. The support space

is [�10 0 10 ]. As the left panel shows, subject to ✏̂ = 0, entropy is maximized when all three values

of the weight vector w are 1/3. If model consistency requires that ✏̂ = 5.48, entropy is maximized when

the values of the weight vector are shifted toward the right end of the support, as shown in the right panel.

When ✏̂ changes from 0 to 5.48, entropy falls from 1.1 to 0.86, which illustrate the fact that the maximization
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Figure 4: Example of residual entropy

process forces ✏̂ toward zero if it is permitted by the model consistency constraints. In effect, this particular ✏̂

competes with the other weight vectors. This behavior of the optimization algorithm is somewhat analogous

to the objective in OLS of minimizing the sum of squared errors.
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