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Place of Work and Place of Residence: 
Informal Hiring Networks and Labor Market Outcomes

Patrick Bayer, Stephen L. Ross, and Giorgio Topa

Abstract

We use a novel dataset and research design to empirically detect the effect of social interactions
among neighbors on labor market outcomes. Specifically, using Census data that characterize
residential and employment locations down to the city block, we examine whether individuals
residing in the same block are more likely to work together than those in nearby blocks. We find
evidence of significant social interactions operating at the block level: residing on the same versus
nearby blocks increases the probability of working together by over 33 percent. The results also
indicate that this referral effect is stronger when individuals are similar in sociodemographic
characteristics (e.g., both have children of similar ages) and when at least one individual is well
attached to the labor market. These findings are robust across various specifications intended to
address concerns related to sorting and reverse causation. Further, having determined the
characteristics of a pair of individuals that lead to an especially strong referral effect, we provide
evidence that the increased availability of neighborhood referrals has a significant impact on a wide
range of labor market outcomes including employment and wages.

Keywords: Neighborhood Effects, Job Referrals, Social Interactions, Social Networks, Labor
Supply

JEL Codes: J0, J2, J3, J6, R0
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1 INTRODUCTION 

 The relevance of social networks and local interactions for economic outcomes has been 

increasingly recognized by economists in a variety of contexts.1 An important strand of this 

literature has focused on the detection and measurement of social interactions that operate at the 

level of the residential neighborhood.2 The proper identification of such neighborhood effects is 

complicated, however, by the non-random sorting of households into neighborhoods and the 

likely presence of unobserved individual and neighborhood attributes.3 The resulting correlation 

in unobservables among neighbors can lead to serious bias in the estimation of social interaction 

among neighbors in the absence of a research design capable of distinguishing social interactions 

from these alternative explanations.4 

In this paper, we propose a new empirical approach designed to identify neighborhood 

effects in observational data by isolating block-level variation in the characteristics of neighbors 

within narrowly-defined neighborhoods. In particular, using Census data that detail the block on 

which each individual in the Boston metropolitan area resides, we compare outcomes for 

neighbors that reside on the same versus nearby blocks, where nearby blocks are defined to be 

those in the same Census block group.5 The key identifying assumption underlying this design 

(testable on observable attributes) is that there is no block-level correlation in unobserved 

attributes within block groups.   

We use this approach to study the impact of neighborhood referrals on labor market 

outcomes. Rather than focusing on more general forms of neighborhood effects, we exploit the 

fact that our restricted Census dataset characterizes the precise location of both an individual’s 

place of residence and place of work to study the propensity of neighbors to work together. 

                                                 
1 Some recent examples include crime (Glaeser et al. (1996), Bayer et. al. (2004)); welfare program 
participation (Bertrand et al. (2000)); the adoption of new technologies (Conley and Udry (2003), Bandiera 
and Rasul (2003), Burke et al. (2004)); peer effects in education (Hoxby (2000), Sacerdote (2001), 
Zimmerman (2003), Zax and Rees (2002)); knowledge spillovers and economies of agglomeration (Jaffe et 
al. (1993), Audretsch and Feldman (1996), Glaeser et al. (1992)).  For a more extensive review of the 
literature, both theoretical and empirical, see Brock and Durlauf (2001). 
2 Case and Katz (1991) explore the role of neighborhood effects on several behavioral outcomes using a 
spatially auto-regressive model. Crane (1991) also looks at neighborhood influences on social pathologies, 
focusing on non-linearities and threshold effects.  Jencks and Mayer (1990) present a survey of the older 
literature on neighborhood effects.   
3 See Manski (1993) and Moffitt (2001) for a general discussion of the identification of social interactions 
in the presence of correlated unobservables.  
4 The recent literature on neighborhood effects has focused on the development and use of research 
methodologies designed to distinguish among these potential explanations. We provide a detailed 
discussion in Section 2 below. 
5 Census block groups are defined by the Census Bureau and contain an average of ten contiguous city 
blocks in our sample. 
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Specifically, we examine the propensity of a pair of individuals to work in the same location, 

comparing such propensities for pairs of individuals that reside on the same versus nearby blocks 

within a block group. We take the propensity to work in the same location as an indication that 

one member of the pair provided a referral (or more generally information) to the other member 

about jobs available in her place of work. 

Our results indicate the existence of significant social interactions at the block level; 

residing on the same versus nearby blocks increases the probability of working together by over 

33 percent. As a consequence, individuals are about 6.9 percentage points more likely to work 

with at least one person on their block than they would be in the absence of referrals. This result 

is robust to the introduction of detailed controls for the characteristics of the individuals in the 

pair as well as across various specifications intended to address the possibility of within block 

group sorting and reverse causation.  

Our analysis also indicates that there is considerable variation in the likelihood of 

referrals across different pairs of neighbors. We estimate, for example, that a referral is 

significantly more likely among pairs of high school graduates, pairs of young adults, and pairs in 

which members have children of a similar age. More generally, our findings are broadly 

consistent with two common empirical findings in the existing literature on social networks and 

on informal hiring channels: (i) that there is strong assortative matching within social networks 

and (ii) that referrals can only occur when at least one member of the pair is well-attached to the 

labor market. 

This analysis of heterogeneous referral effects serves a second purpose in our analysis. In 

particular, it allows us to develop an individual-specific measure of the availability of referral 

opportunities on each block in the metropolitan area. The resulting estimate of match quality 

provides a novel measure of neighborhood quality based on the specific match between an 

individual’s characteristics and those of her neighbors. We include this measure in a series of 

standard regressions for labor force participation, employment, wages, and earnings (along with 

block group fixed effects and controls for both individual and block-level neighbor attributes). 

Given that many workers that receive a referral would likely find employment through some 

other search method in the absence of a referral, the results of these regressions provide a direct 

measure of the ultimate impact of neighborhood referrals on labor market outcomes. The results 

of this portion of our analysis reveal that neighborhood referral effects have a (statistically and 

economically) significant positive impact on all labor market outcomes under consideration; a 

one standard deviation increase in the match quality, for example, raises expected labor force 
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participation for the average individual by 1.6 percentage points and earnings by 3.8 percent in 

our preferred specification.  

In presenting the results related to neighborhood referrals and labor market outcomes, we 

also provide direct evidence on the key identifying assumption underlying of our research design. 

In particular, we present evidence that the within-block group correlation in observable neighbor 

characteristics does not contribute to the increased propensity of individuals on the same block to 

work together. In fact, the analysis implies that based on their observable characteristics 

(including education, sex, marital status, race, age, presence of children, immigration status), 

pairs on the same block are actually slightly less likely to work together than those on nearby 

blocks. Thus, in as much as it is testable on the observables, our research design is robust to 

within-block group sorting. 

In this way, in addition to providing new evidence on the importance of neighborhood 

referrals for labor market outcomes, our analysis also demonstrates the potential strengths of the 

general research design that we introduce in this paper. In a manner that deals directly with the 

correlation of individual and neighbor characteristics (e.g., due to sorting), this design allows for 

the identification of neighborhood effects operating (i) through a specific mechanism, (ii) for a 

broad population and a wide variety of subsets of that population, and (iii) for individuals that 

have resided in a neighborhood for a variety of tenure lengths. The applicability of this design 

extends to the study of neighborhood effects in other contexts (e.g., other metro areas, specific 

types of neighborhoods), on specific populations (e.g., youths), and for alternative outcomes (e.g., 

education, teenage fertility, health, welfare participation), provided the researcher can 

demonstrate that the within-block group correlation in observable neighbor characteristics does 

not contribute significantly to outcomes, thereby ensuring that the key identifying assumption on 

unobserved characteristics is at least plausible. 

The remainder of the paper is organized as follows. Section 2 sets the paper in the context 

of the existing literature. Section 3 describes the data set that we have assembled for the Boston 

metropolitan area. Sections 4 and 5 describe our research design and present evidence concerning 

the orthogonality of the block-level variation in individual and neighbor characteristics. In these 

sections, we also discuss several extensions of our methodology designed to deal with additional 

issues related to identification. We report our empirical findings in Section 6 and conclude in 

Section 7.  
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2 RELATED LITERATURE 

 In setting forth a new empirical design for detecting and measuring the importance of 

neighborhood referrals on labor market outcomes, this paper has two main goals. The first is to 

contribute a new methodology that can be used to identify neighborhood effects. The second is to 

contribute new results to the empirical literatures on social network effects in job search and 

social interactions more generally. In this short section, we describe briefly how our approach 

relates to each of these literatures. 

 

The Identification of Neighborhood Effects. The study of the identification of neighborhood 

effects is a difficult problem without a completely general solution. An important line of recent 

research seeks to identify neighborhood effects by isolating a random component of 

neighborhood choice induced by special social experiments. Popkin et al. (1993) pioneered this 

approach using data from the Gautreaux Program conducted in Chicago in the late 1970's, which 

gave housing vouchers to eligible black families in public housing as part of a court-imposed 

public housing de-segregation effort.  Similarly, Oreopolous (2003) and Jacob (2005) study the 

impact of re-locations arising from administrative assignment to public housing projects in 

Toronto and from the demolition of the public housing projects in Chicago, respectively.   Most 

notably, Katz et. al. (2001) and Ludwig et al. (2001) have used the randomized housing voucher 

allocation associated with the Moving To Opportunity demonstration (MTO) to examine the 

impact of re-location to neighborhoods with much lower poverty rates on a very wide set of 

individual behavioral outcomes including health, labor market activity, crime, education, and 

more. Especially in the case of MTO, the advantages of this approach are clear – the 

randomization inherent in the program design ensures a clean comparison of treatment and proper 

control groups.  

 There are, however, important limitations in the extent to which the treatment effects 

identified through re-location are informative about the nature of general forms of neighborhood 

effects per se. First, individuals studied must be eligible for a re-location program in the first 

place; this typically implies that the resulting sample is special (i.e. so as to be a resident in public 

housing) and may not be as sensitive to neighborhood effects as other individuals. Second, the 

experimental design involves re-location to new neighborhoods that are, by design, very different 

from baseline neighborhoods; this implies that the identified treatment effect measures the impact 

of re-locating to a neighborhood where individuals initially have few social contacts and where 

the individuals studied may be very different than the average resident of the new neighborhood.  

In this way, the treatment effects identified with this design are necessarily a composite of several 



 5

factors related to significant changes in neighborhoods that are not easily disentangled (see 

Moffitt (2001) for a detailed discussion).  

 A second broad approach seeks to deal with the difficulties induced by correlation in 

unobserved attributes at the neighborhood level by aggregating to a higher level of geography. 

Evans, Oates, and Schwab (1992), Cutler and Glaeser (1997), Ross (1998), Weinberg (2000, 

2004), Ross and Zenou (2004), and Card and Rothstein (2005) identify the effect of location on 

outcomes using cross-metropolitan variation. For example, Cutler and Glaeser (1997) analyze the 

impact of segregation within a metropolitan area on a variety of outcomes including education, 

labor market activity, and teenage fertility, and Evans, Oates and Schwab use metropolitan area 

poverty rates as an instrument for neighborhood level poverty.  Again, the advantages of this 

approach are clear – aggregation certainly eliminates the problem of correlation in unobservables 

among neighbors (although potential correlation in unobservables at the metropolitan level 

becomes an issue). The effects identified through aggregation, however, include not only the 

average neighborhood effects operating in a metropolitan area but also any broader consequences 

of living in a segregated or high poverty metropolitan area.6  Thus, the strict interpretation of the 

estimated effects as neighborhood effects requires the assumption that metropolitan segregation 

does not directly affect outcomes.7  

 An interesting way to view the research design developed in this paper is as the converse 

of designs based on across metropolitan area variation.  That is, instead of aggregating to the 

metropolitan level, we disaggregate below the level of the neighborhood to isolate block-level 

variation in neighbor attributes.  While the strict identification of neighborhood effects with the 

across metropolitan area design requires the assumptions of no metropolitan effects and no 

correlation in unobservables at the metropolitan level, strict identification with our design 

requires the assumptions that social interactions among neighbors are very local in nature – 

operating at the level of the block – and that there is no correlation in unobservables across blocks 

within block groups.8   In this way, we view the current paper as offering a complementary 

approach to the existing literature that allows researchers to identify a wide range of causal 

neighborhood effects using an alternative set of assumptions (testable on the observables) than 

have been used in previous studies.  

                                                 
6 More residentially segregated metropolitan areas might be associated, for example, with increased racial 
taste-based discrimination in the labor market, in the application of criminal justice, etc. due to decreased 
levels of regular inter-racial contact in residential neighborhoods.  
7 It is important to point out that Cutler and Glaeser (1997) do not claim that the effects identified in their 
analysis are strictly a neighborhood effects. 
8 To the extent that interactions occur among neighbors at greater distances, our estimates reflect only the 
increased intensity of interaction at the block level. 
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Job Information Networks and Social Interactions within Neighborhoods. A wide 

array of studies have documented the relationship between the neighborhood environment and 

employment outcomes.  Some important examples include Ihlanfeldt and Sjoquist (1990) who 

find that youth residing far from suburban areas where low skill jobs tend to be located had worse 

employment outcomes, Case and Katz (1991) who find a correlation between youth idleness and 

the idleness of neighbors, O’Regan and Quigley (1998) who find that youth are more likely to be 

high school dropouts and unemployed when they reside in high poverty neighborhoods, and 

Weinberg, Reagan and Yankow (2004) who find that people who move to neighborhoods with 

worse attributes have worse employment outcomes.   

Many scholars have suggested job market referrals or information networks as an 

important factor behind such neighborhood effects.9  Rees and Schultz (1970), Corcoran et al. 

(1980), Holzer (1988), Blau and Robbins (1990), Blau (1992), Granovetter (1995), Addison and 

Portugal (2001) and Wahba and Zenou (2003) all document the importance of referrals and other 

informal hiring channels in the labor market, using both U.S. and non-U.S. data. A number of 

these studies including Holzer (1988) and Blau and Robbins (1990) find that informal referrals 

are more productive than more formal methods in terms of job offer and acceptance probabilities. 

Additional studies including Datcher (1983), Devine and Kiefer (1991), Marmaros and Sacerdote 

(2002), and Loury (2004) find evidence that use of informal networks increases the quality of the 

match as captured by job tenure or earnings.10   

Moreover, considerable evidence exists to suggest that the use of and impact of job 

information networks varies across demographic groups.  According to Ioannides and Loury, the 

evidence on usage differences is mixed in general, but suggests that women and workers with 

higher education levels are less likely to use informal job networks.  In terms of relative 

productivity, Bortnick and Ports (1992) found that these networks were slightly less productive 

for women as compared to men.  Holzer (1987), Bortnick and Ports (1992), and Korenman and 

Turner (1996) found that such networks were substantially less productive for African-

                                                 
9 The use of informal channels such as referrals by employers can be rationalized as a means to reduce the 
uncertainty regarding the quality of a prospective employee. Montgomery (1991) was the first to formally 
model a labor market in which both formal and informal hiring channels coexist. Focusing more closely on 
the information exchange among workers, Calvo-Armengol and Jackson (2002) analyze an explicit 
network model of job search in which agents receive random offers and decide whether to use them 
themselves or pass them on to their unemployed contacts depending on their own employment status and 
current wage.  
10 See Elliot (1999) and Loury (2003) for counter examples where the use of informal networks led to lower 
wages.  Of course, the lower wages may be associated with increased match quality on desirable job 
attributes causing the individual to accept a lower wage as a compensating differential. 
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Americans.  Ioannides and Loury (2004) provide a detailed survey of the literature on job 

information networks.   

Only a small number of studies attempt to quantify the impact of specific social 

interactions or exposures on outcomes,11 and these studies tend to be outside of the labor market 

context.  Bertrand, Luttmer, and Mullainathan (2000) examine the relationship between an 

individual’s own welfare participation and the welfare participation rate among those who speak 

the same language as this individual.  They find a strong positive relationship suggesting the 

existence and impact of language specific social networks.  Similarly, Aizer and Currie (2004) 

find evidence that the prenatal care use of pregnant women is most likely to be influenced by the 

behavior of new mothers in the same ethnic group as compared to mothers in different ethnic 

groups who reside in the same neighborhood. In the labor market context, Topa (2001) finds that 

employment in a given Census tract is positively affected by average employment in neighboring 

tracts when these tracts are located within  a common, larger local community (as defined by their 

residents). 

Our paper adds generally to the body of evidence suggesting that social networks have a 

substantial impact on labor market outcomes, and more specifically to this small, but very 

important literature, on the heterogeneous use of social contacts by individuals and how that use 

differs with respect to their observed characteristics. Our analysis indicates that there is 

considerable variation in the likelihood of successful referrals across different pairs of neighbors. 

Further, this heterogeneity in referral effects enables us to construct a proxy for match quality at 

the block level that we use in the second stage of our analysis to quantify the economic impact of 

referrals. Our research design and unique dataset allow us to focus very closely on a specific 

mechanism through which social interactions at the local level may operate, namely referrals and 

information about job opportunities, while still carefully addressing methodological concerns 

arising from sorting across neighborhoods. 

 

3 DATA 

The data for our analysis are drawn from a restricted version of the 1990 US Census of 

Population for the Boston metropolitan area. For the full (1-in-7) sample of individuals that filled 

                                                 
11 Even if such analyses were conducted using referral data, the results would quite likely be based on self-
reported networks that arise from individual choices.  The studies cited below look at the impact of 
exposure to possible social networks, which are presumably less endogenous than the actual networks 
accessed by the individual.  The key exception to this statement is Marmaros and Sacerdote (2002), who 
base their analysis on exposure to a randomly assigned roommate in a college dormitory.  See Arcidiacono 
and Vigdor (2004) and Weinberg (2004) for recent studies that document sorting/assortive matching in the 
process of forming social networks using data on college and high school students, respectively. 
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out the long form of the Census, these data contain the complete set of variables that are available 

in the public-use version of the Census PUMS, but, in addition, detail each individual’s 

residential and employment locations down to the Census block level. In addition to these 

geographic variables, the Census also provides a wide range of sociodemographic information: 

age, gender and marital status, education, race, family structure, and duration in the residence as 

well as information on labor market outcomes including labor force status, salary and wage 

income if employed, occupation, and industry. 

With regard to the geographic structure of the data, Census blocks correspond roughly to 

actual city blocks; they are typically rectangular regions delimited by the four intersections that 

constitute the corners of the block.12 Our sample consists of approximately 25,500 Census blocks 

arranged into 2,565 block groups, i.e., an average of 10 blocks per block group. The distribution 

of blocks per block group is depicted in Figure 1; the median number of blocks per block group is 

8, and about 95 percent of all block groups have 20 blocks or fewer.    

It is the precise geographical information for each individual in these restricted Census 

data that provides the backbone of our research design, permitting us to isolate the block-level 

variation in neighbor exposure by conditioning on block group fixed effects. The first stage of our 

analysis considers the propensity of a pair of individuals to work in the same location, comparing 

this propensity for a pair that live on the same versus nearby blocks. For this portion of our 

analysis, we construct a sample that contains of individuals that (i) are currently employed, (ii) 

are between 25 and 59 years of age, (iii) do not live and work in the same block, and (iv) for 

whom the Census data on place of work has not been imputed. 13 The total number of workers in 

the Census sample that meet these criteria is 129,175 (5.1 per block, 50 per block group). Figure 

2 reports the corresponding histogram of workers meeting these criteria across blocks.14   

                                                 
12 Notice that this definition implies that Census blocks are not constituted as the set of buildings that face 
each other on the same street.  To the extent that social interactions are also strong between residents on 
opposite sides of the same street, a comparison of interactions between individuals that reside on the same 
Census block versus other blocks in the same block group will tend to understate the increased effect of 
immediate neighbors as those on the opposite side of the same street will count in the control group.  For 
some blocks, however, one may argue that the opposite holds: streets may effectively act as dividers of 
local communities, and interactions may be strongest in the alleys and courtyards connecting the rear sides 
of buildings on the same block.  In either case, our research design should detect (although may understate) 
particularly local interactions provided that the block group contains a reasonable number of blocks. 
13 Currently employed refers to the reference week in the calendar year 1990 used by the Census.  We focus 
on prime-age adults in this paper so as to avoid empirical issues related to the labor market participation 
versus continued schooling of youths and young adults.  We drop all individuals for which place of work is 
imputed for obvious reasons.  We also drop all individuals that work in the same block in which they reside 
to avoid any overstatement of referral effects due, for example, to the clustering of small businesses and 
other retail shops on commercial blocks within block groups. 
14 In the analysis below, we consider specifications that limit the analysis to blocks with five or more 
sample workers. 
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In constructing a sample of pairs for our analysis, we apply two additional critieria, 

selecting all pairs that (i) reside in the same block group within the Boston metropolitan area and 

(ii) do not belong to the same household. Overall, the sample contains 2,037,600 pairs that meet 

all of the above criteria.  The first column of Table 1 characterizes this sample of matched pairs, 

reporting the percentage of pairs that fit the description in the row heading: at least one member 

of roughly 72 percent of the pairs has children; about 15 percent of pairs match two single 

individuals.15  

Examining the characteristics of the sample of pairs shown in Table 1 highlights three 

key dimensions of heterogeneity in which our study will be limited due to the small size of the 

corresponding sample in the Boston metro area. In particular, (i) only 0.53 percent of all pairs 

reflect a match between two high school dropouts, (ii) only 1.59 percent of all pairs reflect a 

match between two non-white workers, and (iii) only 1.92 percent of all pairs reflect a match 

between two immigrants. Given the nature of the sample, it is not surprising that the our analysis 

tends to be more precise in other dimensions of individual heterogeneity including age, the 

presence of children, education (aside from high school dropouts), gender, and marital status.  

For the second stage of our analysis, which examines the impact of neighborhood 

characteristics on labor market outcomes including labor force participation and employment, we 

add those prime age (25 to 59) individuals that are not currently employed; this sample has 

163,594 observations.16 Table 2 reports summary statistics for this sample. The first column 

reports the sample frequencies for each individual characteristic, while the remaining five 

columns report labor market and commuting information: the fraction of individuals that are 

currently employed, average weeks worked in the previous year, average hours worked per week 

in the previous year, average earnings for the sample of individuals that were fully-employed in 

the previous year, and average commute for those that are currently employed.17 College 

graduates, married males, and whites display the strongest attachment to the labor force, with 

respect to employment rates as well as hours and weeks worked. These groups also tend to work 

the farthest away from home. On the other hand, high school dropouts and married females tend 

to have weak labor force attachment and work close to home when employed.  

                                                 
15 It should be noted that the sample contains only a small fraction of Asians and Hispanics and so these 
two groups are combined.  Specifications where these groups are separated yield very similar results. 
16  We again limit the sample used in each labor market outcome equation to individuals for which the 
corresponding dependent variable has not been imputed. 
17 The Census provides information on current employment and labor force participation as well as the 
location of current workplace at the time of the survey in April 1990.  Information on earnings, hours, and 
weeks are reported for the previous year.  Fully-employed in 1989 refers to any individual who worked at 
least 40 weeks and at least 30 hours per week. 
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4 EMPIRICAL DESIGN – DETECTING REFERRAL EFFECTS 

Given the structure of the dataset just described, it is straightforward to characterize our 

general research design. Our primary analysis explores the propensity for two individuals to work 

in the same location, comparing this propensity for a pair that lives in the same block with that of 

a pair that lives in the same block group but not the same block. The implementation of this 

design is straightforward and can be summarized in the following equation:  

 

(1) ij
b
ijg

b
ij RW εαρ ++= 0    

 

where i and j denote two individuals that reside in the same Census block group but not in the 

same household, Wij
b is a dummy variable that is equal to one if i and j work in the same Census 

block, Rij
b is a dummy variable that is equal to one if i and j reside in the same Census block, and 

ρg denotes the residential block group fixed effect – this is the baseline probability of working in 

the same block for individuals residing in the same block group. The statistical test of the null 

hypothesis that no local social interaction effect exists is simply a test of whether the estimated 

coefficient α0 equals zero.  

The inclusion of block group fixed effects in equation (1) is designed to control for any 

correlation in unobserved attributes among individuals residing in the same neighborhood. Such 

correlation can arise because of positive sorting into neighborhoods or because of unobserved 

factors present in those neighborhoods (e.g. similar access to the urban transportation network).18  

In interpreting α0 as a social interaction effect, therefore, we are implicitly making two 

key identification assumptions. First, that while individuals are able to choose their residential 

neighborhood (block group), there is no correlation in unobserved factors affecting work location 

among individuals residing on the same block within a block group. The plausibility of this 

assumption is motivated by two considerations. First, that the thinness of the housing market at 

such small geographic scales – the vast majority of block groups in our sample are less than 0.10 

square miles in area – restricts an individual’s ability to choose a specific block versus 

                                                 
18 See Manski (1993) or Moffitt (2001) for a detailed discussion of these issues.  It is also worth noting that 
due to the unique design of this analysis, the “reflection problem” studied by Manski (1993) does not have 
an obvious analogue for this portion of our analysis.  Manski shows that it is generally impossible to 
distinguish the impact of group average outcomes from group average characteristics on individual 
outcomes because of the simultaneity in the determination of the individual outcomes.  Because the 
dependent variable in our framework is a joint outcome for a pair of individuals and the identification of 
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neighborhood.19 Secondly, that it may be difficult for individuals to identify block-by-block 

variation in neighbor characteristics at the time of purchase or lease. That is, while an individual 

may have a reasonable sense of the socio-demographic structure of the neighborhood more 

generally, that variation across blocks within a neighborhood is less easily observed a priori.    

The second key assumption is that interactions with neighbors are very local in nature – 

i.e., occur mostly among individuals on the same block. To the extent that individuals do have 

some interaction with neighbors on surrounding blocks, our design will provide only a lower 

bound on the overall strength of local interactions – measuring only the difference between these 

very local and broader effects. In this way, the design will allow us to detect interactions provided 

that they are significantly stronger at closer distances, but may still understate the strength of 

those interactions. 

  

A Diagnostic Test of the Identifying Assumption. To examine whether our first key assumption 

– that there is no correlation in unobserved factors affecting work location among individuals 

residing on the same block within a block group – is reasonable, we analyze the correlation 

between observable individual and neighbor characteristics at the block level. While this kind of 

test does not prove anything with respect to the importance of potential correlation in unobserved 

factors, it certainly provides an indication of whether this assumption is at all reasonable.20 In 

particular, for each block in the sample, a single prime age adult is selected and the characteristics 

of other individuals that reside in the same block but not the same household are used to construct 

a measure of average neighbor characteristics.21 The first three columns of Table 3 report the 

                                                                                                                                                 
the existence of social effects is based on comparisons across different geographic scales rather than on 
correlations with group averages, the simultaneity issue does not arise in our context. 
19 In fact, only 11 percent of the blocks in our sample have an owner-occupied unit that changed owners in 
the 2 years prior to the Census.  Given that the Census is a 1-in-7 sample and assuming a uniform 
probability for a house to be on the market in this two year period, this implies that the chances that any 
owner-occupied unit is available on a given block within a given 3 month period is only about 11 percent.  
Thus, it may be difficult for households searching in a given timeframe to select a house on a particular 
block.  The comparable figure for renter-occupied units for blocks that contain at least one rental unit in our 
sample is 45 percent.  This suggests that it is generally easier, although far from certain, for renters to find 
housing on a specific block within a particular search window. 
20 This is in the same vein of Altonji et al. (forthcoming): their approach to correct for selection bias 
suggests that selectivity in terms of unobserved heterogeneity is in some sense proportional to selectivity on 
observables. 
21 By sampling only one individual per block, we avoid inducing a mechanical negative correlation that 
would come about if all individuals were used in estimating the correlation between individual and average 
neighbor characteristics.  This negative correlation arises because each individual is counted as a neighbor 
for all of the others in the same block, but not for herself.  For estimates of the correlation that do not 
condition on block group fixed effects, this bias is inconsequential because an individual’s own 
characteristics contribute very little to the average neighborhood characteristics of others in the full sample.  
For estimates that condition on block group fixed effects, however, this negative bias is quite large in 
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average correlations for the full sample: the first column reports unconditional correlations, while 

the second conditions on block group fixed effects, and the third includes, in addition, 

specifically, whether the house is rented or owned and its corresponding rent or self-reported 

value, respectively.22 In each case, both the individual and block measures are first regressed on 

the corresponding variables (e.g., block group fixed effects) and the correlation between the 

residuals is reported.   

The results indicate a significant amount of sorting on the basis of education, race, age, 

and the presence of children across the neighborhoods of the metropolitan area as a whole. The 

correlation between whether an individual is a college graduate and the fraction of neighbors that 

are college graduates is 0.21, while that between whether an individual is black and the fraction 

of black neighbors is 0.56. The second and third columns provide an explicit test of our 

identification strategy, providing a measure of sorting on observables within block groups. As 

these successive columns clearly demonstrate, the correlation between observable individual and 

neighbor characteristics falls to near zero as only within-block group variation is isolated. The 

inclusion of block group fixed effects reduces the estimated correlations by 70-75 percent on 

average, with a remaining maximum correlation of 0.07 across all characteristics and 0.04 across 

all characteristics except race. The inclusion of housing characteristics, which is intended to 

control for the fact that some within-block group sorting would be expected if the housing stock 

differed significantly across blocks within a block group either in terms of prices or tenure of 

occupancy, drives these estimated correlations slightly closer to zero.  

The second set of three columns in Table 3 reports average correlations for a sample of 

blocks with at least five sampled workers. We drop blocks with a small number of workers at 

various points throughout our analysis for two reasons. First, blocks with a small number of 

residents are largely non-residential and, consequently, interactions among neighbors may be 

limited on such blocks. Second, as we discuss in greater detail below, a measurement error arises 

related to the use of the 1-in-7 sample of individuals observed in the Census to estimate 

neighborhood effects. In this case, blocks with only a small number of workers may be 

                                                                                                                                                 
magnitude because an individual’s own characteristics contribute a significant amount to the average 
neighborhood characteristics of others within the same block group.  By sampling only one individual per 
block, we report an unbiased estimate of the correlation between individual and neighborhood 
characteristics at the block level.     
22 The housing controls include whether both individuals reside in owner-occupied housing, whether both 
individuals reside in rental housing, the average rent or house price for two households if both are owners 
or both renters, and the absolute value of the difference in rent or house price if both are owners or both 
renters.  
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particularly prone to measurement error.23 This concern about the full sample is substantiated in 

the unconditional correlation estimates, as these are significantly greater in a number of cases. 

The correlation estimates that condition on block group fixed effects, however, are generally of 

the same magnitude as those reported for the full sample. Moreover, the estimates that condition 

in addition on housing characteristics are in many cases even smaller than those reported for the 

full sample.  

The magnitude of the remaining correlation between individual and neighbor attributes 

within block groups provides clear support for the notion that the amount of sorting within block 

groups on observables is less extensive than across the neighborhoods of the metropolitan area as 

a whole. This evidence is particularly compelling for our identification strategy because a number 

of these attributes, such as residents’ race or the presence of families with children, would be the 

characteristics of one’s immediate neighbors that might be most observable at the time of moving 

into a new residence. Thus, by controlling for these observables, it may be the case that within-

block group sorting on other characteristics is even less extensive. While the correlation estimates 

reported in Table 3 are small, however, they are not identically zero. An obvious question, then, 

is whether the remaining block-by-block sorting on the basis of observables within block groups, 

small though it may be, is enough to significantly increase the propensity of pairs drawn from the 

same block within a block group to work together. We provide additional evidence on this 

question after first introducing a heterogeneous version of the model. 

 

Heterogeneous Specification. The initial specification shown in equation can easily be extended 

to include a set of covariates Xij that describe the pair of individuals (e.g., those summarized in 

Table 1) both in levels and interacted with Rij
b: 

 

(2) ( ) ij
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23 In particular, a bias is induced in the estimated correlations reported here as a result of the fact that the 
average block characteristics are constructed from a (1-in-7) sample of individuals rather than a complete 
census of neighbors.  This bias is present, however, in each specification reported in Table 3 and, 
importantly, should not generally be greater in the specification that conditions on block group fixed effects 
than in the unconditional specification.  We confirmed this with Monte Carlo simulations.  The results for 
the sample of blocks with five workers or more also is supportive of this notion, as measurement error 
should be substantially lower in this sample and yet the decrease in the estimated coefficients from the 
unconditional specification to the specification that conditions on block group fixed effects is greater in this 
sample.  
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In this case, the estimated coefficients on the cross terms, α1, allow us to investigate whether the 

social interaction effect is weaker or stronger for specific socio-demographic characteristics of the 

matched pair. There are two aspects to this: first, certain pairs are more likely to interact because 

of the assortative matching present in social networks: for instance, two individuals of similar 

age, education, race, or with children of similar age.24 Second, certain individuals may be more 

strongly attached to the labor market and may thus provide better referrals or information on jobs 

– for example, college graduates, married males or individuals with children. In this case, 

matches between pairs in which one individual is strongly attached to the labor market and the 

other generally more likely to need a referral should also lead to an increased number of referrals. 

In equation (2), β'X measures how the propensity to work together of two individuals that 

reside in the same block group but not the same block varies with the observable characteristics 

of the pair. Given an estimate of β̂ , this heterogeneous specification provides a way to test 

whether the remaining within-block group correlation between observable neighbor attributes 

would lead to a significantly higher predicted propensity for pairs on the same block to work 

together. Specifically, we compare the average X'β̂ for those pairs that reside on the same block 

with those that reside on nearby (but not the same) blocks within the block group.25 Given the β̂  

that we estimate below, the results of this test are as follows. The predicted propensity for pairs 

that reside on the same block is 0.343 percent; this is 0.01 percentage points lower than the 

observed (and predicted) propensity for pairs that reside in the same block group but not on the 

same block (0.355). Thus, the remaining block-level sorting on observables does not predict any 

increased propensity for individuals on the same block to work together. This evidence strongly 

favors the notion that our research design is credible in the face of the small amount of within-

block sorting that exists in the data.  

Another competing potential explanation for the finding of a greater propensity of pairs 

to work together at the block versus block group level is that this propensity is simply a declining 

function of the distance between any pair of individuals in the metropolitan area. While we do not 

address this possibility directly in the analysis, two aspects of the results that follow are important 

in ruling out this potential explanation. First, the magnitude of the social effect that we identify is 

large relative to the underlying propensity for two individuals in the same block group to work 

                                                 
24 See Marsden (1987), (1988) for a discussion of the evidence from the General Social Survey on 
assortative matching in networks. 
25This model is also rerun using the housing controls that were used our diagnostic test, the analysis of the 
correlation between individual and neighborhood attributed.  As will be seen below, results are quite 
comparable across specifications.  
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together. In this way, one would have to believe that slight differences (i.e., one- or two-block 

distances) in access to mass transportation stations or highways, for example, could cause a large 

increase in the propensity of individuals to work together at the block versus block group level.  

A second way to gauge whether the increased proximity of individuals at the block level 

is a concern is to compare the coefficient estimates for the matched pair's covariates Xij, in levels 

and as interactions with the block dummy Rij
b (i.e., β and α1, respectively). Assuming that the 

same factors that affect the propensity to work together at the neighborhood level are simply 

stronger at the block level, then one would expect to see a result at the block level (namely, in α1) 

that is qualitatively similar and slightly larger (overall) in magnitude. As we discuss below, this is 

clearly not the case in our empirical analysis; in many cases β and α1 have the opposite sign 26 

 

Additional Specifications and Robustness. As described above, our empirical design relies 

critically on the assumption that social interactions are especially strong at the block level, while 

households are only able to choose a block group at the time of the location decision, due perhaps 

to the thinness of the housing market. While the analysis of correlation between observable 

neighbor characteristics described above provides assurance that this assumption is reasonable, 

we also consider the robustness of our results to alternative samples designed to isolate those 

block groups that are most homogenous along a number of dimensions including: race, education, 

the presence of children in the household, and immigration status. In particular, in each case, we 

select the 50 percent of block groups that display the least amount of within-block group 

correlation between the corresponding individual and neighbor characteristics and re-estimate the 

baseline model for the restricted sample in order to see if our results are robust across samples.27 

A separate confounding issue is the possibility that the estimated social interaction effect 

may be due to reverse causation: workers could receive tips and referrals about residential 

locations from their co-workers at a given firm. We address this issue in several ways. First, the 

empirical focus on the difference between block group- and block-level propensities again 

mitigates this problem because residential referrals are unlikely to result in people residing in 

exactly the same block, due to the thinness of the housing market at the block level.  

                                                 
26 The limitation of this argument should also be clear. When there are several biases that work in different 
directions, the relative magnitudes of the biases may change as we shift the level of geography and as a 
result the sign of the bias might reverse. For example, at the block group level, most of the results may be 
driven by individual observable heterogeneity, but at the block level residential sorting on unobservable 
might become more important. 
27 While the resulting analysis obviously changes the nature of the sample, the results described below do 
provide some re-assurance that our baseline results are not sensitive to sorting.  
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We also tackle the potential for reverse causation directly by estimating equations (1) and 

(2) on a sub-sample of the data in which both respondents in a given matched pair have lived in 

that neighborhood for at least two years, but one of them was not employed for the full year in the 

previous year, defined as having worked less than 45 weeks in 1989. In this case, we can be fairly 

certain that if we see the same individuals working together in the current year then the referral 

was among residential neighbors rather than work colleagues. Unfortunately the Census does not 

contain any direct information on job search activity. Therefore, we use the “not employed for the 

full year in 1989” category as a proxy for the set of individuals who are most likely to have been 

actively searching for a job last year.28 We also estimate an intermediate specification using the 

sub-sample of pairs whose members were both in residence at least two years, and adding 

controls for whether one and/or both individuals were not employed for the full year in 1989. The 

goal of this analysis is to examine whether evidence of referrals is present in this sub-sample. 

Importantly, because this sub-sample is (by construction) very different from the main sample, 

we do not expect the resulting model of social interactions to be identical to our baseline results. 

As a result, there is no reason to believe that the referral effect will be stronger for matches in this 

subsample or even to believe that the estimated parameters will be stable over this subsample.  

The strength, rate of utilization, and the form of the local referral network are likely to differ 

based on how long an individuals resides in a neighborhood. 

 

Inference. Finally, a word about inference. The sampling scheme, which is based on drawing 

matched pairs of individuals who reside in the same block group, makes it very difficult to 

compute appropriate standard errors for our estimates. In particular, the observations in our 

sample -- pairs of individuals in the same block group -- do not constitute a random sample. In 

fact, suppose that individuals a and b work in the same block. Suppose further that individuals b 

and c work in the same block. Then, by transitivity, individuals a and c must also work in the 

same block. As a consequence, if we compute standard errors via the basic OLS formula, we may 

tend to understate their size because we are not taking into account this inherent correlation 

structure in the data. There is also the reasonable concern of heteroscedasticity across block 

groups that may bias standard errors in fixed effects analyses. In fact, the use of the linear 

probability model assures heteroscedastic errors. To address these issues, all standard errors in the 

match model are estimated based on pairwise bootstraps. It should be noted that some concerns 

                                                 
28 Note that in estimating earnings and wage equations in Tables 6 and 7 we condition on a set of 
individuals that were fully-employed in the previous year defined as having worked at least 40 weeks and at 
least 30 hours per week.  This definition is different than that for not employed for the full year in 1989 
used here, which is not at all based on hours. 
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have been raised concerning pairwise bootstrap in small samples (Horowitz, 2000). While our 

sample is quite large, we have a very small number of ones in our dependent variable, which may 

create similar problems. We verified the accuracy of the pairwise bootstraps by also estimating 

standard errors using a pairwise bootstrap with the HC3 correction and also with a wild bootstrap 

(Mammen (1993); Flachaire (1999), (forthcoming)).29 

 

5 EMPIRICAL DESIGN – LABOR MARKET OUTCOMES 

Having analyzed the impact of local interactions on job referrals, the second portion of 

our analysis examines whether such referrals have an impact on labor market outcomes more 

generally. In particular, given the characterization of how the strength of social interactions 

related to job referrals (i.e., the propensity to work together) varies with the attributes of a pair of 

individuals identified in the first portion of our analysis, we explore whether an individual’s labor 

market outcomes are related to the idiosyncratic quality of the strength of the potential networks 

available on her block. Specifically, we estimate a series of labor market outcome regressions that 

include a measure of match quality defined at the individual level along with controls for 

individual and average neighbor characteristics (measured at the block level) as well as block 

group fixed effects.  

The goals of this portion of our analysis are two-fold. First, since we detect informal 

hiring effects indirectly, it serves as a check on the plausibility of the first portion of our analysis. 

Second, by focusing on outcomes we hope to be able to provide a better sense of the magnitude 

of our estimated network effects. It is certainly possible that referrals may be more likely among 

neighbors but may have little effect on labor market outcomes – i.e., that without the referral the 

individual would find a comparable job through another search method. In addition, our labor 

market models are less likely to understate the effect of referrals when compared to the referral 

effects model described in the previous section.  In particular, with limited sorting within block 

groups, expected match quality for individual with others in the same block group is the same as 

their actual block match quality.  Consequently, the block level index for match quality is likely 

to capture the effect of referrals both within the block and from neighboring blocks.  

For this analysis, the unit of observation is an individual rather than a pair. For the 

employment and labor force participation outcomes, the econometric model is a linear probability 

                                                 
29 Pairwise bootstraps are estimated using a sample based on the pair of the predicted value and the 
predicted residual for each observation.  The HC3 correction scales the predicted residual for each 
observation by the estimated variance of the predicted residual for that observation while the wild bootstrap 
multiplies the predicted residual for each observation by a random number. 
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model.30 For all other outcomes, such as weeks worked, hours-per-week worked, wages and 

earnings (in logs), we use a simple linear regression. 

We then add – for each model specification – a ‘network quality’ proxy variable for each 

individual, which is constructed by examining that individual’s matches with other adults in her 

block, using the coefficient estimates α1 from the estimation of equation (2). Specifically, the 

average match quality for individual i, Qi, is constructed using a sample of all possible pairings of 

individual i with other individuals who reside in the same block and do not belong to the same 

household. For each pair, a linear combination Mij of the pair's covariates is created using the 

estimated parameters from the interaction of these variables with Rij
b in equation (2): 

ijij XM '
1α̂= . Then, Qi is computed as the mean value of Mij over all matches for individual i:  
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where Ni is defined as the set of other individuals that reside on the same block but not in the 

same household as individual i. 

We would generally expect individuals with good matches in their block – high value of 

Qi – to have better labor force outcomes on average, after controlling for the direct effect of their 

attributes, the average attributes of their block, and block group fixed effects. We repeat the 

analysis for each of the various specifications described in Section 4 to address the sorting and 

reverse causation issues. In particular, by using a sub-sample of individuals that were not fully 

employed last year, we focus on the group that was most likely to have been looking for work in 

the past year. The effect of Qi on labor market outcomes cannot be driven by residential referrals 

from coworkers if the sample and match quality model is conditioned (to the extent possible 

using census data) on a residential location match that arose before the employment location 

match.  As mentioned previously, we have no a priori expectations concerning how the strength 

of the referral effect varies depending upon whether the employment referral occurred recently or 

sometime in the past.   The specification used for this second stage of our analysis is given by:  
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30 We have also performed our analysis using a multinomial logit specification, with three discrete 
outcomes: out of the labor force, unemployed, and employed. The results are qualitatively very similar. 
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where θg are standard block group fixed effects, Xi is the vector of individual attributes that are 

the same set of attributes used in the workplace clustering specification, and iX  is the vector of 

block averages on the same attributes. The latter are included in order to control for overall or 

non-individual specific effects of neighborhood on employment. 

It is useful to consider the reflection problem again in the context of the labor market 

outcome regressions in equation (4). As noted above, Manski shows that it is generally 

impossible to distinguish the impact of group average outcomes from group average 

characteristics on the outcome of interest. Ignoring the presence of block-level match quality Qi 

in equation (4) for a moment, this implies that it is generally impossible to distinguish the effect 

of average neighborhood labor market outcomes from average neighborhood sociodemographic 

characteristics and, for this reason, we do not include a measure of average neighborhood labor 

market outcomes in equation (4). As Manski points out, δ2 continues to provide a test for the 

presence of social interactions more generally but does not distinguish between these 

mechanisms.  

In the presence of this general concern, the match quality variable constructed from our 

first stage analysis is intriguing because its basis on the propensity of individuals to work together 

implies that this effect comes about through labor market referrals. In this way, we argue that this 

effect is informative about a particular channel through which the employment of neighbors 

might affect an individual’s outcomes. The magnitude of the impact of neighbor employment 

levels on outcomes, however, remains a function of the match between individual and neighbor 

characteristics (e.g., the likelihood that the two interact) and, consequently, it is important to keep 

in mind that this effect does not operate directly through a group average labor market outcome.  

In principle, this model is identified with block fixed effects because Qi varies across 

individuals in a block. In our opinion, however, it would not be appropriate to include block fixed 

effects in this model. The current specification with block group fixed effects is identified 

because similar individuals reside in different blocks within the same block group and therefore 

have different match quality.  In other words, the conceptual experiment considered is to change 

the match quality for a generic individual with observables Xi by moving them from one block to 

another block in the same block group, which we believe is the appropriate comparison or 

exercise. A specification that included block fixed effects would be identified by a comparison of 

individuals with different match quality in the same block. But individuals with the same Xi have 

exactly the same Qi if they are in the same block and, consequently, the associated, and in our 

opinion undesirable, conceptual experiment would involve changes in an individual's observable 

attributes. Clearly, the results of this second exercise would be very sensitive to parametric 
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assumptions concerning how Xi enters labor market outcomes and, consequently, such an exercise 

is unlikely to provide reliable insights into the effect of match quality on labor market outcomes. 

Finally, it is important to point out a limitation of this exercise. In particular, what is 

actually identified by the first-stage analysis are types of pairs that are more likely to work 

together due to the strength of the referral effect between the pair. As discussed above, we expect 

this effect to be large in two cases: (i) when a pair is more likely to interact within their 

residential neighborhood and (ii) when one person is well attached to the labor market and the 

other likely to need a referral. In this way, for a person that is not well attached to the labor 

market, the measure of match quality described here should do a good job of characterizing the 

quality of matches in a neighborhood. For a person better attached to the labor market, however, 

our match quality variable may actually measure neighborhoods in which such a person provides 

rather than receives referrals. In this way, to the extent that our estimated social interaction effects 

in the first stage of our analysis are driven by the asymmetry in labor market attachment rather 

than by the strength of neighborhood interactions, our analysis of the effect of match quality on 

labor market outcomes is likely to understate the benefits of improved matches.  

 

Measurement Error. An important issue that arises in the estimation of equation (4) results 

because the Census contains only a 1-in-7 sample of households rather than the full set of 

households on each block. This means that the constructed average block neighbor attributes 

(including our constructed match quality variable) included in equation (4) are measured with 

error. Assuming that the Census sampling design ensures that the measurement error is 

uncorrelated with the true underlying average block attributes, this measurement error would not 

pose much of a problem for our analysis if average match quality Qi were the only variable 

measured with error included in the analysis. In this case, letting σQ* represent the true variation 

in match quality and σQ the measured variation, the probability limit of the estimated coefficient 

would be equal to the true coefficient times the ratio of σQ* to σQ: 
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In this way, one can obtain a consistent estimate of the effect of a one standard deviation increase 

in the true measure of match quality on labor market outcomes by multiplying the estimated 

coefficient by the standard deviation of our constructed measure of average match quality. When 
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multiple variables are measured with error, this result does not necessarily follow immediately 

because of the possibility of correlation across regressors. To address this concern, we also 

consider robustness to the omission of all block average attributes other than match quality in 

these labor market regressions. A finding of similar results for these alternative specifications 

provides some confidence that the results are not driven by measurement error. 

 

6 RESULTS 

Having described the research design for each portion of our analysis above, we now 

present the results. We begin by examining the propensity for two individuals to work together, 

first reporting some summary statistics and then the estimated coefficients of the baseline 

regression specifications given in equations (1) and (2).  We then present results for the 

alternative specifications based on sub-samples drawn from the most homogeneous block groups 

along various sociodemographic dimensions. Having presented these estimates of the work match 

regressions, we proceed to discuss the corresponding labor market outcome regressions for each 

of these specifications. A final sub-section explores both employment location match and labor 

market outcome specifications that address the possibility of reverse causation, examining sub-

samples that condition on residential tenure and on whether individuals were fully employed in 

the previous year.  

Table 1 contains summary statistics for our matched pairs sample. As described above, 

the first column reports the fraction of pairs that fit the description in the row heading. The 

second column reports – for each category – the empirical frequency that two individuals that 

reside in the same block group but not the same block work together. The third column reports the 

probability that two individuals that reside on the same block work together. In this way, the first 

row indicates that the baseline probability of working together for two individuals that reside in 

the same block group but not the same block is 0.36 percent; this figure rises to 0.94 percent for 

two individuals that reside on the same block. As we will see below, much of this increased 

propensity for individuals residing on the same block to work together results from the fact that 

the sample of individuals that reside on the same block is disproportionately weighted to larger 

blocks – i.e., dense block groups. The inclusion of block group fixed effects in our main empirical 

specification ensures that our social referral effects are estimated purely on the basis of 

comparisons within the same block group. 

The remaining rows of Table 1 reveal how these patterns vary with the characteristics of 

the pair of individuals. First, notice that individuals residing on the same versus nearby blocks 

show an increased propensity to work together across all of the types of pairs characterized in the 
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table. This increased propensity to work together for individuals on the same block versus block 

group is especially strong for pairs of individuals in which (i) both have children and especially 

similar aged young children; (ii) both are married; (iii) both are young; (iv) both are high school 

graduates; and (v) both are recent immigrants. The propensity for recent immigrants to work 

together is not surprising given the importance of social networks for recent immigrants. Because 

immigrants in most visa classes are required by US law to be sponsored by a specific employer, it 

is very likely that many recent immigrants receive referrals for both residential location and 

employment from a social contact already in the US. Thus, importantly, we view the inclusion of 

immigration status in the subsequent analysis as a control for this possibility rather than as an 

attempt to identify the causal impact of neighborhood referrals for immigrants. It is also 

important to note that all of the results of the analysis presented below are robust to dropping 

immigrants from the sample. 

Table 1 also makes clear that the propensity that two individuals residing in the same 

block work together is not a simple monotonic function of the baseline propensity for individuals 

residing in the same block group but not the same block. While pairs of all age combinations 

residing in the same block group but not the same block are about equally likely to work together, 

pairs of young workers residing on the same block are especially likely to work together. 

Similarly, while pairs of workers with children in nearby blocks are about as equally likely to 

work together as pairs without children, the corresponding propensity of pairs with children to 

work together is more than twice that of those without at the block level.  

 

Baseline Specifications. While Table 1 provides suggestive evidence as to the presence and 

nature of a social interaction operating at the very local (block) level, two features of our 

regression specifications help clarify this evidence. First, the regressions include block group 

fixed effects. This ensures that the estimation of our social interaction effects is based exclusively 

on comparisons of block- versus block-group-level propensities to work together within the same 

block group. Second, by simultaneously including controls for education, race, age, children, 

marital status, and gender in the regression, these regressions isolate the marginal contribution of 

each characteristic. Given the strong correlation between marital status and the presence of 

children, for example, it is difficult to ascertain which of these is important from the analysis of 

Table 1 alone. 

 Table 4 reports the results of three specifications for both equations (1) and (2). The first 

row of each column reports the parameter estimate of the average social interaction effect, α0, for 

specification (1), which includes block group fixed effects but no covariates Xij. Column 1 reports 
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results for the full sample; column 2 reports results for the sample that drops blocks with fewer 

than five workers in the sample; column 3 includes a series of controls that characterize the 

housing stock. These latter specifications relate directly back to the correlation analysis shown in 

Section 4. Given the results of that analysis, which show that the correlation between observable 

individual and neighbor characteristics falls to near zero with the dropping of blocks with small 

numbers of sampled workers and the inclusion of block group fixed effects, column 2 reports our 

preferred specification. While the inclusion of housing characteristics in that analysis moved the 

estimated correlations even closer to zero, the fact that house value and rent may in part capitalize 

some components of neighbor characteristics lead us to believe that this specification provides a 

lower bound on the interaction effects. As we will see, all three specifications yield quite similar 

results.  

Starting with the results for the specifications without covariates summarized in the first 

row, the estimated social interaction effect is positive and statistically significant in each case, 

indicating a strong additional propensity for two workers living in the same block to also work in 

the same block, over and above the estimated propensity for matches in their block group. The 

magnitude is 0.12 percentage points for the full sample and the sample based on blocks with at 

least five workers, falling to 0.11 percentage points when housing controls are added. This effect 

is sizeable: it is roughly 33 percent the size of the baseline propensity to work together for two 

individuals that reside in the same block group but not the same block (0.355 percent).31 

An increased propensity to work with a given neighbor implies a much larger propensity 

to work with at least one neighbor. For our preferred sample, which restricts the sample to blocks 

with at least five sampled workers, given the average of 80 individuals per block,32 an estimated 

referral effect of 0.12 percentage points translates to approximately a 6.9 percentage point 

increase in the propensity that an individual works with at least one individual on the same 

block.33 Thus, the referral effect estimated here is certainly economically meaningful.  

                                                 
31 As noted above that this effect is less than the mean difference reported in Table 1 suggests that a portion 
of the differences in mean between those residing in the same block versus those in the same block group 
but not the same block was driven by variation across block groups related to population density.  See 
Section 4 for a discussion of this issue.      
32 While the average number of workers meeting our sample criteria for the match model is only 5.1 
workers, the fact that the Census is a 1-in-7 sample and that many workers are excluded from our analysis 
due to the presence of imputed data accounts for the larger average number of actual prime-age workers per 
block.    
33 For computational ease, this calculation treats the likelihood of working with each neighbor as an 
independent event.  The reported 0.069 = (1 - 0.00355)^80 – (1 – (0.00355+0.0012))^80, where 80 is the 
average number of adults on the same block, 0.00355 is the baseline propensity for individuals to work 
with someone in the same block group and 0.0012 is our estimated social interaction effect. 
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 The remainder of Table 4 reports results for the specification in equation (2) that includes 

the full set of covariates shown in Table 1 in both levels and interacted with whether the pair 

resides on the same block. The rows are assembled by groups of variables, such as educational 

attainment or race/ethnicity of workers in the pair, where the parameter estimates for the level 

coefficients are listed for the entire set of variables followed by the parameter estimates for the 

variables when interacted with whether the two workers live on the same block, bmatch.  

Focusing first on the results for the full sample, the bmatch interaction estimates are 

statistically significant for most of the included socio-demographic categories in Xij.34 The 

interaction effects vary by pair characteristics in a number of interesting ways. With respect to 

education, stronger interactions occur for matches where both individuals are high school 

graduates while the weakest interactions occur for matches between high school dropouts. 

Matches between individuals with children, and especially those with elementary or secondary 

school-aged children of the same age also result in strong referral effects. Similar evidence of 

assortative matching among neighbors can be seen in the age interactions, where the size of the 

referral effect is also largest for matches between the youngest adults in the sample.  

Across gender and marital status categories, referral effects are weakest for matches 

between married females relative to all other combination, while matches where at least one of 

the members is a married male result in especially strong referral effects. 35 The results for high 

school dropouts and married females suggest that referrals happen less frequently in matches 

where both individuals share characteristics that are associated with particularly weak attachment 

to the labor force. In general, then, our findings are broadly consistent with two common 

empirical findings in the existing literature on social networks and on informal hiring channels: 

(i) that there is strong assortative matching within social networks and (ii) that referrals can only 

occur when at least one member of the pair is well-attached to the labor market.36  

Four additional aspects of these heterogeneous results are worth mentioning. First, the 

results for race and immigration status show strong estimated coefficients among pairs where 

both members are recent immigrants and among pairs where both members are either Asian or 

Hispanic. This is not surprising given the propensities for recent immigrants residing on the same 

                                                 
34 The negative intercept for the specification with covariates means that the effect is negative (but barely 
statistically significant) for the left out category: this is for matches between Asians/Hispanics and Blacks, 
where one person is a high-school graduate and the other is a college graduate, and one person is 25 years 
old while the other is 35, etc. Such a category is a very tiny portion of all pairs in the sample.  The 
estimated social interaction effect is estimated to be positive for over 99 percent of pairs observed in the 
data for each specification shown in Table 4.   
35 Note, however, that the decreased referral effect for pairs of married females will be balanced by the 
increased effect for pairs with (especially similarly-aged) children.  
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block to work together reported in Table 1. Again, as noted there, because it is very likely that 

many recent immigrants simultaneously receive referrals for both residences and homes at the 

time of immigration, we do not interpret the resulting coefficient as a causal neighborhood effect 

but include immigration status only as a control. Again, all of the results reported in the paper are 

robust to dropping immigrants from the sample.37 

Second, the results also reveal that social interaction effects are declining with population 

of a block (i.e., decreasing in density). That our estimated referral effects are driven by blocks 

with a smaller number of housing units is encouraging because the housing market for such 

blocks will naturally be thinner – hence with less scope for sorting within block groups.38 Notice 

that this is another case where our estimated social effect has the opposite sign when compared to 

the baseline propensity for two individuals residing in the same block group to work together. 

That is, while individuals that reside in dense block groups are generally much more likely to 

work in the same location, we estimate that referrals from neighbors are less likely in dense 

places.  

A third important aspect of the results presented in Table 4 is that there are significant 

differences between the level and the interaction coefficients associated with the Xij covariates. 

For example, conditional on the other attributes in the model, pairs of married females within the 

same block group are each the most likely to work in the same block (as discussed above, perhaps 

because they tend to work close to home) and have the weakest referral effects among all gender 

and marital status categories. A similar pattern obtains for high school dropouts. As discussed in 

Section 4 above, such substantial differences between the estimated α1 and β coefficients provide 

additional assurance that the estimated referral effects are not simply capturing additional sorting 

at the block level. 

Finally, a comparison of the results across the three specifications reported in Table 4 

reveals a very similar pattern as blocks with fewer than five sampled workers are dropped and 

housing characteristics for each pair are included as controls. Again, because these housing 

controls, which include price measures, might absorb out too much of the variation in the 

underlying effect that is actually attributable to neighbor characteristics (due to capitalization) we 

expect that this specification may understate the strength of the interaction for characteristics that 

                                                                                                                                                 
36 See, for example, Corcoran et al. (1980). 
37 Note that matches between pairs where both are non-US born individuals having immigrated in the past 8 
years represent only 0.22 percent of the overall sample.  Thus, the magnitude of this effect is not 
responsible for the overall average referral effect of 0.12.  In fact, the estimated average effect falls by less 
than 0.02 percentage points when all immigrants are dropped from the sample. 
38 Alternatively, one could think that social interactions are weaker in larger blocks because it is more 
difficult to establish and maintain a social contact in such a block. 
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are most likely to be capitalized – such as college-educated neighbors. While there is some slight 

evidence of this, the same pattern generally holds for this specification. Given these 

complications, however, we treat the specification shown in Column 2 as our preferred 

specification. The correlation of predicted match quality across these specifications exceeds 0.95 

in each case, so this choice has little impact on the second stage of our analysis. 

 

Robustness – Sorting within Block Groups. While the correlation analysis presented in Section 

4 and the results of the specifications reported in Table 4 provide a great deal of re-assurance 

regarding the robustness of our analysis to concerns about the sorting of households across blocks 

within block groups, we seek to provide additional evidence that such sorting is not 

fundamentally driving the results. To this end, as described in Section 4, Table 5 reports the 

results of estimates based on sub-samples based on the 50 percent of block groups that exhibit the 

least amount of block-by-block sorting in four dimensions: education, race, the presence of 

children in the household, and immigration status. It is important to note, of course, that these 

restrictions on the sample change the nature of the set of households for which social interaction 

effects are identified so that there is no reason to expect the results to be identical to the full 

specification. In our minds, then, this exercise serves mainly as a broad check regarding block-

level sorting.39  

 The first row of the table again summarizes the results for specifications that do not 

include any covariates – either in the levels or interacted with bmatch. In each case, the results 

remain similar to the initial regression reported in Table 4, ranging from 0.09 to 0.14 percent. 

When covariates are included in the analysis, the main findings related to age, the presence of 

children, gender and marital status from our baseline specification are confirmed and, in some 

cases, strengthened. Matches between high school graduates continue to lead to strong referral 

effects relative to other categories.40 Again, the match quality indices for these specifications have 

correlations with the match quality index from specification 2 in table 4 as well as with each other 

in excess of 0.90. 

 In sum, our estimated social interaction effects persist, even in areas that do not 

experience a significant degree of sorting below the block group level with respect to 

characteristics most likely to be observed at the time a household moves into a block. We believe 

                                                 
39 It should also be noted that these estimates are run using the sample that drops small blocks, but does not 
include the housing variables since they had only a minor impact on the estimate correlations in Table 3. 
40 Again, the effects for race and immigration status are a bit difficult to evaluate across samples as by 
construction, these samples differ significantly in the number of immigrants and racial minorities included 
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that this set of results further validates our attempt to isolate referral effects from sorting via the 

general research design proposed in this paper. 

 

Labor Market Outcome Regressions. We now turn to results of a series of labor market 

outcome regressions based on each of the specifications of the work match equation reported in 

Tables 4 and 5. As described in Section 5, each regression includes a set of individual and 

average neighbor characteristics for each socio-demographic characteristic included in the work 

match specification as well as a set of block group fixed effects. The three broad columns of 

Table 6 report the effect of a one standard deviation increase in match quality on labor market 

outcomes for specifications corresponding to the three columns of Table 4. In this table, we only 

report the coefficient estimates associated with match quality for the sake of expositional 

clarity.4142 Note also that the number of observations varies across specification due to the 

number of observations with imputed dependent variables in each case; we drop such 

observations from the analysis. 

For the specifications based on the full sample, match quality has a positive and 

(statistically and economically) significant impact on all dependent variables under consideration. 

Our preferred specification, which drops blocks with fewer than five sampled workers, is reported 

in the second broad column. For this specification, a one standard deviation increase in match 

quality raises labor force participation by about 1.6 percentage points, average days worked per 

year by about 4 days, earnings by 3.8 percentage points and wages by 2.1 percentage points. In 

this way, our estimated referral effects are indeed associated with improved labor market 

outcomes especially as it concerns participation in the labor market and the intensity of that 

participation.43 Similar results obtain when housing controls are included in the analysis.4445  

                                                                                                                                                 
in the analysis.  The number of immigrants is lowest, for example, in the fourth specification that selects 
the block groups that are most homogeneous with respect to this characteristic.   
41 The estimation results for the full sets of individual and block-level covariates are quite standard and are 
available from the authors upon request.   
42 The first two dependent variables refer to labor market outcomes for the week preceding the census 
survey.  The last four variables represent labor market outcomes for the preceding year.  Earnings and wage 
regressions are run for the sample of individuals that were fully-employed in the previous year, defined as 
having worked at least 40 weeks and at least 30 hours per week. 
43 Recall from our discussion above that this analysis will tend to understate the benefits of improved match 
quality at the block level as the quality of local matches will typically be overstated for individuals who 
generally provide referrals.  
44 Standard errors are corrected for clustering at the block level in all labor market outcome regressions 
reported in the paper. 
45 It is also worth noting that the estimated coefficients on match quality are qualitatively similar when no 
additional controls are included for average neighbor characteristics at the block level.  This provides some 
confidence that the estimated impact of match quality is robust to the possibility of correlation between the 
measurement error in these variables and the measurement error in match quality. 
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The magnitudes of the labor force participation and employment effects estimated in 

Table 6 are generally consistent with the increased propensity to work with at least one neighbor 

in the same block estimated using the match specification above. In particular, the estimated true 

standard deviation of match quality for our preferred sample (5+ workers on the block) is about 

0.18 percentage points.46 This change in the propensity to work with each neighbor raises the 

probability that an individual works with at least one neighbor by approximately 9.2 percent at 

the mean. Given that one person in a match is providing the referral, this in turns implies an 

increase in the propensity to find a job through a neighborhood referral of 4.6 percent.  This 

number corresponds to the increased propensity to work with someone on exactly the same block 

and, therefore, provides a lower bound on the number of neighborhood referrals more generally.  

When compared to the employment effect estimated for the corresponding sample (1.8 

percent), this then suggests an upper bound of about 40 percent of referrals (1.8/ 4.6) that result in 

employment for an individual who would not be employed in the absence of the referral, while 

the other 60 percent of neighborhood referrals go to individuals who would find employment 

through another search method.  Again, because the denominator in this calculation is expected to 

be understated while the numerator is not, the actual fraction of referrals that result in a non-infra-

marginal employment is likely much less.47  

Table 7 reports the coefficient on match quality for labor market outcome regressions 

corresponding to the work match regressions based on the block groups that exhibit the least 

block-by-block sorting reported in Table 5. In general, the results are qualitatively similar to the 

ones obtained using the full sample, thereby confirming the robustness of our analysis to block-

level sorting. One interesting aspect of this analysis, however, is that the labor force participation 

and employment results are smaller for each of these sub-samples, while the wage results are 

larger suggesting that referrals may be useful largely for finding a good job rather than for finding 

any job.  

 

Reverse Causation. Table 8 provides estimates of specifications designed to address the 

possibility that the estimated social interaction effect may be due to reverse causation, i.e., 

                                                 
46 As discussed in the last sub-section in Section 5, match quality is measured with error due to the 1-in-7 
nature of the Census sample.  As a result, the measured standard deviation is significantly greater than the 
true standard deviation, which we estimated through Monte Carlo simulations.  
47 Recall that we expect the labor market outcome regressions to provide an estimate of the ultimate impact 
of all actual referrals from the neighborhood including individuals in both the same and nearby blocks.  In 
particular, with limited sorting within block groups, expected match quality for individual with others in the 
same block group is the same as their actual block match quality.  Consequently, the block level index for 
match quality is likely to capture the effect of referrals both within the block and from neighboring blocks.    
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workers receiving tips and referrals about residential locations from their co-workers. These 

specifications examine pairs of individuals that have been in their current residence for at least 

two years and focus on the estimated interaction effects for individuals who were not employed 

for the full year in the previous year. As noted above, the goal of this analysis is to examine 

whether evidence of referrals is present in this sub-sample. Again, because this sub-sample is 

very different from the main sample, we do not expect the estimated social interactions to be 

identical to our baseline results.  

For reference, the first panel in Table 8 reports results for the sample of pairs that have 

been in their current residence for at least two years, again restricting attention to the sample of 

blocks with at least five workers. The estimated coefficients in this case are broadly consistent 

with those reported for the full sample in the second column of Table 4; the correlation in the 

predicted measure of match quality from these specifications is 0.71. The estimated coefficients 

are qualitatively similar although generally smaller in magnitude to those in the baseline 

regression for education, age, the presence of children, gender and marital status, and 

immigration.  

The middle panel of Table 8 adds controls in both levels and interactions with bmatch 

based on whether the workers in the pair were not employed for the full year in 1989, defined as 

having worked 45 weeks or less. While failing to rise to the level of statistical significance, social 

interactions are stronger for matches in which one of the individuals was not employed for the 

full previous year while the other individual was (0.02 percentage points greater), whereas 

interaction effects are dramatically weakened when both members of the pair were not employed 

for the full previous year (0.12 percentage points smaller) relative to pairs in which both were 

employed for the full previous year. Since these are workers who have resided in the same 

location for at least two years, these findings do not lend support to the reverse causation 

hypothesis (co-workers giving referrals about desirable residential locations to new employees). 

The last set of columns in Table 8 focuses on the sub-sample of pairs with both 

individuals in residence at least two years, but with only one member employed for the full 

previous year. Again, this sampling scheme reduces the possibility of reverse causation, since we 

are considering workers who are more likely to have made a transition to full employment during 

the past year and whose residential tenure is longer than two years. At the same time, by looking 

at pairs in which one was employed for the full year while the other was not, we are focusing on 

instances in which it is most likely that a referral or information exchange actually took place. 

As in the other specifications, the estimated social interaction effect is strongly positive 

and statistically significant for the version without covariates. When we introduce covariates, the 
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estimation results become statistically weaker than in the larger samples, due in part to the 

smaller sample size. Qualitatively, however, our previous results are confirmed, especially with 

respect to the gender and marital status, immigration, age and education. Overall, these findings 

strongly support the job referral hypothesis and make the reverse causation argument unlikely. 

Finally, we take a more detailed look at the effect of match quality on labor market 

outcomes in Table 9. The objective here is to focus on individuals who were more likely to be 

searching for a job and thus more likely to receive, rather than provide, referrals. In panel 1, we 

report estimates using the sub-sample of individuals that have been in residence at least two 

years, adding a dummy variable for whether the individual was not employed for the full previous 

year. We report the coefficient estimates both for our measure of match quality and for the 

interaction term of match quality with the ‘not-employed-for-full-previous-year’ dummy. In this 

case, the measure of match quality is based on the parameter estimates for the specification 

reported in the second set of columns in Table 8. The results are quite striking: match quality per 

se does not have a significant impact on any outcome for the individuals who were employed for 

the full previous year (presumably because they were unlikely to have been unemployed last year 

and did not need a referral), whereas it has strongly positive and significant effects for the 

individuals who were not employed for the full year, and thus more likely to benefit from 

referrals.  

The second panel in Table 9 reports results of an analogous specification where the 

sample is limited to those in residence at least two years and not employed for the full previous 

year and match quality is based on the estimated coefficients of the specification reported in the 

third set of columns in Table 8. Despite the sharp reduction in the sample size, the results for 

labor force participation and employment correspond well with those reported for individuals not 

employed for the full previous year in the specification reported in the first panel. A one standard 

deviation increase in match quality is associated with a statistically significant increase in labor 

force participation of 2.4 percent and employment of 1.9 percent for those individuals not 

employed for the full previous year. In this way, the labor market outcome effects appear to be 

important for precisely the group that one would think was mostly likely to have received the 

referrals. 

 

7 CONCLUSION 

This paper aims at detecting and measuring the importance of neighborhood referrals on 

labor market outcomes by using a novel data set and identification strategy. Using Census data 

that detail the exact block of residence and workplace for a large sample of prime-age workers in 
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the Boston metro area, we identify social interactions by comparing the propensity of individuals 

on the same versus nearby blocks to work together. We find significant evidence of social 

interactions: residing on the same block increases the probability of working together by over 33 

percent. This finding is robust to the introduction of detailed controls for socio-demographic 

characteristics as well as across various specifications intended to address biases caused by 

sorting below the block group level and housing market referrals exchanged between people who 

work together. Furthermore, the relationship between socio-demographic characteristics and the 

strength of social interactions make sense. Social interactions tend to be stronger when the match 

involves individuals who are likely to interact because they are similar in terms of education, age, 

and presence of children, which is consistent with the notion of assortative matching in social 

networks. Interactions also appear to be stronger when they involve at least one type of individual 

who is strongly attached to the labor market leading to weaker interactions when both members 

of the pair are high school drop-outs or married females. 

In the second half of our analysis we use our heterogeneous referral effect estimates to 

construct an individual-specific measure of the availability of referral opportunities on her block 

of residence. Even after controlling for individual attributes, observable block attributes, and 

block group fixed effects, this measure is a statistically significant determinant of all of the labor 

market outcomes considered across all of our specifications. In terms of economic magnitude, a 

one standard deviation increase in referral opportunities raises expected labor force participation 

by 1.0-1.6 percentage points and earnings by 2.7-3.8 percentage points. 

More generally, this paper provides a new approach for examining the effect of social 

interactions based on variation in geographic scale. In presenting the results related to 

neighborhood referrals and labor market outcomes, we also provide direct evidence on the 

reasonableness of this new design by testing whether its key assumptions hold on observable 

characteristics. In particular, we demonstrate that based on their observable characteristics, pairs 

of individuals residing on the same block would actually be slightly less likely to work together 

than pairs in the same block group but not the same block. This provides strong evidence that our 

research design is likely to be robust to within-block group sorting.  

This evidence also suggests that the research design proposed in the paper may be useful 

in a variety of contexts. For example, in the case of welfare participation, the block of residence is 

unlikely to greatly influence access to public service providers after controlling for the block 

group. More generally, this design might be extended to the study of neighborhood effects in 

specific contexts (e.g., specific types of neighborhoods), on specific populations (e.g., youths), 

and for alternative outcomes (e.g., education, teenage fertility, health, welfare participation), 
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provided the researcher can demonstrate that the within-block group correlation in observable 

neighbor characteristics is zero, thereby ensuring that the key identifying assumption on 

unobserved characteristics is at least reasonable. In future work, we intend to extend this analysis 

to young adults for whom neighborhood contacts might be an especially important source of job 

referrals. 
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